WO2022087902A1 - 一种集流体、电极组件、电池和用电设备 - Google Patents

一种集流体、电极组件、电池和用电设备 Download PDF

Info

Publication number
WO2022087902A1
WO2022087902A1 PCT/CN2020/124469 CN2020124469W WO2022087902A1 WO 2022087902 A1 WO2022087902 A1 WO 2022087902A1 CN 2020124469 W CN2020124469 W CN 2020124469W WO 2022087902 A1 WO2022087902 A1 WO 2022087902A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
carbon nanotubes
pole piece
polymer
electrode assembly
Prior art date
Application number
PCT/CN2020/124469
Other languages
English (en)
French (fr)
Inventor
刘凯
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080089452.5A priority Critical patent/CN115104205A/zh
Priority to PCT/CN2020/124469 priority patent/WO2022087902A1/zh
Publication of WO2022087902A1 publication Critical patent/WO2022087902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular to a current collector, an electrode assembly, a battery, and an electrical device
  • Existing lithium-ion batteries can be classified into two types: wound type and laminated type, which include an outer casing, a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte packaged in the outer casing.
  • the separator is arranged between the positive electrode sheet and the negative electrode sheet.
  • the electrolyte solution fully infiltrates the positive electrode sheet, the negative electrode sheet and the separator.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the current collector is a conductive structure inside the battery, which is mainly used to collect the current generated by the active material of the battery to form an external output current.
  • metal sheets such as copper foil and aluminum foil, are usually used as current collectors.
  • aluminum foil is used as a positive electrode current collector
  • copper foil is used as a negative electrode current collector.
  • the embodiments of the present application aim to provide a current collector, an electrode assembly, a battery, and an electrical device.
  • the current collector has good electrical conductivity, and also has stable chemical properties and good physical properties.
  • an embodiment of the present application provides a current collector, the current collector includes carbon nanotubes and a polymer, and the carbon nanotubes are distributed on the surface and inside of the current collector .
  • the weight percent of the carbon nanotubes is 1%-10% relative to the total weight of the carbon nanotubes and the polymer.
  • the outer diameter of the carbon nanotube is 1 nm-100 nm.
  • the carbon nanotubes comprise single-wall carbon nanotubes, double-wall carbon nanotubes, or multi-wall carbon nanotubes.
  • the thickness of the current collector is 3 ⁇ m-30 ⁇ m.
  • the polymer is a polyester-based polymer, a polyolefin-based polymer, or a rubber.
  • one of the embodiments of the present application provides an electrode assembly, comprising: at least one first pole piece, the first pole piece includes a first current collector and is coated on the first pole piece.
  • a positive electrode active material on the surface of a current collector at least one second pole piece, the second pole piece includes a second current collector and a negative electrode active material coated on the surface of the second current collector; wherein, the first collector At least one of the fluid and the second current collector is the current collector as described in the first aspect above.
  • the electrode assembly further includes at least one tab connected to the current collector by conductive glue.
  • an embodiment of the present application provides a battery, including: a casing, an electrolyte, and the electrode assembly as described in the second aspect above.
  • an embodiment of the present application provides an electrical device, including the battery as described in the third aspect.
  • the current collector provided by the embodiments of the present application includes carbon nanotubes and polymers, and the carbon nanotubes are distributed on the surface and inside of the current collector, so that the carbon nanotubes
  • the tube forms a conductive network on the surface and inside of the current collector, so that the current collector has good conductivity.
  • the polymer is used as the carrier matrix of the carbon nanotubes, so that the current collector also has stability
  • the chemical properties and good physical properties such as corrosion resistance, voltage resistance, heat resistance and high strength, light weight, good flexibility, etc.
  • FIG. 1 is a schematic diagram of the arrangement of a first pole piece, a second pole piece and a diaphragm provided by one of the embodiments of the present application;
  • Fig. 2 is the structural representation of the first pole piece in Fig. 1;
  • Fig. 3 is the structural representation of the second pole piece in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a current collector provided in one embodiment of the present application.
  • the first embodiment of the present application provides a battery, which includes an electrode assembly, a packaging case, an electrolyte, a first terminal, and a second terminal.
  • the electrode assembly is packaged in a packaging shell
  • the electrode assembly is the main structure for charging and discharging
  • the electrolyte is poured into the packaging shell, that is, the electrode assembly is immersed in the electrolyte
  • the electrolyte provides an environment for the charging and discharging of the electrode assembly.
  • the first terminal and the second terminal are respectively connected with the electrode assembly, and the first terminal and the second terminal are arranged on the packaging case and exposed on the outer surface of the packaging case.
  • the electrode assembly when the first terminal and the second terminal are connected to an external power source, the electrode assembly is charged, and when the first terminal and the second terminal are connected to an electrical device, the electrode assembly is discharged to supply power to the electrical device.
  • the electrode assembly includes at least one first pole piece, at least one second pole piece and at least one diaphragm.
  • FIG. 1 shows a structure of an electrode assembly.
  • the electrode assembly 100 includes a first pole piece 10 , a second pole piece 20 and a separator 30 , wherein the first pole piece 10 and the second pole piece 10 and the second pole piece 10
  • the pole pieces 20 are staggered and stacked, and a diaphragm 30 is disposed between any adjacent first pole pieces 10 and second pole pieces 20 .
  • the first pole piece 10 can be a positive pole piece, and the second pole piece 20 is a negative pole piece; correspondingly, the first pole piece 10 can be a negative pole piece, and then the second pole piece 20 is a positive pole piece.
  • the first pole piece 10 is a positive pole piece and the second pole piece 20 is a negative pole piece as an example. It can be understood that the number of the first pole piece 10 and the second pole piece 20 is not limited, and the first pole piece 10 and the second pole piece 20 can be respectively 1 layer to 100 layers or more, and can be selected as 20 layers. Layers - 50 layers.
  • the first pole piece 10 includes a first current collector 11 and a first tab 12, and both surfaces of the first current collector 11 are coated with positive active materials.
  • the first current collector 11 is not completely coated, and there is a first void where the positive electrode active material is not coated.
  • the first tab 12 is connected to the first electrode of the first current collector 11 . Empty place. It can be understood that the first tab 12 and the first current collector 11 may be connected by welding, conductive glue, etc., or the first tab 12 and the first current collector 11 are an integrated structure, for example, the first tab 12 Die-cut from the first current collector 11 .
  • the second pole piece 20 includes a second current collector 21 and a second tab 22, and both surfaces of the second current collector 21 are coated with a negative electrode active material.
  • the second current collector 21 is not completely coated, and there is a second space where the negative electrode active material is not coated, and the second tab 22 is connected to the second current collector 21 .
  • the at least one first pole piece 10 , the at least one second pole piece 20 and the at least one diaphragm 30 are stacked in the above-mentioned manner, all the first pole tabs 12 are aligned and stacked with each other and are electrically connected to form a first tab group, all The second tabs 22 are aligned and stacked with each other and are electrically connected to form a second tab group. It can be understood that the first tab group and the second tab group are arranged separately.
  • the first tab group is electrically connected to the first terminal, and the second tab group is electrically connected to the second terminal. It can be understood that when the first tabs 12 are made of metal, all the first tabs 12 can be aligned and stacked to form the first tab group by welding. When the second tabs 22 are made of metal, all the first tabs After the diode tabs 22 are aligned and stacked, the second tab group can be formed by welding.
  • the first current collector 11 in the first pole piece 10 is usually aluminum foil
  • the first tab 12 is usually aluminum
  • the second current collector 21 in the second pole piece 20 is usually copper foil
  • the second tab 22 is usually copper foil or nickel foil.
  • the positive electrode active material mainly includes lithium cobalt oxide, conductive agent and binder, etc. Among them, lithium cobalt oxide provides lithium ions for lithium batteries, the conductive agent is used to improve the conductivity of the positive electrode active material, and the binder is used to convert lithium cobalt oxide. , the conductive agent and the first current collector 11 are bonded together.
  • the negative electrode active material mainly includes graphite, conductive agent and binder, etc., among which, graphite is the main material constituting the negative electrode reaction, the conductive agent is used to improve the conductivity of the negative active material, and the binder is used to combine the graphite, the conductive agent and the first negative electrode.
  • the two current collectors 21 are bonded together.
  • the separator 30 is a polymer film with a microporous structure, which can allow lithium ions to pass through freely, but electrons cannot pass through.
  • the electrolyte solution is usually a carbonate-based solvent in which lithium hexafluorophosphate is dissolved.
  • the packaging shell can be steel shell, aluminum shell, nickel-plated iron shell, aluminum-plastic film, etc.
  • the electrons on the first pole piece 10 reach the second pole piece 20 through the external charging circuit, the lithium ions on the first pole piece 10 enter the electrolyte, and then pass through the micropores on the diaphragm 30 to reach the second pole piece 20 .
  • the diode piece 20 is combined with the electrons on the second pole piece 20 .
  • the electrons on the second pole piece 20 reach the first pole piece 10 through the external electrical circuit, the lithium ions on the second pole piece 20 enter the electrolyte, and then reach the first pole piece 10 through the micropores on the diaphragm 30. , combined with the electrons on the first pole piece 10 .
  • the current collector is a metal, and there are some disadvantages.
  • the metal current collector is easily corroded in the electrolyte, and it is easy to deposit after dissolution, which not only damages the current collector, but also pollutes the electrolyte.
  • the aluminum foil is used as the current collector at the positive electrode sheet, a violent thermal reaction occurs when the aluminum foil contacts the graphite on the negative electrode sheet, and thus, the above-mentioned disadvantages affect the safety and service life of the battery.
  • the second embodiment of the present application provides a current collector, which can be used to replace the metal current collector in the above-mentioned first embodiment.
  • the current collector in this embodiment includes carbon nanotubes and polymers, and the carbon nanotubes are distributed on the surface and inside of the current collector.
  • the current collector is composed of carbon nanotubes and polymers, and has the characteristics of composite materials, that is, it not only maintains the advantages of the performance of each component material, but also obtains the properties that cannot be achieved by a single component material through the complementation and correlation of the performance of each component. the overall performance achieved.
  • the components of the current collector include carbon nanotubes and polymers, so that the current collector retains the properties of carbon nanotubes and the properties of polymers.
  • carbon nanotubes are tubular nanoscale graphite crystals, which are seamless nanoscale tubes formed by rolling single-layer or multi-layer graphite sheets around the central axis at a certain helix angle. Therefore, carbon nanotubes have a high ratio of Surface area, mechanical properties, good thermal and electrical properties, for example, carbon nanotubes can withstand heat up to 2800°C under vacuum, thermal conductivity is twice that of diamond, and electron current carrying capacity is 1,000 times that of copper wire.
  • polymers are used to carry carbon nanotubes, and polymers can be divided into plastics and rubbers. It can be seen that the polymer has high strength and toughness, and also has the characteristics of wear resistance, heat resistance, corrosion resistance, solvent resistance and electrical insulation.
  • the polymer may be a polyester-based polymer, a polyolefin-based polymer, or a rubber. It can be understood that, compared with metals, polymers have stable chemical properties, that is, they have better voltage resistance and corrosion resistance, as well as physical properties such as light weight, good flexibility, and high strength. Can be thermoformed or thermoset for easy processing.
  • thermoplastic polymers are thermoplastic, such as polypropylene, that is, they can flow and deform when heated, and can maintain a certain shape after cooling, so thermoplastic polymers can be used for extrusion, injection, blow molding or calendering.
  • Some polymers are thermosetting, such as epoxy resins, that is, they can flow and deform when heated to a certain extent. When further heated to the curing temperature, the polymers are cross-linked and cured to form an irreversible solid state. For thermosetting polymers, it can be used for mold forming, etc.
  • the current collector has the advantages of electrical conductivity, thermal conductivity and toughness of carbon nanotubes and high strength, high toughness, wear resistance, heat resistance, corrosion resistance, solvent resistance, light weight, etc. of polymers, and , carbon nanotubes can also improve the elasticity and fracture toughness of the polymer, that is, increase the flexibility of the current collector.
  • carbon nanotubes From the properties of carbon nanotubes, the properties of polymers and the characteristics of composite molding, it can be obtained by selecting carbon nanotubes and polymers as the components of the current collector and designing the dispersion state of carbon nanotubes in the polymer.
  • a current collector with good electrical conductivity, excellent physical properties and stable chemical properties.
  • the carbon nanotubes have different directions in the polymer, are arranged disorderly, and are uniformly dispersed, that is, the carbon nanotubes are arranged in an irregular direction, and are randomly arranged in a dispersed manner to form a uniform conductive network.
  • the current collector has good electrical conductivity; on the other hand, carbon nanotubes are randomly distributed, and there are strong van der Waals forces between carbon nanotubes and carbon nanotubes and between carbon nanotubes and polymers, which can The flexibility of the current collector is increased, and the influence of the orientation of the carbon nanotubes on the flexibility of the current collector is eliminated.
  • the weight percent of the carbon nanotubes is 1%-10% relative to the total weight of the carbon nanotubes and the polymer. Based on the weight percentage of the carbon nanotubes, the resistivity of the current collector can be made less than or equal to 3*10 ⁇ -8 ⁇ m. It can be understood that the weight percent of carbon nanotubes is determined after extensive experiments.
  • the outer diameter of the carbon nanotube is 1 nm-100 nm.
  • the specific outer diameter of the carbon nanotubes can be set in combination with the type of polymer, the weight percentage of the carbon nanotubes, and the desired electrical conductivity.
  • carbon nanotubes can be classified into single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the carbon nanotubes comprise single-wall carbon nanotubes, double-wall carbon nanotubes, or multi-wall carbon nanotubes.
  • the thickness of the current collector is 3 ⁇ m-30 ⁇ m, which can meet the strength requirements of the current collector, and is also convenient for stacking and winding.
  • the carbon nanotubes in the current collector are in a randomly dispersed network structure.
  • the carbon nanotubes have different directions and are randomly distributed to form a conductive structure.
  • the network structure increases the contact interface between the carbon nanotubes and the polymer, making the adhesion between the carbon nanotubes and the polymer stronger, and on the other hand, the network structure can increase the toughness, that is, in plastic deformation and fracture More energy can be absorbed during the process, so that brittle fracture is less likely. Therefore, the first pole piece or the second pole piece including the current collector will not be bent and damaged during the winding process.
  • the current collector not only has good electrical conductivity and can meet the electrical conductivity requirements of the current collector, but also has stable chemical properties and good physical properties, such as corrosion resistance, voltage resistance, heat resistance and high strength, Lightweight and flexible.
  • the third embodiment of the present application also provides a method for preparing a current collector, comprising:
  • the current collector can be obtained by forming the mixture in a flowing state through a film forming process.
  • a preset weight percentage of carbon nanotubes is mixed with a polymer to obtain a uniformly mixed mixture, and the mixture is heated to a fluid state, and the fluid state of the mixture has fluidity and ductility.
  • the current collector can be prepared by calendering, film blowing or extruding the mixture in a flowing state, and after curing.
  • the film forming process and the curing process therein can be determined according to the actual polymer, for example, for thermoplastic polymers such as polypropylene, it can be formed into a film by calendering, and then cooled and solidified, for example, for thermosetting polymers such as epoxy resin, it can be formed by Extrusion into a film, set the corresponding curing temperature to cure the epoxy resin.
  • thermoplastic polymers such as polypropylene
  • thermosetting polymers such as epoxy resin
  • the type of polymer is not limited, and the appropriate polymer can be selected according to the properties of the current collector.
  • the type and type of carbon nanotubes are not limited here. Carbon nanotubes and polymers The mixing ratio can also be determined according to the actual situation.
  • the electrical conductivity requirement is satisfied by selecting the polymer and carbon nanotubes and setting the weight percentage such that the resistivity of the current collector is less than or equal to 3*10 ⁇ -8 ⁇ m.
  • the weight percent of the carbon nanotubes is 1%-10% relative to the total weight of the carbon nanotubes and the polymer.
  • the outer diameter of the carbon nanotubes may be 1 nm-100 nm. It will be appreciated that, in some embodiments, the carbon nanotubes mixed with the polymer include single-wall carbon nanotubes, double-wall carbon nanotubes, or multi-wall carbon nanotubes.
  • the thickness of the current collector prepared by the above method is 3 ⁇ m-30 ⁇ m, which can meet the strength requirements of the current collector, and is also convenient for stacking and winding.
  • the preparation method in the above-mentioned third embodiment determines the structure of the current collector, which in turn determines its own performance. It can be seen from the above preparation method that the current collector is composed of polymer and carbon nanotubes, and the polymer is used as the force carrier of the current collector during use. For example, the polymer is used as a supporting structure, and its strength and flexibility need to meet the The demand for strength and flexibility of the current collector can ensure the strength and flexibility of the current collector by selecting a polymer with good strength and flexibility.
  • Carbon nanotubes are mixed into the polymer, which provides the current collector with electrical conductivity.
  • the direction of carbon nanotubes in the polymer is different, that is, the direction is random, which is equivalent to that the carbon nanotubes with random direction are dispersed in the polymer to form a uniform conductive network, so that the current collector has good conductivity. performance.
  • the fourth embodiment of the present application also provides a method for preparing a current collector, comprising:
  • step (2) heating the mixture in step (1) to change the mixture into a flowing state, and mixing the carbon nanotubes and the rubber uniformly by stirring, so that the carbon nanotubes are uniformly dispersed in the rubber.
  • step (3) Forming and curing the mixture in the flowing state in step (2) into a film to prepare a current collector.
  • the rubber may be thermoplastic rubber or thermosetting rubber.
  • thermoplastic rubber it can be formed into a film by extrusion and calendering, and then cooled and solidified.
  • thermosetting rubber it can also be formed into a film by extrusion and calendering, and cured by setting the curing temperature corresponding to the thermosetting rubber.
  • the carbon nanotubes are uniformly dispersed in the rubber, so that the mixture of the carbon nanotubes and the rubber has conductivity.
  • By increasing the weight percentage of carbon nanotubes, a current collector with strong electrical conductivity can be obtained.
  • Rubber is a highly elastic polymer with reversible deformation, with chemical resistance, heat resistance, electrical insulation, high strength, high toughness and good wear resistance.
  • the current collector has both the above-mentioned functions of rubber and the electrical conductivity of carbon nanotubes.
  • the high-strength and high-toughness rubber can be bent and wound at will, so that the winding structure of the electrode assembly can be satisfied.
  • Chemical resistance, wear resistance and voltage resistance can make the current collector not corrode in the electrolyte, and material precipitation will contaminate the electrolyte.
  • the current collector contacts the graphite on the negative electrode sheet, no thermal reaction occurs, so that the safety performance of the battery can be improved.
  • the fifth embodiment of the present application also provides a method for preparing a current collector, comprising:
  • step (2) heating the mixture in step (1) to make the mixture into a fluid state, and mixing the carbon nanotubes and polypropylene uniformly by stirring, even if the carbon nanotubes are uniformly dispersed in the polypropylene.
  • step (3) gradually cooling the mixture in the flowing state in step (2), and rolling and shaping during the cooling process to prepare a current collector.
  • carbon nanotubes are uniformly dispersed in polypropylene, so that the mixture of carbon nanotubes and polypropylene has conductivity.
  • a current collector with strong electrical conductivity can be obtained.
  • Polypropylene is a thermoplastic synthetic resin with chemical resistance, heat resistance, electrical insulation, high strength, high toughness and good wear resistance. Therefore, the current collector has both the above-mentioned functions of polyethylene and the electrical conductivity of carbon nanotubes.
  • the high-strength and high-toughness polyethylene can be bent and wound at will, so that the winding structure of the electrode assembly can be satisfied.
  • the chemical resistance, abrasion resistance and voltage resistance of polyethylene can prevent the current collector from corroding in the electrolyte, and the material precipitation to contaminate the electrolyte.
  • the current collector contacts the graphite on the negative electrode sheet there will be no thermal reaction, and polyethylene with low density can make the current collector lighter, resulting in a lighter battery.
  • the sixth embodiment of the present application further provides an electrode assembly, the electrode assembly includes at least one first pole piece and at least one second pole piece, wherein the first pole piece includes a first current collector and is coated on the The positive electrode active material on the surface of the first current collector, the second pole piece includes a second current collector and a negative electrode active material coated on the surface of the second current collector. Wherein, at least one of the first current collector and the second current collector is the current collector in the second embodiment.
  • only the first current collector may be the current collector in the above-mentioned second embodiment, or only the second current collector may be the current collector in the above-mentioned embodiment, or, the first current collector and the second current collector may be the current collector in the above-mentioned embodiment.
  • the two current collectors are the current collectors in the second embodiment.
  • the first pole piece is used as a positive electrode piece
  • the second pole piece is used as a negative electrode piece for exemplary illustration.
  • the first pole piece can also be a negative electrode piece, that is, the first current collector.
  • the surface is coated with a negative electrode active material
  • the second pole piece is a positive electrode piece, that is, the surface of the second current collector is coated with a positive electrode active material.
  • the terms "first,” “second,” etc. are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • Both the first current collector and the second current collector in this embodiment have the same components, structures and functions as the current collector in the above-mentioned second embodiment, which will not be repeated here. It is worth noting that even when the current collector in this embodiment contacts the graphite in the negative electrode active material, no thermal reaction will occur, which improves the safety of the battery.
  • the electrode assembly further includes at least one tab, and the tab and the current collector are connected by conductive glue, so that the tab and the current collector are connected to each other without affecting the tab and the current collector electrical connection between. It can be understood that, in some embodiments, the current collector and the tab can also be integrally formed.
  • the seventh embodiment of the present application also provides a battery, which includes a case, an electrolyte, and the electrode assembly in the sixth embodiment.
  • the electrode assembly is encapsulated in the casing, and the electrolyte is poured into the casing and infiltrates the electrode assembly, so that the battery can be charged and discharged.
  • the electrode assembly in this embodiment has the same structure and function as the electrode assembly in the above-mentioned sixth embodiment, which will not be repeated here.
  • the eighth embodiment of the present application also provides an electrical device, the electrical device includes the battery in the seventh embodiment above, so that the battery in the electrical device has the same battery as the battery in the seventh embodiment. The structure and function will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种集流体,涉及电池技术领域,该集流体包括碳纳米管和聚合物,所述碳纳米管分布于所述集流体的表面和内部,从而,所述碳纳米管在所述集流体的表面和内部形成导电网络,使得所述集流体具有良好的导电性,此外,以所述聚合物作为所述碳纳米管的承载基体,使得所述集流体还具有稳定的化学性能和良好的物理性能,例如耐腐蚀、耐电压性能、耐热性以及强度高、轻质、柔韧性好等。

Description

一种集流体、电极组件、电池和用电设备 技术领域
本申请实施例涉及电池技术领域,特别是涉及一种集流体、电极组件、电池和用电设备
背景技术
现有的锂离子电池可分为卷绕式及层叠式两类,其包括外壳体、封装于外壳体内的正极片、负极片、隔膜及电解液。该隔膜设置于正极片与负极片之间。该电解液充分浸润正极片、负极片及隔膜。其中,正极片包括一正极集流体及形成于该正极集流体表面的正极活性材料层,负极片包括一负极集流体及形成于该负极集流体表面的负极活性材料层。
集流体是电池内部的一种导电结构,主要用于将电池活性材料产生的电流汇集起来以形成对外输出的电流。现有的锂电池中,集流体通常采用金属薄片,如铜箔、铝箔,一般而言,铝箔作为正极集流体,铜箔作为负极集流体。
发明内容
本申请实施例旨在提供一种集流体、电极组件、电池和用电设备,该集流体具有良好导电性的同时,还具有稳定的化学性能和良好的物理性能。
为解决上述技术问题,第一方面,本申请其中一实施例提供了一种集流体,所述集流体包括碳纳米管和聚合物,所述碳纳米管分布于所述集流体的表面和内部。
在一些实施例中,相对于所述碳纳米管和所述聚合物的总重量,所述碳纳米管的重量百分比为1%-10%。
在一些实施例中,所述碳纳米管的管外径为1nm-100nm。
在一些实施例中,所述碳纳米管包括单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
在一些实施例中,所述集流体的厚度为3μm-30μm。
在一些实施例中,所述聚合物为聚脂类聚合物、聚烯类聚合物或橡胶。
为解决上述技术问题,第二方面,本申请其中一实施例提供了一种电极组件,包括:至少一个第一极片,所述第一极片包括第一集流体和涂覆于所述第一集流体表面的正极活性材料;至少一个第二极片,所述第二极片包括第二集流体和涂覆于所述第二集流体表面的负极活性材料;其中,所述第一集流体和所述第二集流体中至少之一为如上第一方面所述的集流体。
在一些实施例中,所述电极组件还包括至少一个极耳,所述极耳与所述集流体通过导电胶连接。
为解决上述技术问题,第三方面,本申请其中一实施例提供了一种电池,包括:壳体、电解质以及如上第二方面所述的电极组件。
为解决上述技术问题,第四方面,本申请其中一实施例提供了一种用电设备,包括如上第三方面所述的电池。
本申请实施例的有益效果:本申请实施例提供的集流体,该集流体包括碳纳米管和聚合物,所述碳纳米管分布于所述集流体的表面和内部,从而,所述碳纳米管在所述集流体的表面和内部形成导电网络,使得所述集流体具有良好的导电性,此外,以所述聚合物作为所述碳纳米管的承载基体,使得所述集流体还具有稳定的化学性能和良好的物理性能,例如耐腐蚀、耐电压性能、耐热性以及强度高、轻质、柔韧性好等。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的第一极片、第二极片和隔膜的排列示意图;
图2为图1中第一极片的结构示意图;
图3为图1中第二极片的结构示意图;
图4为本申请其中一实施例提供的集流体的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为了便于本领域技术人员对本申请的理解,基于下述第一实施例,对电池的内部结构及工作原理阐述如下:
本申请第一实施例提供了一种电池,其包括电极组件、包装壳、电解液、第一端子、第二端子。其中,电极组件封装于包装壳中,电极组件是充放电的主要结构,电解液灌注于包装壳中,即电极组件浸入于电解液中,电解液为电极组件的充放电提供了环境。第一端子和第二端子分别与电极组件连接,并且第一端子和第二端子设置于包装壳,并显露于包装壳的外表面。
从而,当第一端子和第二端子连接外部电源时,实现对电极组件充电,当第一端子和第二端子连接用电设备时,电极组件放电,以为用电 设备供电。
具体的,电极组件包括至少一个第一极片、至少一个第二极片和至少一个隔膜。图1示出了电极组件的一种结构,在图1所示的结构中,电极组件100包括第一极片10、第二极片20和隔膜30,其中,第一极片10和第二极片20交错叠置,并且,任意相邻的第一极片10和第二极片20之间设置有隔膜30。其中,第一极片10可以是正极片,则第二极片20为负极片;相应地,第一极片10可以是负极片,则第二极片20为正极片。示例性的,以下均以第一极片10为正极片,第二极片20为负极片为例说明。可以理解的是,该第一极片10和第二极片20的数量不限,第一极片10和第二极片20可以分别为1层-100层或更多层,可选为20层-50层。
其中,第一极片10包括第一集流体11和第一极耳12,第一集流体11的两个表面均涂覆有正极活性材料。当然,如图2所示,第一集流体11并未完全被涂覆,保留有未涂覆正极活性材料的第一空留处,第一极耳12连接于第一集流体11的第一空留处。可以理解的是,第一极耳12与第一集流体11可以通过焊接、导电胶等方式连接,或者,第一极耳12与第一集流体11为一体化结构,例如第一极耳12由第一集流体11模切得到。
第二极片20包括第二集流体21和第二极耳22,第二集流体21的两个表面均涂覆有负极活性材料。同理,如图3所示,第二集流体21并未完全被涂覆,保留有未涂覆负极活性材料的第二空留处,第二极耳22连接于第二集流体21的第二空留处。可以理解的是,第二极耳22与第二集流体21可以通过焊接、导电胶等方式连接,或者,第二极耳22与第二集流体21为一体化结构,例如第二极耳22由第二集流体21模切得到。
当至少一个第一极片10、至少一个第二极片20和至少一个隔膜30按上述方式叠置后,所有的第一极耳12相互对齐叠置并电连接成第一极耳组,所有的第二极耳22相互对齐叠置并电连接成第二极耳组。可以理解的是,该第一极耳组和该第二极耳组分开设置。
第一极耳组与第一端子电连接,第二极耳组与第二端子电连接。可以理解的是,当第一极耳12为金属时,所有的第一极耳12相互对齐叠置后可通过焊接形成第一极耳组,当第二极耳22为金属时,所有的第二极耳22相互对齐叠置后可通过焊接形成第二极耳组。
对于传统锂电池的电极组件,其第一极片10中第一集流体11通常为铝箔,第一极耳12通常为铝,第二极片20中的第二集流体21通常为铜箔,第二极耳22通常为铜箔或镍箔。正极活性材料主要包括钴酸锂、导电剂和粘合剂等,其中,钴酸锂为锂电池提供锂离子,导电剂用于提高正极活性材料的导电性,粘合剂用于将钴酸锂、导电剂和第一集流体11粘合在一起。负极活性材料主要包括石墨、导电剂和粘结剂等,其中,石墨为构成负极反应的主要物质,导电剂用于提高负活性材料的导电性,粘合剂用于将石墨、导电剂和第二集流体21粘合在一起。
此外,隔膜30是一种带微孔结构的高分子薄膜,可以让锂离子自由通过,而电子不能通过。电解液通常为溶解有六氟磷酸锂的碳酸酯类溶剂。包装壳可以为钢壳、铝壳、镀镍铁壳、铝塑膜等。
对于上述锂电池,充电时,第一极片10上的电子通过外部充电电路到达第二极片20,第一极片10上的锂离子进入电解液,再通过隔膜30上的微孔达到第二极片20,与第二极片20上的电子结合。放电时,第二极片20上的电子通过外部用电电路到达第一极片10,第二极片20上的锂离子进入电解液,再通过隔膜30上的微孔达到第一极片10上,与第一极片10上的电子结合。
由上述可知,集流体为金属,存在一些缺点,一方面,金属集流体在电解液中容易被腐蚀,容易溶出后沉积,不仅集流体受损,而且,还污染了电解液,另一方面,当铝箔作为正极片处的集流体时,铝箔接触到负极片上的石墨会发生剧烈热反应,从而,上述缺点影响电池的安全和使用寿命。
基于此,本申请第二实施例提供了一种集流体,可用于替换上述第一实施例中的金属集流体。本实施例中的集流体包括碳纳米管和聚合物,碳纳米管分布于集流体的表面和内部。该集流体通过碳纳米管和聚 合物复合而成,具备复合材料的特性,即,不仅保持各组分材料性能的优点,而且通过各组分性能的互补和关联可以获得单一组分材料所不能达到的综合性能。该集流体的组分包括碳纳米管和聚合物,从而,该集流体保持有碳纳米管的性能和聚合物的性能。
其中,碳纳米管是管状的纳米级石墨晶体,通过单层或多层石墨片围绕中心轴按一定的螺旋角卷卷曲而形成的无缝纳米级管,从而,碳纳米管具有较高的比表面积、力学性能、良好的热性能与电性能,例如,碳纳米管在真空下的耐热温度可达2800℃,导热率是金刚石的2倍,电子载流容量是铜导线的1000倍。当碳纳米管分布于集流体的表面和内部时形成导电网络,可为集流体带来上述性能,并且,集流体的上述性能取决于多种因素,例如,碳纳米管的类型、形态、结构以及碳纳米管的分散状况等。
其中,聚合物用于承载碳纳米管,聚合物可分为塑料、橡胶。可知,聚合物具有较高的强度、韧性,还具有耐磨性、耐热性、耐腐蚀性、耐溶剂型以及电绝缘性等特点。在一些实施例中,所述聚合物可以为聚酯类聚合物、聚烯类聚合物或橡胶。可以理解的是,相对于金属,聚合物的化学性能稳定,即具有较好的耐电压性、耐腐蚀性,还具有质量轻、柔韧性好、强度高等物理性能,此外,聚合物成型好,可以热塑成型或热固成型,易于加工。
值得说明的是,部分聚合物具备热塑性,例如聚丙烯,即在加热时能发生流动变形,冷却后可保持一定形状,从而,热塑性聚合物可用于挤出、注射、吹塑或压延等成型加工。部分聚合物具备热固性,例如环氧树脂,即在加热一定程度时能发生流动变形,当进一步加热至固化温度时,聚合物相互交联固化,形成不可逆的固态。对于热固性聚合物可用于模具成型等。
由此,该集流体具有碳纳米管的导电性、导热性和韧性以及聚合物的高强度、高韧性、耐磨性、耐热性、耐腐蚀性、耐溶剂型、质量轻等优点,并且,碳纳米管还能改善聚合物的弹性和断裂韧性,即增加该集流体的柔韧性。
由碳纳米管的性能和聚合物的性能以及复合成型的特点可知,通过选择碳纳米管、聚合物作为该集流体的组分,以及设计碳纳米管在聚合物中的分散状态,即可获得导电性能好,物理性能优良以及化学性能稳定的集流体。
在本实施例中,碳纳米管在聚合物中方向各异,无序排列,且分散均匀,即碳纳米管的排列方向无规律,呈分散的随机排列,形成一个均匀的导电网络。一方面,使得该集流体具有良好的导电性,另一方面,碳纳米管随机分布,碳纳米管与碳纳米管之间以及碳纳米管与聚合物之间均存在较强的范德华力,能增加该集流体的柔韧性,并且,消除了碳纳米管的方向对该集流体的柔韧性的影响。
在一些实施例中,相对于碳纳米管和聚合物的总重量,该碳纳米管的重量百分比为1%-10%。基于此碳纳米管的重量百分比,可使得该集流体的电阻率小于或等于3*10^-8Ω·m。可以理解的是,碳纳米管的重量百分比是通过大量实验后确定的。
在一些实施例中,所述碳纳米管的管外径为1nm-100nm。外径越大,碳纳米管的导电性越好,外径越小,碳纳米管的强度、韧性越好,缺陷也越少。碳纳米管的具体外径,可结合聚合物的种类、以及碳纳米管的重量百分比、所需的导电性能而设定。
可以理解的是,碳纳米管可以分为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管。因此,在一些实施例中,碳纳米管包括单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
在一些实施例中,所述集流体的厚度为3μm-30μm,能满足集流体的强度要求,还方便叠置卷绕。
在本实施例中,碳纳米管在集流体中是呈随机分散的网络结构,如图4所示,在该集流体的一代表单元中,碳纳米管的方向各异,随机分布,形成导电网络结构,一方面,增加了碳纳米管和聚合物的接触界面,使得碳纳米管和聚合物之间的粘结力更强,另一方面,网络结构能增加韧性,即在塑性变形和破裂过程中可以吸收更多的能量,从而,发生脆性断裂的可能性小。从而,包括该集流体的第一极片或第二极片在卷绕 的过程中不会发生弯折破损。
综上所述,该集流体不仅具有良好的导电性能,能满足集流体的导电要求,还具有稳定的化学性能和良好的物理性能,例如耐腐蚀、耐电压性能、耐热性以及强度高、轻质、柔韧性好等。
本申请第三实施例还提供了一种集流体的制备方法,包括:
将预设重量百分比的碳纳米管与聚合物混合,得到混合物,并对所述混合物加热至流动状态;
将流动状态的所述混合物通过成膜工艺成型,即可获取所述集流体。
具体的,将预设重量百分比的碳纳米管与聚合物混合,得到混合均匀的混合物,并对混合物加热至流动状态,流动状态的混合物具有流动性和延展性,从而,可以通过现有的成膜工艺,对流动状态的混合物进行压延、吹膜或挤出处理,固化后,即可制得该集流体。其中,成膜工艺和其中的固化工序可根据实际聚合物而确定,例如,对于聚丙烯等热塑性聚合物可通过压延成膜,然后,冷却固化,例如,对于环氧树脂等热固性聚合物可通过挤出成膜,设置相应的固化温度使环氧树脂固化。
可以理解的是,聚合物的种类不受限制,可根据所需集流体的性能而选择合适的聚合物作,碳纳米管的型号和类型在此也不做任何限制,碳纳米管与聚合物的混合比例也可根据实际情况而定。在一些实施例中,通过选择聚合物和碳纳米管以及设置重量百分比使得该集流体的电阻率小于或等于3*10^-8Ω·m,满足导电性要求。
在一些实施例中,相对于碳纳米管和聚合物的总重量,所述碳纳米管的重量百分比为1%-10%。在一些实施例中,碳纳米管的外径可以为1nm-100nm。可以理解的是,在一些实施例中,与聚合物混合的碳纳米管包括单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
在一些实施例中,通过上述方法制备得到的集流体的厚度为3μm-30μm,能满足集流体的强度要求,还方便叠置卷绕。
上述第三实施例中的制备方法决定了该集流体的结构,而其结构又决定了自身的性能。由上述制备方法可知,集流体是由聚合物和碳纳米 管复合而成,聚合物作为该集流体在使用过程中的受力载体,例如,聚合物作为支撑结构,其强度、柔韧性需要满足集流体对强度和柔韧性的需求,从而可以通过选择强度、柔韧性好的聚合物,以确保集流体的强度和柔韧性。
碳纳米管混合于聚合物中,为该集流体提供了导电性能。碳纳米管在聚合物中的方向各异,即方向是随机的,相当于,方向随机的碳纳米管散布于聚合物中,形成一个均匀的导电网络,从而,使得该集流体具有良好的导电性能。
本申请第四实施例还提供了一种集流体的制备方法,包括:
(1)将碳纳米管与橡胶按照重量比例5:95进行混合,得到混合物,其中,碳纳米管为外管径50nm,导电率8*10^7Ω·m的单壁碳纳米管。在此实施例中,碳纳米管的重量百分比为10%。
(2)将步骤(1)中的混合物进行加热,使混合物变为流动状态,并通过搅拌使碳纳米管和橡胶混合均匀,使碳纳米管均匀分散于橡胶中。
(3)将步骤(2)中流动状态的混合物成膜并固化,制得集流体。
值得说明的是,该橡胶可以是热塑性橡胶,也可以是热固性橡胶。对于热塑性橡胶,可以通过挤压、压延成膜,冷却固化。对于热固性橡胶,也可以通过挤压、压延成膜,并通过设置与热固性橡胶相应的固化温度使之固化。
在本实施例中,碳纳米管均匀分散于橡胶中,使碳纳米管和橡胶的混合物具有导电性,碳纳米管的重量百分比越大,则混合物的导电性越强。通过提高碳纳米管的重量百分比,即可得到导电性强的集流体。橡胶是一种具有可逆形变的高弹性聚合物,具有耐化学性、耐热性、电绝缘性、高强度、高韧性和良好的耐磨性能。从而,该集流体同时具备橡胶的上述功能,以及碳纳米管的导电性。也即,相对于传统的金属集流体,将能导电的橡胶作为集流体时,高强度和高韧性的橡胶能随意弯折卷绕,从而,可以满足电极组件的卷绕结构,其次,橡胶的耐化学性、耐磨性以及耐电压性,可以使得集流体在电解液中不会发生腐蚀,以及 材料析出污染电解液。此外,当集流体接触到负极片上的石墨时,也不会发生热反应,从而,能够提高电池的安全性能。
本申请第五实施例还提供了一种集流体的制备方法,包括:
(1)将碳纳米管与聚丙烯按照重量比例10:90进行混合,得到混合物,其中,碳纳米管为外管径80nm,电导率5*10^7Ω·m的多壁碳纳米管。在此实施例中,碳纳米管的重量百分比为10%。
(2)将步骤(1)中的混合物进行加热,使混合物变为流动状态,并通过搅拌使碳纳米管和聚丙烯混合均匀,即使碳纳米管均匀分散于聚丙烯中。
(3)将步骤(2)中流动状态的混合物逐步冷却,在冷却过程中进行压延和定型,制得集流体。
在本实施例中,碳纳米管均匀分散于聚丙烯中,使碳纳米管和聚丙烯的混合物具有导电性,碳纳米管的重量百分比越大,则混合物的导电性越强。通过提高碳纳米管的重量百分比,即可得到导电性强的集流体。聚丙烯是一种热塑性合成树脂,具有耐化学性、耐热性、电绝缘性、高强度、高韧性和良好的耐磨性能。从而,该集流体同时具备聚乙烯的上述功能,以及碳纳米管的导电性。也即,相对于传统的金属集流体,将能导电的聚乙烯作为集流体时,高强度和高韧性的聚乙烯能随意弯折卷绕,从而,可以满足电极组件的卷绕结构,其次,聚乙烯的耐化学性、耐磨性以及耐电压性,可以使得集流体在电解液中不会发生腐蚀,以及材料析出污染电解液。此外,当该集流体接触到负极片上的石墨时,也不会发生热反应,并且,密度低的聚乙烯,可以使得该集流体轻量化,得到更加轻质的电池。
本申请第六实施例还提供了一种电极组件,该电极组件包括至少一个第一极片和至少一个第二极片,其中,所述第一极片包括第一集流体和涂覆于所述第一集流体表面的正极活性材料,所述第二极片包括第二集流体和涂覆于所述第二集流体表面的负极活性材料。其中,所述第一集流体和所述第二集流体中至少之一为上述实施例二中的集流体。
也就是说,该电极组件中可以是:仅第一集流体为上述实施例二中 的集流体,或,仅第二集流体为上述实施例中的集流体,或者,第一集流体和第二集流体均上述实施例二中的集流体。
值得说明的是,本申请中以第一极片为正极片、第二极片为负极片进行示例性说明,可以理解的是,该第一极片也可以为负极片,即第一集流体表面涂覆负极活性材料,相应的,第二极片则为正极片,即第二集流体表面涂覆正极活性材料。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
本实施例中的第一集流体和第二集流体均与上述第二实施例中的集流体具有相同的组分、结构和功能,在此不再一一赘述。值得说明的是,本实施例中的集流体即使接触到负极活性材料中的石墨时也不会发生热反应,提高了电池的安全性。
在一些实施例中,所述电极组件还包括至少一个极耳,所述极耳与所述集流体通过导电胶连接,从而,使得极耳与集流体相互连接,又不影响极耳与集流体之间的电连通。可以理解的是,在一些实施例中,集流体和极耳也可以一体成型。
本申请第七实施例还提供了一种电池,该电池包括壳体、电解质以及上述第六实施例中的电极组件。所述电极组件封装于所述壳体中,所述电解质灌注于所述壳体中,并浸润所述电极组件,从而,可使所述电池实现充放电。本实施例中的电极组件与上述第六实施例中的电极组件具有相同结构和功能,在此不再一一赘述。
本申请第八实施例还提供了一种用电设备,该用电设备包括上述第七实施例中的电池,从而,该用电设备中的电池与上述第七实施例中的电池具有相同的结构和功能,在此不再一一赘述。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特 征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种集流体,其特征在于,所述集流体包括碳纳米管和聚合物,所述碳纳米管分布于所述集流体的表面和内部。
  2. 根据权利要求1所述的集流体,其特征在于,其中,相对于所述碳纳米管和所述聚合物的总重量,所述碳纳米管的重量百分比为1%-10%。
  3. 根据权利要求2所述的集流体,其特征在于,所述碳纳米管的管外径为1nm-100nm。
  4. 根据权利要求3所述的集流体,其特征在于,所述碳纳米管包括单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
  5. 根据权利要求1-4任一项所述的集流体,其特征在于,所述集流体的厚度为3μm-30μm。
  6. 根据权利要求5所述的集流体,其特征在于,所述聚合物为聚脂类聚合物、聚烯类聚合物或橡胶。
  7. 一种电极组件,其特征在于,包括:
    至少一个第一极片,所述第一极片包括第一集流体和涂覆于所述第一集流体表面的正极活性材料;
    至少一个第二极片,所述第二极片包括第二集流体和涂覆于所述第二集流体表面的负极活性材料;
    其中,所述第一集流体和所述第二集流体中至少之一为如权利要求1-6中任一项所述的集流体。
  8. 根据权利要求7所述的电极组件,其特征在于,所述电极组件还包括至少一个极耳,所述极耳与所述集流体通过导电胶连接。
  9. 一种电池,其特征在于,包括:壳体、电解质以及如权利要求7或8所述的电极组件。
  10. 一种用电设备,其特征在于,包括根据权利要求9所述的电池。
PCT/CN2020/124469 2020-10-28 2020-10-28 一种集流体、电极组件、电池和用电设备 WO2022087902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080089452.5A CN115104205A (zh) 2020-10-28 2020-10-28 一种集流体、电极组件、电池和用电设备
PCT/CN2020/124469 WO2022087902A1 (zh) 2020-10-28 2020-10-28 一种集流体、电极组件、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124469 WO2022087902A1 (zh) 2020-10-28 2020-10-28 一种集流体、电极组件、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2022087902A1 true WO2022087902A1 (zh) 2022-05-05

Family

ID=81383432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124469 WO2022087902A1 (zh) 2020-10-28 2020-10-28 一种集流体、电极组件、电池和用电设备

Country Status (2)

Country Link
CN (1) CN115104205A (zh)
WO (1) WO2022087902A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170833A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd 双極型二次電池用の集電体
JP2012248430A (ja) * 2011-05-27 2012-12-13 Gunze Ltd 二次電池用集電体及び二次電池
CN107431210A (zh) * 2015-03-27 2017-12-01 日产自动车株式会社 锂电池用正极
CN108140802A (zh) * 2015-10-23 2018-06-08 日产自动车株式会社 电极及其制造方法
JP2019216035A (ja) * 2018-06-13 2019-12-19 三洋化成工業株式会社 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170833A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd 双極型二次電池用の集電体
JP2012248430A (ja) * 2011-05-27 2012-12-13 Gunze Ltd 二次電池用集電体及び二次電池
CN107431210A (zh) * 2015-03-27 2017-12-01 日产自动车株式会社 锂电池用正极
CN108140802A (zh) * 2015-10-23 2018-06-08 日产自动车株式会社 电极及其制造方法
JP2019216035A (ja) * 2018-06-13 2019-12-19 三洋化成工業株式会社 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池

Also Published As

Publication number Publication date
CN115104205A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
JP6346291B2 (ja) 電気的接続構造
JP5381078B2 (ja) 電極およびその製造方法
US9680147B2 (en) Battery having an electrode structure comprising long metal fibers and a production method therefor
TWI441376B (zh) 鋰離子電池正極及鋰離子電池
JP5434089B2 (ja) 双極型二次電池用の集電体
JP5493443B2 (ja) 双極型二次電池
US20090317710A1 (en) Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof
JP5343500B2 (ja) 双極型電極及びこれを用いた双極型二次電池
JP5417859B2 (ja) ポリマーブレンドフィルムを含む電極
CN104409681A (zh) 一种含ptc涂层的锂离子电池极片的制备方法
CN111048789B (zh) 一种集流体及其制备方法和应用
JP2014532956A (ja) ケーブル型二次電池
CN112751037A (zh) 一种复合集流体、极片、电池和使用电池的装置
KR20160130829A (ko) 비수전해질 이차 전지
CN107946597A (zh) 一种高分子膜集流体及锂离子电池
JP2011023249A (ja) 二次電池、組電池
JP2011060559A (ja) リチウムイオン二次電池用電極
JP5380993B2 (ja) 双極型二次電池用集電体
JP2010092607A (ja) 双極型二次電池用集電体
WO2019198453A1 (ja) 電池の製造方法
WO2022087902A1 (zh) 一种集流体、电极组件、电池和用电设备
JP5515257B2 (ja) 双極型二次電池
Zhou et al. Scalable Preparation of Polyimide Sandwiched Separator for Durable High‐Rate Lithium‐Metal Battery
WO2019198454A1 (ja) 電池の製造方法
CN113517444B (zh) 集流体、集流体制造方法、电极极片及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959065

Country of ref document: EP

Kind code of ref document: A1