WO2022085175A1 - 多翼遠心送風機 - Google Patents

多翼遠心送風機 Download PDF

Info

Publication number
WO2022085175A1
WO2022085175A1 PCT/JP2020/039898 JP2020039898W WO2022085175A1 WO 2022085175 A1 WO2022085175 A1 WO 2022085175A1 JP 2020039898 W JP2020039898 W JP 2020039898W WO 2022085175 A1 WO2022085175 A1 WO 2022085175A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
inner peripheral
impeller
wing
plate
Prior art date
Application number
PCT/JP2020/039898
Other languages
English (en)
French (fr)
Inventor
弘恭 林
拓矢 寺本
克洋 藤木
和平 新宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022556346A priority Critical patent/JP7466683B2/ja
Priority to US18/043,917 priority patent/US20240026899A1/en
Priority to CN202080106321.3A priority patent/CN116348680A/zh
Priority to PCT/JP2020/039898 priority patent/WO2022085175A1/ja
Priority to EP20958725.2A priority patent/EP4234946A4/en
Priority to TW110108114A priority patent/TWI747758B/zh
Publication of WO2022085175A1 publication Critical patent/WO2022085175A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/54Building or constructing in particular ways by sheet metal manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • This disclosure relates to a multi-blade centrifugal blower with an impeller.
  • the multi-blade centrifugal blower is equipped with an impeller and a spiral scroll casing in which the impeller is housed.
  • the impeller is composed of a main plate, an annular side plate facing the main plate, and a plurality of blades provided between the main plate and the side plate. Air is sucked from the side plate side by rotation and scrolls through the blades. Let it flow out into the air passage inside the casing. The airflow is boosted in the air passage inside the scroll casing and blown out from the discharge port.
  • a multi-blade centrifugal blower there is a method of increasing the number of blades as a means of increasing the air volume.
  • Patent Document 1 In the multi-blade centrifugal blower disclosed in Patent Document 1, the swept wing provided on the inner peripheral side of the wing is arranged inside the inner peripheral end of the side plate to be exposed, and air is released by the exposed swept wing. It is captured. In the multi-blade centrifugal blower of Patent Document 1, the impeller is injection-molded from a resin material.
  • Patent Document 1 when an impeller is injection-molded from a resin material, the wall thickness of the blade is generally thicker on the main plate side than on the side plate side due to the moldability of the impeller, and the main plate of the impeller is generally thicker. On the side, the gap formed between the wings is narrower than on the side plate side. Therefore, in the multi-blade centrifugal blower of Patent Document 1, although the swept wing is exposed from the inner peripheral end of the side plate, the air that has reached the vicinity of the swept wing cannot be sufficiently taken into the blades on the main plate side, and the blades. The effect of increasing the suction air volume may not be obtained on the main plate side of the car.
  • the present disclosure has been made in order to solve the above-mentioned problems, and it is possible to increase the suction air volume on the main plate side of the impeller as compared with the conventional multi-blade centrifugal blower made of a resin material. It is an object of the present invention to provide a multi-blade centrifugal blower capable of being capable.
  • the multi-blade centrifugal blower has a disk-shaped main plate, a plurality of blades arranged in the circumferential direction on the peripheral edge of the main plate, and arranged so as to face the main plate and fix the plurality of blades. It comprises an impeller having an annular side plate, a spiral scroll casing in which the impeller is housed and air is introduced from the side plate side and blown out to the outer peripheral side, and the impeller is made of metal.
  • the wing has a certain wall thickness from the main plate side to the side plate side, and extends inward from the inner peripheral end of the side plate.
  • the impeller is made of metal and the wall thickness of the blade is constant from the side plate to the main plate side, the blade extends inward from the inner peripheral end of the side plate in the blade.
  • a gap between the blades similar to that on the side plate side of the vehicle can be secured on the main plate side of the impeller. Therefore, the suction air volume can be increased even on the main plate side of the impeller as compared with the conventional multi-blade centrifugal blower made of a resin material.
  • FIG. 5 is an external view schematically showing a configuration in which the multi-blade centrifugal blower according to the first embodiment is viewed in parallel with the axis of rotation. It is sectional drawing which shows typically the AA line cross section of the multi-blade centrifugal blower of FIG. It is a figure which shows typically the structure which saw the impeller of the multi-blade centrifugal blower of FIG. 1 parallel to the axis of rotation. It is sectional drawing which shows the BB line cross section of the impeller of FIG. 3 schematically. It is a figure which shows typically the positional relationship between the bell mouth of FIG. 2 and an impeller. FIG. 3 is an enlarged partial perspective view of a part of the outer peripheral portion of the impeller of FIG. It is a figure which shows typically the structure which saw the blade of the multi-blade centrifugal blower which concerns on Embodiment 2 parallel to the axis of rotation. It is a figure which shows the deformation example of the wing of FIG.
  • FIG. 1 is an external view schematically showing a configuration in which the multi-blade centrifugal blower 100 according to the first embodiment is viewed in parallel with the rotation axis RS.
  • FIG. 2 is a cross-sectional view schematically showing a cross section taken along line AA of the multi-blade centrifugal blower 100 of FIG. The basic structure of the multi-blade centrifugal blower 100 will be described with reference to FIGS. 1 and 2.
  • the multi-blade centrifugal blower 100 is a multi-blade centrifugal blower, and has an impeller 10 for generating an air flow and a scroll casing 20 in which the impeller 10 is housed.
  • the impeller 10 has a disk-shaped main plate 11 as shown in FIG. 1, a plurality of blades 12 having a uniform thickness, and an annular side plate 13 as shown in FIG.
  • the main plate 11 is provided with a shaft portion 11b to which a motor (not shown) is connected.
  • the plurality of wings 12 are arranged in the circumferential direction on the peripheral edge of the main plate 11.
  • the side plate 13 is arranged so as to face the main plate 11 and fixes a plurality of blades 12.
  • the scroll casing 20 has a scroll portion 21 and a discharge portion 22 in which an air discharge port 22b is formed, and rectifies an air flow blown out from the impeller 10 in the centrifugal direction. It is a thing.
  • the scroll casing 20 has a spiral shape, and an air passage 20a that gradually expands toward the discharge port 22b is formed inside.
  • the scroll portion 21 forms an air passage 20a that converts the dynamic pressure of the airflow generated by the rotation of the impeller 10 into static pressure.
  • the scroll portion 21 has a side wall 23 that covers the impeller 10 from the axial direction of the virtual rotating shaft RS of the impeller 10, and a peripheral wall 24 that surrounds the impeller 10 from the radial outside of the rotating shaft RS.
  • a suction port 23b for sucking air is formed on the side wall 23.
  • the scroll portion 21 has a tongue portion 25 located between the discharge portion 22 and the winding start portion 24a of the peripheral wall 24 to form a curved surface.
  • the tongue portion 25 has a configuration in which the airflow blown out from the impeller 10 in the centrifugal direction in the vicinity of the winding start portion 24a is guided to the rotation direction R of the impeller 10 so as to be directed to the discharge port 22b via the scroll portion 21. Will be done.
  • the radial direction of the rotating shaft RS is a direction perpendicular to the axial direction of the rotating shaft RS.
  • the internal space of the scroll portion 21 composed of the peripheral wall 24 and the side wall 23 is the above-mentioned air passage 20a, and the airflow blown from the impeller 10 flows along the peripheral wall 24 in the air passage 20a.
  • the multi-blade centrifugal blower 100 is a double suction type centrifugal blower in which air is sucked from both ends in the axial direction of the virtual rotation axis RS of the impeller 10.
  • the side walls 23 are arranged on both sides of the impeller 10 in the axial direction of the rotation axis RS of the impeller 10.
  • a suction port 23b is formed on the side wall 23 of the scroll casing 20 so that air can flow between the impeller 10 and the outside of the scroll casing 20.
  • the suction port 23b is formed in a circular shape, and the impeller 10 has the center of the suction port 23b and the center of the shaft portion 11b of the impeller 10 substantially coincide with each other in the scroll casing 20. Be placed.
  • the impeller 10 is pivotally supported by the scroll casing 20 so that it can rotate.
  • the scroll casing 20 is a double suction type casing having side walls 23 having suction ports 23b formed on both sides of the main plate 11 in the axial direction of the rotation axis RS of the impeller 10.
  • the two side walls 23 are provided so as to face each other via the peripheral wall 24.
  • the suction port 23b provided on the side wall 23 is formed by the bell mouth 26. That is, the bell mouth 26 forms a suction port 23b that communicates with the space formed by the main plate 11 and the plurality of blades 12 in the impeller 10.
  • the space formed by the main plate 11 and the plurality of blades 12 may be referred to as a flow passage 11a of the impeller 10.
  • the bell mouth 26 rectifies the air sucked from the suction port 23b of the side wall 23 and flows it into the central portion of the impeller 10 through the impeller suction port 10a.
  • the bell mouth 26 is provided so as to project inward from the side wall 23. More specifically, the bell mouth 26 is formed so that the opening diameter gradually decreases from the side wall 23 of the scroll casing 20 toward the inside.
  • the peripheral wall 24 is composed of a curved wall surface in the rotation direction R of the impeller 10.
  • the peripheral wall 24 is between two side walls 23 facing each other in the scroll casing 20, as shown in FIG. 2, and connects a part of the outer peripheral edge of the two side walls 23 as shown in FIG. It is provided as follows.
  • the peripheral wall 24 has a curved inner peripheral surface 24c, and guides the airflow blown from the impeller 10 into the air passage 20a in the scroll portion 21 to the discharge port 22b along the inner peripheral surface 24c.
  • the peripheral wall 24 has a configuration in which a curved wall surface as shown in FIG. 1 extends parallel to the axial direction of the rotation axis RS of the impeller 10 as shown in FIG.
  • the peripheral wall 24 may be inclined with respect to the axial direction of the rotating shaft RS of the impeller 10, and is not limited to the form arranged in parallel with the axial direction of the rotating shaft RS.
  • the peripheral wall 24 covers the impeller 10 from the radial outside of the shaft portion 11b of the impeller 10, the inner peripheral surface 24c thereof, and the outer peripheral side of a plurality of blades 12 described later. Facing the end. That is, the inner peripheral surface 24c of the peripheral wall 24 faces the air blowing side of the blade 12 of the impeller 10.
  • the peripheral wall 24 has an impeller 10 from the winding start portion 24a located at the boundary with the tongue portion 25 to the winding end portion 24b located at the boundary between the discharge portion 22 and the scroll portion 21 on the side away from the tongue portion 25. It is provided along the rotation direction R.
  • the winding start portion 24a is an upstream end portion of the air flow generated by the rotation of the impeller 10 on the peripheral wall 24 composed of a curved wall surface
  • the winding end portion 24b is the end portion 24b of the impeller 10. It is the downstream end of the airflow generated by rotation.
  • the peripheral wall 24 is formed in a spiral shape. Examples of the spiral shape include a logarithmic spiral, an Archimedes spiral, a spiral shape based on an involute curve, and the like.
  • the discharge unit 22 forms a discharge port 22b that is generated by the rotation of the impeller 10 and discharges the airflow that has passed through the air passage 20a of the scroll unit 21.
  • the discharge unit 22 is composed of a hollow pipe having a rectangular cross section orthogonal to the flow direction of the discharged air.
  • the discharge unit 22 is composed of, for example, four plate-shaped side surfaces.
  • the discharge portion 22 has an extension plate 221 that smoothly connects to the winding end portion 24b of the peripheral wall 24, and a diffuser plate 222 that extends from the tongue portion 25 so as to face the extension plate 221.
  • the discharge portion 22 is a first side wall portion and a second side wall extending from each of the two side walls 23 so as to connect both ends of the rotary shaft RS in the axial direction in the extension plate 221 and the diffuser plate 222, respectively. It has a part (not shown).
  • the cross-sectional shape of the discharge unit 22 is not limited to a rectangle.
  • the discharge unit 22 forms a discharge side air passage 22a that guides the airflow discharged from the impeller 10 and flowing in the gap between the peripheral wall 24 and the impeller 10 to the outside of the scroll casing 20.
  • the tongue portion 25 is formed between the diffuser plate 222 of the discharge portion 22 and the winding start portion 24a of the peripheral wall 24.
  • the tongue portion 25 is formed with a predetermined radius of curvature, and the peripheral wall 24 is smoothly connected to the diffuser plate 222 via the tongue portion 25.
  • the tongue portion 25 suppresses the inflow of air from the end of winding to the beginning of winding in the spiral air passage 20a formed inside the scroll casing 20.
  • the tongue portion 25 has a flow of air in the air passage 20a from the upstream portion toward the rotation direction R of the impeller 10 and an air flow in the discharge direction from the downstream portion of the air passage 20a toward the discharge port 22b. It has a role of splitting.
  • the tongue portion 25 is configured to have a function of partitioning such a pressure difference.
  • FIG. 3 is a diagram schematically showing a configuration in which the impeller 10 of the multi-blade centrifugal blower 100 of FIG. 1 is viewed in parallel with the rotation axis RS.
  • the portion of the wing 12 covered by the side plate 13 is indicated by a broken line.
  • FIG. 4 is a cross-sectional view schematically showing a cross section taken along line BB of the impeller 10 of FIG.
  • the impeller 10 is a centrifugal impeller.
  • the impeller 10 is made of metal, for example, a plurality of steel plates and the like.
  • the impeller 10 is rotationally driven by a motor or the like (not shown), and the centrifugal force generated by the rotation forcibly sends out air in the centrifugal direction, that is, outward in the radial direction, and the impeller suction port provided on the side plate 13 side. It is configured to suck in air from 10a.
  • the impeller 10 is rotated in the rotation direction R by a motor or the like.
  • the thickness of the main plate 11 may be formed in a disk shape in which the wall thickness increases toward the center in the radial direction about the rotation axis RS, or the rotation axis. It may be formed to have a constant thickness in the radial direction centered on RS.
  • the main plate 11 may have a plate shape, and the shape of the main plate 11 may be a shape other than a circular shape, such as a polygonal shape.
  • a motor (not shown) is connected to a shaft portion 11b provided at the center of the main plate 11, and the main plate 11 is rotationally driven by the motor via the shaft portion 11b.
  • the plurality of blades 12 are arranged in the circumferential direction on the plate surface 111 of the main plate 11 with the rotation axis RS as the center so as to form a predetermined space between the adjacent blades 12.
  • the impeller 10 has a tubular shape due to a plurality of blades 12 arranged on the main plate 11.
  • the gap G formed between the adjacent blades 12 constitutes the flow passage 11a of the impeller 10.
  • Each of the plurality of radially provided blades 12 has a sirocco blade portion 30 composed of forward blades and a turbo blade portion 40 composed of rearward blades.
  • the turbo blade portion 40 is radially connected to the sirocco blade portion 30, and the blade 12 has a shape curved in the radial direction.
  • the turbo wing portion 40 is provided on the inner peripheral side of the sirocco wing portion 30 in succession with the sirocco wing portion 30. At the blade boundary 12b between the sirocco wing portion 30 and the turbo wing portion 40, the sirocco wing portion 30 and the turbo wing portion 40 are smoothly connected to each other.
  • the end face on the inner peripheral side of the wing 12 is the wing leading edge 12f
  • the end face on the outer peripheral side of the wing 12 is the wing trailing edge.
  • the edge is 12r.
  • the wing leading edge 12f may be referred to as the inner peripheral edge of the wing 12.
  • the turbo blade portion 40 is formed linearly from the blade boundary 12b to the blade leading edge 12f in the radial direction. As shown in FIG.
  • the blade front edge 12f is in the axial direction of the rotation axis RS so that the blade front edge 12f gradually approaches the rotation axis RS from the side plate 13 side to the main plate 11 side in the axial direction of the rotation axis RS. Is tilted against.
  • the blade trailing edge 12r and the blade boundary 12b are respectively made to be substantially parallel to the axis of rotation RS. The detailed configuration of each wing 12 will be described later.
  • each of the plurality of blades 12 is provided between the main plate 11 and the side plate 13 in the axial direction of the rotation axis RS.
  • one end of each blade 12 is connected to the main plate 11, and the other end of each blade 12 is connected to the side plate 13.
  • the other end of each blade 12 extends along the side plate 13 in the radial direction, and further extends inward from the inner peripheral end 13a of the side plate 13. That is, the portion on the inner peripheral side at the other end of each blade 12 is not connected to the side plate 13.
  • one end of the wing 12 connected to the main plate 11 in the axial direction of the rotary shaft RS is referred to as an end portion 12d on the main plate 11 side
  • the other end of the wing 12 on the side plate 13 side is referred to as the side plate 13 side. It may be referred to as an end portion 12u.
  • the portion connected to the end portion 12d on the main plate 11 side at the wing leading edge 12f of each wing 12 is referred to as the main plate side inner peripheral end 12fd
  • the portion connected to 12u is referred to as a side plate side inner peripheral end 12fu.
  • the first virtual circle C1 passing through the inner peripheral end 12fu on the side plate side of the plurality of blades 12 is represented by a alternate long and short dash line.
  • the first virtual circle C1 has a center on the virtual rotation axis RS of the main plate 11.
  • a part of the wing 12 extends from the main plate 11 side to the side plate 13 side and extends inward from the inner peripheral end 13a of the side plate 13.
  • the inner peripheral end 12fd on the main plate side not only the inner peripheral end 12fd on the main plate side but also the inner peripheral end 12fu on the side plate side (indicated by the first virtual circle C1) is the inner peripheral end 13a of the side plate 13.
  • the wing portion including the inner peripheral side portion of the end portion 12u of the wing 12 and the entire wing leading edge 12f is exposed through the inner peripheral end 13a of the side plate 13.
  • the side plate 13 maintains the positional relationship of the tips of the respective wings 12 and reinforces the plurality of wings 12.
  • side plates 13 and a plurality of blades 12 are provided on both sides of the main plate 11 in the axial direction of the rotating shaft RS.
  • the side plate 13 provided so as to face one plate surface 111 of the main plate 11 connects a plurality of blades 12 arranged on one plate surface 111 side of the main plate 11.
  • the side plate 13 provided so as to face the other plate surface 112 of the main plate 11 connects a plurality of blades 12 arranged on the other plate surface 112 side of the main plate 11.
  • the center of the suction port 23b and the center of the shaft portion 11b of the impeller 10 coincide with each other, and the side plate 13 of the impeller 10 and the suction port 23b are formed. It is arranged so as to face the formed side wall 23. In the radial direction, the inner peripheral end of the side wall 23, that is, the opening edge of the suction port 23b in the side wall 23, and the inner peripheral end 13a of the side plate 13 of the impeller 10 substantially coincide with each other. Therefore, in the impeller 10, the blade portion extending inward from the inner peripheral end 13a of the side plate 13 is exposed from the inner peripheral end of the side wall 23 of the scroll casing 20.
  • FIG. 5 is a diagram schematically showing the positional relationship between the bell mouth 26 of FIG. 2 and the impeller 10.
  • the inner peripheral end 13a of the side plate 13 is preferably located on the inner peripheral side of the outer peripheral end 26a of the tip of the bell mouth 26. With this configuration, the radial length of the side plate 13 is secured so that the plurality of blades 12 are sufficiently fixed by the side plate 13.
  • FIG. 6 is an enlarged partial perspective view of a part of the outer peripheral portion of the impeller 10 of FIG.
  • the side plate 13 side is defined as the upper side and the main plate 11 side is defined as the lower side in the axial direction of the rotary shaft RS, and the detailed configuration of the blade 12 will be described.
  • the blade boundary 12b of each blade 12 coincides with the inner peripheral end 13a of the side plate 13 in the radial direction, and the sirocco blade portion 30 of each blade 12 is on the side plate 13. It is covered, and the turbo blade portion 40 of each blade 12 is configured to be exposed from the inner peripheral end 13a of the side plate 13.
  • the distance Ld between the inner peripheral end 13a of the side plate 13 and the inner peripheral end 12fd on the main plate side at the wing leading edge 12f is the side plate side at the inner peripheral end 13a of the side plate 13 and the wing leading edge 12f.
  • the leading edge 12f of the wing is inclined so as to be longer than the distance Lu from the inner peripheral end 12fu. That is, the blade leading edge 12f is inclined from the main plate 11 side toward the side plate 13 side so that the inner diameter formed by the blade leading edges 12f of the plurality of blades 12 is gradually expanded.
  • the turbo wing portion 40 includes a first turbo wing portion 41 connected to the sirocco wing portion 30, and a second turbo wing portion 42 on the inner peripheral side of the first turbo wing portion 41.
  • the first turbo wing portion 41 includes the entire upper surface of the turbo wing portion 40, and has a rectangular shape such as a rectangular shape.
  • the second turbo blade portion 42 includes the entire blade leading edge 12f of the blade 12, and has a triangular shape. That is, the turbo wing portion 40 is formed so that the chord length of the turbo wing portion 40 increases from the side plate 13 side toward the main plate 11 side.
  • the position of the side plate side inner peripheral end 12fu of the blade leading edge 12f is located inside the inner peripheral end 13a of the side plate 13, and is formed by the first virtual circle C1.
  • the blade boundary 12b of the indicated blade 12 is located on the inner peripheral end 13a of the side plate 13. That is, in the example shown in FIG. 6, the entire turbo wing portion 40 including the first turbo wing portion 41 and the second turbo wing portion 42 is arranged inside the inner peripheral end 13a of the side plate 13 and is exposed. Will be done. On the other hand, the entire upper surface of the sirocco wing portion 30 is covered with the side plate 13.
  • the position of the blade boundary 12b of the blade 12 and the position of the inner peripheral end 13a of the side plate 13 do not necessarily have to coincide with each other. If at least a part of the first turbo wing portion 41 extends inward from the inner peripheral end 13a of the side plate 13 in the radial direction, the exposed portion of the turbo wing portion 40 causes the flow passage 11a to extend from the main plate 11 side. Air can be taken in from the side plate 13 side.
  • each wing 12 has a constant wall thickness W in the radial direction. Further, as shown in FIG. 6, each blade 12 has a constant wall thickness W from the main plate 11 side (see FIG. 3) to the side plate 13 side.
  • Each blade 12 can be made of a steel plate having a uniform thickness. That is, the wall thickness W of the blade 12 at the end portion 12u on the side plate 13 side is the same as the wall thickness W of the blade 12 at the end portion 12d (FIG. 6) on the main plate 11 side. Therefore, the gap G formed between the adjacent blades 12 gradually expands from the blade leading edge 12f toward the blade trailing edge 12r, and has the same size from the main plate 11 side to the side plate 13 side.
  • FIG. 1 when the impeller 10 is rotationally driven around the rotary shaft RS by a motor (not shown), the air outside the multi-blade centrifugal blower 100 is introduced to the suction port 23b of the scroll casing 20 and the impeller. It flows into the central portion of the impeller 10 in the axial direction through the suction port 10a. The air that has flowed into the central portion of the impeller 10 is taken into the flow passage 11a of the impeller 10 from the blade leading edge 12f by the rotation of the impeller 10, and flows outward in the flow passage 11a.
  • the portion of the wing 12 including the main plate 11 side and the side plate 13 side is exposed inward from the inner peripheral end of the side wall 23 and the inner peripheral end 13a of the side plate 13. Therefore, as compared with the configuration in which only the main plate 11 side of the blade 12 extends, the air flowing into the central portion of the impeller 10 can be taken into the flow passage 11a from the side plate 13 side of the blade leading edge 12f.
  • the suction air volume can be increased not only on the main plate 11 side but also on the side plate 13 side.
  • the inner peripheral end 13a of the side plate 13 is used.
  • the resistance on the side plate 13 side can be reduced, and the deterioration of noise can be suppressed.
  • the inflow loss of the airflow sucked from the impeller suction port 10a can be reduced and air can be attracted to the main plate 11 side as well.
  • the gap G formed between the adjacent blades 12 is on the main plate 11 side. It is constant from the side to the side plate 13 side. Therefore, the suction air volume can be increased also on the main plate 11 side of the impeller 10 as compared with the impeller which is made of a resin material and has a narrow gap G on the main plate 11 side as in the conventional case.
  • the turbo blade portion 40 is provided on the radial inside of the sirocco blade portion 30 in the blade 12, and the turbo blade portion 40 is exposed from the inner peripheral end 13a of the side plate 13. There is. Therefore, in the flow passage 11a formed by the turbo wing portion 40, which is inclined in the direction opposite to the rotation direction of the impeller and gradually expands toward the sirocco wing portion 30, the air taken in is efficiently boosted and the sirocco wing. It is sent to the unit 30.
  • the airflow that has been boosted and reached the wing boundary 12b with the sirocco wing portion 30 then flows toward the wing trailing edge 12r while changing the traveling direction along the sirocco wing portion 30 in the flow passage 11a. After that, the airflow reaching the trailing edge 12r of the blade is sent out from the flow passage 11a of the impeller 10 to the air passage 20a of the scroll casing 20.
  • the airflow sent from the impeller 10 to the air passage 20a is further boosted as it passes through the spiral air passage 20a expanding toward the discharge port 22b, and is blown out to the outer peripheral side through the discharge port 22b.
  • the multi-blade centrifugal blower 100 may be a single-suction type centrifugal blower.
  • the number of blades 12 is not limited to the number shown in the figure.
  • the multi-blade centrifugal blower 100 of the first embodiment includes an impeller 10 and a spiral scroll casing 20 in which the impeller 10 is housed.
  • the impeller 10 has a disk-shaped main plate 11, a plurality of blades 12 arranged in the circumferential direction on the peripheral edge of the main plate 11, and an annular shape arranged so as to face the main plate 11 and fixing the plurality of blades 12. It has a side plate 13.
  • the scroll casing 20 is configured to introduce air from the side plate 13 side and blow it out to the outer peripheral side.
  • the impeller 10 is made of metal, and the blade 12 has a constant wall thickness W from the main plate 11 side to the side plate 13 side. Further, the wing 12 extends from the main plate 11 side to the side plate 13 side and extends inward from the inner peripheral end 13a of the side plate 13.
  • the impeller 10 is made of metal, and the wall thickness W of the blade 12 is constant from the side plate 13 to the main plate 11 side. Therefore, the same gap G as the side plate 13 side is provided in the impeller 10. It can also be secured on the main plate 11 side. Therefore, the suction air volume can be increased even on the main plate 11 side of the impeller 10 as compared with the conventional multi-blade centrifugal blower made of a resin molded product.
  • the inner peripheral edge of the wing 12 (blade leading edge 12f) is inclined from the side plate 13 side toward the main plate 11 side.
  • the distance Ld between the inner peripheral end 13a of the side plate 13 and the inner peripheral end on the main plate 11 side (main plate side inner peripheral end 12fd) at the wing leading edge 12f is the side plate 13 side at the inner peripheral end 13a of the side plate 13 and the wing leading edge 12f. It is longer than the distance Lu from the inner peripheral end (inner peripheral end 12fu on the side plate side) of.
  • the blade front edge 12f has a radial distance between the main plate side inner peripheral end 12fd and the rotation axis RS of the impeller 10 (or a perpendicular line drawn from the inner peripheral end 13a of the side plate 13 to the main plate 11) on the side plate side. It is inclined so as to be longer than the radial distance between the inner peripheral end 12fu and the rotation axis RS of the impeller 10 (or the perpendicular line drawn from the inner peripheral end 13a of the side plate 13 to the main plate 11).
  • the resistance generated on the side plate 13 side of the blade portion exposed from the inner peripheral end 13a of the side plate 13 can be reduced, and the inflow loss of the air flowing in through the impeller suction port 10a and the generation of noise deterioration due to the resistance are suppressed. can do. Therefore, the air flowing in through the impeller suction port 10a can be attracted to the main plate 11 side as well, and it is possible to prevent the suction air volume from decreasing on the main plate 11 side with respect to the side plate 13 side.
  • the wing 12 has a sirocco wing portion 30 composed of forward-facing blades and a turbo wing portion 40 connected to the inner peripheral side of the sirocco wing portion 30 and composed of rear-facing blades.
  • the turbo blade portion 40 of the blade 12 is provided inside the inner peripheral end 13a of the side plate 13. As a result, the area of the exposed blade portion can be made larger, and more air flowing in through the impeller suction port 10a can be taken into the gap G between the blades 12. Further, in the flow passage 11a formed by the turbo blade portion 40, which is inclined in the direction opposite to the rotation direction R of the impeller 10 and gradually expands outward in the radial direction, the air taken in is boosted and highly efficient. Can be sent to the sirocco wing portion 30.
  • the scroll casing 20 includes an facing side wall 23 provided with a suction port 23a, a peripheral wall 24, and a bell mouth 26 forming the suction port 23a and gradually reducing the opening diameter toward the inside.
  • the inner peripheral end 13a of the side plate 13 is located on the inner peripheral side of the outer peripheral end 26a of the tip of the bell mouth 26.
  • FIG. 7 is a diagram schematically showing a configuration in which the blades of the multi-blade centrifugal blower according to the second embodiment are viewed in parallel with the axis of rotation.
  • the second embodiment when the blade 12 is viewed from the axial direction of the rotation shaft RS of the impeller 10, a part of the first turbo blade portion 41 is covered with the side plate 13, as in the case of the first embodiment. Is different.
  • the position of the inner peripheral end 13a of the side plate 13 with respect to the blade 12 installed on the plate surface 111 (see FIG. 3) of the main plate 11 is shown by a two-dot chain line.
  • the direction of the airflow passing near the negative pressure surface 122 of the blade 12 during the rotation of the impeller 10 is indicated by the arrow F1.
  • the first turbo wing portion 41 includes the entire upper surface of the turbo wing portion 40 and has a square shape
  • the second turbo wing portion 42 has a quadrangular shape.
  • All of the wing leading edges 12f of the wing 12 are included, and have a triangular shape.
  • the side plate side inner peripheral end 12fu of the blade leading edge 12f which is the boundary between the first turbo wing portion 41 and the second turbo wing portion 42, is inside the position of the inner peripheral end 13a of the side plate 13. It is located in the same as the case of the first embodiment.
  • the blade boundary 12b between the sirocco wing portion 30 and the first turbo wing portion 41 of the turbo wing portion 40 is located outside the position of the inner peripheral end 13a of the side plate 13, and the sirocco wing portion is located.
  • 30 and a part of the outer peripheral side of the first turbo blade portion 41 are covered with the side plate 13.
  • the portion of the blade 12 covered by the side plate 13 is composed of a sirocco blade portion 30 and a part on the outer peripheral side of the first turbo blade portion 41.
  • the portion of the turbo wing portion 40 exposed from the side plate 13 is intended to increase the amount of air sucked into the flow passage 11a, and the portion of the turbo wing portion 40 covered with the side plate 13 is sucked into the flow passage 11a.
  • the airflow can be boosted efficiently.
  • the ratio of the long L2 is preferably larger than 0% and 30% or less.
  • FIG. 8 is a diagram showing a modified example of the wing 12 of FIG.
  • the ratio of the chord length L2 of the portion of the first turbo blade portion 41 covered by the side plate 13 to the chord length L1 of the portion of the blade 12 covered by the side plate 13 is 30. It is larger than% and is 40%.
  • the ratio of the chord length L2 to the chord length L1 is made larger than 30% as in the modified example, if the chord length of the wing 12 is constant, the chord length of the sirocco wing portion 30 is shortened and the turbo wing portion is used. It is necessary to make the 40 more inclined in the rotation direction R.
  • a peeling vortex Fa may be generated on the negative pressure surface 122 side of the sirocco wing portion 30, which may cause a decrease in air volume due to the airflow separating from the negative pressure surface 122 and an increase in noise due to the generation of the peeling vortex Fa.
  • the wing 12 has a sirocco wing portion 30 composed of forward blades and a turbo wing portion 40 connected to the inner peripheral side of the sirocco wing portion 30 and composed of rearward blades.
  • the portion of the blade 12 covered with the side plate 13 is composed of a sirocco blade portion 30 and a part of the turbo blade portion 40.
  • the chord length of the sirocco wing portion 30, that is, the difference between the chord length L1 and the chord length L2 is longer than that of a part of the chord length L2 of the turbo wing portion 40.
  • the ratio of the chord length L2 of the portion of the turbo wing portion 40 covered by the side plate 13 (a part of the turbo wing portion 40 described above) to the chord length L1 of the portion of the wing 12 covered by the side plate 13. Is greater than 0% and less than or equal to 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

多翼遠心送風機は、円板状の主板と、主板の周縁部に周方向に配列された複数の翼と、主板と対向して配置され、複数の翼を固定する円環状の側板と、を有する羽根車と、羽根車が収容され、側板側から空気を導入し外周側へ吹き出す渦巻き型のスクロールケーシングと、を備え、羽根車は、金属で構成され、翼は、主板側から側板側にわたり、一定の肉厚を有し、且つ側板の内周端よりも内側に延出している。

Description

多翼遠心送風機
 本開示は、羽根車を有する多翼遠心送風機に関する。
 多翼遠心送風機は、羽根車と、羽根車が収容される渦巻き型のスクロールケーシングとを備える。羽根車は、主板と、主板と対向する円環状の側板と、主板と側板との間に設けられた複数の翼とで構成され、回転によって空気を側板側から吸い込み、翼間を介してスクロールケーシング内の風路に流出させる。スクロールケーシング内の風路において気流は昇圧され、吐出口から吹き出される。多翼遠心送風機において、風量を増加させる手段として翼数を増やす方法がある。しかし、翼数を増やすことで風量を増加させる場合、翼数の増加に伴い騒音が悪化する。そこで、翼の外周側には前進翼を設け、且つ翼の内周側には後退翼を設けることで、翼数を増やすことなく後退翼を介して吸込み風量を増加させたものがある(例えば、特許文献1参照)。特許文献1に開示された多翼遠心送風機では、翼の内周側に設けられた後退翼は、側板の内周端の内側に配置されて露出した構成とされ、露出した後退翼により空気が取り込まれる。特許文献1の多翼遠心送風機において、羽根車は樹脂材により射出成形されている。
特開2012-36885号公報
 しかしながら、特許文献1のように、樹脂材により羽根車が射出成形される場合、一般には、羽根車の成形性から、翼の肉厚は主板側で側板側よりも厚くなり、羽根車の主板側では側板側よりも、翼間に形成される隙間が狭くなってしまう。したがって、特許文献1の多翼遠心送風機では、後退翼が側板の内周端から露出しているものの、主板側では後退翼付近に到達した空気を翼間へ十分に取り込むことができず、羽根車の主板側では吸込み風量の増加の効果が得られないことがある。
 本開示は、上記のような課題を解決するためになされたもので、従来のように樹脂材で構成された多翼遠心送風機と比べて、羽根車の主板側における吸込み風量を増加させることができる多翼遠心送風機を提供することを目的とする。
 本開示に係る多翼遠心送風機は、円板状の主板と、前記主板の周縁部に周方向に配列された複数の翼と、前記主板と対向して配置され、前記複数の翼を固定する円環状の側板と、を有する羽根車と、前記羽根車が収容され、前記側板側から空気を導入し外周側へ吹き出す渦巻き型のスクロールケーシングと、を備え、前記羽根車は、金属で構成され、前記翼は、前記主板側から前記側板側にわたり、一定の肉厚を有し、且つ前記側板の内周端よりも内側に延出している。
 本開示によれば、羽根車は金属で構成され、翼の肉厚は、側板から主板側にわたり一定とされているので、翼において側板の内周端よりも内側へ延出した部分において、羽根車の側板側と同様の翼間の隙間を、羽根車の主板側においても確保することができる。したがって、従来のように樹脂材で構成された多翼遠心送風機と比べて、羽根車の主板側でも吸込み風量を増加させることができる。
実施の形態1に係る多翼遠心送風機を回転軸と平行に見た構成を模式的に示す外観図である。 図1の多翼遠心送風機のA-A線断面を模式的に示した断面図である。 図1の多翼遠心送風機の羽根車を回転軸と平行に見た構成を模式的に示す図である。 図3の羽根車のB-B線断面を模式的に示した断面図である。 図2のベルマウスと羽根車との位置関係を模式的に示す図である。 図3の羽根車の外周部の一部を拡大した部分斜視図である。 実施の形態2に係る多翼遠心送風機の翼を回転軸と平行に見た構成を模式的に示す図である。 図7の翼の変形例を示す図である。
 以下、実施の形態に係る多翼遠心送風機100について図面を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「前」及び「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。
実施の形態1.
 図1は、実施の形態1に係る多翼遠心送風機100を回転軸RSと平行に見た構成を模式的に示す外観図である。図2は、図1の多翼遠心送風機100のA-A線断面を模式的に示した断面図である。図1~図2を用いて、多翼遠心送風機100の基本的な構造について説明する。
 図1に示されるように、多翼遠心送風機100は、多翼遠心型の送風機であり、気流を発生させる羽根車10と、羽根車10が収納されるスクロールケーシング20と、を有する。羽根車10は、図1に示されるように、円板状の主板11と、厚さが均一な複数の翼12と、図2に示されるように円環状の側板13と、を有する。主板11には、不図示のモータが接続される軸部11bが設けられている。複数の翼12は、主板11の周縁部に周方向に配列されている。側板13は、主板11と対向して配置され、複数の翼12を固定する。
 図1に示されるように、スクロールケーシング20は、スクロール部21と、空気の吐出口22bが形成された吐出部22と、を有し、羽根車10から遠心方向に吹き出された気流を整流するものである。スクロールケーシング20は、渦巻き型を有しており、吐出口22bに向かって徐々に拡大する風路20aが内部に形成されている。
 スクロール部21は、羽根車10の回転により生じた気流の動圧を静圧に変換する風路20aを形成するものである。スクロール部21は、羽根車10の仮想の回転軸RSの軸方向から羽根車10を覆う側壁23と、回転軸RSの径方向の外側から羽根車10を囲む周壁24と、を有する。側壁23には、空気を吸い込む吸込口23bが形成されている。またスクロール部21は、吐出部22と周壁24の巻始部24aとの間に位置して曲面を構成する舌部25を有する。舌部25は、巻始部24aの付近において羽根車10から遠心方向に吹き出された気流を、スクロール部21を介して吐出口22bに向かうように、羽根車10の回転方向Rに導く構成とされる。
 なお、回転軸RSの径方向とは、回転軸RSの軸方向に対して垂直な方向である。周壁24及び側壁23により構成されるスクロール部21の内部空間が上述した風路20aであり、風路20aには、羽根車10から吹き出された気流が周壁24に沿って流れる。
 図2に示される例では、多翼遠心送風機100は、羽根車10の仮想の回転軸RSの軸方向において、両端側から空気が吸い込まれる両吸込形の遠心送風機とされている。側壁23は、羽根車10の回転軸RSの軸方向において、羽根車10の両側に配置されている。スクロールケーシング20の側壁23には、羽根車10とスクロールケーシング20の外部との間を空気が流通できるように、吸込口23bが形成されている。図1に示されるように、吸込口23bは円形状に形成され、羽根車10はスクロールケーシング20内において、吸込口23bの中心と羽根車10の軸部11bの中心とがほぼ一致するように配置される。羽根車10は、回転可能なように、スクロールケーシング20により軸支される。
 図2に示されるように、スクロールケーシング20は、羽根車10の回転軸RSの軸方向において、主板11の両側に、吸込口23bが形成された側壁23を有する両吸込形のケーシングである。スクロールケーシング20において2つの側壁23は、周壁24を介してそれぞれ対向するように設けられている。
 図1に示されるように、側壁23に設けられた吸込口23bは、ベルマウス26により形成されている。すなわち、ベルマウス26は、羽根車10において主板11と複数の翼12とによって形成される空間に連通する吸込口23bを形成する。以降の説明において、主板11と複数の翼12とによって形成される空間を、羽根車10の流通路11aという場合がある。
 図2に示されるように、ベルマウス26は、側壁23の吸込口23bから吸い込まれた空気を整流し、羽根車吸込口10aを介して羽根車10の中央部へ流入させるものである。ベルマウス26は、側壁23から内部へ向かって突出するように設けられている。より詳細には、ベルマウス26は、スクロールケーシング20の側壁23から内部に向けて開口径が漸次縮小するように形成されている。このような構成により、羽根車10が回転しているとき、側壁23の吸込口23bの近傍にある空気はベルマウス26に沿って滑らかに流動し、羽根車吸込口10aを介して羽根車10に効率よく流入する。羽根車10の流通路11aに気体を流入させるための羽根車吸込口10aは、羽根車10の側板13側に設けられている。
 図1に示されるように、周壁24は、羽根車10の回転方向Rにおいて湾曲した壁面で構成される。周壁24は、図2に示されるように、スクロールケーシング20において互いに対向する2つの側壁23の間であって、図1に示されるように、2つの側壁23の外周縁の一部を接続するように設けられている。周壁24は、湾曲した内周面24cを有し、羽根車10からスクロール部21内の風路20aに吹き出された気流を、内周面24cに沿わせて吐出口22bへ導くものである。
 周壁24は、図1に示されるように湾曲した壁面が、図2に示されるように、羽根車10の回転軸RSの軸方向と平行に延びた構成とされる。なお、周壁24は、羽根車10の回転軸RSの軸方向に対して傾斜した形態であってもよく、回転軸RSの軸方向と平行に配置される形態に限定されるものではない。
 図1に示されるように、周壁24は、羽根車10の軸部11bの径方向の外側から羽根車10を覆っており、その内周面24cと、後述する複数の翼12の外周側の端部とが対向する。すなわち、周壁24の内周面24cは、羽根車10の翼12における空気の吹き出し側と対向する。周壁24は、舌部25との境界に位置する巻始部24aから、舌部25から離れた側の吐出部22とスクロール部21との境界に位置する巻終部24bまで、羽根車10の回転方向Rに沿うように設けられている。ここで、巻始部24aとは、湾曲した壁面で構成された周壁24において、羽根車10の回転により発生する気流の上流側の端部であり、巻終部24bとは、羽根車10の回転により発生する気流の下流側の端部である。より詳細には、周壁24は、渦巻形状に形成されている。渦巻形状としては、例えば、対数螺旋、アルキメデス螺旋、あるいは、インボリュート曲線等に基づく渦巻形状がある。このような構成により、羽根車10からスクロールケーシング20の風路20a内に吹き出された気流は、羽根車10と周壁24との間隙を吐出部22の方向へ滑らかに流動する。このため、スクロールケーシング20内では、舌部25から吐出部22へ向かって、羽根車10の回転方向Rに空気の静圧が上昇する。
 吐出部22は、羽根車10の回転により発生してスクロール部21の風路20aを通過した気流が吐き出される吐出口22bを形成している。吐出部22は、吐き出される空気の流れ方向に直交する断面が矩形状となる、中空の管で構成される。吐出部22は、例えば、板状の四側面で構成される。具体的には、吐出部22は、周壁24の巻終部24bと滑らかにつながる延設板221と、舌部25から延設板221と対向するように延びたディフューザ板222と、を有する。また吐出部22は、延設板221及びディフューザ板222において回転軸RSの軸方向の両端をそれぞれ接続するように、2つの側壁23それぞれから延設された第一の側壁部及び第二の側壁部(不図示)を有している。なお、吐出部22の断面形状は、矩形に限定されるものではない。吐出部22は、羽根車10から吐き出されて周壁24と羽根車10との間隙を流動する気流を、スクロールケーシング20の外部へ排出するように導く吐出側風路22aを形成している。
 スクロールケーシング20において、吐出部22のディフューザ板222と、周壁24の巻始部24aとの間に舌部25が形成されている。舌部25は、所定の曲率半径で形成されており、周壁24は、舌部25を介してディフューザ板222と滑らかに接続されている。舌部25は、スクロールケーシング20の内部に形成されている渦巻状の風路20aにおける巻き終わりから巻き始めへの空気の流入を抑制する。換言すると、舌部25は、風路20aにおいて上流部から羽根車10の回転方向Rに向かう空気の流れと、風路20aの下流部から吐出口22bに向かう吐出方向の空気の流れと、を分流させる役割を有する。また、吐出部22の吐出側風路22aへ流入する気流は、スクロールケーシング20を通過する間に静圧が上昇し、スクロールケーシング20内よりも高圧となる。そのため、舌部25は、このような圧力差を仕切る機能を備えた構成とされている。
 図3は、図1の多翼遠心送風機100の羽根車10を回転軸RSと平行に見た構成を模式的に示す図である。図3では、翼12において側板13に覆われた部分は、破線で示されている。図4は、図3の羽根車10のB-B線断面を模式的に示した断面図である。図3に示されるように、羽根車10は、遠心式の羽根車である。羽根車10は、金属で構成され、例えば複数の鋼板等で構成されている。羽根車10は、モータ等(図示は省略)によって回転駆動され、回転で生じる遠心力により遠心方向すなわち径方向外方へ空気を強制的に送出し、側板13側に設けられた羽根車吸込口10aから空気を吸い込むように構成されている。羽根車10は、モータ等によって、回転方向Rに回転する。
 図4に示されるように、主板11の厚さは、回転軸RSを中心とする径方向において、中心に向かって壁の厚さが厚くなる円盤状に形成されてもよく、あるいは、回転軸RSを中心とする径方向において一定の厚さに形成されてもよい。なお、主板11は、板状であればよく、主板11の形状は例えば多角形状等、円形状以外の形状であってもよい。また主板11の中心部に設けられた軸部11bにモータ(図示は省略)が接続され、軸部11bを介してモータにより、主板11が回転駆動される。
 図3に示されるように、複数の翼12は、隣り合う翼12の間に決められた間隔を形成するようにして、回転軸RSを中心として主板11の板面111に周方向に配置されており、主板11に配置された複数の翼12により羽根車10は筒形状を成している。隣り合う翼12の間に形成された隙間Gは、羽根車10の流通路11aを構成している。
 放射状に設けられた複数の翼12のそれぞれは、前向き羽根で構成されたシロッコ翼部30と、後向き羽根で構成されたターボ翼部40と、を有している。ターボ翼部40はシロッコ翼部30と径方向につながっており、翼12は径方向において湾曲した形状を有している。ターボ翼部40は、シロッコ翼部30と連続してシロッコ翼部30よりも内周側に設けられる。シロッコ翼部30とターボ翼部40との翼境界12bにおいて、シロッコ翼部30とターボ翼部40とは滑らかにつながっている。
 図3及び図4に示されるように、回転軸RSを中心とした主板11の回転において、翼12の内周側の端面が翼前縁12fであり、翼12の外周側の端面が翼後縁12rである。以降の説明において、翼前縁12fを、翼12の内周縁と称する場合がある。図3に示される例では、ターボ翼部40は、径方向において翼境界12bから翼前縁12fまで直線状に形成されている。図4に示されるように、回転軸RSの軸方向において側板13側から主板11側に向かうに従い翼前縁12fが回転軸RSに漸次近づくように、翼前縁12fは回転軸RSの軸方向に対して傾斜している。翼後縁12r及び翼境界12bはそれぞれ、回転軸RSと略平行とされている。なお、各翼12の詳細な構成については後述する。
 図4に示されるように、複数の翼12のそれぞれは、回転軸RSの軸方向において主板11と側板13との間に設けられている。回転軸RSの軸方向において、各翼12の一端は主板11とつながっており、各翼12の他端は側板13とつながっている。各翼12の他端は、径方向において側板13に沿って延びて、更に側板13の内周端13aよりも内側に延出している。つまり、各翼12の他端における内周側の部分は側板13とはつながっていない。
 以降の説明では、回転軸RSの軸方向において、翼12において主板11と接続された一端を、主板11側の端部12dと称し、翼12において側板13側の他端を、側板13側の端部12uと称する場合がある。また以降の説明では、各翼12の翼前縁12fにおいて主板11側の端部12dとつながる部分を主板側内周端12fdと称し、各翼12の翼前縁12fにおいて側板13側の端部12uとがつながる部分を側板側内周端12fuと称する。図3には、複数の翼12の側板側内周端12fuを通る第一の仮想円C1が、一点鎖線で表されている。第一の仮想円C1は、主板11の仮想の回転軸RS上に中心を有する。
 翼12の一部は、図4に示されるように、主板11側から側板13側にわたり、側板13の内周端13aよりも、内側に延出している。換言すると、図3に示されるように、各翼12において主板側内周端12fdだけでなく側板側内周端12fu(第一の仮想円C1で示される)も、側板13の内周端13aよりも内側に位置する。すなわち、側板13の内周端13aを介して、翼12における端部12uの内周側の部分と翼前縁12fの全部とを含む翼部位が露出している。
 側板13は、各翼12の先端の位置関係を維持し、かつ、複数の翼12を補強するものである。図4に示される例では、回転軸RSの軸方向において主板11の両側に、側板13及び複数の翼12が設けられている。主板11の一方の板面111と対向して設けられた側板13は、主板11の一方の板面111側に配置された複数の翼12を連結している。主板11の他方の板面112と対向して設けられた側板13は、主板11の他方の板面112側に配置された複数の翼12を連結している。
 図2に示されるように、羽根車10はスクロールケーシング20内において、吸込口23bの中心と羽根車10の軸部11bの中心とが一致し、羽根車10の側板13と、吸込口23bが形成された側壁23とが対向するように配置される。径方向において、側壁23の内周端すなわち側壁23における吸込口23bの開口縁と、羽根車10の側板13の内周端13aとは、ほぼ一致している。このため、羽根車10において側板13の内周端13aよりも内側へ延出した翼部分は、スクロールケーシング20の側壁23の内周端から露出している。
 図5は、図2のベルマウス26と羽根車10との位置関係を模式的に示す図である。図5に示されるように、側板13の内周端13aは、ベルマウス26の先端の外周端26aよりも内周側に位置していることが好ましい。このように構成することで、側板13により複数の翼12が十分に固定されるように、側板13の径方向の長さを確保している。
 図6は、図3の羽根車10の外周部の一部を拡大した部分斜視図である。以下、図3~4及び図6を用い、回転軸RSの軸方向において側板13側を上側とし、主板11側を下側と定義して、翼12の詳細な構成について説明する。
 実施の形態1では、図3に示されるように、径方向において各翼12の翼境界12bは側板13の内周端13aと一致しており、各翼12のシロッコ翼部30は側板13に覆われ、各翼12のターボ翼部40は側板13の内周端13aから露出する構成とされている。ターボ翼部40と比べ、気流の風速が速くなるシロッコ翼部30を側板13で覆うことで騒音の増加を抑制することができる。
 また、図4に示されるように、側板13の内周端13aと翼前縁12fにおける主板側内周端12fdとの距離Ldが、側板13の内周端13aと翼前縁12fにおける側板側内周端12fuとの距離Luよりも長くなるように、翼前縁12fは傾斜している。つまり、主板11側から側板13側に向って、複数の翼12の翼前縁12fにより形成される内径が漸次拡大されるように翼前縁12fが傾斜している。
 図6に示されるように、ターボ翼部40は、シロッコ翼部30とつながっている第1ターボ翼部41と、第1ターボ翼部41よりも内周側の第2ターボ翼部42と、を有する。第1ターボ翼部41は、ターボ翼部40の上面全てを含み、例えば長方形状といった四角形状を有している。第2ターボ翼部42は、翼12の翼前縁12f全てを含み、三角形状を有している。つまり、ターボ翼部40の弦長が、側板13側から主板11側に向かうにつれて長くなるように、ターボ翼部40が形成されている。
 また、図6に示される例では、径方向において、翼前縁12fの側板側内周端12fuの位置は、側板13の内周端13aよりも内側に位置し、第一の仮想円C1で示される翼12の翼境界12bは、側板13の内周端13a上に位置している。すなわち、図6に示される例では、第1ターボ翼部41及び第2ターボ翼部42を含むターボ翼部40の全部が側板13の内周端13aよりも内側に配置され、露出する構成とされる。一方、シロッコ翼部30の上面の全部は側板13によって覆われる。
 なお、径方向において、翼12の翼境界12bの位置と、側板13の内周端13aの位置とは必ずしも一致している必要はない。径方向において、第1ターボ翼部41の少なくとも一部が側板13の内周端13aよりも内側に延出していれば、ターボ翼部40において露出した部分により、流通路11aの主板11側から側板13側にかけて、空気を取り込むことができる。
 各翼12は、図3に示されるように、径方向で一定の肉厚Wを有している。また各翼12は、図6に示されるように、主板11側(図3参照)から側板13側にわたり、一定の肉厚Wを有している。各翼12は、厚さが均一な鋼板で構成することができる。すなわち、側板13側の端部12uにおける翼12の肉厚Wは、主板11側の端部12d(図6)における翼12の肉厚Wと同一である。よって、隣り合う翼12の間に形成される隙間Gは、翼前縁12fから翼後縁12rに向かうに従い漸次拡大し、また、主板11側から側板13側にわたり同一の大きさとされている。
 図1~6を用いて、多翼遠心送風機100の動作について説明する。図1に示されるように、羽根車10が不図示のモータにより回転軸RSを中心に回転駆動されると、多翼遠心送風機100の外部の空気が、スクロールケーシング20の吸込口23b及び羽根車吸込口10aを介して羽根車10の中央部に軸方向に流入する。羽根車10の中央部に流れ込んだ空気は、羽根車10の回転により、翼前縁12fから羽根車10の流通路11a内に取り込まれ、流通路11a内を径方向外方へ流れる。
 図3~4を用いて説明したように、翼12において主板11側及び側板13側を含む部分が、側壁23の内周端及び側板13の内周端13aから内側に露出している。したがって、翼12の主板11側のみが延出した構成と比べて、羽根車10の中央部に流入した空気を、翼前縁12fの側板13側からも流通路11a内に取り込むことができ、主板11側だけでなく側板13側においても吸込み風量を増加させることができる。
 図4に示されるように、翼前縁12fは傾斜し、側板側内周端12fuは主板側内周端12fdよりも径方向の外側に位置しているので、側板13の内周端13aから露出した翼部分において側板13側での抵抗を低減でき、騒音の悪化を抑制できる。また、露出した翼部分において側板13側での抵抗を低減することにより、羽根車吸込口10aから吸い込まれる気流の流入損失を低減して主板11側にも空気を誘引できるので、側板13側に対して主板11側で吸込み風量が低下することを、抑制できる。
 また、図6に示されるように、金属で構成された羽根車10の各翼の肉厚Wは均一とされているので、隣り合う翼12の間に形成される隙間Gは、主板11側から側板13側にわたり一定とされている。したがって、従来のように樹脂材で構成されて主板11側で隙間Gが狭くなる羽根車と比べて、羽根車10の主板11側でも吸込み風量を増加させることができる。
 また、図6に示されるように、翼12においてシロッコ翼部30の径方向内側にターボ翼部40が設けられ、ターボ翼部40が、側板13の内周端13aから露出する構成とされている。したがって、ターボ翼部40により形成される、羽根車の回転方向と逆方向に傾き、且つシロッコ翼部30へ向かって漸次拡大する流通路11aにおいて、取り込まれた空気は効率よく昇圧されながらシロッコ翼部30へ送出される。
 昇圧されてシロッコ翼部30との翼境界12bに到達した気流は、その後、流通路11aをシロッコ翼部30に沿って進行方向を変えながら、翼後縁12rへ向かって流れる。その後、翼後縁12rに到達した気流は、羽根車10の流通路11aからスクロールケーシング20の風路20aに送出される。羽根車10から風路20aに送出された気流は、吐出口22bへ向かって拡大する渦巻き状の風路20aを通る際に更に昇圧され、吐出口22bを介して外周側へ吹き出される。
 なお、実施の形態1では、多翼遠心送風機100が両吸込形の遠心送風機である場合について説明したが、多翼遠心送風機100は、片吸込形の遠心送風機であってもよい。また、翼12の枚数は、図示した枚数に限定されない。
 以上のように、実施の形態1の多翼遠心送風機100は、羽根車10と、羽根車10が収容される渦巻き型のスクロールケーシング20と、を備える。羽根車10は、円板状の主板11と、主板11の周縁部に周方向に配列された複数の翼12と、主板11と対向して配置され、複数の翼12を固定する円環状の側板13と、を有する。スクロールケーシング20は、側板13側から空気を導入し外周側へ吹き出す構成とされる。羽根車10は、金属で構成され、翼12は、主板11側から側板13側にわたり、一定の肉厚Wを有している。また翼12は、主板11側から側板13側にわたり、側板13の内周端13aよりも内側に延出している。
 本開示によれば、羽根車10は金属で構成され、翼12の肉厚Wは、側板13から主板11側にわたり一定とされているので、側板13側と同様の隙間Gを羽根車10の主板11側においても確保することができる。したがって、従来のように樹脂成形品の多翼遠心送風機と比べて、羽根車10の主板11側でも吸込み風量を増加させることができる。
 また、翼12の内周縁(翼前縁12f)は、側板13側から主板11側に向かって傾斜している。側板13の内周端13aと翼前縁12fにおける主板11側の内周端(主板側内周端12fd)との距離Ldが、側板13の内周端13aと翼前縁12fにおける側板13側の内周端(側板側内周端12fu)との距離Luよりも長くなる。換言すると、翼前縁12fは、主板側内周端12fdと羽根車10の回転軸RS(あるいは側板13の内周端13aから主板11に下ろした垂線)との径方向の距離が、側板側内周端12fuと羽根車10の回転軸RS(あるいは側板13の内周端13aから主板11に下ろした垂線)との径方向との距離よりも長くなるように傾斜している。
 これにより、側板13の内周端13aから露出した翼部分の側板13側で生じる抵抗を低減でき、羽根車吸込口10aを介して流入する空気の流入損失及び抵抗による騒音悪化等の発生を抑制することができる。よって、羽根車吸込口10aを介して流入する空気を主板11側にも誘引でき、側板13側に対して主板11側で吸込み風量が低下してしまうこと抑制できる。
 また、翼12は、前向き羽根で構成されたシロッコ翼部30と、シロッコ翼部30の内周側につながり、後向き羽根で構成されたターボ翼部40と、を有する。また翼12のターボ翼部40は、側板13の内周端13aよりも内側に設けられている。これにより、露出した翼部分の面積をより大きくでき、羽根車吸込口10aを介して流入する空気を、より多く翼12の間の隙間Gに取り込むことができる。また、ターボ翼部40により形成された、羽根車10の回転方向Rと逆方向に傾き、且つ径方向の外側へ向かって漸次拡大する流通路11aにおいて、取り込まれた空気を昇圧されながら高効率にシロッコ翼部30へ送出することができる。
 また、スクロールケーシング20は、吸込口23aが設けられた対向する側壁23と、周壁24と、吸込口23aを形成するものであって内部に向けて開口径が漸次縮小するベルマウス26と、を有する。側板13の内周端13aは、ベルマウス26の先端の外周端26aよりも内周側に位置している。これにより、側板13の径方向の長さを確保し、側板13により複数の翼12をより確実に固定することができる。
実施の形態2.
 図7は、実施の形態2に係る多翼遠心送風機の翼を回転軸と平行に見た構成を模式的に示す図である。実施の形態2では、羽根車10の回転軸RSの軸方向から翼12を見て、第1ターボ翼部41の一部が側板13で覆われている点が、実施の形態1の場合とは異なる。図7には、主板11の板面111(図3参照)に設置された翼12に対する側板13の内周端13aの位置が、二点一鎖線で示されている。また図7には、羽根車10の回転中に翼12の負圧面122付近を通過する気流の方向が、矢印F1で示されている。
 実施の形態2においても、実施の形態1の場合と同様に、第1ターボ翼部41は、ターボ翼部40の上面全てを含み、四角形状を有しており、第2ターボ翼部42は、翼12の翼前縁12f全てを含み、三角形状を有している。また実施の形態2において、第1ターボ翼部41と第2ターボ翼部42との境界となる翼前縁12fの側板側内周端12fuは、側板13の内周端13aの位置よりも内側に位置しており、実施の形態1の場合と同様である。
 実施の形態2では、シロッコ翼部30とターボ翼部40の第1ターボ翼部41との翼境界12bが、側板13の内周端13aの位置よりも外側に位置しており、シロッコ翼部30、及び第1ターボ翼部41の外周側の一部が、側板13に覆われる構成とされる。換言すると、翼12において側板13で覆われている部分は、シロッコ翼部30と、第1ターボ翼部41の外周側の一部と、により構成されている。
 したがって、ターボ翼部40において側板13から露出した部分により、流通路11aへの吸込み風量の増加を図るとともに、ターボ翼部40において側板13で覆われている部分により、流通路11aに吸い込まれた気流を効率的に昇圧することができる。
 また、羽根車10の回転軸RSの軸方向から見て、翼12において側板13で覆われている部分の弦長L1に対する、第1ターボ翼部41において側板13で覆われている部分の弦長L2の割合は、0%よりも大きく30%以下であることが好ましい。
 図8は、図7の翼12の変形例を示す図である。図8に示される変形例では、翼12において側板13で覆われている部分の弦長L1に対する、第1ターボ翼部41において側板13で覆われている部分の弦長L2の割合が、30%よりも大きく、40%とされている。変形例のように、弦長L1に対する弦長L2の割合を30%よりも大きくする場合、翼12の翼弦長を一定とすると、シロッコ翼部30の弦長を短くし、且つターボ翼部40に対して回転方向Rへより傾斜をつける必要がある。よって、シロッコ翼部30の負圧面122側に剥離渦Faが発生し、気流が負圧面122から剥離することによる風量の低下、及び剥離渦Faの発生による騒音の増大を招く場合がある。
 実施の形態2では、翼12は、前向き羽根で構成されたシロッコ翼部30と、シロッコ翼部30の内周側につながり、後向き羽根で構成されたターボ翼部40と、を有する。羽根車10の回転軸RSの軸方向から見て、翼12において側板13で覆われている部分は、シロッコ翼部30とターボ翼部40の一部とにより構成されている。そして、シロッコ翼部30の弦長、すなわち弦長L1と弦長L2との差は、ターボ翼部40の一部の弦長L2よりも長い。さらには、翼12において側板13に覆われている部分の弦長L1に対する、ターボ翼部40において側板13に覆われている部分(上述したターボ翼部40の一部)の弦長L2の割合は、0%よりも大きく30%以下である。
 これにより、ターボ翼部40からシロッコ翼部30へ気流F2が流れる際、翼12の角度が変化する過程において、急な気流の角度変化を抑制することができるので、負圧面122に生じる剥離を抑制することができる。結果、気流が負圧面122から剥離することによる風量の低下、及び剥離渦Faの発生による騒音の増大を抑制できる。
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 10 羽根車、10a 羽根車吸込口、11 主板、11a 流通路、11b 軸部、12 翼、12b 翼境界、12d 端部、12f 翼前縁、12fd 主板側内周端、12fu 側板側内周端、12r 翼後縁、12u 端部、13 側板、13a 内周端、20 スクロールケーシング、20a 風路、21 スクロール部、22 吐出部、22a 吐出側風路、22b 吐出口、23 側壁、23b 吸込口、24 周壁、24a 巻始部、24b 巻終部、24c 内周面、25 舌部、26 ベルマウス、26a 外周端、30 シロッコ翼部、40 ターボ翼部、41 第1ターボ翼部、42 第2ターボ翼部、100 多翼遠心送風機、111 板面、112 板面、122 負圧面、221 延設板、222 ディフューザ板、C1 第一の仮想円、F1 矢印、F2 気流、Fa 剥離渦、G 隙間、L1 弦長、L2 弦長、Ld 距離、Lu 距離、R 回転方向、RS 回転軸、W 肉厚。

Claims (6)

  1.  円板状の主板と、前記主板の周縁部に周方向に配列された複数の翼と、前記主板と対向して配置され、前記複数の翼を固定する円環状の側板と、を有する羽根車と、
     前記羽根車が収容され、前記側板側から空気を導入し外周側へ吹き出す渦巻き型のスクロールケーシングと、を備え、
     前記羽根車は、金属で構成され、
     前記翼は、前記主板側から前記側板側にわたり、一定の肉厚を有し、且つ前記側板の内周端よりも内側に延出している
     多翼遠心送風機。
  2.  前記翼の内周縁は、前記側板の前記内周端と前記翼の前記内周縁における前記主板側の内周端との距離が、前記側板の前記内周端と前記翼の前記内周縁における前記側板側の内周端との距離よりも長くなるように、前記側板側から前記主板側に向かって傾斜している
     請求項1に記載の多翼遠心送風機。
  3.  前記翼は、前向き羽根で構成されたシロッコ翼部と、前記シロッコ翼部の内周側につながり、後向き羽根で構成されたターボ翼部と、を有し、
     前記羽根車の回転軸の軸方向から見て、前記翼において前記側板で覆われている部分は、前記シロッコ翼部と前記ターボ翼部の一部とにより構成され、
     前記シロッコ翼部の弦長は、前記ターボ翼部の前記一部の弦長よりも長い
     請求項1又は2に記載の多翼遠心送風機。
  4.  前記翼の前記部分の弦長に対する前記ターボ翼部の前記一部の弦長の割合は、0%よりも大きく30%以下である
     請求項3に記載の多翼遠心送風機。
  5.  前記翼は、前向き羽根で構成されたシロッコ翼部と、前記シロッコ翼部の内周側につながり、後向き羽根で構成されたターボ翼部と、を有し、
     前記翼の前記ターボ翼部は、前記側板の前記内周端よりも内側に設けられている
     請求項1又は2に記載の多翼遠心送風機。
  6.  前記スクロールケーシングは、吸込口が設けられた対向する側壁と、周壁と、前記吸込口を形成するものであって内部に向けて開口径が漸次縮小するベルマウスと、を有し、
     前記側板の前記内周端は、前記ベルマウスの先端の外周端よりも内周側に位置している
     請求項1~5のいずれか一項に記載の多翼遠心送風機。
PCT/JP2020/039898 2020-10-23 2020-10-23 多翼遠心送風機 WO2022085175A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022556346A JP7466683B2 (ja) 2020-10-23 2020-10-23 多翼遠心送風機
US18/043,917 US20240026899A1 (en) 2020-10-23 2020-10-23 Multi-blade centrifugal air-sending device
CN202080106321.3A CN116348680A (zh) 2020-10-23 2020-10-23 多翼离心送风机
PCT/JP2020/039898 WO2022085175A1 (ja) 2020-10-23 2020-10-23 多翼遠心送風機
EP20958725.2A EP4234946A4 (en) 2020-10-23 2020-10-23 MULTI-BLADE CENTRIFUGAL FAN
TW110108114A TWI747758B (zh) 2020-10-23 2021-03-08 多葉離心式送風機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039898 WO2022085175A1 (ja) 2020-10-23 2020-10-23 多翼遠心送風機

Publications (1)

Publication Number Publication Date
WO2022085175A1 true WO2022085175A1 (ja) 2022-04-28

Family

ID=79907800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039898 WO2022085175A1 (ja) 2020-10-23 2020-10-23 多翼遠心送風機

Country Status (6)

Country Link
US (1) US20240026899A1 (ja)
EP (1) EP4234946A4 (ja)
JP (1) JP7466683B2 (ja)
CN (1) CN116348680A (ja)
TW (1) TWI747758B (ja)
WO (1) WO2022085175A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038573A1 (ja) * 2022-08-19 2024-02-22 三菱電機株式会社 送風機用ファン、多翼遠心送風機、及び、空調室内機
WO2024038506A1 (ja) * 2022-08-16 2024-02-22 三菱電機株式会社 冷凍サイクル装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145693A (ja) * 1998-11-09 2000-05-26 Hitachi Ltd 多翼前向ファン
JP2002357196A (ja) * 2001-05-30 2002-12-13 Matsushita Seiko Co Ltd 遠心ファン
JP2012036885A (ja) 2010-07-16 2012-02-23 Mitsubishi Heavy Ind Ltd 多翼遠心ファンおよびそれを用いた空気調和機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442300U (ja) * 1990-08-09 1992-04-09
JP3260544B2 (ja) * 1994-04-06 2002-02-25 松下精工株式会社 多翼ファン
JPH09256994A (ja) * 1996-03-22 1997-09-30 Toshiba Transport Eng Kk 遠心多翼形電動送風機
US5988979A (en) * 1996-06-04 1999-11-23 Honeywell Consumer Products, Inc. Centrifugal blower wheel with an upwardly extending, smoothly contoured hub
JP2006125229A (ja) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd シロッコファン
JP4712714B2 (ja) * 2006-05-30 2011-06-29 三菱電機株式会社 遠心式多翼ファン
KR101039635B1 (ko) * 2010-03-11 2011-06-08 주식회사 제이엠더블유 헤어 드라이어용 비엘디씨 모터
US8881396B2 (en) * 2011-02-07 2014-11-11 Revcor, Inc. Method of manufacturing a fan assembly
TWM418176U (en) * 2011-04-01 2011-12-11 Delta Electronics Inc Impeller
CN103958900B (zh) * 2011-11-28 2017-05-03 江森自控日立空调技术(香港)有限公司 多叶片风扇及具备该多叶片风扇的空气调节器
WO2015087909A1 (ja) * 2013-12-11 2015-06-18 株式会社ケーヒン 遠心ファン
CN205298053U (zh) * 2015-11-16 2016-06-08 苏州聚力电机有限公司 离心式散热风扇的扇轮
US10030667B2 (en) * 2016-02-17 2018-07-24 Regal Beloit America, Inc. Centrifugal blower wheel for HVACR applications
JP2019019758A (ja) * 2017-07-18 2019-02-07 日本電産株式会社 遠心ファンインペラおよび当該遠心ファンインペラを備える遠心ファン
JP6896091B2 (ja) * 2017-10-27 2021-06-30 三菱電機株式会社 多翼送風機
US11236762B2 (en) * 2019-04-26 2022-02-01 Johnson Controls Technology Company Variable geometry of a housing for a blower assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145693A (ja) * 1998-11-09 2000-05-26 Hitachi Ltd 多翼前向ファン
JP2002357196A (ja) * 2001-05-30 2002-12-13 Matsushita Seiko Co Ltd 遠心ファン
JP2012036885A (ja) 2010-07-16 2012-02-23 Mitsubishi Heavy Ind Ltd 多翼遠心ファンおよびそれを用いた空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234946A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038506A1 (ja) * 2022-08-16 2024-02-22 三菱電機株式会社 冷凍サイクル装置
WO2024038573A1 (ja) * 2022-08-19 2024-02-22 三菱電機株式会社 送風機用ファン、多翼遠心送風機、及び、空調室内機

Also Published As

Publication number Publication date
JP7466683B2 (ja) 2024-04-12
TWI747758B (zh) 2021-11-21
US20240026899A1 (en) 2024-01-25
EP4234946A4 (en) 2023-12-20
TW202217151A (zh) 2022-05-01
CN116348680A (zh) 2023-06-27
EP4234946A1 (en) 2023-08-30
JPWO2022085175A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
JP5496132B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
US20110229327A1 (en) Centrifugal multiblade fan
US11808270B2 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
KR101743376B1 (ko) 원심 압축기
WO2022085175A1 (ja) 多翼遠心送風機
JP5145188B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
CN106884804B (zh) 离心式鼓风机
US20230135727A1 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
JP6844526B2 (ja) 多翼遠心ファン
US10473113B2 (en) Centrifugal blower
AU2014393558B2 (en) Centrifugal blower and electric vacuum cleaner
WO2022085174A1 (ja) 多翼遠心送風機
JP2012052431A (ja) 遠心送風機
WO2024038622A1 (ja) 多翼遠心送風機
US20230407876A1 (en) Fan
JP2002285996A (ja) 多翼送風ファン
JP2023006935A (ja) 遠心送風機
WO2024023886A1 (ja) 多翼遠心送風機及び空気調和機
WO2022153522A1 (ja) 遠心送風機
JP4915791B2 (ja) 遠心式多翼送風機
US20220372990A1 (en) Impeller, multi-blade fan, and air-conditioning apparatus
JPH08135596A (ja) 遠心送風機用羽根車
TW202307341A (zh) 軸流風扇
TW202417746A (zh) 多翼離心送風機
JP2005201203A (ja) 多翼ファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556346

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18043917

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958725

Country of ref document: EP

Effective date: 20230523