WO2022153522A1 - 遠心送風機 - Google Patents

遠心送風機 Download PDF

Info

Publication number
WO2022153522A1
WO2022153522A1 PCT/JP2021/001420 JP2021001420W WO2022153522A1 WO 2022153522 A1 WO2022153522 A1 WO 2022153522A1 JP 2021001420 W JP2021001420 W JP 2021001420W WO 2022153522 A1 WO2022153522 A1 WO 2022153522A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
air
casing
impeller
centrifugal blower
Prior art date
Application number
PCT/JP2021/001420
Other languages
English (en)
French (fr)
Inventor
一輝 岡本
一樹 蓮池
健一 迫田
仁 菊地
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/001420 priority Critical patent/WO2022153522A1/ja
Priority to CN202180089536.3A priority patent/CN116745533A/zh
Priority to JP2022575026A priority patent/JP7466707B2/ja
Publication of WO2022153522A1 publication Critical patent/WO2022153522A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • This disclosure relates to a centrifugal blower.
  • a bell mouth was provided in the opening for sucking air provided in the casing of the centrifugal blower in order to secure an effective area for suction. Further, on the opening side of the impeller provided inside the conventional casing, a side plate for guiding the air flowing into the impeller from the outlet of the bell mouth is provided.
  • Patent Document 1 in order to prevent the air flowing into the impeller from the outlet of the bell mouth provided in the opening from separating from the side plate, the minimum diameter of the outlet of the bell mouth and the side plate of the impeller are set to the same diameter. Centrifugal blowers are disclosed.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a centrifugal blower that allows air taken in from the outside of the casing to flow into the impeller more efficiently.
  • the centrifugal blower includes a drive motor having a rotating shaft, a casing having an opening surface having an opening in the axial direction of the rotating shaft, and air rotatably provided inside the casing around the rotating shaft. Is provided with an impeller provided with an inlet for taking in air on the opening side and an air inlet having an inner diameter smaller than the inner diameter of the opening and the inlet, while blowing out from the axial direction of the rotating shaft in the centrifugal direction. It is a thing.
  • FIG. 5 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment. It is a perspective view of the impeller in Embodiment 1. FIG. It is a detailed view near the opening of the centrifugal blower in Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view of a cross section including a rotation axis of the centrifugal blower according to the second embodiment.
  • FIG. 5 is a cross-sectional view of a cross section including a rotation axis of the centrifugal blower according to the third embodiment. It is sectional drawing which shows the modification which changed the position of the impeller of the centrifugal blower in Embodiment 3. It is sectional drawing which shows the modification which changed the size of the impeller of the centrifugal blower in Embodiment 3.
  • FIG. FIG. 5 is a cross-sectional view of a cross section including a rotation axis of the centrifugal blower according to the fourth embodiment. It is a graph which shows the ventilation performance of the centrifugal blower in Embodiment 4.
  • FIG. 5 is a cross-sectional view of a cross section including a rotation axis of the centrifugal blower according to the fifth embodiment. It is sectional drawing which shows the modification which did not provide the protrusion
  • Embodiment 1 The centrifugal blower 100 according to the first embodiment will be described in detail below with reference to the drawings.
  • the same reference numerals in the drawings represent the same or corresponding parts.
  • FIG. 1 is a perspective view of the centrifugal blower 100 according to the first embodiment.
  • the centrifugal blower 100 has an impeller 20 that generates an air flow in the centrifugal direction by rotation, a drive motor 10 that rotates the impeller 20 and only a rotation shaft 11 is shown in FIG. 1, a part of the drive motor 10, and an impeller 20. It is provided with a casing 30 for accommodating the above.
  • the centrifugal blower 100 takes in air from the opening 31a of the casing 30 and blows out the air from the air outlet 34a by rotating the impeller 20 by the drive motor 10.
  • FIG. 2 is a cross-sectional view of a cross section of the centrifugal blower 100 including the rotating shaft 11.
  • FIG. 3 is a cross-sectional view of a cross section perpendicular to the rotation axis 11 of the centrifugal blower 100.
  • the cross section shown in FIG. 2 is shown by the cutting line XX in FIG. 3, and the cross section shown in FIG. 3 is shown by the cutting line YY in FIG.
  • FIG. 4 is a perspective view of the impeller 20 according to the present embodiment.
  • the drive motor 10 has a rotating shaft 11 and rotates the impeller 20 described below.
  • the impeller 20 is a multi-blade impeller having a plurality of blades 22, and blows out air taken in from the axial direction of the rotating shaft 11 in the centrifugal direction.
  • the impeller 20 includes a disk-shaped main plate 21 having a hole for fixing the rotating shaft 11 in the center, a plurality of blades 22 arranged at intervals on the outer edge of the main plate 21 in the circumferential direction of the rotating shaft 11, and a main plate. It has an annular air introduction portion 23 provided so as to cover one end of a plurality of blades 22 on the opening 31a side opposite to the 21.
  • the casing 30 which is a scroll casing has an opening surface 31 provided with an opening 31a, a bottom surface 33 facing the opening surface 31, and a side surface 32 provided in the circumferential direction of the rotation shaft 11. Further, the opening surface 31, the bottom surface 33, and the side surface 32 form the tongue portion 34.
  • the tongue portion 34 includes an air outlet 34a that blows out the airflow generated by the rotation of the impeller 20, and guides a part of the generated airflow to the airflow outlet 34a.
  • the opening 31a in the present embodiment does not have a shape that changes the air passage cross-sectional area like the bellmouth shape, and the air passage cross-sectional area of the opening 31a is constant along the air passage from the upstream end to the downstream end. ..
  • the opening 31a is a hole provided in the opening surface 31 which is a plate material. That is, the opening 31a having a constant air passage cross-sectional area along the air passage from the upstream end to the downstream end is a cylindrical hole in which the upstream end is the front surface of the opening surface 31 and the downstream end is the back surface of the opening surface 31. Is.
  • FIG. 5 is an enlarged view of the opening 31a of the centrifugal blower 100 and the vicinity of the air introduction portion 23 according to the present embodiment.
  • the air introduction portion 23 has a bell mouth shape in which the inner diameter on the main plate 21 side is smaller than that on the opening 31a side, and the air introduction portion 23 reduces the cross-sectional area of the air flowing in from the opening 31a. Further, the air introduction unit 23 includes an inlet 23b, which is an end on the opening 31a side for taking in air, and an outlet 23a, which is an end on the main plate 21 side for sending air to the inside of the impeller 20. That is, the inlet 23b is on the upstream side of the air flow and the outlet 23a is on the downstream side of the air flow.
  • the inner diameter of the inlet 23b is larger than the inner diameter Dc of the opening 31a, and the inner diameter Di of the outlet 23a is smaller than the inner diameter Dc of the opening 31a and the inner diameter of the inlet 23b.
  • Dc and Di in FIG. 2 indicate that the diameter Di of the outlet 23a is smaller than the diameter Dc of the opening 31a.
  • the length from the rotating shaft 11 to the end of the blade 22 far from the rotating shaft 11 is the same as the length from the rotating shaft 11 to the end of the inlet 23b. That is, the outer diameter of the air introduction portion 23 of the impeller 20 and the outer diameter of the blade 22 portion are the same, and the size of the outer diameter of the impeller 20 is constant.
  • the circulating flow merges with the air taken in from the opening 31a and is blown out again in the centrifugal direction of the rotating shaft 11. Further, as shown in FIG. 3, the air flow flows to the tongue portion 34 while forming the above-mentioned circulating flow, and is blown out from the outlet 34a.
  • the inner diameter of the outlet 23a of the air introduction portion 23 is smaller than the inner diameter of the opening 31a and is inside. Therefore, the air taken in from the edge of the opening 31a comes into contact with and adheres to the air introduction portion 23, and flows along the air introduction portion 23 toward the rotating shaft 11 side of the impeller 20. Further, the circulating flow flowing in the direction of the rotating shaft 11 along the opening surface 31 also merges with the air taken in from the opening 31a to move to the rotating shaft 11 side of the impeller 20 along the air introduction portion 23. Will flow in. Then, the air that has flowed into the rotating shaft 11 side of the impeller 20 is blown out in the centrifugal direction of the rotating shaft 11.
  • the inner diameter Di of the outlet 23a of the air introduction portion 23 is smaller than the inner diameter Dc of the opening 31a as described above. Therefore, the air taken in from the edge of the opening 31a comes into contact with and adheres to the air introduction portion 23, and is rectified by the surface of the air introduction portion 23. Therefore, the air flowing into the impeller 20 from the opening 31a of the casing 30 is less likely to be separated.
  • the air taken in from the outside of the casing 30 can be efficiently flowed into the impeller 20. In addition, noise deterioration due to peeling can be prevented.
  • the air introduction portion 23 covers the opening 31a side of the blade 22, it is possible to prevent the circulating flow from colliding with the tip of the blade 22 on the opening 31a side. Therefore, it is possible to suppress deterioration of ventilation performance and noise deterioration due to collision between the circulating flow and the blade 22.
  • the bell mouth provided at the opening of the casing throttles the air flow and increases the flow velocity, so that it is difficult for the air to reattach to the air introduction portion when the air is separated.
  • the opening 31a has no change in the cross-sectional area of the air passage and does not have a bell mouth shape unlike a conventional centrifugal blower. Therefore, the change in the velocity of the air passing through the opening 31a is suppressed, and even if the air is separated, the air is likely to reattach to the air introduction portion 23. Further, since the simple structure in which the air passage cross-sectional area of the opening 31a is constant, the casing can be formed at low cost.
  • Embodiment 2 the outer diameter of the inlet 23b of the air introduction portion 23 is larger than the inner diameter of the opening 31a of the casing 30. That is, the outer diameter of the entire impeller 20 having the air introduction portion 23 was larger than the inner diameter of the opening 31a. In this embodiment, the outer diameter Df of the impeller 20 is made smaller than the inner diameter Dc of the opening 31a.
  • the configuration of the present embodiment will be described with reference to FIG. 6, focusing on the differences from the first embodiment.
  • the air introduction unit 23 has a bell mouth shape in which the inner diameter of the outlet 23a on the main plate 21 side is smaller than that of the inlet 23b on the opening 31a side, as in the first embodiment. Then, in the present embodiment, the outer diameter Df of the inlet 23b is smaller than the inner diameter Dc of the opening 31a. Further, since the size of the outer diameter of the impeller 20 is constant, the outer diameter of the entire impeller 20 is also smaller than the inner diameter Dc of the opening 31a. Further, the inner diameter Di of the outlet 23a is smaller than the inner diameter Dc of the opening 31a. Dc, Di and Df in FIG. 6 indicate that the diameter Di of the outlet 23a and the outer diameter Df of the impeller 20 are smaller than the diameter Dc of the opening 31a.
  • the impeller 20 since the outer diameter of the impeller 20 is smaller than the inner diameter of the opening 31a, the impeller 20, or both the impeller 20 and the drive motor 10 can be easily passed through the opening 31a from the inside of the casing 30. Can be taken out. Further, since the tip of the blade 22 on the opening 31a side is covered by the air introduction portion 23, there is no possibility that the operator touches the opening 31a side of the blade 22 when taking out the impeller 20. Therefore, the operator can easily perform maintenance on the centrifugal blower 100. In the present embodiment as well, as in the first embodiment, since the inner diameter Di of the outlet 23a is smaller than the inner diameter Dc of the opening 31a, the air flowing into the impeller 20 from the opening 31a of the casing 30 is centrifugal. It is harder to peel off than a blower.
  • Embodiment 3 In the present embodiment, a protruding portion 35 protruding inward of the casing 30 is provided around the opening 31a of the opening surface 31.
  • the configuration of the present embodiment will be described with reference to FIG. 7, focusing on the differences from the second embodiment.
  • the edge of the opening 31a protrudes inside the casing 30 to form the protruding portion 35.
  • the axial length of the rotating shaft 11 of the protruding portion 35 is longer than the length from the opening surface 31 to the inlet 23b of the air introducing portion 23.
  • the dotted line in FIG. 7 represents the circulating flow.
  • the protruding portion 35 is formed in an annular shape over the entire circumference of the opening 31a.
  • the air passage cross-sectional area of the opening 31a is constant from the upstream end to the downstream end along the air passage, as in the first and second embodiments.
  • the opening 31a is formed by a protrusion 35 provided on the opening surface 31. That is, in the present embodiment, the upstream end of the opening 31a is the surface of the opening surface 31 and the outer end of the protruding portion 35. Further, the downstream end of the opening 31a is the inner end of the protruding portion 35 protruding from the back surface of the opening surface 31.
  • the impeller 20 of the present embodiment has the same configuration as that of the second embodiment, and the same effect as that of the second embodiment can be obtained. Further, according to the present embodiment, the protrusion 35 covers the gap between the opening surface 31 and the air introduction portion 23. Therefore, when the circulating flow hits the protruding portion 35, it becomes difficult for the circulating flow to flow to the rotation shaft 11 side of the impeller 20. Therefore, air is less likely to leak from the opening 31a to the outside of the casing 30, the ventilation performance is improved, and noise is reduced.
  • FIGS. 8 and 9 show a centrifugal blower 100 provided with a protruding portion 36 in which the edge of the opening 31a is also projected to the outside of the casing 30.
  • FIG. 8 shows a cross-sectional view of the centrifugal blower 100 in which the mounting position of the impeller 20 is moved toward the opening surface 31 side.
  • FIG. 9 shows a centrifugal blower 100 provided with an impeller 20a in which the impeller 20 is enlarged in the axial direction of the rotating shaft 11.
  • the protruding portion 36 is provided on both the inside and the outside of the casing 30, it protrudes even when the mounting positions and dimensions of the impellers 20 and 20a in the axial direction of the rotating shaft 11 are changed.
  • the change in the gap between the opening 31a and the impellers 20 and 20a can be suppressed by the portion 36 and the air introduction portion 23. Therefore, when the ventilation performance such as the air volume and the static pressure of the centrifugal blower 100 is changed, the impellers 20 and 20a can be replaced without changing the shape of the casing 30. That is, the range of aerodynamic design can be expanded by the centrifugal blower 100 of the casing 30 having the same shape.
  • Embodiment 4 In this embodiment, the inlet 23b of the air introduction portion 23 is provided outside the casing 30.
  • the configuration of the present embodiment will be described with reference to FIG. 10, focusing on the differences from the third embodiment.
  • the impeller 20b includes an air introduction unit 24.
  • the air introduction unit 24 has a bell mouth shape similar to that of the air introduction units 23 of the first to third embodiments.
  • the inlet 24b which is on the upstream side of the air flow, is outside the opening 31a of the casing 30.
  • the outlet 24a on the downstream side of the air flow is inside the opening 31a.
  • the outer diameter of the inlet 24b is larger than the inner diameter of the opening 31a, and the inner diameter of the outlet 24a is smaller than the inner diameter of the opening 31a.
  • the size of the outer diameter of the impeller 20 was constant.
  • the outer diameter of the inlet 24b which is the outer diameter of the outer diameter of the casing 30 of the impeller 20b, is larger than the inner diameter of the opening 31a, but the outer diameter of the blade 22 portion, which is the inner outer diameter, is the opening. It is smaller than the inner diameter of 31a.
  • the air passage cross-sectional area can be greatly expanded on the upstream side of the air flow. It becomes more difficult to separate the air flow. Further, by increasing the radius of curvature of the air introduction portion 24, the centrifugal force generated in the air flow in the air introduction portion 24 can be reduced, and the air is easily flowed by the blade 22 of the impeller 20b, so that the ventilation efficiency is increased. Is improved.
  • FIG. 11 is a graph showing the relationship between the static pressure characteristic and the air volume when the rotation speed of the drive motor 10 is constant.
  • “The present disclosure” indicated by a black circle in the figure represents the centrifugal blower 100 of the fourth embodiment.
  • the "conventional example” shown by a white circle in the figure represents a centrifugal blower in which a bell mouth is provided in the opening of the casing and an air introduction portion is not provided in the impeller.
  • the horizontal axis represents the air volume and the vertical axis represents the static pressure.
  • the static pressure fan efficiency of the centrifugal fan 100 was calculated from the following formula 1.
  • Equation 1 above ⁇ represents fan efficiency. Further, P [Pa] represents static pressure, Q [m 3 / min] represents air volume, and W [W] represents shaft output.
  • the centrifugal blower 100 of the present embodiment has an efficiency improvement of about 1 pt near the maximum efficiency point as compared with the conventional example.
  • the above effect is obtained because the inlet 24b is on the outside of the casing 30 and is larger than the inner diameter of the opening 31a, but the inner diameter of the outlet 24a of the air introduction portion 24 is the opening 31a of the casing 30. Since it is smaller than the inner diameter of the impeller 20b, the blade 22 portion of the impeller 20b can be accommodated inside the casing 30. Therefore, in the present embodiment, instead of the openings 31a of the first to third embodiments, it is difficult to separate the air from the inlet 24b, which is the upstream of the air flow that takes in the outside air in the present embodiment, from the air introduction portion 24. In this state, it can flow into the rotating shaft 11 side of the impeller 20b. Therefore, the problem can be solved in this embodiment as well as in other embodiments.
  • protruding portion 35 is provided in the present embodiment, it is not necessary to provide the protruding portion 35 as shown in FIG.
  • Embodiment 5 the inlet 24b of the air introduction portion 24 is provided outside the casing 30, but in the present embodiment, the outer edge portion 26 is further provided on the outer edge of the air introduction portion 24. .. The differences from the fourth embodiment will be mainly described with reference to FIG.
  • the impeller 20c is provided with an air introduction unit 25.
  • the inlet 25b of the air introduction portion 25 protrudes to the outside of the casing 30 through the opening 31a.
  • the air introduction portion 25 is provided with an outer edge portion 26 at the inlet 25b.
  • the outer edge portion 26 is a portion of the air introduction portion 25 where the size of the gap with the outer surface of the opening surface 31 changes, and is provided over the entire circumference of the inlet 25b of the air introduction portion 25. As shown in FIG. 13, the outer edge portion 26 has an arc-shaped cross section in the radial direction of the rotating shaft 11. The gap between the outer edge portion 26 and the opening surface 31 gradually increases from the inside to the outside in the radial direction of the rotating shaft 11, and gradually decreases toward the outside. That is, the outer edge portion 26 has a mountain-like shape, and there is a portion inside the outermost portion where the gap between the air introduction portion 25 and the outer surface of the opening surface 31 is maximized.
  • the casing 30 of the present embodiment faces the portion where the gap between the air introduction portion 25 and the outer surface of the opening surface 31 is maximized instead of the protruding portion 35 of the third and fourth embodiments.
  • a protruding portion 37 is provided.
  • the protruding portion 37 is a recess recessed from the outside to the inside of the opening surface 31.
  • the protruding portion 37 expands the gap between the outer surface of the opening surface 31 and the air introducing portion 25, and protrudes toward the inside of the casing 30.
  • H and H max in FIG. 13 are the sizes of the gaps in the innermost portion of the outermost portion 26 of the outermost portion 26, which is larger than the size H of the gap between the air introduction portion 25 and the opening surface 31. It shows that H max is larger.
  • the size of the gap between the outer surface of the opening surface 31 and the air introduction portion 25 changes from the inside to the outside of the rotating shaft 11 by the outer edge portion 26. That is, a pressure loss occurs in the flow of air leaking to the outside through this gap. Therefore, it is possible to reduce the amount of air leaking to the outside of the casing 30 by removing this gap. By reducing the air leaking from the gap, the ventilation efficiency can be further improved.
  • the protrusion 37 is provided with a recess, the change in the gap between the outside of the opening surface 31 and the air introduction portion 25 can be made larger. Therefore, the air leaking from the gap to the outside of the casing 30 can be further reduced. Further, the projecting portion 37 also plays a role of preventing the circulating flow from moving toward the rotation shaft 11 side, as in the projecting portions 35 of the third and fourth embodiments.
  • the protruding portion 37 is provided with a recess on the outer surface of the opening surface 31, but may be provided with a protruding portion 35 having no recess as in the third and fourth embodiments. However, as shown in FIG. 14, the protrusions 35 and 37 may not be provided. Even in this case, the size H max of the gap where the gap is maximized in the inner portion of the outer edge portion 26 is larger than the size H of the gap between the air introduction portion 25 and the opening surface 31 on the outermost side. Is larger, and the effect of pressure loss can be obtained.
  • the outer edge portion 26 has a single mountain shape, but may have two or more mountain shapes.
  • the outer edge of the air introduction portion 25 of the present embodiment may be further provided with a portion such that the gap with the opening surface 31 gradually increases from the inside to the outside of the rotating shaft 11.
  • the air introduction portions 23, 24, and 25 have a bell mouth shape, but any one may be used as long as the air passage cross-sectional area decreases from the upstream to the downstream of the air flow.
  • the air introduction portion 23 may have a truncated cone shape.
  • the impellers 20, 20a, 20b, and 20c are multi-blade impellers having a plurality of blades 22, but if the air taken in from the axial direction of the rotating shaft 11 is blown out in the centrifugal direction, this is used. Not limited to.
  • the relationship between the sizes of the blade 22 and the air introduction portions 23, 24, 25 is not limited to the embodiment.
  • the distance from the rotating shaft 11 in the centrifugal direction to the end far from the rotating shaft 11 of the blade 22 is the same as the distance from the rotating shaft 11 to the end of the inlet 23b.
  • the blade 22 is formed so that the distance from the rotating shaft 11 to the end far from the rotating shaft 11 of the blade 22 is shorter than the distance from the rotating shaft 11 to the end of the inlet 23b as shown in FIG. good. That is, the outer diameter of the blade 22 portion of the impeller 20 and the outer diameter of the air introduction portions 23, 24, 25 do not have to be the same.
  • the casing 30 is a scroll casing, but the shape of the casing is not limited to this.
  • the casing may be cylindrical and blown out in the axial direction of the rotating shaft 11.
  • the cross-sectional area of the air passage of the opening 31a was constant, but it is not limited to this for solving the problem.
  • the shape of the opening 31a may be a bell mouth shape in which the inner diameter of the air outlet is smaller than the inner diameter of the inlet.
  • the inner diameters of the outlets 23a, 24a, 25a of the air introduction portions 23, 24, 25 may be smaller than the inner diameters of the outlets of the openings 31a.
  • the opening 31a may have any shape as long as the inner diameters of the outlets 23a, 24a, 25a of the air introduction portions 23, 24, 25 are smaller than the minimum diameter of the opening 31a.
  • the centrifugal blower 100 is a single suction type centrifugal blower 100 having an opening surface 31 on one side of the casing 30 and a bottom surface 33 on the opposite surface, but a double suction type may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本開示に係る遠心送風機100は、駆動モータ10と羽根車20とケーシング30とを備えている。ケーシング30は、駆動モータの回転軸11の軸方向上に開口31aを設けた開口面31を有している。羽根車20は、ケーシング30の内部に回転軸11を中心として回転可能に設けられており、空気を回転軸11の軸方向から遠心方向に吹出すものである。また、羽根車20は、開口31a側に、空気を取り込む入口23bと開口31a及び入口23bの内径よりも内径が小さい空気の出口23aを有する空気導入部23を備える。

Description

遠心送風機
 本開示は、遠心送風機に関するものである。
 従来、遠心送風機のケーシングに設けられた空気を吸気する開口には、吸込の有効面積を確保するためにベルマウスが設けられていた。また、従来のケーシング内部に設けられた羽根車の開口側には、ベルマウスの出口から羽根車に流入する空気をガイドする側板が設けられていた。
 特許文献1には、開口に設けられたベルマウスの出口から羽根車に流入する空気が、側板から剥離することを防ぐために、ベルマウスの出口と羽根車の側板の最小径を同径とした遠心送風機が開示されている。
実開昭64-47999号公報
 上記の特許文献1に記載のベルマウスの出口と羽根車の側板の最小径が同径である遠心送風機による剥離の抑制効果は十分ではなかった。すなわち、ケーシングの外部からベルマウスの出口を通過して流入する空気は、側板の径が空気流れ方向で拡大することによる吸引効果により側板側に引き寄せられるが、このとき空気の流れが側板から剥離しやすいという問題があった。そこで、ケーシングの外部から取り込んだ空気を、より効率よく羽根車に流入させる遠心送風機が望まれていた。
 本開示は上記の問題に鑑みてなされたものであって、ケーシングの外部から取り込んだ空気をより効率よく羽根車に流入させる遠心送風機を提供することを目的としている。
 この開示に係る遠心送風機は、回転軸を有する駆動モータと、回転軸の軸方向上に開口を設けた開口面を有するケーシングと、ケーシングの内部に回転軸を中心として回転可能に設けられ、空気を回転軸の軸方向から遠心方向に吹出すとともに、開口側に空気を取り込む入口並びに開口及び入口の内径よりも内径が小さい空気の出口を有する空気導入部が設けられた羽根車と、を備えたものである。
 本開示によれば、ケーシングの外部から取り込んだ空気をより効率よく羽根車に流入させる遠心送風機を提供することができる。
実施の形態1における遠心送風機の斜視図である。 実施の形態1における遠心送風機の回転軸を含む断面の断面図である。 実施の形態1における遠心送風機の回転軸に垂直な断面の断面図である。 実施の形態1における羽根車の斜視図である。 実施の形態1における遠心送風機の開口付近の詳細図である。 実施の形態2における遠心送風機の回転軸を含む断面の断面図である。 実施の形態3における遠心送風機の回転軸を含む断面の断面図である。 実施の形態3における遠心送風機の羽根車の位置を変更した変形例を示す断面図である。 実施の形態3における遠心送風機の羽根車の大きさを変更した変形例を示す断面図である。 実施の形態4における遠心送風機の回転軸を含む断面の断面図である。 実施の形態4における遠心送風機の送風性能を示すグラフである。 実施の形態4における遠心送風機の突出部を設けていない変形例を示す断面図である。 実施の形態5における遠心送風機の回転軸を含む断面の断面図である。 実施の形態5における遠心送風機の突出部を設けていない変形例を示す断面図である。 空気導入部を円錐台形とした羽根車の断面図である。 翼と空気導入部の大きさの関係を変更した変形例を示す遠心送風機の断面図である。
実施の形態1.
 以下に実施の形態1に係る遠心送風機100を図面に基づいて詳細に説明する。なお、各図面における同一の符号は同一又は相当の部分を表している。
 始めに遠心送風機100の構成について説明する。図1は実施の形態1における遠心送風機100の斜視図である。遠心送風機100は回転により遠心方向の気流を発生させる羽根車20と、羽根車20を回転させる図1では回転軸11のみが図示された駆動モータ10と、駆動モータ10の一部及び羽根車20を収容するケーシング30を備えている。この遠心送風機100は、駆動モータ10により羽根車20を回転させることで、ケーシング30の開口31aから空気を取り込み、吹出口34aから空気を吹き出すものである。
 各構成について説明する。図2は遠心送風機100の回転軸11を含む断面の断面図である。図3は遠心送風機100の回転軸11に垂直な断面の断面図である。図2で示した断面は図3に切断線X-Xで示しており、図3で示した断面は図2に切断線Y-Yで示している。図4は、本実施の形態における羽根車20の斜視図である。
 駆動モータ10は回転軸11を有し、次に説明する羽根車20を回転させるものである。羽根車20は、複数の翼22を有する多翼羽根車であり、回転軸11の軸方向から取り込んだ空気を遠心方向に吹出すものである。羽根車20は、中心に回転軸11を固定する穴を有する円盤状の主板21と、回転軸11の周方向である主板21の外縁に間隔をあけて配列された複数の翼22と、主板21とは反対側である開口31a側の複数の翼22の一端を覆うように設けられた環状の空気導入部23とを有している。
 スクロールケーシングであるケーシング30は、開口31aを設けた開口面31と、開口面31に対向する底面33と、回転軸11の周方向に設けられた側面32とを有している。また、開口面31、底面33、及び側面32は、舌部34を形成している。舌部34は、羽根車20の回転により発生した気流を吹き出す吹出口34aを備え、発生した気流の一部を吹出口34aまで導くものである。
 また、本実施の形態における開口31aは、ベルマウス形状のような風路断面積を変化させる形状ではなく、開口31aの風路断面積は上流端から下流端まで風路に沿って一定である。本実施の形態において、開口31aは板材である開口面31に設けられた穴である。すなわち、上流端から下流端まで風路に沿って風路断面積が一定である開口31aは、上流端が開口面31の表面であって下流端が開口面31の裏面である円筒状の穴である。
 次に、空気導入部23の形状について図2及び図5を用いて詳細に説明する。図5は、本実施の形態に係る遠心送風機100の開口31a及び空気導入部23周辺の拡大図である。
 空気導入部23は、開口31a側よりも主板21側の内径が小さいベルマウス形状をしており、空気導入部23は、開口31aから流入する空気の断面積を縮小するものである。また、空気導入部23は空気を取り込む開口31a側の端である入口23b、空気を羽根車20の内部に送る主板21側の端である出口23aを具備している。すなわち、入口23bは空気の流れの上流側にあって、出口23aは空気の流れの下流側にある。
 本実施の形態において、入口23bの内径は開口31aの内径Dcよりも大きく、出口23aの内径Diは開口31aの内径Dc及び入口23bの内径よりも小さい。図2におけるDc及びDiは、開口31aの直径Dcよりも、出口23aの直径Diの方が小さいことを表している。なお、本実施の形態において、回転軸11から翼22の回転軸11から遠い方の端までの長さは、回転軸11から入口23bの端までの長さと同じである。すなわち、羽根車20の空気導入部23の外径と翼22部分の外径は同じであり、羽根車20の外径の大きさは一定である。
 次に、本実施の形態における遠心送風機100内部の空気の流れについて図2及び図3を用いて説明する。各図面における点線は空気の流れを表している。図2に示すように、開口31aからケーシング30の内部に取り込まれた空気は、羽根車20によって回転軸11の軸方向から遠心方向に方向を変え吹出される。このとき、空気の流れには慣性力が働くため、主板21に近いほど空気の流れが速くなる。回転軸11の遠心方向に吹出された空気は、ケーシング30の側面32に沿って底面33側から開口面31側に巻き上がり、循環流となって、開口面31に沿って回転軸11の方向に流れる。そして、循環流は開口31aから取り込まれた空気と合流し、再び回転軸11の遠心方向に吹出される。また、図3に示すように、空気の流れは、前述の循環流を形成しながら、舌部34へと流れ、吹出口34aから吹出される。
 次に、本実施の形態における開口31a及び空気導入部23周辺の空気の流れについて、図5を用いて詳細に説明する。空気導入部23の出口23aの内径は、開口31aの内径よりも小さく、内側にある。そのため、開口31aの縁から取り込まれた空気は空気導入部23に接触して付着し、空気導入部23に沿って羽根車20の回転軸11側へと流れこむ。また、開口面31に沿って、回転軸11の方向に流れてくる循環流も、開口31aから取り込まれる空気と合流することで、空気導入部23に沿って羽根車20の回転軸11側へと流れ込むこととなる。そして、これらの羽根車20の回転軸11側に流れこんだ空気は、回転軸11の遠心方向に吹出される。
 本実施の形態において、空気導入部23の出口23aの内径Diは、上述のように開口31aの内径Dcよりも小さい。そのため、開口31aの縁から取り込まれた空気は、空気導入部23に接触して付着し、空気導入部23の面により整流される。そのため、ケーシング30の開口31aから羽根車20に流入する空気が、より剥離しにくくなる。
 空気が空気導入部23から剥離すれば、送風効率が低下し、騒音が発生する。したがって、本実施の形態によれば、ケーシング30の外部から取り込んだ空気を効率よく羽根車20に流入させることができる。また、剥離による騒音悪化を防ぐことができる。
 また、空気導入部23により、翼22の開口31a側が覆われているため、循環流が翼22の開口31a側の先端と衝突することを抑制することができる。そのため、循環流と翼22の衝突による送風性能の低下及び騒音悪化を抑制することができる。
 また、従来の遠心送風機では、ケーシングの開口に設けられたベルマウスにより、空気の流れが絞られ流速が速くなるため、空気が剥離した際に、空気導入部に空気が再付着しづらかった。本実施の形態においては、開口31aは風路断面積の変化がなく、従来の遠心送風機のようにベルマウス形状をとっていない。そのため、開口31aを通る空気の速度変化が抑制され、仮に空気が剥離したとしても、空気導入部23に空気が再付着しやすくなる。また、開口31aの風路断面積が一定である簡単な構造のため安価にケーシングを形成することができる。
実施の形態2.
 実施の形態1において空気導入部23の入口23bの外径は、ケーシング30の開口31aの内径よりも大きいものであった。すなわち、空気導入部23を有する羽根車20全体の外径は、開口31aの内径よりも大きいものであった。本実施の形態は、羽根車20の外径Dfを開口31aの内径Dcよりも小さくしたものである。図6を用いて本実施の形態の構成について実施の形態1との相違点を中心に説明する。
 本実施の形態において空気導入部23は、実施の形態1と同様に開口31a側の入口23bよりも主板21側の出口23aの内径が小さいベルマウス形状をしている。そして、本実施の形態においては、入口23bの外径Dfが開口31a内径Dcよりも小さい。また、羽根車20の外径の大きさは一定であるから、羽根車20全体の外径も開口31aの内径Dcよりも小さくなる。また、出口23aの内径Diは開口31aの内径Dcよりも内径が小さい。図6におけるDc、Di及びDfは、開口31aの直径Dcよりも出口23aの直径Di及び羽根車20の外径Dfの方が小さいことを表している。
 本実施の形態によれば、羽根車20の外径が開口31aの内径よりも小さいため羽根車20、または羽根車20及び駆動モータ10の両方を、開口31aを通して、ケーシング30の内部から容易に取り出すことができる。また、翼22の開口31a側の先端が空気導入部23により覆われているため、羽根車20を取り出す際に作業者が翼22の開口31a側に触れる恐れがなくなる。そのため、作業者は遠心送風機100のメンテナンスが行いやすくなる。なお、本実施の形態においても実施の形態1と同様に、開口31aの内径Dcよりも出口23aの内径Diが小さいため、ケーシング30の開口31aから羽根車20に流入する空気は、従来の遠心送風機よりも剥離しにくい。
実施の形態3.
 本実施の形態は、開口面31の開口31aの周りに、ケーシング30の内部方向へ突出した突出部35を設けたものである。図7を用いて本実施の形態の構成について実施の形態2との相違点を中心に説明する。
 本実施の形態において開口31aの縁は、ケーシング30の内側に突出し、突出部35を形成している。突出部35の回転軸11の軸方向の長さは、開口面31から空気導入部23の入口23bまでの長さよりも長いものである。図7中の点線は循環流を表している。また、図示されていないが、突出部35は開口31aの全周にわたって環状に形成されている。
 本実施の形態も、実施の形態1及び2と同様に、開口31aの風路断面積は風路に沿って、上流端から下流端まで一定である。本実施の形態において開口31aは、開口面31に設けられた突出部35によって形成されている。すなわち、本実施の形態において開口31aの上流端は、開口面31の表面であり、突出部35の外側の端である。また、開口31aの下流端は、開口面31の裏面から突出した突出部35の内側の端である。
 本実施の形態の羽根車20は実施の形態2と同様の構成を備えており、実施の形態2と同様の効果を得ることができる。また、本実施の形態によれば、突出部35により、開口面31と空気導入部23の間の隙間が覆われる。そのため、循環流が突出部35に当たることで、循環流が羽根車20の回転軸11側に流れにくくなる。したがって、開口31aからケーシング30の外部へ空気が漏れにくくなり、送風性能が向上し、騒音が低減される。
 さらに、本実施の形態の変形例として、開口31aの縁をケーシング30の外側にも突出させた突出部36を備えた遠心送風機100を図8及び図9に示す。図8は、羽根車20の取り付け位置を、開口面31側に寄せた遠心送風機100の断面図を示している。図9は、羽根車20を回転軸11の軸方向に大きくした羽根車20aを備えた遠心送風機100示している。
 このように、ケーシング30の内側と外側の両方に突出した突出部36を備えれば、回転軸11の軸方向における羽根車20,20aの取り付け位置や寸法を変更した場合であっても、突出部36と空気導入部23とで開口31aと羽根車20,20aの間の隙間の変化を抑制することができる。したがって、遠心送風機100の風量や静圧といった送風性能を変更する場合に、ケーシング30の形状を変更させることなく、羽根車20,20aを取り換えることができる。すなわち、同一形状のケーシング30の遠心送風機100にて、空力設計の幅を広げることができる。
実施の形態4.
 本実施の形態は、空気導入部23の入口23bをケーシング30の外に設けたものある。図10を用いて本実施の形態の構成について実施の形態3との相違点を中心に説明する。
 本実施の形態において羽根車20bは、空気導入部24を備えている。空気導入部24は、実施の形態1から3の空気導入部23と同様のベルマウス形状をしている。空気導入部24の空気の通り道のうち、空気の流れの上流側である入口24bは、ケーシング30の開口31aの外に出ている。一方、空気の流れの下流側である出口24aは、開口31aの内側にある。また、本実施の形態において、入口24bの外径は開口31aの内径よりも大きく、出口24aの内径は開口31aの内径よりも小さい。
 実施の形態1から3において、羽根車20の外径の大きさは一定であった。本実施の形態においては、羽根車20bのケーシング30外部の外径である入口24bの外径は、開口31aの内径よりも大きいが、内部の外径である翼22部分の外径は、開口31aの内径よりも小さい。
 本実施の形態によれば、入口24bがケーシング30の外側にあって、開口31aの内径よりも大きいことにより、空気の流れの上流側において、風路断面積を大きく拡大することが可能となり、空気の流れをより剥離させにくくなる。また、空気導入部24の曲率半径が大きくなることで、空気導入部24における空気の流れに生じる遠心力を低下させることができ、羽根車20bの翼22により空気が流れやすくなるため、送風効率が向上する。
 ここで、本実施の形態と従来の遠心送風機による送風効率の差について図示する。図11は、駆動モータ10の回転数を一定にした場合の静圧特性と風量の関係を表すグラフである。図中に黒い丸で示した「本開示」は、実施の形態4の遠心送風機100を表している。一方、図中に白い丸で示した「従来例」は、ケーシングの開口にベルマウスを設け、羽根車には空気導入部を設けていない遠心送風機を表している。図中の横軸は風量、縦軸は静圧を表している。
 ここで、遠心送風機100の静圧ファン効率は以下の数式1から計算した。
Figure JPOXMLDOC01-appb-M000001
 上記の数式1においてηはファン効率を表している。また、P[Pa]は静圧、Q[m3/min]は風量、W[W]は軸出力を表している。本実施の形態の遠心送風機100は、従来例と比較して、最高効率点付近で約1ptの効率向上が得られた。
 また本実施の形態は、入口24bがケーシング30の外側にあって開口31aの内径よりも大きいことにより上述の効果を得ているが、空気導入部24の出口24aの内径がケーシング30の開口31aの内径よりも小さいことにより、羽根車20bの翼22部分をケーシング30の内部に収めることができる。したがって本実施の形態は、実施の形態1から3の開口31aに代えて、本実施の形態における外気を取り込む空気の流れの上流である入口24bからの空気を、空気導入部24から剥離しにくい状態で、羽根車20bの回転軸11側に流れこませることができる。したがって、本実施の形態も他の実施の形態と同様に課題を解決することができる。
 また、本実施の形態においては突出部35を設けていたが、図12に示すように突出部35を設けなくてもよい。
 実施の形態5.
 実施の形態4では、空気導入部24の入口24bをケーシング30の外に設けたものであったが、本実施の形態は、空気導入部24の外縁にさらに外縁部26を設けたものである。図13を用いて実施の形態4との相違点を中心に説明する。
 本実施の形態において羽根車20cは空気導入部25を備えている。空気導入部25の入口25bは開口31aを介してケーシング30の外側に出ている。そして、空気導入部25は入口25bに外縁部26を備えている。
 外縁部26は、空気導入部25のうち、開口面31の外側の面との隙間の大きさが変化する部分であって、空気導入部25の入口25bの全周にわたって設けられている。外縁部26は図13に示すように、回転軸11の半径方向の断面が弧状に形成されている。外縁部26と、開口面31との隙間は、回転軸11の半径方向の内側から外側に向かうにつれて徐々に大きくなり、さらに外側に向かうにつれて徐々に小さくなる。すなわち、外縁部26は一つの山なりの形状をしており、最も外側よりも内側に、空気導入部25と開口面31の外側の面との隙間が最大となる部分がある。
 また、本実施の形態のケーシング30は、実施の形態3及び4の突出部35に代えて、空気導入部25と開口面31の外側の面との隙間が最大となる部分に対向して、突出部37が設けられている。突出部37は開口面31の外から内部へと凹んだ窪みである。突出部37は、開口面31の外側の面と空気導入部25の隙間を拡大するとともに、ケーシング30の内側に向かって突出している。
 図13のH及びHmaxは、外縁部26の最も外側における空気導入部25と開口面31との隙間の大きさHよりも、その内側の部分における隙間が最大となる部分の隙間の大きさHmaxの方が大きいことを表している。
 以上によれば、開口面31の外側の面と空気導入部25の間の隙間は、外縁部26によって回転軸11の内側から外側に向かうにつれて大きさが変化する。すなわち、この隙間を通って外部へ漏れ出す空気の流れには、圧力損失が生まれる。したがって、この隙間を取ってケーシング30の外部へ漏れ出す空気を低減させることができる。隙間から漏れ出す空気を低減させることで、送風効率をさらに向上させることができる。
 また、突出部37には窪みが設けられているため、開口面31の外部と空気導入部25の隙間の変化をより大きくすることができる。したがって、隙間からケーシング30の外部へ漏れ出す空気を、さらに低減させることができる。また、突出部37は、実施の形態3及び4の突出部35と同様に循環流が回転軸11側に向かうことを防ぐ役割も果たしている。
 なお、本実施の形態において突出部37は、開口面31の外側の面に窪みを設けていたが、実施の形態3及び4と同様に窪みを設けていない突出部35を備えていてもよいし、図14に示すように突出部35,37を設けていなくてもよい。この場合であっても、外縁部26の最も外側における空気導入部25と開口面31との隙間の大きさHよりも、その内側の部分における隙間が最大となる部分の隙間の大きさHmaxの方が大きくなり、圧力損失による効果を得ることができる。
 また、本実施の形態においては、外縁部26は一つの山なりの形状をしていたが、二つ以上の山なりの形状を備えていてもよい。例えば本実施の形態の空気導入部25の外縁にさらに、回転軸11の内側から外側に向かうにつれて開口面31との隙間が徐々に大きくなるような部分を設けてもよい。
 以上、実施の形態について説明したが、本発明はこの実施の形態に限定されるものではない。以下に変形例を示す。
 実施の形態において、空気導入部23,24,25はベルマウス形状をしていたが、空気の流れの上流から下流に向かうにつれて風路断面積が縮小するものであれば、どんなものでもよい。例えば、図15に示すように空気導入部23が円錐台状をしていてもよい。
 実施の形態において羽根車20,20a,20b,20cは複数の翼22を有する多翼羽根車であったが、回転軸11の軸方向から取り込んだ空気を遠心方向に吹出すものであればこれに限られない。
 また、翼22と空気導入部23,24,25の大きさの関係は、実施の形態に限られない。例えば、実施の形態1から3において、遠心方向における回転軸11から翼22の回転軸11から遠い方の端までの距離は、回転軸11から入口23bの端までの距離と同じであったが、図16に示すように回転軸11から翼22の回転軸11から遠い方の端までの距離を、回転軸11から入口23bの端までの距離より短くなるように翼22を形成してもよい。すなわち羽根車20の、翼22部分の外径と空気導入部23,24,25の外径は同じでなくてもよい。
 実施の形態においてケーシング30はスクロールケーシングであったが、ケーシングの形状はこれに限られない。例えば、ケーシングを円筒状にして、回転軸11の軸方向に吹出すようにしてもよい。
 実施の形態において開口31aの風路断面積は一定であったが、課題の解決のためにはこれに限られない。例えば、実施の形態1から3において、開口31aの形状は、空気の出口の内径が入口の内径よりも小さいベルマウス形状でもよい。この場合、空気導入部23,24,25の出口23a,24a,25aの内径が開口31aの出口の内径よりも小さければよい。また、実施の形態4又は5においても、空気導入部23,24,25の出口23a,24a,25aの内径が開口31aの最小径よりも小さければ開口31aはどのような形状でもよい。
 実施の形態において遠心送風機100は、ケーシング30の片方の面を開口面31とし、それに対抗する面を底面33とする片吸込式の遠心送風機100であったが、両吸込式にしてもよい。
10 駆動モータ、11 回転軸、20,20a,20b 羽根車、21 主板、22 翼、23,24,25 空気導入部、23a,24a,25a 出口、23b,24b,25b 入口、26、外縁部、30 ケーシング、31 開口面、31a 開口、32 側面、33 底面、34 舌部、34a 吹出口、35,36,37 突出部、100 遠心送風機

Claims (6)

  1.  回転軸を有する駆動モータと、
     前記回転軸の軸方向上に開口を設けた開口面を有するケーシングと、
     前記ケーシングの内部に前記回転軸を中心として回転可能に設けられ、空気を前記回転軸の軸方向から遠心方向に吹出すとともに、前記開口側に前記空気を取り込む入口並びに前記開口及び前記入口の内径よりも内径が小さい前記空気の出口を有する空気導入部が設けられた羽根車と、
    を備えた遠心送風機。
  2.  前記開口の風路断面積は風路に沿って一定であることを特徴とする請求項1に記載の遠心送風機。
  3.  前記開口の内径は、前記ケーシングの内部における前記羽根車の外径よりも大きいことを特徴とする請求項1又は2に記載の遠心送風機。
  4.  前記ケーシングは、前記開口の周りに前記ケーシングの内部の方向へ突出した突出部を備えたことを特徴とする請求項1から3のいずれか一つに記載の遠心送風機。
  5.  前記空気導入部の前記入口の外径は前記開口の内径よりも大きく、前記空気導入部の前記入口は前記ケーシングの外部に出ていることを特徴とする請求項1から4のいずれか一つに記載の遠心送風機。
  6.  前記空気導入部は、前記入口に、前記ケーシングの前記開口面との隙間が前記回転軸の半径方向の内側から外側に向かうにつれて大きくなり、さらに外側に向かうにつれて前記隙間が小さくなる外縁部を備えたことを特徴とする請求項5に記載の遠心送風機。
PCT/JP2021/001420 2021-01-18 2021-01-18 遠心送風機 WO2022153522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/001420 WO2022153522A1 (ja) 2021-01-18 2021-01-18 遠心送風機
CN202180089536.3A CN116745533A (zh) 2021-01-18 2021-01-18 离心送风机
JP2022575026A JP7466707B2 (ja) 2021-01-18 2021-01-18 遠心送風機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001420 WO2022153522A1 (ja) 2021-01-18 2021-01-18 遠心送風機

Publications (1)

Publication Number Publication Date
WO2022153522A1 true WO2022153522A1 (ja) 2022-07-21

Family

ID=82448139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001420 WO2022153522A1 (ja) 2021-01-18 2021-01-18 遠心送風機

Country Status (3)

Country Link
JP (1) JP7466707B2 (ja)
CN (1) CN116745533A (ja)
WO (1) WO2022153522A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102909U (ja) * 1976-02-02 1977-08-04
JP2009168006A (ja) * 2007-12-18 2009-07-30 Denso Corp 送風ユニット
CN210440276U (zh) * 2019-07-22 2020-05-01 珠海格力电器股份有限公司 用于离心风机的叶轮组件、离心风机、空调器及空气净化器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134399U (ja) * 1981-02-18 1982-08-21
JP5769960B2 (ja) * 2010-12-21 2015-08-26 ミネベア株式会社 遠心式ファン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102909U (ja) * 1976-02-02 1977-08-04
JP2009168006A (ja) * 2007-12-18 2009-07-30 Denso Corp 送風ユニット
CN210440276U (zh) * 2019-07-22 2020-05-01 珠海格力电器股份有限公司 用于离心风机的叶轮组件、离心风机、空调器及空气净化器

Also Published As

Publication number Publication date
CN116745533A (zh) 2023-09-12
JP7466707B2 (ja) 2024-04-12
JPWO2022153522A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
JP3698150B2 (ja) 遠心送風機
JP3491342B2 (ja) 軸流ファン
JP5566663B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
CN107850083B (zh) 送风机和搭载有该送风机的空调装置
KR100849014B1 (ko) 모터의 냉각 장치
JP4946396B2 (ja) 遠心送風機
JP2007146817A (ja) 多翼遠心送風機
JPWO2008093390A1 (ja) 多翼遠心送風機
JP6634929B2 (ja) 遠心送風機
JP4818310B2 (ja) 軸流送風機
JP2010133297A (ja) 遠心送風機
JP5136604B2 (ja) スクロール付遠心送風機
JP5682751B2 (ja) 多翼送風機
CN110914553B (zh) 叶轮、送风机及空调装置
US10473113B2 (en) Centrifugal blower
WO2022153522A1 (ja) 遠心送風機
JPH0882299A (ja) 多翼送風機
JP2006125229A (ja) シロッコファン
JP4395539B1 (ja) 多翼遠心ファンおよび車両用空調装置
JP3782585B2 (ja) 送風機
WO2018016198A1 (ja) 遠心式送風機
JP6486459B2 (ja) 遠心送風機
JP7487854B1 (ja) 送風機
WO2022085332A1 (ja) 送風機
JP2000303992A (ja) 斜流送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575026

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180089536.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919415

Country of ref document: EP

Kind code of ref document: A1