WO2022083672A1 - 电控阀及燃油系统 - Google Patents

电控阀及燃油系统 Download PDF

Info

Publication number
WO2022083672A1
WO2022083672A1 PCT/CN2021/125164 CN2021125164W WO2022083672A1 WO 2022083672 A1 WO2022083672 A1 WO 2022083672A1 CN 2021125164 W CN2021125164 W CN 2021125164W WO 2022083672 A1 WO2022083672 A1 WO 2022083672A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
vent
valve
sealing member
electronically controlled
Prior art date
Application number
PCT/CN2021/125164
Other languages
English (en)
French (fr)
Inventor
刘亚洲
姜林
高德俊
吕昊
周传军
张艳波
严济彦
李建东
Original Assignee
亚普汽车部件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亚普汽车部件股份有限公司 filed Critical 亚普汽车部件股份有限公司
Publication of WO2022083672A1 publication Critical patent/WO2022083672A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves

Definitions

  • the present application relates to the technical field of fuel systems, and in particular, to an electronically controlled valve and a fuel system.
  • a fuel vapor management system that manages the path size of the vapor generated by the fuel tank to the carbon canister and balances the positive and negative generated in the fuel tank. pressure.
  • the fuel vapor management method used in most high-pressure fuel systems is to use the isolation valve (FTIV).
  • the isolation valve can close the fuel tank when the fuel tank is parked, driving, etc.
  • the mechanical two-stage pressure relief opening and positive and negative pressure balance have the disadvantage of long pressure relief time, and also need to cooperate with the oil filling limit valve (FLVV) on the oil tank to control the filling amount of the oil tank.
  • FLVV oil filling limit valve
  • the electromagnetic device uses a solenoid valve with a Hall sensor to realize the universal application of the fuel vapor management system, to realize the closing and opening of the fuel vapor passage, and the electromagnetic device can be adjusted to realize different fuel tanks to achieve different volumes. control.
  • the electromagnetic device has the phenomenon of unstable state, and when the fuel tank is in a positive pressure state, the internal pressure of the fuel tank will produce an unbalanced force on the solenoid valve, which will adversely affect the sealing performance of the solenoid valve, and it is difficult to realize the switch of the steam passage. Precise control of state.
  • the purpose of the present application is to provide an electronically controlled valve and a fuel system to solve the above-mentioned problems in the prior art and to achieve precise control of fuel vapor pressure.
  • the present application provides an electronically controlled valve, which includes:
  • a housing wherein a first chamber, a second chamber and a third chamber are arranged in the housing, the first chamber communicates with the second chamber through a first vent, and the first chamber a chamber communicates with the third chamber through a second vent, the second chamber communicates with the third chamber;
  • a first seal disposed in the first chamber, for closing or opening the first vent
  • a second seal disposed in the third chamber, for closing or opening the second vent
  • a motor the driving part of the motor is in contact with the first sealing member, and is used for driving the first sealing member to move, so as to adjust the opening degree of the first air port.
  • the first sealing member includes a first valve core and a first elastic member, and two ends of the first elastic member are respectively connected with the first valve core and the first elastic member.
  • the inner walls of the first chamber are connected, and the first valve core is used to close or open the first vent.
  • the second sealing member includes a second valve core and a second elastic member, and two ends of the second elastic member are respectively connected with the second valve core and the second elastic member.
  • the inner walls of the third chamber are connected, and the second valve core is used to close or open the second vent.
  • the third chamber is provided on the first valve core, the first valve core is provided with a third air port, and the third chamber is provided on the first valve core. It communicates with the second chamber through the third vent.
  • the electronically controlled valve as described above preferably, further comprises an adjusting block, the adjusting block is fixedly connected with the driving part of the motor, and the driving part of the motor is sealed with the first seal through the adjusting block Piece contact.
  • the regulating block is a special-shaped structure, the sectional area of the regulating block gradually decreases from one end to the other end, and the end with the smallest sectional area on the regulating block is the same as the other end.
  • the driving part of the motor is connected, and the maximum sectional area of the adjusting block is smaller than the opening area of the first vent.
  • the electronically controlled valve as described above preferably, further comprises a sealing ring, and the sealing ring is fixedly arranged on the side of the first sealing member facing the first ventilation port.
  • the application also provides a fuel system, including the electronically controlled valve provided by the application, and the fuel system further includes a fuel tank, a controller, a pressure detection mechanism, a liquid level detection mechanism, and a carbon canister;
  • the first chamber in the electric control valve is communicated with the fuel tank, and the second chamber in the electric control valve is communicated with the carbon canister;
  • Both the pressure detection mechanism and the liquid level detection mechanism are arranged on the oil tank;
  • the controller is respectively connected with the pressure detection mechanism, the liquid level detection mechanism and the motor in the electric control valve.
  • the pressure detection mechanism is a pressure sensor
  • the liquid level detection mechanism is a liquid level sensor
  • the electronically controlled valve and fuel system replace the existing technology of using a solenoid valve to control the switch of the fuel vapor passage, and fundamentally solve the problem of poor sealing effect of the solenoid valve caused by the unbalanced force generated by the internal pressure of the fuel tank on the solenoid valve. question.
  • the electric control valve provided in the embodiment of the present application adopts motor control, which can cancel the use of existing mechanical valves, and solves the problem that the existing isolation valve (FTIV) can only be opened mechanically in two stages, and the waiting time for pressure relief is long.
  • FTIV existing isolation valve
  • the problem of inaccurate electromagnetic control of the solenoid valve, the electronic control valve can accurately control the fuel vapor pressure, as well as the storage and release of fuel vapor, reducing the carbon canister load and reducing emissions.
  • FIG. 1 is a state diagram of the electronically controlled valve provided by the first embodiment of the application when it is closed;
  • FIG. 2 is a state diagram of the electronically controlled valve provided by the first embodiment of the present application when it is partially opened;
  • FIG. 3 is a state diagram of the electronically controlled valve provided by the first embodiment of the application when it is fully opened;
  • FIG. 4 is a state diagram of the electronically controlled valve provided by the first embodiment of the application when the positive pressure is exhausted;
  • FIG. 5 is a state diagram of the electronically controlled valve provided by the first embodiment of the present application during negative pressure gas supplementation
  • FIG. 6 is a state diagram of the electronically controlled valve provided by the second embodiment of the present application when it is closed;
  • FIG. 7 is a state diagram of the electronically controlled valve provided by the second embodiment of the present application when it is partially opened;
  • FIG. 8 is a state diagram of the electronically controlled valve provided by the second embodiment of the present application when it is fully opened;
  • FIG. 9 is a state diagram of the electronically controlled valve provided by the second embodiment of the present application during positive pressure exhaust
  • FIG. 10 is a state diagram of the electronically controlled valve provided by the second embodiment of the present application when the air is supplemented by negative pressure.
  • first”, “second”: and similar terms do not denote any order, quantity, or importance, but are merely used to distinguish the different parts.
  • “Comprising” or “comprising” and similar words mean that the element preceding the word covers the elements listed after the word, and does not exclude the possibility that other elements are also covered.
  • “Up”, “down”, etc. are only used to indicate the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a specific component when a specific component is described as being between a first component and a second component, there may or may not be an intervening component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to other components, the specific component may be directly connected to the other components without intervening components, or may not be directly connected to the other components but have intervening components.
  • an embodiment of the present application provides an electronically controlled valve, which includes a housing 1 , a first seal 3 , a second seal 4 and a motor 2 ; wherein, the housing 1 is provided with a The first chamber 11 , the second chamber 12 and the third chamber 13 , the first chamber 11 communicates with the second chamber 12 through the first vent 15 , and the first chamber 11 communicates with the first chamber 11 through the second vent 16 .
  • the three chambers 13 communicate with each other, and the second chamber 12 communicates with the third chamber 13; the first seal 3 is arranged in the first chamber 11 for closing or opening the first vent 15; the second seal 4 is arranged In the third chamber 13 , it is used to close or open the second vent 16 ; the driving part of the motor 2 abuts against the first seal 3 , and is used to drive the first seal 3 to move to adjust the first vent 15 of opening.
  • first chamber 11 , the second chamber 12 , the third chamber 13 , the first vent 15 and the second vent 16 can be integrally formed in the housing 1 , and the first chamber 11 can be communicated with the fuel tank , the second chamber 12 may communicate with the carbon canister.
  • the first seal 3 abuts against the solid part around the first vent 15 , so as to seal the first seal 3 and block the fuel vapor in the first chamber 11 It communicates with the second chamber 12 .
  • the second sealing member 4 abuts against the solid part around the second vent 16 to seal the second sealing member 4 and prevent the fuel vapor from circulating between the first chamber 11 and the third chamber 13 .
  • the motor 2 does not work, and the driving part of the motor 2 does not apply a pushing force to the first sealing member 3 .
  • the motor 2 When the fuel tank needs to be depressurized before filling, the motor 2 is started, and the driving part of the motor 2 pushes the first seal 3 to move away from the first air port 15, so that the first air port 15 is gradually opened, and the motor 2.
  • the opening of the first vent 15 By controlling the movement stroke of the first seal 3, the opening of the first vent 15 can be adjusted, and in the actual application process, it can be determined that the first vent 15 needs to be opened according to the pressure in the fuel tank. Therefore, the safety and rapid pressure relief of the fuel tank can be realized.
  • the control accuracy of the movement of the first seal 3 can be improved, so that the opening of the first vent 15 can be opened.
  • the pressure relief needs of the fuel tank under various pressures, and to achieve versatility.
  • the electronically controlled valve provided by the embodiment of the present application replaces the existing technology of using a solenoid valve to control the switch of the fuel vapor passage, and fundamentally solves the problem that the internal pressure of the fuel tank produces an unbalanced force on the solenoid valve, which leads to the poor sealing effect of the solenoid valve. .
  • the electric control valve provided by the embodiment of the present application is controlled by the motor 2, which can cancel the use of various mechanical valves in the past, and solves the problem that the existing isolation valve FTIV can only be opened in two stages mechanically, the waiting time for pressure relief is long, and the
  • the problem of inaccurate electromagnetic control of the solenoid valve is that the electronic control valve can precisely control the fuel vapor pressure, as well as the storage and release of fuel vapor, which reduces the load on the carbon canister and reduces emissions.
  • the second sealing member 4 can automatically open or close the second vent 16 according to the pressure change in the first chamber 11 .
  • the high temperature of the fuel tank will cause some of the internal fuel to volatilize, and the generated fuel vapor will cause the internal pressure of the fuel tank to rise. It will cause the fuel tank to expand and deform, and even rupture at the weak point of the fuel tank to cause fuel leakage, which has a great safety hazard.
  • this embodiment as shown in FIG.
  • the fuel vapor when the pressure in the fuel tank rises to a certain value, the fuel vapor can apply pressure to the second seal 4 through the first chamber 11 to push the second seal 4 Move to the direction away from the second vent 16, so that the second vent 16 can be opened, and the fuel vapor can enter the second chamber 12 through the second vent 16 and the third chamber 13 in sequence, and further pass through the carbon canister After adsorption, it is discharged into the atmosphere.
  • the fuel tank can be automatically depressurized when the pressure is too high, and risks such as damage to the fuel tank and fuel leakage caused by the failure of timely decompression due to the excessively high internal pressure of the fuel tank are avoided.
  • the first chamber 11 and the third chamber 13 may be distributed side by side, and a fourth chamber 14 may be provided below the third chamber 13 .
  • the fourth chamber 14 communicates with the first chamber 11
  • the second chamber 12 is disposed above the first chamber 11 and the third chamber 13 .
  • the fuel vapor from the fuel tank can pass through the first chamber 11 and the fourth chamber 14 in sequence, and exert pressure on the second seal 4, so that the second The seal 4 is separated from the second vent 16 to open the second vent 16 , as shown in FIG. 4 .
  • the second sealing member 4 keeps the state of closing the second vent 16.
  • the motor 2 can actively control the first seal 3 to move in a direction away from the first vent 15, so that the first vent 15 is opened for active pressure relief, so that the pressure inside the fuel tank is reduced. Drop to the safe pressure range to avoid fuel back injection when the filling door is opened due to excessive pressure inside the fuel tank, or the filling gun jumps and cannot be filled.
  • the first seal 3 is controlled to quickly move away from the first vent 15 for a larger distance , it will cause the first air port 15 to open too large or even fully open in a short time, and the high-pressure fuel vapor inside the fuel tank will instantly rush out from the first air port 15, which will cause the liquid fuel to be affected by the fuel vapor at the moment when the pressure starts to be released.
  • the excessive fuel vapor flow will cause instantaneous negative pressure in front of the valve in the fuel system, causing the valve in the fuel system to close and unable to exhaust normally.
  • the motor 2 can first control the first seal 3 to move a small stroke away from the first vent 15 , so that the The first air port 15 is partially opened, as shown in Figure 2, thereby reducing the pressure relief flow of the fuel vapor at the first air port 15; when the pressure in the fuel tank is reduced to a certain value, the fuel will not be back-injected, and it can be The motor 2 controls the first seal 3 to move further away from the first vent 15 again, so that the first vent 15 is fully opened, as shown in FIG.
  • the first sealing member 3 includes a first valve core 31 and a first elastic member 32, two ends of the first elastic member 32 are respectively connected with the first valve core 31 and the inner wall of the first chamber 11, and the first valve core 31 Used to close or open the first vent 15 .
  • the first valve core 31 is disposed in the first chamber 11 , and can open or close the first vent 15 from below the first vent 15 . Under natural conditions, the first elastic member 32 is in a compressed state, which can provide a pre-tightening force to the first valve core 31 to ensure the tight sealing of the first valve core 31 to the first air port 15 and ensure sealing.
  • the first elastic member 32 with corresponding elastic characteristics can be selected according to the rated negative pressure in the fuel tank that needs to be supplemented.
  • the atmospheric pressure can compress and deform the first elastic member 32. , to achieve automatic refilling.
  • the motor 2 pushes the first valve core 31 to move away from the first air port 15, and at this time, the first elastic member 32 can be further compressed; and when the driving part of the motor 2 returns, the A valve core 31 can move in a direction close to the first vent 15 by the restoring force of the first elastic member 32 until the first vent 15 is closed.
  • the second sealing member 4 may include a second valve core 41 and a second elastic member 42, two ends of the second elastic member 42 are respectively connected with the second valve core 41 and the inner wall of the third chamber 13, the second valve core 41 is used to close or open the second vent 16 .
  • the first elastic member 32 may be a spring.
  • the second valve core 41 is disposed in the third chamber 13 , and can open or close the second vent port 16 from above the second vent port 16 . Under natural conditions, the second elastic member 42 is in a compressed state, which can provide a pre-tightening force to the second valve core 41 to ensure the tight sealing of the second valve core 41 to the second air port 16 and ensure the tightness.
  • the pressure in the first chamber 11 and the fourth chamber 14 can be exerted on the second valve core 41 through the second vent port 16 to push the valve core away from The direction of the second air port 16 moves to open the second air port 16 so that the fuel vapor enters the carbon canister through the third chamber 13 and the second chamber 12 in sequence.
  • the second elastic member 42 can be further compressed.
  • the second elastic member 42 can push the second valve core 41 to close the second vent 16 .
  • the second elastic member 42 may be a spring.
  • the second elastic member 42 can be selected according to the threshold value of automatic pressure relief, so that the internal pressure of the fuel tank reaches the aforementioned threshold value when the second elastic member 42 starts to deform elastically. In this way, the automatic pressure relief of the fuel tank can be realized without the need to be controlled by the motor 2 .
  • the electronically controlled valve provided in this embodiment realizes a mechanical pressure relief by designing the above-mentioned second sealing member 4.
  • automatic pressure relief can still be achieved through the second sealing member 4 and through the third sealing member 4.
  • a seal 3 realizes automatic air supply, so that the fuel tank can ensure a normal pressure level under any environmental conditions.
  • the third chamber 13 may be provided on the first valve core 31 , and the first valve core 31 is provided with a third vent 17 , and the third The chamber 13 communicates with the second chamber 12 through the third vent 17 .
  • the third chamber 13 is integrated into the first chamber 11, which can form a compact electronically controlled valve.
  • the first valve core 31 can drive the third chamber 13 to move away from the first vent 15 synchronously, as shown in FIGS. 7 and 8 . .
  • the first valve core 31 is attached to the solid part around the first vent 15 to close the first vent 15, and the second valve core 41 can close the second vent 16, as shown in FIG. 6 . Therefore, the communication between the first chamber 11 and the third chamber 13 and the second chamber 12 can be blocked, respectively.
  • the pressure of the first chamber 11 can push the second valve core 41 to move away from the second air port 16, so that the second air port 16 is opened, such as As shown in FIG. 9 , the fuel vapor can enter the second chamber 12 after passing through the second vent port 16 , the third chamber 13 , and the third vent port 17 in sequence.
  • the atmospheric pressure can push the first valve core 31 to drive the third chamber 13 to move away from the first vent 15.
  • the air can After passing through the second chamber 12 , the first air port 15 and the first chamber 11 in sequence, the air enters the fuel tank.
  • the air can enter the third chamber 13 through the third air port 17 to apply a certain amount of air to the second valve core 41 .
  • the pressure causes the second valve core 41 to close the second vent 16 under the action of the air pressure and the second elastic member 42 .
  • the electronically controlled valve may further include an adjustment block 5 , the adjustment block 5 is fixedly connected with the driving part of the motor 2 , and the driving part of the motor 2 abuts against the first sealing member 3 through the adjustment block 5 .
  • the fixing part of the motor 2 can be arranged on the casing 1 , the driving part of the motor 2 can be a push rod 21 with a certain length, and one end of the adjusting block 5 can be connected to the end of the push rod 21 .
  • the adjustment block 5 is a special-shaped structure, the sectional area of the adjustment block 5 gradually decreases from one end to the other end, the end of the adjustment block 5 with the smallest sectional area is connected with the driving part of the motor 2, and the maximum sectional area of the adjustment block 5 is smaller than the first end.
  • An opening area of the vent 15 The up and down movement of the adjustment block 5 can control the adjustment of the opening degree of the first ventilation port 15 .
  • the diameter of the end of the adjustment block 5 away from the motor 2 is the largest, so that the side walls of the adjustment block 5 can be inclined to both sides.
  • the diameter of the adjusting block 5 gradually decreases from one side close to the first valve core 31 to the other side, as the adjusting block 5 pushes the first valve core 31, the side wall of the adjusting block 5 and the first ventilating The distance between the edges of the ports 15 is gradually increased, so that the opening of the first air port 15 can be effectively controlled, and thus the flow rate of the fuel vapor in the first air port 15 can be controlled.
  • the electronically controlled valve may further include a sealing ring 6 , and the sealing ring 6 is fixedly arranged on a portion of the first sealing member 3 facing the first air port 15 . side.
  • the sealing ring 6 may be fixedly arranged on the first valve core 31 .
  • the second valve core 41 may also be provided with a sealing ring 6 .
  • An embodiment of the present application also provides a fuel system, which includes the electronically controlled valve provided in any embodiment of the present application, and the fuel system further includes a fuel tank, a controller, a pressure detection mechanism, a liquid level detection mechanism, and a carbon canister; the electronically controlled valve
  • the first chamber 11 is communicated with the fuel tank, and the second chamber 12 in the electric control valve is communicated with the carbon tank; the pressure detection mechanism and the liquid level detection mechanism are both arranged on the fuel tank; the controller is respectively connected with the pressure detection mechanism and the liquid level detection mechanism.
  • the detection mechanism is connected.
  • the pressure detection mechanism may be a pressure sensor
  • the liquid level detection mechanism may be a liquid level sensor.
  • the controller can be connected with the ECU of the whole vehicle, and the controller can control the start and stop of the motor 2 according to the signal sent by the ECU, so as to control the action of the first seal 3 through the motor 2, and further control the first chamber 11 and the The communication state of the two chambers 12 .
  • the controller controls the motor 2 to start according to the desorption signal, and the motor 2 controls the first seal 3 to close the first vent 15 to block the first chamber 11 and the The second chamber 12 is connected, and the fuel vapor in the fuel tank cannot enter the second chamber 12.
  • the carbon canister communicates with the engine, so that air can be introduced into the engine through the carbon canister to achieve desorption.
  • the electronically controlled valve and the fuel system provided by the embodiments of the present application replace the existing technology of using a solenoid valve to control the switch of the fuel vapor passage, and fundamentally solve the problem of the sealing effect of the solenoid valve caused by the unbalanced force generated by the internal pressure of the fuel tank on the solenoid valve.
  • the electric control valve provided in the embodiment of the present application adopts motor control, which can cancel the use of existing mechanical valves, and solves the problem that the existing isolation valve (FTIV) can only be opened mechanically in two stages, and the waiting time for pressure relief is long.
  • FTIV existing isolation valve
  • the problem of inaccurate electromagnetic control of the solenoid valve, the electronic control valve can accurately control the fuel vapor pressure, as well as the storage and release of fuel vapor, reducing the carbon canister load and reducing emissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

提供了一种电控阀及燃油系统,电控阀包括壳体(1)、第一密封件(3)、第二密封件(4)和电机(2);壳体中设置有第一腔室(11)、第二腔室(12)和第三腔室(13),第一腔室(11)通过第一通气口(15)与第二腔室(12)连通,第一腔室(11)通过第二通气口(16)与第三腔室(13)连通,第二腔室(12)与第三腔室(13)连通;第一密封件(3)设置在第一腔室(11)中,用于封闭或打开第一通气口(15);第二密封件(4)设置在第三腔室(13)中,用于封闭或打开第二通气口(16);电机(2)的驱动部与第一密封件(3)抵接,用于驱动第一密封件(3)运动,以调节第一通气口(15)的开度。替代了现有的使用电磁阀控制燃油蒸汽通路开关的技术,能够精确控制燃油蒸汽压力、燃油蒸汽的存储及释放,减小了碳罐负载,降低了排放。

Description

电控阀及燃油系统 技术领域
本申请涉及燃油系统技术领域,尤其涉及一种电控阀及燃油系统。
背景技术
当前为了满足日益严苛的排放法律法规,目前越来越多的车辆包含燃油蒸汽管理系统,该燃油蒸汽管理系统可以管理由油箱产生的蒸汽流向碳罐的路径大小和平衡油箱内产生的正负压。
目前大部分高压燃油系统使用的燃油蒸汽管理方式是使用隔离阀(FTIV),隔离阀可以在油箱如驻车、行驶等情况下封闭油箱,在加油检测等情况下开启油箱,但是隔离阀只能进行机械式的两级泄压开启和正负压平衡,具有泄压时间长的缺点,而且还需要配合油箱上的注油限位阀(FLVV)控制油箱加注量。由于普通阀门是通过机械式来关闭,开发和验证周期时间长,模具开发成本高,每款油箱需配合特定的阀门来使用,通用性较差。
在现有技术中,存在利用具有霍尔传感器的电磁阀实现对燃油蒸汽管理系统的通用性应用的技术,实现对燃油蒸汽通路的关和开,可通过调节电磁装置来实现不同油箱实现不同容积的控制。但是电磁装置具有状态不稳定的现象,且当油箱内处于正压状态时,油箱内压会对电磁阀产生一个不平衡力,对电磁阀的密封性产生不利的影响,难以实现对蒸汽通路开关状态的精确控制。
发明内容
本申请的目的是提供一种电控阀及燃油系统,以解决上述现有技术中的问题,实现对燃油蒸汽压力的精确控制。
本申请提供了一种电控阀,其中,包括:
壳体,所述壳体中设置有第一腔室、第二腔室和第三腔室,所述第一腔室通过第一通气口与所述第二腔室连通,所述第一腔室通过第二通气口与所述第三腔室连通,所述第二腔室与所述第三腔室连通;
第一密封件,设置在所述第一腔室中,用于封闭或打开所述第一通气口;
第二密封件,设置在所述第三腔室中,用于封闭或打开所述第二通气口;
电机,所述电机的驱动部与所述第一密封件抵接,用于驱动所述第一密封件运动,以调节所述第一通气口的开度。
如上所述的电控阀,其中,优选的是,所述第一密封件包括第一阀芯和第一弹性件,所述第一弹性件的两端分别与所述第一阀芯和所述第一腔室的内壁相连,所述第一阀芯用于封闭或打开所述第一通气口。
如上所述的电控阀,其中,优选的是,所述第二密封件包括第二阀芯和第二弹性件,所述第二弹性件的两端分别与所述第二阀芯和所述第三腔室的内壁相连,所述第二阀芯用于封闭或打开所述第二通气口。
如上所述的电控阀,其中,优选的是,所述第三腔室设置在所述第一阀芯上,所述第一阀芯上设置有第三通气口,所述第三腔室通过所述第三通气口与所述第二腔室连通。
如上所述的电控阀,其中,优选的是,还包括调节块,所述调节块与所述电机的驱动部固定连接,所述电机的驱动部通过所述调节块与所述第一密封件抵接。
如上所述的电控阀,其中,优选的是,所述调节块为异形结构,所述调节块的切面面积由一端向另一端逐渐减小,所述调节块上切面面积最小的一端与所述电机的驱动部相连,所述调节块的最大切面面积小于所述第一通气口的开口面积。
如上所述的电控阀,其中,优选的是,还包括密封圈,所述密封圈固定设置在所述第一密封件上朝向所述第一通气口的一侧。
本申请还提供了一种燃油系统,包括本申请提供的电控阀,所述燃油系统还包括油箱、控制器、压力检测机构、液位检测机构和碳罐;
所述电控阀中的第一腔室与所述油箱连通,所述电控阀中的第二腔室与所述碳罐连通;
所述压力检测机构和所述液位检测机构均设置在所述油箱上;
所述控制器分别与所述压力检测机构、所述液位检测机构和所述电控阀中的电机相连。
如上所述的燃油系统,其中,优选的是,所述压力检测机构为压力传感器,所述液位检测机构为液位传感器。
本申请提供的电控阀及燃油系统,替代了现有的使用电磁阀控制燃油蒸汽通路开关的技术,从根本上解决了油箱内压对电磁阀产生不平衡力而导致电磁阀密封效果不良的问题。同时,本申请实施例提供的电控阀采用电机控制,可以取消现有对各种机械 阀的使用,解决了现有隔离阀(FTIV)只能进行机械式二级开启、泄压等待时间长、电磁阀电磁控制不精确的问题,该电控阀能精确控制燃油蒸汽压力,以及燃油蒸汽的存储及释放,减小了碳罐负载,降低了排放。
附图说明
下面结合附图对本申请的具体实施方式作进一步详细的说明。
图1为本申请第一种实施例提供的电控阀在关闭时的状态图;
图2为本申请第一种实施例提供的电控阀在部分打开时的状态图;
图3为本申请第一种实施例提供的电控阀在完全打开时的状态图;
图4为本申请第一种实施例提供的电控阀在正压排气时的状态图;
图5为本申请第一种实施例提供的电控阀在负压补气时的状态图;
图6为本申请第二种实施例提供的电控阀在关闭时的状态图;
图7为本申请第二种实施例提供的电控阀在部分打开时的状态图;
图8为本申请第二种实施例提供的电控阀在完全打开时的状态图;
图9为本申请第二种实施例提供的电控阀在正压排气时的状态图;
图10为本申请第二种实施例提供的电控阀在负压补气时的状态图。
附图标记说明:
1-壳体
11-第一腔室
12-第二腔室
13-第三腔室
14-第四腔室
15-第一通气口
16-第二通气口
17-第三通气口
2-电机
21-推杆
3-第一密封件
31-第一阀芯
32-第一弹性件
4-第二密封件
41-第二阀芯
42-第二弹性件
5-调节块
6-密封圈。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”:以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。 “包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,技术、方法和设备应当被视为说明书的一部分。
如图1至图10所示,本申请实施例提供了一种电控阀,其包括壳体1、第一密封件3、第二密封件4和电机2;其中,壳体1中设置有第一腔室11、第二腔室12和第三腔室13,第一腔室11通过第一通气口15与第二腔室12连通,第一腔室11通过第二通气口16与第三腔室13连通,第二腔室12与第三腔室13连通;第一密封件3设置在第一腔室11中,用于封闭或打开第一通气口15;第二密封件4设置在第三腔室13中,用于封闭或打开第二通气口16;电机2的驱动部与第一密封件3抵接,用于驱动第一密 封件3运动,以调节第一通气口15的开度。
其中,第一腔室11、第二腔室12、第三腔室13、第一通气口15和第二通气口16均可以在壳体1中一体成型,第一腔室11可以与油箱连通,第二腔室12可以与碳罐连通。
在电控阀关闭状态下,如图1所示,第一密封件3抵接在第一通气口15周围的实体部分,以将第一密封件3封闭,阻隔燃油蒸汽在第一腔室11和第二腔室12间流通。同时,第二密封件4抵接在第二通气口16周围的实体部分,以将第二密封件4封闭,阻隔燃油蒸汽在第一腔室11和第三腔室13间流通。此时,电机2不工作,电机2的驱动部不对第一密封件3施加推动力。
而在加注前需要对油箱泄压时,电机2启动,电机2的驱动部推动第一密封件3向远离第一通气口15的方向移动,使第一通气口15逐渐打开,而通过电机2控制第一密封件3的运动行程,可以调节第一通气口15被打开的开度大小,而具体在实际应用过程中,可以根据油箱内压力的大小,确定第一通气口15需要被打开的开度大小,从而可以实现对油箱安全、快速泄压,同时,通过电机2的控制,可以提升对第一密封件3运动的控制精度,使第一通气口15被打开的开度大小可以满足油箱在各种压力下的泄压需求,实现了通用性。
本申请实施例提供的电控阀,替代了现有的使用电磁阀控制燃油蒸汽通路开关的技术,从根本上解决了油箱内压对电磁阀产生不平衡力而导致电磁阀密封效果不良的问题。同时,本申请实施例提供的电控阀采用电机2控制,可以取消现有对各种机械阀的使用,解决了现有隔离阀FTIV只能进行机械式二级开启、泄压等待时间长、电磁阀电磁控制不精确的问题,该电控阀能精确控 制燃油蒸汽压力,以及燃油蒸汽的存储及释放,减小了碳罐负载,降低了排放。
其中,第二密封件4可以根据第一腔室11中的压力变化自动打开或封闭第二通气口16。在实际应用中,当车辆长期在温度较高的环境下驻车时,如在炎热的天气,油箱受高温影响会导致内部的部分燃油挥发,产生的燃油蒸汽会造成油箱内压升高,易造成油箱膨胀变形,甚至在油箱受力薄弱处产生破裂造成燃油泄漏,具有较大的安全隐患。为此,本实施例中,如图4所示,当油箱内压升高到一定值时,燃油蒸汽可以通过第一腔室11对第二密封件4施加压力,以推动第二密封件4向远离第二通气口16的方向运动,从而可以使第二通气口16打开,燃油蒸汽可以依次经过第二通气口16和第三腔室13后进入第二腔室12,并进一步经过碳罐吸附后排入大气。
由此,通过设置第二密封件4实现了油箱在压力过高的情况下自动泄压,避免了油箱内压过高而不能及时泄压导致的油箱损坏、燃油泄漏等风险。
在一种具体的实施例中,如图1至图5所示,第一腔室11和第三腔室13可以并列分布,第三腔室13的下方可以设置有第四腔室14,该第四腔室14与第一腔室11连通,第二腔室12设置在第一腔室11和第三腔室13的上方。
在油箱内压达到需要自动泄压的临界值时,来自油箱的燃油蒸汽可以依次经过第一腔室11和第四腔室14,并将压力作用在第二密封件4上,以使第二密封件4与第二通气口16分离而将第二通气口16打开,如图4所示。
在油箱内压未达到需要自动泄压的临界值的情况下,第二密 封件4保持对第二通气口16封闭的状态。
在需要对油箱加注燃油时,可以通过电机2主动控制第一密封件3向远离第一通气口15的方向运动,以使第一通气口15打开以进行主动泄压,使油箱内部的压力下降到安全压力范围,以避免因油箱内部压力过高,而导致在打开加注小门时造成燃油反喷,或者导致加注枪跳枪而无法加注。
需要说明的是,在加注前,如果油箱内的压力过高,如压力值已超过安全压力范围较多,此时,如果控制第一密封件3快速远离第一通气口15较大的距离,会造成第一通气口15短时间开度过大甚至完全开启,油箱内部的高压燃油蒸汽会瞬间从第一通气口15涌出,这会造成在开始泄压的瞬间,液态燃油受燃油蒸汽的涌动喷溅而出,同时,过大的燃油蒸汽流量会在燃油系统内的阀门前造成瞬时负压,导致燃油系统内的阀门关闭,无法正常排气。
为此,本实施例中,如图2和图3所示,在开始泄压时,可以先通过电机2控制第一密封件3向远离第一通气口15的方向移动较小的行程,使第一通气口15部分打开,如图2所示,从而减小燃油蒸汽在第一通气口15处的泄压流量;当油箱内的压力降低到一定值时,燃油不会发生反喷,可以再次通过电机2控制第一密封件3向远离第一通气口15的方向继续移动,以使第一通气口15完全开启,如图3所示,加快泄压速度,缩短加注等待时间。
当车辆在行驶中消耗燃油或者车辆处于低温环境下,油箱内会产生负压,当负压达到额定值时,需要对油箱补气,此时,油箱内压小于大气压力,大气压力可以作用在第一密封件3上,并推动第一密封件3向远离第一通气口15的方向移动,以打开第一 通气口15,如图5所示,空气可以依次经过碳罐、第二腔室12、第一通气口15、第一腔室11后进入油箱。
进一步,第一密封件3包括第一阀芯31和第一弹性件32,第一弹性件32的两端分别与第一阀芯31和第一腔室11的内壁相连,第一阀芯31用于封闭或打开第一通气口15。
其中,第一阀芯31设置在第一腔室11中,可以从第一通气口15的下方对第一通气口15打开或封闭。在自然条件下,第一弹性件32处于压缩状态,可以对第一阀芯31提供预紧力,保证第一阀芯31对第一通气口15的紧密封闭,保证密封性。
需要说明的是,可以根据油箱内的需要补气的额定负压选用具有相应弹性特性的第一弹性件32,当油箱内压达到额定负压时,大气压力可以使第一弹性件32压缩变形,实现自动补气。
而在主动泄压时,通过电机2推动第一阀芯31向远离第一通气口15的方向运动,此时,第一弹性件32可以进一步压缩;而在电机2的驱动部回程时,第一阀芯31可以通过第一弹性件32的回复力向靠近第一通气口15的方向运动,直到将第一通气口15封闭。
进一步,第二密封件4可以包括第二阀芯41和第二弹性件42,第二弹性件42的两端分别与第二阀芯41和第三腔室13的内壁相连,第二阀芯41用于封闭或打开第二通气口16。其中,第一弹性件32可以为弹簧。
第二阀芯41设置在第三腔室13中,可以从第二通气口16的上方对第二通气口16打开或封闭。在自然条件下,第二弹性件42处于压缩状态,可以对第二阀芯41提供预紧力,保证第二阀芯41对第二通气口16的紧密封闭,保证密封性。
在油箱内压达到需要自动泄压的临界值时,第一腔室11和第四腔室14中的压力可以经过第二通气口16施加在第二阀芯41上,以推动阀芯向远离第二通气口16的方向运动,使第二通气口16打开,以使燃油蒸汽依次经过第三腔室13和第二腔室12进入碳罐,此时,第二弹性件42可以进一步压缩。而在油箱压力泄压到上述自动泄压的临界值以下时,第二弹性件42可以推动第二阀芯41封闭第二通气口16。其中,第二弹性件42可以为弹簧。
需要说明的是,可以根据自动泄压的临界值选用第二弹性件42,以使第二弹性件42能够在开始发生弹性变形时,油箱内压即达到上述临界值。由此,可以在无需通过电机2控制的情况下,实现了油箱的自动泄压。
本实施例提供的电控阀,通过设计上述第二密封件4,实现了一种机械式泄压,在车辆不通电的情况下,仍然能够通过第二密封件4实现自动泄压以及通过第一密封件3实现自动补气,使油箱在任何环境条件下均可以保证正常的压力水平。
在另一种具体的实施例中,如图6至图10所示,第三腔室13可以设置在第一阀芯31上,第一阀芯31上设置有第三通气口17,第三腔室13通过第三通气口17与第二腔室12连通。
在本实施例中,第三腔室13集成在第一腔室11中,可以形成一种结构紧凑的电控阀。在通过电机2驱动第一密封件3打开第一通气口15时,第一阀芯31可以带动第三腔室13同步向远离第一通气口15的方向运动,如图7和图8所示。
而在泄压完成后,第一阀芯31与第一通气口15周围的实体部分贴合以封闭第一通气口15,第二阀芯41可以将第二通气口16封闭,如图6所示,从而可以阻断第一腔室11分别与第三腔室 13、第二腔室12的连通。
而在油箱内压达到需要自动泄压的临界值时,第一腔室11的压力可以推动第二阀芯41向远离第二通气口16的方向运动,以使第二通气口16打开,如图9所示,燃油蒸汽可以依次经过第二通气口16、第三腔室13、第三通气口17后进入第二腔室12。
当需要对油箱进行补气时,由于油箱内压小于大气压,大气压力可以推动第一阀芯31带动第三腔室13向远离第一通气口15的方向运动,如图10所示,空气可以依次经过第二腔室12、第一通气口15和第一腔室11后进入油箱,同时,空气可以经过第三通气口17进入第三腔室13,以对第二阀芯41施加一定的压力,使第二阀芯41受空气压力及第二弹性件42的作用将第二通气口16封闭。
进一步,该电控阀还可以包括调节块5,调节块5与电机2的驱动部固定连接,电机2的驱动部通过调节块5与第一密封件3抵接。
其中,电机2的固定部可以设置在壳体1上,电机2的驱动部可以为具有一定长度的推杆21,调节块5一端可以与推杆21的端部相连。
进一步,调节块5为异形结构,调节块5的切面面积由一端向另一端逐渐减小,调节块5上切面面积最小的一端与电机2的驱动部相连,调节块5的最大切面面积小于第一通气口15的开口面积。其中,调节块5的上下移动可控制第一通气口15的开度调节。
可以理解的是,调节块5上远离电机2的一端直径最大,从而可以使调节块5的侧壁面向两侧倾斜,当调节块5推动第一阀 芯31向远离第一通气口15的方向运动时,由于调节块5的直径由靠近第一阀芯31的一侧向另一侧逐渐减小,从而随着调节块5推动第一阀芯31,调节块5的侧壁与第一通气口15的边缘之间的距离逐渐增大,从而可以有效控制第一通气口15的开度,进而可以控制燃油蒸汽在第一通气口15的流量大小。
进一步,为了提升第一密封件3对第一通气口15的密封效果,该电控阀还可以包括密封圈6,密封圈6固定设置在第一密封件3上朝向第一通气口15的一侧。具体地,密封圈6可以固定设置在第一阀芯31上。
可以理解的是,为了提升对第二通气口16的密封效果,第二阀芯41上也可以设置有密封圈6。
本申请实施例还提供了一种燃油系统,其包括本申请任意实施例提供的电控阀,该燃油系统还包括油箱、控制器、压力检测机构、液位检测机构和碳罐;电控阀中的第一腔室11与油箱连通,电控阀中的第二腔室12与碳罐连通;压力检测机构和液位检测机构均设置在油箱上;控制器分别与压力检测机构和液位检测机构相连。其中,压力检测机构可以为压力传感器,液位检测机构可以为液位传感器。
需要说明的是,控制器可以与整车ECU相连,控制器可以根据ECU发出的信号控制电机2启停,以通过电机2控制第一密封件3动作,并进一步控制第一腔室11和第二腔室12的连通状态。
具体地,当整车ECU发出脱附信号时,控制器根据该脱附信号控制电机2启动,电机2控制第一密封件3将第一通气口15封闭,以阻断第一腔室11和第二腔室12连通,油箱中的燃油蒸汽不能进入第二腔室12,此时,碳罐与发动机连通,从可以将空气 经碳罐引入发动机,实现脱附。
本申请实施例提供的电控阀及燃油系统,替代了现有的使用电磁阀控制燃油蒸汽通路开关的技术,从根本上解决了油箱内压对电磁阀产生不平衡力而导致电磁阀密封效果不良的问题。同时,本申请实施例提供的电控阀采用电机控制,可以取消现有对各种机械阀的使用,解决了现有隔离阀(FTIV)只能进行机械式二级开启、泄压等待时间长、电磁阀电磁控制不精确的问题,该电控阀能精确控制燃油蒸汽压力,以及燃油蒸汽的存储及释放,减小了碳罐负载,降低了排放。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (9)

  1. 一种电控阀,其特征在于,包括:
    壳体(1),所述壳体(1)中设置有第一腔室(11)、第二腔室(12)和第三腔室(13),所述第一腔室(11)通过第一通气口(15)与所述第二腔室(12)连通,所述第一腔室(11)通过第二通气口(16)与所述第三腔室(13)连通,所述第二腔室(12)与所述第三腔室(13)连通;
    第一密封件(3),设置在所述第一腔室(11)中,用于封闭或打开所述第一通气口(15);
    第二密封件(4),设置在所述第三腔室(13)中,用于封闭或打开所述第二通气口(16);
    电机(2),所述电机(2)的驱动部与所述第一密封件(3)抵接,用于驱动所述第一密封件(3)运动,以调节所述第一通气口(15)的开度。
  2. 根据权利要求1所述的电控阀,其特征在于,所述第一密封件(3)包括第一阀芯(31)和第一弹性件(32),所述第一弹性件(32)的两端分别与所述第一阀芯(31)和所述第一腔室(11)的内壁相连,所述第一阀芯(31)用于封闭或打开所述第一通气口(15)。
  3. 根据权利要求2所述的电控阀,其特征在于,所述第二密封件(4)包括第二阀芯(41)和第二弹性件(42),所述第二弹性件(42)的两端分别与所述第二阀芯(41)和所述第三腔室(13)的内壁相连,所述第二阀芯(41)用于封闭或打开所述第二通气 口(16)。
  4. 根据权利要求3所述的电控阀,其特征在于,所述第三腔室(13)设置在所述第一阀芯(31)上,所述第一阀芯(31)上设置有第三通气口(17),所述第三腔室(13)通过所述第三通气口(17)与所述第二腔室(12)连通。
  5. 根据权利要求1-4任一项所述的电控阀,其特征在于,还包括调节块(5),所述调节块(5)与所述电机(2)的驱动部固定连接,所述电机(2)的驱动部通过所述调节块(5)与所述第一密封件(3)抵接。
  6. 根据权利要求5所述的电控阀,其特征在于,所述调节块(5)为异形结构,所述调节块的切面面积由一端向另一端逐渐减小,所述调节块(5)上切面面积最小的一端与所述电机(2)的驱动部相连,所述调节块(5)的最大切面面积小于所述第一通气口(15)的开口面积。
  7. 根据权利要求1所述的电控阀,其特征在于,还包括密封圈(6),所述密封圈(6)固定设置在所述第一密封件(3)上朝向所述第一通气口(15)的一侧。
  8. 一种燃油系统,包括权利要求1-7任一项所述的电控阀,所述燃油系统还包括油箱、控制器、压力检测机构、液位检测机构和碳罐;
    所述电控阀中的第一腔室(11)与所述油箱连通,所述电控阀中的第二腔室(12)与所述碳罐连通;
    所述压力检测机构和所述液位检测机构均设置在所述油箱 上;
    所述控制器分别与所述压力检测机构、所述液位检测机构和所述电控阀中的电机(2)相连。
  9. 根据权利要求8所述的燃油系统,其特征在于,所述压力检测机构为压力传感器,所述液位检测机构为液位传感器。
PCT/CN2021/125164 2020-10-22 2021-10-21 电控阀及燃油系统 WO2022083672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011139033.6 2020-10-22
CN202011139033.6A CN112324596A (zh) 2020-10-22 2020-10-22 电控阀及燃油系统

Publications (1)

Publication Number Publication Date
WO2022083672A1 true WO2022083672A1 (zh) 2022-04-28

Family

ID=74311401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125164 WO2022083672A1 (zh) 2020-10-22 2021-10-21 电控阀及燃油系统

Country Status (2)

Country Link
CN (1) CN112324596A (zh)
WO (1) WO2022083672A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112324596A (zh) * 2020-10-22 2021-02-05 亚普汽车部件股份有限公司 电控阀及燃油系统
CN113279873B (zh) * 2021-07-06 2023-05-26 亚普汽车部件股份有限公司 一种汽车的燃油系统及燃油系统的泄漏检测方法
CN113931769B (zh) * 2021-10-13 2023-03-24 亚普汽车部件股份有限公司 燃油系统的集成式电控组件及燃油系统控制方法
CN113818974B (zh) * 2021-10-13 2022-07-29 亚普汽车部件股份有限公司 燃油系统的电控部件及燃油系统控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090194170A1 (en) * 2008-02-01 2009-08-06 Eaton Corporation Multi-function control valve for fuel vapor system
US20100051116A1 (en) * 2008-08-26 2010-03-04 Eaton Corporation Piloted fuel tank vapor isolation valve
CN109209685A (zh) * 2018-08-24 2019-01-15 亚普汽车部件股份有限公司 一种新型电控高压燃油系统
US20200240368A1 (en) * 2017-08-07 2020-07-30 Plastic Omnium Advanced Innovation And Research Stepper driven valve for controlling fluid communication between a fuel tank and a canister
CN112324596A (zh) * 2020-10-22 2021-02-05 亚普汽车部件股份有限公司 电控阀及燃油系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4195372B2 (ja) * 2001-06-14 2008-12-10 シーメンス ヴイディーオー オートモーティヴ インコーポレイテッド 燃料蒸気圧管理装置を備えた燃料系統及び管理方法
JP5991991B2 (ja) * 2011-01-21 2016-09-14 イートン コーポレーションEaton Corporation フロート弁一体型高圧用遮断弁
CN211175530U (zh) * 2019-10-28 2020-08-04 奇瑞汽车股份有限公司 一种带过压保护的活性炭罐切断阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090194170A1 (en) * 2008-02-01 2009-08-06 Eaton Corporation Multi-function control valve for fuel vapor system
US20100051116A1 (en) * 2008-08-26 2010-03-04 Eaton Corporation Piloted fuel tank vapor isolation valve
US20200240368A1 (en) * 2017-08-07 2020-07-30 Plastic Omnium Advanced Innovation And Research Stepper driven valve for controlling fluid communication between a fuel tank and a canister
CN109209685A (zh) * 2018-08-24 2019-01-15 亚普汽车部件股份有限公司 一种新型电控高压燃油系统
CN112324596A (zh) * 2020-10-22 2021-02-05 亚普汽车部件股份有限公司 电控阀及燃油系统

Also Published As

Publication number Publication date
CN112324596A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022083672A1 (zh) 电控阀及燃油系统
WO2022111645A1 (zh) 一种节能型电控阀及电控燃料系统
JP4800271B2 (ja) 蒸発燃料排出抑制装置
CN110486483B (zh) 一种电机驱动式高压油箱隔离阀
CN108884787B (zh) 蒸发燃料处理装置和蒸发燃料处理装置中的闭锁阀的开阀开始位置学习方法
CN108915906B (zh) 一种用于高压燃油系统的电控模块
US20130008414A1 (en) Evaporative emission control device for an internal combustion engine
KR20140018247A (ko) 모터 구동된 밀봉 메커니즘을 갖는 차폐 밸브
CN113494388B (zh) 燃油蒸发排放泄漏诊断系统及方法
US10941719B2 (en) Evaporative fuel treating apparatus
CN109209685A (zh) 一种新型电控高压燃油系统
KR20160042418A (ko) 증기 제어에 의한 차량 스토리지 시스템
CN112360651A (zh) 电控阀、燃油系统、燃油加注和泄漏检测及碳罐脱附方法
CN112576417A (zh) 一种电控阀、电控阀总成、电控燃油系统及加注控制方法
CN208778122U (zh) 一种新型电控高压燃油系统
US5499613A (en) Method for monitoring a tank venting system that traps fuel vapors and feeds them to an internal combustion engine
JP2019078171A (ja) 閉塞診断装置
CN113818974B (zh) 燃油系统的电控部件及燃油系统控制方法
CN112594096A (zh) 一种电控阀、电控燃油系统及控制方法
US4114576A (en) Exhaust gas recirculating control system
CN112269369A (zh) 一种线性控制的电控阀及电控燃料系统
JPH02130254A (ja) エンジンにおける燃料タンクの蒸発ガス処理装置
CN112576422A (zh) 电控阀、燃油系统及燃油加注方法
KR0135464B1 (ko) 엔진 연료 탱크의 압력 조정 장치
KR102451967B1 (ko) 자동차 연료탱크의 넘침 연료 회수 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882087

Country of ref document: EP

Kind code of ref document: A1