WO2022083646A1 - 同步信号块的传输方法、装置、设备及存储介质 - Google Patents

同步信号块的传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022083646A1
WO2022083646A1 PCT/CN2021/125028 CN2021125028W WO2022083646A1 WO 2022083646 A1 WO2022083646 A1 WO 2022083646A1 CN 2021125028 W CN2021125028 W CN 2021125028W WO 2022083646 A1 WO2022083646 A1 WO 2022083646A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
polarization direction
transmitting
ssb
Prior art date
Application number
PCT/CN2021/125028
Other languages
English (en)
French (fr)
Inventor
王勇
刘思綦
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023524836A priority Critical patent/JP2023547873A/ja
Priority to EP21882061.1A priority patent/EP4236493A4/en
Publication of WO2022083646A1 publication Critical patent/WO2022083646A1/zh
Priority to US18/302,089 priority patent/US20230261825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a method, apparatus, device and storage medium for transmitting synchronization signal blocks.
  • the base station needs to send a synchronization signal block (Synchronization Signal Block, SSB, also known as SS/PBCH block) for the terminal to perform synchronization, system information acquisition, measurement evaluation, etc.
  • SSB Synchronization Signal Block
  • SS/PBCH block Synchronization Signal Block
  • the terminal when the terminal is in the beam coverage area of a certain polarization direction, if the terminal receiving antenna does not use or cannot use the polarization direction, the terminal may not be able to receive the SSB under the beam coverage area. If the terminal does not know the polarization direction used in the coverage area of the beam, the terminal can only blindly detect the SSB signal with different polarization directions at different transmission occasions, which will lead to a long blind detection time of the SSB. Therefore, in the current related art, when the polarization direction is unknown, there may be a long SSB blind detection time, and it is even impossible to guarantee that the terminal receives the synchronization signal block from the unknown polarization direction.
  • Embodiments of the present application provide a method, device, device, and storage medium for transmitting a synchronization signal block, which can solve the problem of long SSB blind detection time in the case of unknown polarization direction in the related art and the inability to ensure that the terminal receives signals from unknown polarization. A problem with the sync block in the direction.
  • a method for transmitting a synchronization signal block which is applied to a network side device, and the method includes:
  • the first polarization direction is different from the second polarization direction, and the first synchronization signal block and the second synchronization signal block contain the same information.
  • a method for transmitting a synchronization signal block which is applied to a terminal, and the method includes:
  • the first synchronization signal block and the second synchronization signal block contain the same information, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different, and the first transmission timing is the same as that of the first synchronization signal block. There is a first time interval between the two transmission occasions.
  • a device for transmitting synchronization signal blocks including:
  • a first sending unit configured to send a first synchronization signal block in a first polarization direction at a first transmission opportunity
  • a second sending unit configured to send the second synchronization signal block in the second polarization direction after the first time interval
  • the first polarization direction is different from the second polarization direction, and the first synchronization signal block and the second synchronization signal block contain the same information.
  • a device for transmitting synchronization signal blocks including:
  • a receiving unit configured to receive the first synchronization signal block at the first transmission opportunity; and/or, configured to receive the second synchronization signal block at the second transmission opportunity;
  • the first synchronization signal block and the second synchronization signal block contain the same information, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different, and the first transmission timing is the same as that of the first synchronization signal block. There is a first time interval between the two transmission occasions.
  • a network-side device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • a terminal in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor. The steps of implementing the method of the second aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction, and implements the method described in the first aspect. the method described, or implement the method described in the second aspect.
  • the blind detection time of the SSB can be reduced, and the terminal can successfully receive the SSB signal within a certain period of time.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the application can be applied;
  • FIG. 2 is one of the schematic flowcharts of a method for transmitting a synchronization signal block provided by an embodiment of the present application
  • FIG. 3 is one of schematic diagrams of SSB transmission provided by an embodiment of the present application.
  • FIG. 4 is the second schematic diagram of SSB transmission provided by the embodiment of the present application.
  • FIG. 5 is a third schematic diagram of SSB transmission provided by an embodiment of the present application.
  • FIG. 6 is a second schematic flowchart of a method for transmitting a synchronization signal block provided by an embodiment of the present application
  • FIG. 7 is one of the schematic structural diagrams of the apparatus for transmitting a synchronization signal block provided by an embodiment of the present application.
  • FIG. 8 is a second schematic structural diagram of a transmission apparatus for a synchronization signal block provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the contextual objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6G most Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • MID Wearable Device
  • VUE vehicle-mounted device
  • PUE pedestrian terminal
  • wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Electromagnetic waves include linearly polarized waves, circularly polarized waves and elliptically polarized waves according to their polarization modes. Antennas that radiate corresponding polarized waves are called linearly polarized antennas, circularly polarized antennas and elliptically polarized antennas. Due to the significant advantages of circularly polarized antennas, in satellite communications, the polarization mode of the antenna is generally circularly polarized. Circular polarization methods include left-hand circularly polarized (LHCP, Left-hand circularly polarized) and right-hand circularly polarized (RHCP, right-hand circularly polarized).
  • LHCP left-hand circularly polarized
  • RHCP right-hand circularly polarized
  • the circularly polarized wave can be received by any linearly polarized antenna, but the received power is only half of the same circularly polarized antenna .
  • a circularly polarized electromagnetic wave encounters an obstacle reflection during its propagation, the phenomenon of handedness reversal will occur, for example, a right-handed circularly polarized (RHCP) signal becomes a left-handed circularly polarized (LHCP) signal, and vice versa.
  • RHCP right-handed circularly polarized
  • LHCP left-handed circularly polarized
  • a circularly polarized antenna with a specific rotation can only receive the energy of the rotation, that is, the RHCP antenna can only receive the RHCP signal, and the LHCP antenna can only receive the LHCP signal.
  • the terminal when the terminal is in the beam coverage area of a certain polarization direction (such as LHCP), if the polarization direction (such as RHCP) used by the receiving antenna of the terminal is different from the polarization direction, the terminal may not be able to receive to the SSB (Synchronization Signal Block, synchronization signal block) signal under the coverage area of the beam.
  • a certain polarization direction such as LHCP
  • the terminal does not know the polarization direction used in the beam coverage area, even if the terminal receiving antenna supports two polarization directions at the same time, the terminal can only blindly detect the SSB signal with different polarization directions at different transmission occasions, which may It will lead to a long SSB blind detection time, so the terminal cannot successfully receive the synchronization signal block from the unknown polarization direction in a short time.
  • the terminal When the terminal detects the SSB signal, because the circularly polarized electromagnetic wave may reverse the direction of rotation during the propagation process, it cannot be completely determined that the polarization direction used by the terminal is the polarization direction for sending the SSB signal. Furthermore, the terminal cannot determine the polarization direction used by the SSB signal, thereby affecting the subsequent transmission process.
  • an embodiment of the present application proposes a method for transmitting a synchronization signal block.
  • the design of the 5G NR SSB is first introduced.
  • NR SSB Synchronization Signal Block
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal: Secondary synchronization signal, m-sequence of length 127, located in 3rd OFDM, occupying sub-carriers 56-182;
  • PBCH Physical Broadcast Channel
  • a physical broadcast channel with a bandwidth of 20RB occupying 3 OFDM symbols, including 4 RBs on both sides of the 2nd, 4nd and 3rd symbols.
  • PBCH-DMRS Demodulation Reference Signal
  • PCI Physical Cell Identifier, physical cell identifier
  • the SSB period can be configured as ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms, and the PBCH TTI (Transmission Time Interval) is fixed at 80ms.
  • Each cycle may contain 1 or more SSBs, and the SSBs in the same cycle are sent within a 5ms window, and these SSBs form a synchronization signal burst set SS burst set.
  • the L SSB SSBs are time domain positions defined according to the protocol within a 5ms time window (in this embodiment of the present application, referred to as candidate positions ) to transmit.
  • a time window can contain 4, 8 or 64 SSB candidate positions.
  • the frequency point when the frequency point is 0-3GHz, it contains 4 candidate positions of SSB; when the frequency point is 3-6GHz, it contains 8 candidate positions of SSB; when the frequency point is above 6GHz, it contains 64 candidate positions of SSB.
  • the candidate location pattern (pattern) of the SSB may be different, as shown in Table 1.
  • n is the time slot number
  • idx is the OFDM symbol index of the SSB candidate position
  • L SSB is the number of SSB candidate positions
  • f c is the frequency point.
  • sequence of PSS is generated using the following formula:
  • the initial value of the PSS sequence is:
  • the initial value of the SSS sequence is:
  • FIG. 2 is one of the schematic flowcharts of a method for transmitting a synchronization signal block provided by an embodiment of the present application.
  • the execution body of the method is a network side device. As shown in FIG. 2 , the method includes the following steps:
  • Step 100 At a first transmission opportunity, send a first synchronization signal block in a first polarization direction;
  • the transmission opportunity occurrence refers to the time domain position of the transmission signal within a time window.
  • the first transmission opportunity is a time domain position where the first synchronization signal block SSB is transmitted.
  • the first transmission occasion may be a candidate SSB transmission occasion (candidate SSB occasion), or may be a transmission occasion when the SSB is actually sent.
  • the candidate SSB transmission occasions are used to indicate at which time domain positions the SSB can transmit.
  • the network side device sends the first synchronization signal block in the first polarization direction.
  • the first synchronization signal block sent by the network side device carries the polarization direction indication.
  • Step 101 after a first time interval, send a second synchronization signal block in a second polarization direction;
  • the network-side device sends the second synchronization signal block in the second polarization direction.
  • the second synchronization signal block sent by the network side device carries the polarization direction indication.
  • the first polarization direction is different from the second polarization direction, and the first synchronization signal block and the second synchronization signal block contain the same information. It can be understood that the first synchronization signal block and the second synchronization signal block contain the same information.
  • the signal blocks have a corresponding relationship, for example, the first synchronization signal block and the second synchronization signal block indicate the same information for the terminal to perform synchronization, system information acquisition, measurement evaluation, and the like.
  • the network-side device sends the first synchronization signal block in the first polarization direction at the first transmission opportunity, and sends the second synchronization signal block in the second polarization direction after a first time interval, and the first synchronization signal block is connected to the second synchronization signal block.
  • the synchronization signal block contains the same information, so that it can be guaranteed that the terminal successfully receives the SSB within a certain period of time.
  • the terminal can receive the first synchronization signal block, and in the case that no rotation reversal occurs during the electromagnetic wave transmission, the receiving less than the second sync block.
  • the terminal cannot receive the first synchronization signal block without the handedness reversal during the electromagnetic wave transmission process , but the second sync block can be received.
  • the terminal antenna is a linearly polarized antenna
  • the received power is only half that of the same circularly polarized antenna, that is, there is a 3dB depolarization loss
  • the terminal can receive two synchronization signal blocks with different polarization directions, and perform certain Combined to compensate for depolarization losses.
  • the terminal may receive the first polarization direction and/or the second polarization direction without knowing in advance whether the first polarization direction corresponds to LHCP or RHCP. If the terminal detects the SSB signal, it can decode the SSB signal. Since the SSB signal carries the polarization direction indication, the polarization direction of the successfully decoded SSB signal can be determined.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application can reduce the blind detection time of the SSB by transmitting the synchronization signal block in different polarization directions at different transmission occasions, and ensure that the terminal successfully receives the SSB signal within a certain period of time.
  • the first polarization direction is left-hand circular polarization LHCP
  • the second polarization direction is right-hand circular polarization RHCP
  • the first polarization direction is right-hand circular polarization RHCP
  • the second polarization direction is left-hand circular polarization LHCP.
  • the first time interval is determined in a pre-defined or pre-configured manner.
  • the number of SSB candidate positions in a time window corresponding to different subcarrier intervals and carrier frequency ranges is different. According to the number of SSB candidate positions, it can be determined in a pre-defined or pre-configured manner to send the first synchronization signal block. and the time interval of the second sync block.
  • the SSB provided by this embodiment of the application
  • the 4 candidate SSBs in slot#0 and slot#1 use left-hand circularly polarized LHCP
  • the 4 candidate SSBs in slot#2 and slot#3 use right-handed circularly polarized RHCP.
  • the corresponding first time interval is 2 slots/28 OFDM symbols
  • the corresponding first SSB signal and the second SSB signal have the same SSB index.
  • FIG. 4 is a schematic diagram of SSB transmission provided by this embodiment of the application of two.
  • the 4 candidate SSBs in slot#0, slot#1 use the right-hand circularly polarized RHCP, and the 4 candidate SSBs in slot#2, slot#3 make the left-handed circularly polarized LHCP.
  • the corresponding first time interval is 2 slots/28 OFDM symbols, and the corresponding first SSB signal and the second SSB signal have the same SSB index.
  • the transmission relationship between the first synchronization signal block and the second synchronization signal block is determined. If the terminal using LHCP successfully demodulates the SSB after receiving the SSB, but the polarization direction indication indicates that the SSB is the RHCP SSB, the terminal can implicitly know where the LHCP SSB is sent. At this time, the terminal can choose to receive the LHCP SSB at the corresponding location again, so as to obtain other relevant information.
  • the size of the first time interval is one of the following:
  • a positive integer greater than or equal to 0, the unit is slot, subframe or OFDM symbol
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated in at least one of the following manners:
  • the part of the bits in the 8-bit physical layer information carried by the PBCH includes: a half frame indicates HFI, or other bits except the information bits that carry the system frame number SFN and HFI.
  • the way of carrying the polarization direction does not distinguish the first synchronization signal block and the second synchronization signal block, that is, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are adopted. instructions in the same way.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by the primary synchronization signal PSS, including:
  • PSS generation different PSS generating polynomials are used to indicate different polarization directions; or, during PSS generation, different PSS sequence initial values are used to indicate different polarization directions.
  • the generator polynomial used by the PSS in the LHCP SSB is x ⁇ 7+x ⁇ 4+1, while the generator polynomial used by the PSS in the RHCP SSB is x ⁇ 7+x+1, that is, Have:
  • the initial value of the LHCP PSS sequence is:
  • the initial value of the RHCP PSS sequence is:
  • the generator polynomial used by PSS in LHCP SSB may be x ⁇ 7+x+1, while the generator polynomial used by PSS in RHCP SSB is x ⁇ 7+x ⁇ 4+1.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by the secondary synchronization signal SSS, including:
  • the SSS When the SSS is generated, it is indicated by different initial values of the SSS sequence corresponding to different polarization directions.
  • the initial value of the SSS sequence is:
  • the initial value of the PSS sequence is:
  • the initial value of the sequence used by the SSS in the LHCP SSB may be:
  • the initial value of the sequence used by SSS in RHCP SSB is:
  • the initial value of the sequence used by the SSS in the LHCP SSB is:
  • the initial value of the sequence used by SSS in RHCP SSB is:
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by MIB, including:
  • MIB has a spare bit of 1 bit, as follows:
  • the MIB information in the LHCP SSB or the RHCP SSB may each carry a polarization direction indication, and then the MIB contents in the LHCP SSB and the RHCP SSB are different at this time. After the terminal successfully decodes the PBCH, the polarization direction indication of the SSB can be obtained through the MIB.
  • PDCCH-ConfigSIB1 in MIB may have unused or undefined bits in some cases, which can also be used as polarization direction indication.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by SSB index.
  • different index sets are used for the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block.
  • the even index corresponds to LHCP
  • the odd index corresponds to RHCP, that is, the least significant bit LSB of the SSB index is used to carry out distinguish.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by partial bits in the 8-bit physical layer information carried by the PBCH, wherein the partial The bits include: a field indicating HFI, or bits other than the information bits carrying the system frame numbers SFN and HFI.
  • the 8-bit physical layer information carried by the PBCH is: in:
  • k SSB represents the number of subcarriers offset in frequency between the SSB and the common resource block.
  • the LHCP SSB in order to indicate the polarization direction, may be fixed and sent in the first half of a radio frame in a predefined or pre-configured manner, and the RHCP SSB may be fixed and sent in the second half of a radio frame, That is, the polarization direction can be indicated by using the half frame to indicate the HFI.
  • n hf HFI
  • n hf 0, the first half frame
  • n hf 1
  • the RHCP SSB may be fixed and sent in the first half of a radio frame
  • the LHCP SSB may be fixed and sent in the second half of a radio frame.
  • the 8-bit physical layer information carried by the PBCH can also be carried by other bits except the information bits carrying the system frame number SFN and HFI, including or
  • the value range of ssb-SubcarrierOffset in the MIB is 0 to 15, which is sufficient. indicates the number of subcarriers for the offset, then it is not necessary to use to expand the value range of k SSB , you can use to indicate the polarization direction.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated by the SSB signal.
  • the terminal After receiving the SSB signal, the terminal can determine the polarization direction of the SSB signal by demodulating the SSB signal.
  • the indication manner of the polarization direction may affect the specific content of the same information contained in the first synchronization signal block and the second synchronization signal block.
  • the SSB transmission carries the polarization direction indication, so that the terminal can determine the polarization direction used in the subsequent transmission process.
  • the same information includes at least one of the following:
  • the initial value used for PBCH demodulation reference signal DMRS sequence initialization is the initial value used for PBCH demodulation reference signal DMRS sequence initialization.
  • the first synchronization signal block and the second synchronization signal block have the same at least one of the following contents:
  • the physical cell identifier PCI is jointly determined by the PSS sequence of the primary synchronization signal and the SSS sequence of the secondary synchronization signal.
  • At least part of the fields in the MIB of the first synchronization signal block and the second synchronization signal block are the same, and may be the same except for the 1-bit vacant bit used to indicate the polarization direction.
  • the contents of other fields of the PDCCH-ConfigSIB1 field are the same, and the contents of other fields of the PDCCH-ConfigSIB1 field may be the same except for a 1-bit spare bit, or the contents of all fields of the MIB may be the same.
  • At least part of the information in the 8-bit physical layer information carried by the physical broadcast channel PBCH of the first synchronization signal block and the second synchronization signal block is the same, and may be other bit information except the bit information used to indicate the polarization direction the same, can also be except or The other bit information is the same, or all the bit information in the 8-bit physical layer information may be the same.
  • the SSB index of the first synchronization signal block is the same as the SSB index of the second synchronization signal block, it indicates that the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different from the SSB index except the SSB index. otherwise indicated.
  • the initial value used for DMRS sequence initialization is related to the SSB index and the field indicator HFI, if the initial value used for the DMRS sequence initialization of the first synchronization signal block is the same as the initial value used for the DMRS sequence initialization of the second synchronization signal block , it means that the SSB index of the first synchronization signal block is the same as the SSB index of the second synchronization signal block, and the HFI of the first synchronization signal block is the same as the HFI of the second synchronization signal block.
  • the method for transmitting the synchronization signal block further includes:
  • Beam ID or partial bandwidth BWP ID is determined by polarization direction and/or SSB index.
  • different beam coverage areas may use different frequency ranges and/or different polarization directions.
  • the network side device needs to indicate the frequency range and/or polarization direction to the corresponding terminal. Therefore, the beam ID or BWP ID can be determined from the SSB polarization direction indication and/or the SSB index.
  • FIG. 6 is a second schematic flowchart of a method for transmitting a synchronization signal block provided by an embodiment of the present application.
  • the execution body of the method is a terminal. As shown in FIG. 6 , the method includes the following steps:
  • Step 200 Receive a first synchronization signal block at a first transmission opportunity; and/or, at a second transmission opportunity, receive a second synchronization signal block;
  • the first synchronization signal block and the second synchronization signal block contain the same information, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different, and the first transmission timing is the same as that of the first synchronization signal block. There is a first time interval between the two transmission occasions.
  • the terminal antenna when the terminal antenna is a linearly polarized antenna, since the received power is only half that of the same circularly polarized antenna, that is, there is a 3dB depolarization loss, the terminal can receive two synchronization signal blocks with different polarization directions. , perform a certain combination to compensate for the depolarization loss.
  • the terminal When the terminal antenna is a circularly polarized antenna, the terminal receives the first synchronization signal block at the first transmission opportunity, and/or receives the second synchronization signal block at the second transmission opportunity.
  • the polarization direction of the first synchronization signal block is the first polarization direction
  • the polarization direction of the second synchronization signal block is the second polarization direction
  • the terminal can receive the first synchronization signal block, and in the case that no rotation reversal occurs during the electromagnetic wave transmission, the receiving less than the second sync block.
  • the terminal cannot receive the first synchronization signal block without the handedness reversal during the electromagnetic wave transmission process , but the second sync block can be received.
  • the terminal may receive the first polarization direction and/or the second polarization direction without knowing in advance whether the first polarization direction corresponds to LHCP or RHCP If the terminal detects the SSB signal, it can decode the SSB signal. Since the SSB signal carries the polarization direction indication, the polarization direction of the successfully decoded SSB signal can be determined.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application can reduce the blind detection time of the SSB by transmitting the synchronization signal block with different polarization directions at different transmission occasions, and ensure that the terminal successfully receives the SSB signal within a certain period of time.
  • the polarization direction of the first synchronization signal block is left-hand circularly polarized LHCP, and the polarization direction of the second synchronization signal block is right-handed circular polarization RHCP; or,
  • the polarization direction of the first synchronization signal block is right-hand circularly polarized RHCP, and the polarization direction of the second synchronization signal block is left-handed circular polarization LHCP.
  • the same information includes at least one of the following:
  • the initial value used for PBCH demodulation reference signal DMRS sequence initialization is the initial value used for PBCH demodulation reference signal DMRS sequence initialization.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application is the same as the method described in the corresponding embodiment above, and can achieve the same technical effect, the difference is only in the execution body, and the implementation is not described here.
  • the same parts and beneficial effects as those of the above-mentioned corresponding embodiments will be described in detail.
  • the method for transmitting the synchronization signal block further includes:
  • the part of the bits in the 8-bit physical layer information carried by the PBCH includes: the half frame indicates HFI, or other bits except the information bits that carry the system frame number SFN and HFI.
  • the terminal demodulates the received first synchronization signal block and/or the second synchronization signal block, and determines the first synchronization signal block and/or the polarization direction of the second synchronization signal block.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block by using the primary synchronization signal PSS.
  • the terminal performs PSS sequence detection based on the PSS generator polynomial corresponding to the antenna polarization direction used when receiving SSB; or performs PSS sequence detection based on the initial value of the PSS sequence corresponding to the antenna polarization direction used when receiving SSB.
  • the terminal knows the antenna polarization direction used for receiving SSB, such as RHCP, then when the terminal detects the PSS sequence, the local PSS sequence uses the generator polynomial x ⁇ 7+x+1 to perform subsequent detection. .
  • the terminal can determine the polarization direction of the SSB.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block by using the secondary synchronization signal SSS.
  • the terminal performs SSS sequence detection based on the initial value of the SSS sequence corresponding to the antenna polarization direction used when receiving the SSB.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block through the MIB.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block by using a 1-bit spare bit in the MIB or the value of the PDCCH-ConfigSIB1 field.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block by using the SSB index. For example, even indices correspond to LHCP, and odd indices correspond to RHCP.
  • the LHCP SSB and the RHCP SSB use different index sets, and the corresponding relationship can be predefined or pre-configured to determine, then the terminal receives the SSB signal and detects the SSB index, and can know the polarization direction of the SSB.
  • the polarization direction used when receiving the SSB is known, and then the subsequent polarization direction can be determined according to the detected SSB index; or the terminal re-receives the SSB on the SSB occasion of another polarization direction, and the detected Other relevant system information.
  • the terminal determines the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block by using some bits in the 8-bit physical layer information carried by the PBCH, the Some of the bits include: the field indicates HFI, or other bits except the information bits carrying the system frame number SFN and HFI.
  • the SSB transmission carries the polarization direction indication, so that the terminal can determine the polarization direction used in the subsequent transmission process.
  • the first time interval is determined in a pre-defined or pre-configured manner.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application is the same as the method described in the corresponding embodiment above, and can achieve the same technical effect, the difference is only in the execution body, and the implementation is not described here.
  • the same parts and beneficial effects as those of the above-mentioned corresponding embodiments will be described in detail.
  • the size of the first time interval is one of the following:
  • a positive integer greater than or equal to 0, the unit is slot, subframe or OFDM symbol
  • the transmission method of the synchronization signal block provided by the embodiment of the present application is the same as the method described in the corresponding embodiment above, and can achieve the same technical effect, the difference is only in the execution body, and the implementation is not described here.
  • the same parts and beneficial effects as those of the above-mentioned corresponding embodiments will be described in detail.
  • the method for transmitting the synchronization signal block further includes:
  • Beam ID or partial bandwidth BWP ID is determined by polarization direction and/or SSB index.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application is the same as the method described in the corresponding embodiment above, and can achieve the same technical effect, the difference is only in the execution body, and the implementation is not described here.
  • the same parts and beneficial effects as those of the above-mentioned corresponding embodiments will be described in detail.
  • the execution subject may be a synchronization signal block transmission apparatus, or, in the synchronization signal block transmission apparatus, a method for executing the synchronization signal block transmission method may be executed. control module.
  • a method for transmitting a synchronization signal block performed by a device for transmitting a synchronization signal block is used as an example to describe the device for transmitting a synchronization signal block provided by the embodiment of the present application.
  • FIG. 7 is one of the schematic structural diagrams of a synchronization signal block transmission apparatus provided by an embodiment of the present application, including: a first sending unit 710 and a second sending unit 720, wherein,
  • a first sending unit 710 configured to send a first synchronization signal block in a first polarization direction at a first transmission opportunity
  • a second sending unit 720 configured to send a second synchronization signal block in a second polarization direction after a first time interval
  • the first polarization direction is different from the second polarization direction, and the first synchronization signal block and the second synchronization signal block contain the same information.
  • the first polarization direction is left-hand circular polarization LHCP
  • the second polarization direction is right-hand circular polarization RHCP
  • the first polarization direction is right-hand circular polarization RHCP
  • the second polarization direction is left-hand circular polarization LHCP.
  • the same information includes at least one of the following:
  • the initial value used for PBCH demodulation reference signal DMRS sequence initialization is the initial value used for PBCH demodulation reference signal DMRS sequence initialization.
  • the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are indicated in at least one of the following manners:
  • the part of the bits in the 8-bit physical layer information carried by the PBCH includes: the half frame indicates HFI, or other bits except the information bits that carry the system frame number SFN and HFI.
  • the first time interval is determined in a pre-defined or pre-configured manner.
  • the size of the first time interval is one of the following:
  • a positive integer greater than or equal to 0, the unit is slot, subframe or OFDM symbol
  • the first determining unit is configured to determine the beam Beam ID or the partial bandwidth BWP ID according to the polarization direction and/or the SSB index.
  • the apparatus for transmitting synchronization signal blocks provided by the embodiments of the present application can reduce the blind detection time of SSB by transmitting synchronization signal blocks in different polarization directions at different transmission occasions, and ensure that the terminal successfully receives the SSB signal within a certain period of time.
  • the device for transmitting the synchronization signal block in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the device for transmitting the synchronization signal block in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the apparatus for transmitting synchronization signal blocks provided by the embodiments of the present application can implement the various processes implemented by the method embodiments of FIG. 2 to FIG. 5 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • FIG. 8 is a second schematic structural diagram of a synchronization signal block transmission apparatus provided by an embodiment of the present application, including:
  • a receiving unit 810 configured to receive the first synchronization signal block at the first transmission opportunity; and/or, configured to receive the second synchronization signal block at the second transmission opportunity;
  • the first synchronization signal block and the second synchronization signal block contain the same information, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different, and the first transmission timing is the same as that of the first synchronization signal block. There is a first time interval between the two transmission occasions.
  • the polarization direction of the first synchronization signal block is left-hand circularly polarized LHCP, and the polarization direction of the second synchronization signal block is right-handed circular polarization RHCP; or,
  • the polarization direction of the first synchronization signal block is right-hand circularly polarized RHCP, and the polarization direction of the second synchronization signal block is left-handed circular polarization LHCP.
  • the same information includes at least one of the following:
  • the initial value used for PBCH demodulation reference signal DMRS sequence initialization is the initial value used for PBCH demodulation reference signal DMRS sequence initialization.
  • a demodulation unit configured to demodulate the first synchronization signal block and/or the second synchronization signal block
  • a second determining unit configured to determine the polarization direction of the first synchronization signal block and/or the polarization direction of the second synchronization signal block based on at least one of the following manners:
  • the part of the bits in the 8-bit physical layer information carried by the PBCH includes: the half frame indicates HFI, or other bits except the information bits that carry the system frame number SFN and HFI.
  • the first time interval is determined in a pre-defined or pre-configured manner.
  • the size of the first time interval is one of the following:
  • a positive integer greater than or equal to 0, the unit is slot, subframe or OFDM symbol
  • the third determining unit is configured to determine the beam Beam ID or the partial bandwidth BWP ID according to the polarization direction and/or the SSB index.
  • the apparatus for transmitting synchronization signal blocks provided by the embodiments of the present application can reduce the blind detection time of SSB by transmitting synchronization signal blocks in different polarization directions at different transmission occasions, and ensure that the terminal successfully receives the SSB signal within a certain period of time.
  • the device for transmitting the synchronization signal block in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the device for transmitting the synchronization signal block in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the apparatus for transmitting a synchronization signal block provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 6 and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned embodiment of the method for transmitting the synchronization signal block can be realized, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned embodiment of the synchronization signal block transmission method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • the network device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the above synchronization signal block transmission apparatus may be located in the baseband apparatus 1003 , and the method performed by the network side device in the above embodiment may be implemented in the baseband apparatus 1003 , and the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 10 , one of the chips is, for example, the processor 1004 , which is connected to the memory 1005 to call a program in the memory 1005 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 1005 and executable on the processor 1004, and the processor 1004 invokes the instructions or programs in the memory 1005 to execute the modules shown in FIG. 7 .
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, a processor 1110 and other components .
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 .
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and then processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1110.
  • the radio frequency unit 1101 is configured to receive a first synchronization signal block at a first transmission opportunity; and/or, at a second transmission opportunity, receive a second synchronization signal block;
  • the first synchronization signal block and the second synchronization signal block contain the same information, the polarization direction of the first synchronization signal block and the polarization direction of the second synchronization signal block are different, and the first transmission timing is the same as that of the first synchronization signal block. There is a first time interval between the two transmission occasions.
  • the terminal provided in this embodiment of the present application can receive an SSB signal from an unknown polarization direction.
  • the polarization direction of the first synchronization signal block is left-hand circularly polarized LHCP, and the polarization direction of the second synchronization signal block is right-handed circular polarization RHCP; or,
  • the polarization direction of the first synchronization signal block is right-hand circularly polarized RHCP, and the polarization direction of the second synchronization signal block is left-handed circular polarization LHCP.
  • the same information includes at least one of the following:
  • the initial value used for PBCH demodulation reference signal DMRS sequence initialization is the initial value used for PBCH demodulation reference signal DMRS sequence initialization.
  • the processor 1110 is further configured to demodulate the first synchronization signal block and/or the second synchronization signal block;
  • the part of the bits in the 8-bit physical layer information carried by the PBCH includes: the half frame indicates HFI, or other bits except the information bits that carry the system frame number SFN and HFI.
  • the first time interval is determined in a pre-defined or pre-configured manner.
  • the size of the first time interval is one of the following:
  • a positive integer greater than or equal to 0, the unit is slot, subframe or OFDM symbol
  • processor 1110 is further configured to:
  • Beam ID or partial bandwidth BWP ID is determined by polarization direction and/or SSB index.
  • the terminal provided by the embodiment of the present application can reduce the blind detection time of the SSB by transmitting the synchronization signal blocks in different polarization directions at different transmission occasions, and ensure that the terminal successfully receives the SSB signal within a certain period of time.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the method for transmitting a synchronization signal block is implemented, and The same technical effect can be achieved, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above synchronization signal block.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种同步信号块的传输方法、装置、设备及存储介质,所述方法包括:在第一传输时机,以第一极化方向发送第一同步信号块;经过第一时间间隔,以第二极化方向发送第二同步信号块;其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。

Description

同步信号块的传输方法、装置、设备及存储介质
相关申请的交叉引用
本申请主张在2020年10月22日在中国提交的中国专利申请号202011144254.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种同步信号块的传输方法、装置、设备及存储介质。
背景技术
基站需要发送同步信号块(Synchronization Signal Block,SSB,也可以称为SS/PBCH block)以供终端进行同步、系统信息获取、测量评估等。
但是,在初始下行同步过程中,当终端处于某一极化方向的波束覆盖区域时,若终端接收天线不使用或无法使用该极化方向,则终端可能无法接收到该波束覆盖区域下的SSB信号;若终端未知该波束覆盖区域使用的极化方向,则终端只能不断在不同传输时机以不同极化方向来盲检SSB信号,会导致较长的SSB盲检时间。因此,目前相关技术在未知极化方向的情况下,可能存在较长的SSB盲检时间,甚至无法保证终端接收到来自未知极化方向上的同步信号块。
发明内容
本申请实施例提供一种同步信号块的传输方法、装置、设备及存储介质,能够解决相关技术在未知极化方向的情况下存在较长SSB盲检时间和无法保证终端接收到来自未知极化方向上的同步信号块的问题。
第一方面,提供了一种同步信号块的传输方法,应用于网络侧设备,该方法包括:
在第一传输时机,以第一极化方向发送第一同步信号块;
经过第一时间间隔,以第二极化方向发送第二同步信号块;
其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。
第二方面,提供了一种同步信号块的传输方法,应用于终端,该方法包括:
在第一传输时机,接收第一同步信号块;和/或,在第二传输时机,接收第二同步信号块;
其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
第三方面,提供了一种同步信号块的传输装置,包括:
第一发送单元,用于在第一传输时机,以第一极化方向发送第一同步信号块;
第二发送单元,用于经过第一时间间隔,以第二极化方向发送第二同步信号块;
其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。
第四方面,提供了一种同步信号块的传输装置,包括:
接收单元,用于在第一传输时机,接收第一同步信号块;和/或,用于在第二传输时机,接收 第二同步信号块;
其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,通过在第一传输时机,通过在不同的传输时机以不同的极化方向传输同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为本申请实施例提供的同步信号块的传输方法的流程示意图之一;
图3为本申请实施例提供的SSB传输示意图之一;
图4为本申请实施例提供的SSB传输示意图之二;
图5为本申请实施例提供的SSB传输示意图之三;
图6为本申请实施例提供的同步信号块的传输方法的流程示意图之二;
图7为本申请实施例提供的同步信号块的传输装置的结构示意图之一;
图8为本申请实施例提供的同步信号块的传输装置的结构示意图之二;
图9为本申请实施例提供的通信设备的结构示意图;
图10为实现本申请实施例的一种网络侧设备的硬件结构示意图;
图11为实现本申请实施例的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是 一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的同步信号块的传输方法、装置、设备及存储介质进行详细地说明。
电磁波按极化方式包括线极化波、圆极化波和椭圆极化波三种形式,辐射相应极化波的天线就被称为线极化天线、圆极化天线和椭圆极化天线。由于圆极化天线存在的显著优势,在卫星通信中,天线的极化方式一般采用圆极化方式。圆极化方式包括左旋圆极化(LHCP,Left-hand circularly polarized)和右旋圆极化(RHCP,right-hand circularly polarized)。由于对任意极化的接收天线感应出的圆极化电磁波在任何方向的投影都是一样的,圆极化波可以使用任意线极化天线接收,但是接收的功率只有同等圆极化天线的一半。圆极化电磁波在传播过程中遇到障碍物反射时,会发生旋向逆转现象,如右旋圆极化(RHCP)信号变为左旋圆极化(LHCP)信号,反之亦然。特定旋向的圆极化天线只能接收该旋向的能量,即:RHCP天线只能接收RHCP信号,LHCP天线只能接收LHCP信号。
在初始下行同步过程中,当终端处于某一极化方向(如LHCP)的波束覆盖区域时,若终端接收天线使用的极化方向(如RHCP)与该极化方向不同,则终端可能无法接收到该波束覆盖区域下的SSB(Synchronization Signal Block,同步信号块)信号。
进一步地,若终端未知该波束覆盖区域使用的极化方向,即使终端接收天线同时支持两个极 化方向,则终端也只能不断在不同传输时机以不同极化方向来盲检SSB信号,可能会导致较长的SSB盲检时间,因此,终端无法在较短时间内成功接收到来自未知极化方向上的同步信号块。
在终端检测到SSB信号的情况下,由于圆极化电磁波在传播过程中可能发生旋向逆转现象,此时也不能完全确定终端使用的极化方向是发送该SSB信号的极化方向。进而终端也无法确定SSB信号所使用的极化方向,从而影响后续的传输过程。
为了解决或至少部分解决上述问题,本申请实施例提出了一种同步信号块的传输方法。
为了便于更好地理解本申请实施例,首先对5G NR SSB的设计进行介绍。
第一方面,NR SSB(Synchronization Signal Block)包括:
PSS(Primary Synchronization Signal):主同步信号,长度为127的m序列,位于1st OFDM,占用子载波56-182;
SSS(Secondary Synchronization Signal):辅同步信号,长度为127的m序列,位于3rd OFDM,占用子载波56-182;
PBCH(Physical Broadcast Channel):物理广播信道,带宽为20RB,占用3个OFDM符号,包括2nd、4nd以及3rd符号的两边4个RB。其中PBCH Payload 32bit,CRC attachment 24bit,共传输56bit信息,占用432RE(QPSK);
PBCH-DMRS(Demodulation Reference Signal):PBCH解调导频,以1/4的密度映射至PBCH;
PCI(Physical Cell Identifier,物理小区标识)构成:
Figure PCTCN2021125028-appb-000001
其中,
Figure PCTCN2021125028-appb-000002
Figure PCTCN2021125028-appb-000003
共1008个PCI。
SSB周期可配置为{5,10,20,40,80,160}ms,PBCH TTI(Transmission Time Interval,传输时间间隔)固定为80ms。每个周期内可能包含1或者多个SSB,且同一个周期内的SSB在一个5ms的窗内发送,这些SSB组成一个同步信号突发集SS burst set。
对于某个频域,假设一个周期内最多发送L SSB个SSB,则L SSB个SSB是在一个5ms的时间窗内按照协议定义好的时域位置(在本申请实施例中,称为候选位置)进行传输的。
一个时间窗内可以包含4、8或者64个SSB的候选位置。其中,频点在0-3GHz时,包含4个SSB的候选位置;频点在3-6GHz时,包含8个SSB的候选位置;频点在6GHz以上时,包含64个SSB的候选位置。
不同SCS(子载波间隔)下,SSB的候选位置模式(pattern)可能不同,如表1所示。
表1
Figure PCTCN2021125028-appb-000004
表1中,n为时隙号,idx为SSB候选位置的OFDM符号索引,L SSB为SSB候选位置数量,f c为频点。
第二方面,利用如下公式生成PSS的序列:
d PSS(n)=1-2x(m)
Figure PCTCN2021125028-appb-000005
0≤n<127
其中,PSS的生成多项式为:x(i+7)=(x(i+4)+x(i))mod2,
PSS序列初始值为:
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
利用如下公式生成SSS:
d SSS(n)=[1-2x 0((n+m 0)mod127)][1-2x 1((n+m 1)mod127)]
Figure PCTCN2021125028-appb-000006
Figure PCTCN2021125028-appb-000007
0≤n<127
其中,SSS的生成多项式为:
Figure PCTCN2021125028-appb-000008
SSS序列初始值为:
Figure PCTCN2021125028-appb-000009
图2为本申请实施例提供的同步信号块的传输方法的流程示意图之一,该方法的执行主体为网络侧设备,如图2所示,该方法包括以下步骤:
步骤100、在第一传输时机,以第一极化方向发送第一同步信号块;
需要说明的是,传输时机occasion是指一个时间窗内传输信号的时域位置。
此处,第一传输时机是传输第一同步信号块SSB的时域位置。
第一传输时机可以是候选SSB传输时机(candidate SSB occasion),也可以是实际发送SSB的传输时机。
候选SSB传输时机用于指示SSB可以在哪些时域位置上进行传输。
在第一传输时机,网络侧设备以第一极化方向发送第一同步信号块。
可以理解的是,网络侧设备发送的第一同步信号块携带有极化方向指示。
步骤101、经过第一时间间隔,以第二极化方向发送第二同步信号块;
具体地,经过第一时间间隔,网络侧设备以第二极化方向发送第二同步信号块。
可以理解的是,网络侧设备发送的第二同步信号块携带有极化方向指示。
其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息,可以理解的是,第一同步信号块与第二同步信号块具有对应关系,例如,第一同步信号块与第二同步信号块指示部分相同的信息,以供终端进行同步、系统信息获取、测量评估等。
网络侧设备在第一传输时机,以第一极化方向发送第一同步信号块,经过第一时间间隔,以第二极化方向发送第二同步信号块,且第一同步信号块与第二同步信号块包含相同信息,如此,可以保证终端在一定时间内成功接收到SSB。
例如,若终端接收天线使用第一极化方向,不使用或无法使用第二极化方向,则终端可以接收到第一同步信号块,在电磁波传输过程中没有发生旋向逆转的情形下,接收不到第二同步信号块。
例如,若终端接收天线不使用或无法使用该第一极化方向,而使用第二极化方向,则终端在电磁波传输过程中没有发生旋向逆转的情形下无法接收到该第一同步信号块,但是可以接收到第二同步信号块。
例如,若终端天线为线极化天线,由于接收功率只有同等圆极化天线的一半,即存在3dB的解极化损失,则终端可以接收两个不同极化方向的同步信号块,进行一定的合并,补偿解极化损失。
例如,若终端同时支持第一极化方向和第二极化方向,则终端可以不用事先知道,第一极化方向是对应LHCP还是RHCP,均可接收第一极化方向和/或第二极化方向上的同步信号块;若终端检测到SSB信号,可以对该SSB信号进行解码,由于SSB信号携带有极化方向指示,可以确定解码成功的SSB信号的极化方向。
本申请实施例提供的同步信号块的传输方法,通过在不同的传输时机以不同的极化方向传输同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
可选的,所述第一极化方向为左旋圆极化LHCP,所述第二极化方向为右旋圆极化RHCP;或者,
所述第一极化方向为右旋圆极化RHCP,所述第二极化方向为左旋圆极化LHCP。
可选的,所述第一时间间隔通过预定义或预配置的方式进行确定。
可以理解的是,不同的子载波间隔和载频范围所对应的一个时间窗内的SSB候选位置数量不同,可以根据SSB候选位置数量,通过预定义或预配置的方式确定发送第一同步信号块和第二同步信号块的时间间隔。
对于Case A-15kHz SCS,假设载频小于3GHz,则L SSB=4,SSB候选位置的OFDM符号索引idx=2,8,16,22,如图3所示,为本申请实施例提供的SSB传输示意图之一。在一个5ms的半帧内,slot#0,slot#1中的4个candidate SSB使用左旋圆极化LHCP,slot#2,slot#3中的4个candidate SSB使用右旋圆极化RHCP。此时,对应的第一时间间隔为2个slots/28个OFDM符号,且对应的第一SSB信号和第二SSB信号具有相同SSB index。可以理解的是,在idx=2,以LHCP发送SSB#0,经过第一时间间隔,在idx=30,以RHCP发送SSB#0;在idx=8,以LHCP发送SSB#1,经过第一时间间隔,在idx=36,以RHCP发送SSB#1;依次类推,不再赘述。
对于Case A-15kHz SCS,假设载频小于3GHz,则L SSB=4,SSB所在的OFDM索引idx=2,8,16,22,如图4所示,为本申请实施例提供的SSB传输示意图之二。在一个5ms的半帧内,slot#0,slot#1中的4个candidate SSB使用右旋圆极化RHCP,slot#2,slot#3中的4个candidate SSB使左旋圆极化LHCP。此时,对应的第一时间间隔为2个slots/28个OFDM符号,对应的第一SSB信号和第二SSB信号具有相同SSB index。可以理解的是,在idx=2,以RHCP发送SSB#0,经过第一时间间隔,在idx=30,以LHCP发送SSB#0;在idx=8,以RHCP发送SSB#1,经过第一时间间隔,在idx=36,以LHCP发送SSB#1。依次类推,不再赘述。
需要说明的是,确定了第一时间间隔,则第一同步信号块和第二同步信号块的传输关系是确定的。若使用LHCP的终端收到SSB后,成功解调SSB,但极化方向指示表明该SSB是RHCP SSB,则终端可以隐式地知道LHCP SSB在哪里发。此时终端可以选择再重新在相应的位置去接收LHCP  SSB,从而得到其他相关的信息。
可选的,所述第一时间间隔的大小为以下各项中的一种:
大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
一个无线帧;
{5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
配置的SSB周期。
可选的,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过以下至少一种方式指示:
主同步信号PSS;
辅同步信号SSS;
MIB;
SSB index;
PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
需要说明的是,极化方向的携带方式是不区分第一同步信号块和第二同步信号块的,即所述第一同步信号块的极化方向和第二同步信号块的极化方向采用相同的方式进行指示。
在一些可选的实施例中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过主同步信号PSS指示,包括:
在PSS生成时,通过不同的PSS生成多项式对应不同的极化方向来进行指示;或者,在PSS生成时,通过不同的PSS序列初始值对应不同的极化方向来进行指示。
(1)在PSS生成时,通过不同的PSS生成多项式对应不同的极化方向来进行指示
具体地,在本申请的一个实施例中,LHCP SSB中PSS使用的生成多项式为x^7+x^4+1,而RHCP SSB中PSS使用的生成多项式为x^7+x+1,即有:
LHCP PSS的序列生成公式为:
d PSS(n)=1-2x(m)
Figure PCTCN2021125028-appb-000010
0≤n<127
其中,LHCP PSS的生成多项式为:x(i+7)=(x(i+4)+x(i))mod2,
LHCP PSS序列初始值为:
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0];
修改后的RHCP PSS的序列生成公式为:
d PSS(n)=1-2x(m)
Figure PCTCN2021125028-appb-000011
0≤n<127
其中,RHCP PSS的生成多项式为:x(i+7)=(x(i+1)+x(i))mod2,
RHCP PSS序列初始值为:
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
在另一个实施例中,LHCP SSB中PSS使用的生成多项式可以为x^7+x+1,而RHCP SSB中PSS使用的生成多项式为x^7+x^4+1。
(2)在PSS生成时,通过不同的PSS序列初始值对应不同的极化方向来进行指示。
例如,LHCP SSB中PSS使用的序列初始值为[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],而RHCP SSB中PSS使用的序列初始值为[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[0 0 0 0 0 0 1],反之亦然。
在一些可选的实施例中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过辅同步信号SSS指示,包括:
在SSS生成时,通过不同的SSS序列初始值对应不同的极化方向来进行指示。
具体地,在当前协议中,SSS序列初始值为:
Figure PCTCN2021125028-appb-000012
PSS序列初始值为:
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
在本申请实施例中,LHCP SSB中SSS使用的序列初始值可以为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1]
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1],
而RHCP SSB中SSS使用的序列初始值为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[1 1 1 0 1 1 0]
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[1 1 1 0 1 1 0],
反之亦然。
或者,
在本申请实施例中,LHCP SSB中SSS使用的序列初始值为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[1 1 1 0 1 1 0]
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1],
而RHCP SSB中SSS使用的序列初始值为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1]
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[1 1 1 0 1 1 0],
反之亦然。
在一些可选的实施例中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过 MIB指示,包括:
通过MIB中的1比特空余位或PDCCH-ConfigSIB1字段的不同取值对应不同的极化方向来进行指示。
具体地,在当前协议中,MIB存在1比特的spare bit位,如下:
Figure PCTCN2021125028-appb-000013
在本申请实施例中,LHCP SSB或RHCP SSB中的MIB信息可以各自携带极化方向指示,则此时LHCP SSB和RHCP SSB中MIB内容是不同的。当终端成功解码PBCH后,通过MIB即可得到该SSB的极化方向指示。
MIB中PDCCH-ConfigSIB1可能在某些情形下,存在未使用或未定义的bit,也可以作为极化方向指示。
在一些可选的实施例中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过SSB index指示。
具体地,第一同步信号块的极化方向与第二同步信号块的极化方向采用不同的index集合,例如,偶数index对应LHCP,奇数index对应RHCP,即通过SSB index的最低有效位LSB进行区分。
例如,对于Case B-30kHz SCS,假设载频大于3GHz且小于6GHz,则L SSB=8,idx=4,8,16,20,32,36,44,48,如图5所示,为本申请实施例提供的SSB传输示意图之三。根据所述的SSB传输方法,可能的一种传输方式如下:在偶数SSB index上,使用LHCP发送SSB,而在奇数SSB index上,使用RHCP发送SSB。此时,第一时间间隔为4个OFDM符号大小。
需要说明的是,SSB index的最低有效位LSB区分,会影响DMRS序列的初始化。
在一些可选的实施例中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过PBCH携带的8比特物理层信息中的部分比特指示,其中,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
具体地,在当前协议中,PBCH携带的8比特物理层信息为:
Figure PCTCN2021125028-appb-000014
其中:
Figure PCTCN2021125028-appb-000015
分别对应SFN(System Frame Number,系统帧号)的4th,3rd,2nd,1st LSB(least significant bits,最低有效位);
Figure PCTCN2021125028-appb-000016
为半帧指示HFI(half frame indicator);
如果SSB候选位置数量
Figure PCTCN2021125028-appb-000017
Figure PCTCN2021125028-appb-000018
分别是SSB index的6th,5th,4th比特;否则,
Figure PCTCN2021125028-appb-000019
是k SSB的MSB(Most Significant Bit,最高有效位),
Figure PCTCN2021125028-appb-000020
为保留位,其中,k SSB 表示SSB与公共资源块之间在频率上偏移的子载波个数。
在本申请实施例中,为了指示极化方向,可以通过预定义或预配置的方式将LHCP SSB固定在一个无线帧的前半帧中发送,RHCP SSB固定在一个无线帧的后半帧中发送,即可以利用半帧指示HFI来指示极化方向。
特别地,当L SSB=4时,由于DMRS序列的初始化计算与
Figure PCTCN2021125028-appb-000021
取值有关,而
Figure PCTCN2021125028-appb-000022
i SSB表示SSB index的2位最低有效位(LSB),n hf表示HFI,n hf=0,前半帧;n hf=1,后半帧。则此时对于LHCP SSB中PBCH的DMRS序列,始终使用
Figure PCTCN2021125028-appb-000023
进行初始化计算;而对于RHCP SSB中PBCH的DMRS序列,始终使用
Figure PCTCN2021125028-appb-000024
进行初始化计算。
反之,在一个实施例中,可以将RHCP SSB固定在一个无线帧的前半帧中发送,LHCP SSB固定在一个无线帧的后半帧中发送。
可选的,为了指示极化方向,还可以通过PBCH携带的8比特物理层信息中除携带系统帧号SFN和HFI的信息比特外的其他比特来携带,包括
Figure PCTCN2021125028-appb-000025
Figure PCTCN2021125028-appb-000026
例如,当公共资源块与SSB之间在频率上偏移的子载波个数k SSB最大不超过1个RB,即12个子载波时,MIB中ssb-SubcarrierOffset取值范围为0~15,已经足够指示偏移的子载波个数,则可以不利用
Figure PCTCN2021125028-appb-000027
来扩展k SSB的取值范围,则可利用
Figure PCTCN2021125028-appb-000028
来指示极化方向。
可以理解的是,第一同步信号块的极化方向和第二同步信号块的极化方向是通过SSB信号进行指示的。终端接收到SSB信号后,通过对SSB信号进行解调,可以确定该SSB信号的极化方向。
极化方向的指示方式可以影响第一同步信号块与第二同步信号块所包含的相同信息的具体内容。
本申请实施例提供的同步信号块的传输方法,通过SSB传输携带极化方向指示,可以使得终端确定后续传输过程使用的极化方向。
可选的,所述相同信息至少包括以下一项内容:
物理小区标识PCI;
主信息块MIB中的至少部分字段;
物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
同步信号块SSB索引index;
PBCH解调参考信号DMRS序列初始化所使用的初始值。
可以理解的是,第一同步信号块与第二同步信号块至少以下一项内容相同:
(1)物理小区标识PCI;
物理小区标识PCI由主同步信号PSS序列和辅同步信号SSS序列共同确定。
(2)主信息块MIB(Master Information Block)中的至少部分字段;
例如,第一同步信号块与第二同步信号块的MIB中至少部分字段相同,可以是除了用于指示极化方向的1比特空余位的其他字段内容相同,可以是除了用于指示极化方向的PDCCH-ConfigSIB1字段的其他字段内容相同,也可以是除了1比特空余位和PDCCH-ConfigSIB1字段的其他字段内容相同,也可以是MIB的所有字段内容相同。
(3)物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
例如,第一同步信号块与第二同步信号块的物理广播信道PBCH携带的8比特物理层信息中的至少部分信息相同,可以是除了用于指示极化方向的比特信息外的其他比特信息
Figure PCTCN2021125028-appb-000029
相同,也可以是除了
Figure PCTCN2021125028-appb-000030
Figure PCTCN2021125028-appb-000031
的其他比特信息相同,也可以是8比特物理层信息中的所有比特信息相同。
(4)同步信号块SSB索引index;
具体地,若第一同步信号块的SSB index与第二同步信号块的SSB index相同,则表明第一同步信号块的极化方向和第二同步信号块的极化方向是通过除SSB index以外的其他方式指示的。
(5)PBCH解调参考信号DMRS序列初始化所使用的初始值。
由于DMRS序列初始化所使用的初始值与SSB index以及半帧指示HFI有关,若第一同步信号块的DMRS序列初始化所使用的初始值与第二同步信号块的DMRS序列初始化所使用的初始值相同,则表明第一同步信号块的SSB index与第二同步信号块的SSB index相同,且第一同步信号块的HFI与第二同步信号块的HFI相同。
可选的,所述同步信号块的传输方法,还包括:
通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
具体地,为了减少后续传输过程的干扰,不同波束覆盖区可能使用不同频率范围和/或不同极化方向,此时需要网络侧设备将该频率范围和/或极化方向指示给相应的终端。因此,可以通过SSB极化方向指示和/或SSB index,确定波束ID或BWP ID。
图6为本申请实施例提供的同步信号块的传输方法的流程示意图之二,该方法的执行主体为终端,如图6所示,该方法包括以下步骤:
步骤200、在第一传输时机,接收第一同步信号块;和/或,在第二传输时机,接收第二同步信号块;
其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
具体地,在终端天线为线极化天线的情况下,由于接收功率只有同等圆极化天线的一半,即存在3dB的解极化损失,则终端可以接收两个不同极化方向的同步信号块,进行一定的合并,补偿解极化损失。
在终端天线为圆极化天线的情况下,终端在第一传输时机接收第一同步信号块,和/或,在第二传输时机,接收第二同步信号块。
所述第一同步信号块的极化方向为第一极化方向,第二同步信号块的极化方向为第二极化方向。
例如,若终端接收天线使用第一极化方向,不使用或无法使用第二极化方向,则终端可以接收到第一同步信号块,在电磁波传输过程中没有发生旋向逆转的情形下,接收不到第二同步信号块。
例如,若终端接收天线不使用或无法使用该第一极化方向,而使用第二极化方向,则终端在电磁波传输过程中没有发生旋向逆转的情形下无法接收到该第一同步信号块,但是可以接收到第二同步信号块。
若终端同时支持第一极化方向和第二极化方向,则终端可以不用事先知道,第一极化方向是对应LHCP还是RHCP,均可接收第一极化方向和/或第二极化方向上的同步信号块;若终端检测到SSB信号,可以对该SSB信号进行解码,由于SSB信号携带有极化方向指示,可以确定解码成功的SSB信号的极化方向。
本申请实施例提供的同步信号块的传输方法,通过在不同的传输时机以不同的极化方向传输 同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
可选的,所述第一同步信号块的极化方向为左旋圆极化LHCP,所述第二同步信号块的极化方向为右旋圆极化RHCP;或者,
所述第一同步信号块的极化方向为右旋圆极化RHCP,所述第二同步信号块的极化方向为左旋圆极化LHCP。
可选的,所述相同信息至少包括以下一项内容:
物理小区标识PCI;
主信息块MIB信息中的至少部分字段;
物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
同步信号块SSB索引index;
PBCH解调参考信号DMRS序列初始化所使用的初始值。
具体来说,本申请实施例提供的同步信号块的传输方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应实施例相同的部分及有益效果进行具体赘述。
可选的,所述同步信号块的传输方法还包括:
对所述第一同步信号块和/或第二同步信号块进行解调;
基于以下至少一种方式,确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向:
主同步信号PSS;
辅同步信号SSS;
MIB;
SSB index;
PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
具体地,终端接收到第一同步信号块和/或第二同步信号块之后,对所接收到的第一同步信号块和/或第二同步信号块进行解调,并确定第一同步信号块的极化方向和/或第二同步信号块的极化方向。
在一些可选的实施例中,终端通过主同步信号PSS确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向。
具体地,终端基于接收SSB时使用的天线极化方向所对应的PSS生成多项式进行PSS序列检测;或者,基于接收SSB时使用的天线极化方向所对应的PSS序列初始值进行PSS序列检测。
例如,终端已知用于接收SSB时使用的天线极化方向,如RHCP,则此时终端在进行PSS序列检测时,本地PSS序列使用生成多项式x^7+x+1,从而进行后续的检测。当成功解码PBCH时,终端即可确定该SSB的极化方向。
在一些可选的实施例中,终端通过辅同步信号SSS确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向。
具体地,终端基于接收SSB时使用的天线极化方向所对应的SSS序列初始值进行SSS序列检测。
在一些可选的实施例中,终端通过MIB确定所述第一同步信号块的极化方向和/或第二同步 信号块的极化方向。
具体地,终端通过MIB中的1比特空余位或PDCCH-ConfigSIB1字段的取值确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向。
在一些可选的实施例中,终端通过SSB index确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向。例如,偶数index对应LHCP,奇数index对应RHCP。
进一步地,LHCP SSB和RHCP SSB使用了不同index集合,其对应关系可以预定义或预配置确定,则终端接收到SSB信号,并检测出SSB index时,即可得知该SSB的极化方向。对于终端而言,已知接收SSB时使用的极化方向,再根据检测得到的SSB index,即可确定后续极化方向;或终端到另一极化方向的SSB occasion上重新接收SSB,检测得到其他相关的系统信息。
在一些可选的实施例中,终端通过PBCH携带的8比特物理层信息中的部分比特确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
其中,除携带系统帧号SFN和HFI的信息比特外的其他比特,包括
Figure PCTCN2021125028-appb-000032
Figure PCTCN2021125028-appb-000033
本申请实施例提供的同步信号块的传输方法,通过SSB传输携带极化方向指示,可以使得终端确定后续传输过程使用的极化方向。
可选的,所述第一时间间隔通过预定义或预配置的方式进行确定。
具体来说,本申请实施例提供的同步信号块的传输方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应实施例相同的部分及有益效果进行具体赘述。
可选的,所述第一时间间隔的大小为以下各项中的一种:
大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
一个无线帧;
{5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
配置的SSB周期。
具体来说,本申请实施例提供的同步信号块的传输方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应实施例相同的部分及有益效果进行具体赘述。
可选的,所述同步信号块的传输方法还包括:
通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
具体来说,本申请实施例提供的同步信号块的传输方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例提供的同步信号块的传输方法,执行主体可以为同步信号块的传输装置,或者,该同步信号块的传输装置中的用于执行同步信号块的传输方法的控制模块。本申请实施例中以同步信号块的传输装置执行同步信号块的传输方法为例,说明本申请实施例提供的同步信号块的传输装置。
图7为本申请实施例提供的同步信号块的传输装置的结构示意图之一,包括:第一发送单元710和第二发送单元720,其中,
第一发送单元710,用于在第一传输时机,以第一极化方向发送第一同步信号块;
第二发送单元720,用于经过第一时间间隔,以第二极化方向发送第二同步信号块;
其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。
可选的,所述第一极化方向为左旋圆极化LHCP,所述第二极化方向为右旋圆极化RHCP;或者,
所述第一极化方向为右旋圆极化RHCP,所述第二极化方向为左旋圆极化LHCP。
可选的,所述相同信息至少包括以下一项内容:
物理小区标识PCI;
主信息块MIB中的至少部分字段;
物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
同步信号块SSB索引index;
PBCH解调参考信号DMRS序列初始化所使用的初始值。
可选的,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过以下至少一种方式指示:
主同步信号PSS;
辅同步信号SSS;
MIB;
SSB index;
PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
可选的,所述第一时间间隔通过预定义或预配置的方式进行确定。
可选的,所述第一时间间隔的大小为以下各项中的一种:
大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
一个无线帧;
{5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
配置的SSB周期。
可选的,还包括:
第一确定单元,用于通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
本申请实施例提供的同步信号块的传输装置,通过在不同的传输时机以不同的极化方向传输同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
本申请实施例中的同步信号块的传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的同步信号块的传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的同步信号块的传输装置能够实现图2至图5的方法实施例实现的各个过 程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8为本申请实施例提供的同步信号块的传输装置的结构示意图之二,包括:
接收单元810,用于在第一传输时机,接收第一同步信号块;和/或,用于在第二传输时机,接收第二同步信号块;
其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
可选的,所述第一同步信号块的极化方向为左旋圆极化LHCP,所述第二同步信号块的极化方向为右旋圆极化RHCP;或者,
所述第一同步信号块的极化方向为右旋圆极化RHCP,所述第二同步信号块的极化方向为左旋圆极化LHCP。
可选的,所述相同信息至少包括以下一项内容:
物理小区标识PCI;
主信息块MIB信息中的至少部分字段;
物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
同步信号块SSB索引index;
PBCH解调参考信号DMRS序列初始化所使用的初始值。
可选的,还包括:
解调单元,用于对所述第一同步信号块和/或第二同步信号块进行解调;
第二确定单元,用于基于以下至少一种方式,确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向:
主同步信号PSS;
辅同步信号SSS;
MIB;
SSB index;
PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
可选的,所述第一时间间隔通过预定义或预配置的方式进行确定。
可选的,所述第一时间间隔的大小为以下各项中的一种:
大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
一个无线帧;
{5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
配置的SSB周期。
可选的,还包括:
第三确定单元,用于通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
本申请实施例提供的同步信号块的传输装置,通过在不同的传输时机以不同的极化方向传输同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
本申请实施例中的同步信号块的传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached  Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的同步信号块的传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的同步信号块的传输装置能够实现图6所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种网络侧设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述同步信号块的传输装置可以位于基带装置1003中,以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板 11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,射频单元1101,用于在第一传输时机,接收第一同步信号块;和/或,在第二传输时机,接收第二同步信号块;
其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
本申请实施例提供的终端,可以接收到来自未知极化方向上的SSB信号。
可选的,所述第一同步信号块的极化方向为左旋圆极化LHCP,所述第二同步信号块的极化方向为右旋圆极化RHCP;或者,
所述第一同步信号块的极化方向为右旋圆极化RHCP,所述第二同步信号块的极化方向为左旋圆极化LHCP。
可选的,所述相同信息至少包括以下一项内容:
物理小区标识PCI;
主信息块MIB信息中的至少部分字段;
物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
同步信号块SSB索引index;
PBCH解调参考信号DMRS序列初始化所使用的初始值。
可选的,处理器1110,还用于对所述第一同步信号块和/或第二同步信号块进行解调;
基于以下至少一种方式,确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向:
主同步信号PSS;
辅同步信号SSS;
MIB;
SSB index;
PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
可选的,所述第一时间间隔通过预定义或预配置的方式进行确定。
可选的,所述第一时间间隔的大小为以下各项中的一种:
大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
一个无线帧;
{5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
配置的SSB周期。
可选的,处理器1110还用于:
通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
本申请实施例提供的终端,通过在不同的传输时机以不同的极化方向传输同步信号块,可以减小SSB盲检时间,保证终端在一定时间内成功接收到SSB信号。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式, 上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种同步信号块的传输方法,包括:
    网络侧设备在第一传输时机,以第一极化方向发送第一同步信号块;
    所述网络侧设备经过第一时间间隔,以第二极化方向发送第二同步信号块;
    其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。
  2. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一极化方向为左旋圆极化LHCP,所述第二极化方向为右旋圆极化RHCP;或者,
    所述第一极化方向为右旋圆极化RHCP,所述第二极化方向为左旋圆极化LHCP。
  3. 根据权利要求1所述的同步信号块的传输方法,其中,所述相同信息至少包括以下一项内容:
    物理小区标识PCI;
    主信息块MIB中的至少部分字段;
    物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
    同步信号块SSB索引index;
    PBCH解调参考信号DMRS序列初始化所使用的初始值。
  4. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过以下至少一种方式指示:
    主同步信号PSS;
    辅同步信号SSS;
    MIB;
    SSB index;
    PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
  5. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一时间间隔通过预定义或预配置的方式进行确定。
  6. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一时间间隔的大小为以下各项中的一种:
    大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
    一个无线帧;
    {5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
    配置的SSB周期。
  7. 根据权利要求1所述的同步信号块的传输方法,其中,还包括:
    所述网络侧设备通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
  8. 一种同步信号块的传输方法,包括:
    终端在第一传输时机,接收第一同步信号块;和/或,在第二传输时机,接收第二同步信号块;
    其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
  9. 根据权利要求8所述的同步信号块的传输方法,其中,所述第一同步信号块的极化方向为 左旋圆极化LHCP,所述第二同步信号块的极化方向为右旋圆极化RHCP;或者,
    所述第一同步信号块的极化方向为右旋圆极化RHCP,所述第二同步信号块的极化方向为左旋圆极化LHCP。
  10. 根据权利要求8所述的同步信号块的传输方法,其中,所述相同信息至少包括以下一项内容:
    物理小区标识PCI;
    主信息块MIB信息中的至少部分字段;
    物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
    同步信号块SSB索引index;
    PBCH解调参考信号DMRS序列初始化所使用的初始值。
  11. 根据权利要求8所述的同步信号块的传输方法,其中,还包括:
    所述终端对所述第一同步信号块和/或第二同步信号块进行解调;
    所述终端基于以下至少一种方式,确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向:
    主同步信号PSS;
    辅同步信号SSS;
    MIB;
    SSB index;
    PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
  12. 根据权利要求8所述的同步信号块的传输方法,其中,所述第一时间间隔通过预定义或预配置的方式进行确定。
  13. 根据权利要求8所述的同步信号块的传输方法,其中,所述第一时间间隔的大小为以下各项中的一种:
    大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
    一个无线帧;
    {5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
    配置的SSB周期。
  14. 根据权利要求8所述的同步信号块的传输方法,其中,还包括:
    所述终端通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
  15. 一种同步信号块的传输装置,包括:
    第一发送单元,用于在第一传输时机,以第一极化方向发送第一同步信号块;
    第二发送单元,用于经过第一时间间隔,以第二极化方向发送第二同步信号块;
    其中,所述第一极化方向与所述第二极化方向不同,所述第一同步信号块与第二同步信号块包含相同信息。
  16. 根据权利要求15所述的同步信号块的传输装置,其中,所述第一极化方向为左旋圆极化LHCP,所述第二极化方向为右旋圆极化RHCP;或者,
    所述第一极化方向为右旋圆极化RHCP,所述第二极化方向为左旋圆极化LHCP。
  17. 根据权利要求15所述的同步信号块的传输装置,其中,所述相同信息至少包括以下一项 内容:
    物理小区标识PCI;
    主信息块MIB中的至少部分字段;
    物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
    同步信号块SSB索引index;
    PBCH解调参考信号DMRS序列初始化所使用的初始值。
  18. 根据权利要求15所述的同步信号块的传输装置,其中,所述第一同步信号块的极化方向和第二同步信号块的极化方向通过以下至少一种方式指示:
    主同步信号PSS;
    辅同步信号SSS;
    MIB;
    SSB index;
    PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
  19. 根据权利要求15所述的同步信号块的传输装置,其中,所述第一时间间隔通过预定义或预配置的方式进行确定。
  20. 根据权利要求15所述的同步信号块的传输装置,其中,所述第一时间间隔的大小为以下各项中的一种:
    大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
    一个无线帧;
    {5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
    配置的SSB周期。
  21. 根据权利要求15所述的同步信号块的传输装置,其中,还包括:
    第一确定单元,用于通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
  22. 一种同步信号块的传输装置,其中,包括:
    接收单元,用于在第一传输时机,接收第一同步信号块;和/或,用于在第二传输时机,接收第二同步信号块;
    其中,所述第一同步信号块与第二同步信号块包含相同信息,所述第一同步信号块的极化方向与第二同步信号块的极化方向不同,所述第一传输时机与第二传输时机之间间隔第一时间间隔。
  23. 根据权利要求22所述的同步信号块的传输装置,其中,所述第一同步信号块的极化方向为左旋圆极化LHCP,所述第二同步信号块的极化方向为右旋圆极化RHCP;或者,
    所述第一同步信号块的极化方向为右旋圆极化RHCP,所述第二同步信号块的极化方向为左旋圆极化LHCP。
  24. 根据权利要求22所述的同步信号块的传输装置,其中,所述相同信息至少包括以下一项内容:
    物理小区标识PCI;
    主信息块MIB信息中的至少部分字段;
    物理广播信道PBCH携带的8比特物理层信息中的至少部分信息;
    同步信号块SSB索引index;
    PBCH解调参考信号DMRS序列初始化所使用的初始值。
  25. 根据权利要求22所述的同步信号块的传输装置,其中,还包括:
    解调单元,用于对所述第一同步信号块和/或第二同步信号块进行解调;
    第二确定单元,用于基于以下至少一种方式,确定所述第一同步信号块的极化方向和/或第二同步信号块的极化方向:
    主同步信号PSS;
    辅同步信号SSS;
    MIB;
    SSB index;
    PBCH携带的8比特物理层信息中的部分比特,所述部分比特包括:半帧指示HFI,或者,除携带系统帧号SFN和HFI的信息比特外的其他比特。
  26. 根据权利要求22所述的同步信号块的传输装置,其中,所述第一时间间隔通过预定义或预配置的方式进行确定。
  27. 根据权利要求22所述的同步信号块的传输装置,其中,所述第一时间间隔的大小为以下各项中的一种:
    大于或等于0的正整数,单位为时隙slot、子帧或正交频分复用OFDM符号;
    一个无线帧;
    {5ms,10ms,20ms,40ms,80ms,160ms}中的一个;
    配置的SSB周期。
  28. 根据权利要求22所述的同步信号块的传输装置,其中,还包括:
    第三确定单元,用于通过极化方向和/或SSB index,确定波束Beam ID或部分带宽BWP ID。
  29. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的同步信号块的传输方法的步骤。
  30. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求8至14任一项所述的同步信号块的传输方法的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至7任一项所述的同步信号块的传输方法,或者实现如权利要求8至14任一项所述的同步信号块的传输方法的步骤。
  32. 一种同步信号块的传输,被配置成用于执行如权利要求1至7任一项所述的同步信号块的传输方法的步骤,或者,如权利要求8至14任一项所述的同步信号块的传输方法的步骤。
  33. 一种网络侧设备,被配置成用于执行如权利要求1至7任一项所述的同步信号块的传输方法的步骤。
  34. 一种终端,被配置成用于执行如权利要求8至14任一项所述的同步信号块的传输方法的步骤。
  35. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至7任一项所述的同步信号块的传输方法,或者实现如权利要求8至14任一项所述的同步信号块的传输方法的步骤。
PCT/CN2021/125028 2020-10-22 2021-10-20 同步信号块的传输方法、装置、设备及存储介质 WO2022083646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023524836A JP2023547873A (ja) 2020-10-22 2021-10-20 同期信号ブロックの伝送方法、装置、機器及び記憶媒体
EP21882061.1A EP4236493A4 (en) 2020-10-22 2021-10-20 METHOD AND DEVICE FOR TRANSMITTING A SYNCHRONIZATION SIGNAL BLOCK AND DEVICE AND STORAGE MEDIUM
US18/302,089 US20230261825A1 (en) 2020-10-22 2023-04-18 Synchronization signal block transmission method and apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011144254.2 2020-10-22
CN202011144254.2A CN114390663B (zh) 2020-10-22 2020-10-22 同步信号块的传输方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,089 Continuation US20230261825A1 (en) 2020-10-22 2023-04-18 Synchronization signal block transmission method and apparatus, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022083646A1 true WO2022083646A1 (zh) 2022-04-28

Family

ID=81194439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125028 WO2022083646A1 (zh) 2020-10-22 2021-10-20 同步信号块的传输方法、装置、设备及存储介质

Country Status (5)

Country Link
US (1) US20230261825A1 (zh)
EP (1) EP4236493A4 (zh)
JP (1) JP2023547873A (zh)
CN (1) CN114390663B (zh)
WO (1) WO2022083646A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374645B1 (en) * 2022-01-26 2022-06-28 Emeric S. Bennett Communicating polarization-dependent information over a free space channel
WO2024082133A1 (en) * 2022-10-18 2024-04-25 Huawei Technologies Co., Ltd. Systems and methods for 2-port pdcch transmission with dual-polarized antennas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309955A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端
WO2020192892A1 (en) * 2019-03-26 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of synchronization signals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098032A (ko) * 2017-02-24 2018-09-03 삼성전자주식회사 무선 통신 시스템에서 기준 신호를 전송하기 위한 장치 및 방법
WO2018204351A1 (en) * 2017-05-01 2018-11-08 Idac Holdings, Inc. Synchronization signal multiplexing and mappings in nr
US11310753B2 (en) * 2017-05-12 2022-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, network node, method and computer program for achieving synchronization
CN110419182B (zh) * 2017-11-16 2022-04-08 Lg电子株式会社 发送pbch的方法和设备以及接收pbch的方法和设备
JP2019102994A (ja) * 2017-12-04 2019-06-24 株式会社日立製作所 無線通信システムおよび無線監視制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309955A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端
WO2020192892A1 (en) * 2019-03-26 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of synchronization signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236493A4 *
VIVO: "Discussion on other aspects for NR-NTN", 3GPP DRAFT; R1-2007663, vol. RAN WG1, 24 October 2020 (2020-10-24), pages 1 - 4, XP051946469 *

Also Published As

Publication number Publication date
CN114390663A (zh) 2022-04-22
EP4236493A4 (en) 2024-04-10
US20230261825A1 (en) 2023-08-17
EP4236493A1 (en) 2023-08-30
CN114390663B (zh) 2023-06-23
JP2023547873A (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2022151979A1 (zh) 信号发送和接收方法、装置、设备和存储介质
RU2467507C2 (ru) Устройство, способ и программный продукт для указания длины циклического префикса
WO2019007389A1 (zh) 盲检测方法、信号发送方法、相关设备和系统
WO2022083646A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
CN113692000B (zh) 接收公共控制消息的方法、终端及存储介质
WO2014106498A1 (zh) 一种前导序列的传输方法、装置及系统
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
US20230397263A1 (en) Methods and devices for uplink signal transmission
AU2020223256A1 (en) Random access method and apparatus
WO2018137466A1 (zh) 信息指示方法、装置及系统
CA3140010A1 (en) Method, device and apparatus for time division duplex synchronization for distributed antenna system, and medium
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
WO2010127312A1 (en) Methods and systems for cdma evdo paging interval alignment with an overlaid wimax network
WO2022001848A1 (zh) 一种传输处理方法、装置及终端
WO2021083140A1 (zh) Ssb的接收方法及装置
WO2020164482A1 (zh) 一种数据传输方法及装置
US8965463B2 (en) Energy saving in a mobile communications network
WO2022194052A1 (zh) 传输处理方法、装置及终端
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022151423A1 (zh) 一种寻呼指示方法及装置
WO2022017492A1 (zh) 定位处理方法、装置及设备
WO2024022276A1 (zh) 低功耗信号传输方法、装置、终端及通信设备
WO2022117066A1 (zh) 信号传输方法、装置、终端及网络设备
WO2022207000A1 (zh) 物理下行控制信道重复传输方法、装置及用户设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524836

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882061

Country of ref document: EP

Effective date: 20230522