WO2022151979A1 - 信号发送和接收方法、装置、设备和存储介质 - Google Patents

信号发送和接收方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022151979A1
WO2022151979A1 PCT/CN2021/142567 CN2021142567W WO2022151979A1 WO 2022151979 A1 WO2022151979 A1 WO 2022151979A1 CN 2021142567 W CN2021142567 W CN 2021142567W WO 2022151979 A1 WO2022151979 A1 WO 2022151979A1
Authority
WO
WIPO (PCT)
Prior art keywords
pei
signal
ssb
resource
determined
Prior art date
Application number
PCT/CN2021/142567
Other languages
English (en)
French (fr)
Inventor
马璇
陈梦竹
徐俊
彭佛才
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21919166.5A priority Critical patent/EP4280702A1/en
Priority to US18/271,949 priority patent/US20240089921A1/en
Publication of WO2022151979A1 publication Critical patent/WO2022151979A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, for example, to a signal transmission and reception method, apparatus, device, and storage medium.
  • the terminal is in the radio resource control sleep state (Radio Resource Control IDLE, RRC_IDLE) and the radio resource control active state (Radio Resource Control INACTIVE, RRC_INACTIVE) In this state, each paging cycle (PC) needs to monitor a paging occasion (PO).
  • the terminal does not have paging messages in every paging cycle. Especially for UEs with low paging probability, a large number of unnecessary paging receptions lead to high power consumption.
  • the resource determination method, device, device and storage medium provided by this application can determine the PDSCH scheduling delay, and then confirm the signal transmission and reception method, device, device and storage medium provided by this application, and reduce the power consumption caused by paging reception.
  • an embodiment of the present application provides a signal receiving method, and the method is applied to a terminal, including:
  • a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to indicate whether the terminal UE receives PO within the paging cycle;
  • a predefined operation is performed based on the PEI signal.
  • an embodiment of the present application provides a signal sending method, and the method is applied to a base station, including:
  • a paging indication PEI signal is sent before the paging occasion PO, where the PEI signal is used to instruct the terminal UE to perform a predefined operation based on the PEI signal.
  • an embodiment of the present application provides a signal receiving method, where the method is applied to a terminal, including:
  • the data transmission resource includes PDSCH and PDCCH
  • an embodiment of the present application provides a signal receiving apparatus, where the apparatus is configured in a terminal, including:
  • a receiving module configured to receive a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to indicate whether the terminal UE receives the PO within the paging period;
  • An execution module configured to execute a predefined operation based on the PEI signal.
  • an embodiment of the present application provides a signal sending apparatus, the apparatus is configured in a base station, and includes:
  • the sending module is configured to send a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to instruct the terminal UE to perform a predefined operation based on the PEI signal.
  • an embodiment of the present application provides a signal receiving apparatus, where the apparatus is configured in a terminal, including:
  • a second receiving module configured to receive a data transmission resource indication, wherein the data transmission resource includes PDSCH and PDCCH; receive the first resource indication;
  • the judging module is configured to decide whether to receive data according to the priority of the data transmission resource and the first resource when the data transmission resource and the first resource overlap.
  • an embodiment of the present application provides a device, including:
  • a memory arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the method according to any one of the embodiments of this application.
  • an embodiment of the present application provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, the method according to any one of the embodiments of the present application is implemented.
  • FIG. 1 is a flowchart of a signal receiving method provided by an embodiment of the present application.
  • 2a is a flowchart of a signal sending method provided by an embodiment of the present application.
  • 2b is a flowchart of a signal receiving method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a PEI sending window provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another PEI sending window provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another PEI sending window provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a PEI_SSB_offset provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the location of a PEI and the Nth SSB provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the position of a PEI and a reference point provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a signal receiving apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a signal sending apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution, Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile communication technology
  • the base station may be a device capable of communicating with a user terminal.
  • the base station can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small cell, a transmission reference point (transmission reference point, TRP), etc., which are not limited in the embodiments of the present application.
  • a 5G base station is used as an example for description.
  • the user terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed on In the air (eg on airplanes, balloons and satellites, etc.).
  • the user terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, an industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a user terminal may also sometimes be referred to as a terminal, access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication device, UE proxy, or UE device, or the like.
  • the embodiments of the present application are not limited.
  • the UE in the RRC_IDLE state or the RRC_INACTIVE state needs to monitor the PO in every paging cycle.
  • the PO includes multiple downlink control channel monitoring occasions (PDCCH monitor occurrences).
  • the PDCCH detected by the UE at the PO is called paging downlink control information (paging, Downlink Control Information, paging DCI), and the information carried by the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the paging DCI is called For the paging message (paging message).
  • paging message Physical Downlink Shared Channel
  • the UE In order to successfully detect paging DCI and paging messages, the UE needs to complete synchronization, automatic gain control (Automatic Gain Control, AGC) and other operations before PO.
  • AGC Automatic Gain Control
  • the UE needs to perform a measurement. Therefore, before PO, the UE needs to process one or more synchronization signal blocks (Synchronizing Signal Block, SSB).
  • SSB Synchrozing Signal Block
  • the number of SSBs processed by the UE may vary with different channel conditions. And the distances between POs and SSBs of different UEs may also be different.
  • the paging frame (PF) and PO for paging are determined by the following formulas:
  • SFN system frame number
  • SFN is the system frame number of the PF
  • PF_offset is the offset of the PF
  • UE_ID is the ID number of the UE
  • T is the discontinuous reception (Discontinuous Reception, DRX) cycle.
  • N is the number of paging frames in one DRX cycle.
  • UE_ID is the ID number of the UE
  • i_s is the index number indicating the PO
  • floor( ) is the round-down function
  • N is the number of paging frames in a DRX cycle
  • Ns is the PO in a paging frame number of.
  • UE_ID 5G-S-TMSI ⁇ 1024, and 5G-S-TMSI is a bit string with a length of 48 bits.
  • the channel characteristics on one antenna port symbol can be derived from the other antenna port, then the two ports are considered to be Quasi Co-Location (QCL), and the channel estimation results obtained from one port can be used for the other port. .
  • QCL Quasi Co-Location
  • QCL-TypeA has the characteristics of Doppler shift, Doppler spread, average delay, and delay spread, which are used to obtain channel estimation information
  • QCL-TypeB has Doppler shift, Doppler spread Extended feature, the function is to obtain channel estimation information
  • QCL-TypeC has the characteristics of Doppler shift and average delay, and the function is to obtain measurement information such as RSRP
  • QCL-TypeD has the characteristics of spatial receiving antenna parameters, and the function is to assist UE beamforming .
  • a paging early indication (PEI) signal can be introduced before the PO, and the PEI signal can inform the UE in advance whether it needs to wake up the UE to receive the PO.
  • PEI paging early indication
  • Different positions of PEI relative to PO and SSB will bring different power-saving effects. Appropriate configuration can obtain better power-saving gain. When the configuration is unreasonable, the power-saving gain will be greatly reduced, or even negative effects.
  • Introducing a PEI signal before PO can inform the UE whether it needs to wake up the UE to receive PO in one or more paging cycles before receiving the PO. If the UE does not need to receive PO, the UE can stay or enter the sleep state, thereby reducing the power consumption of receiving PO, and also reducing the switching from sleep state to PO receive state and from receive PO state to sleep state (called ramp up and ramp down) required additional power consumption.
  • the time domain position of the PEI signal plays an important role in the power saving effect of the UE. If the PEI location configuration is not appropriate, the UE may need to increase the power consumption of ramp up and ramp down caused by receiving PEI, which reduces the power saving effect, or even has the opposite effect.
  • Reasonably configuring the position of PEI is a key factor to realize UE power saving.
  • the UE needs to process one or more SSBs to achieve synchronization, AGC, (same-frequency (same-frequency or inter-frequency) cell measurement, serving cell measurement, etc.) before receiving the PO.
  • AGC unsame-frequency (same-frequency or inter-frequency) cell measurement, serving cell measurement, etc.)
  • the UE may have different requirements on the number of SSBs. For example, for the UE in the center of the cell, the channel conditions are good, and the UE needs a small amount, such as one SSB, to achieve the effect of synchronization and measurement. Therefore, the UE only needs to process one SSB before PO. When the UE is located at the edge of the cell, the channel conditions are poor, and one SSB may not meet the synchronization accuracy requirements. At this time, the UE needs to process multiple SSBs to meet the synchronization and measurement requirements.
  • the operations performed by the UE in one paging cycle are different, and the position of the PEI corresponding to the optimal power saving gain is also different.
  • UEs of different types or capabilities may have different requirements on the number of SSBs. For example, UEs with 4, 2 or 1 receive antennas need to process different numbers of SSBs, and the positions of PEIs corresponding to the best power saving gain are also different. For example, ordinary UEs and reduced capability UEs (RedCap UEs) need to process different numbers of SSBs, and the positions of PEIs corresponding to the best power saving gain are also different.
  • RedCap UEs ordinary UEs and reduced capability UEs
  • the present application proposes a signal transmission and reception method, apparatus, device, and storage medium, which can obtain the highest possible power saving gain under the premise of the lowest possible resource overhead and complexity.
  • a signal receiving method is provided, the method is applied to a terminal, and the signal receiving method is suitable for determining multiple PEI time-domain positions.
  • the signal receiving method provided by the embodiment of the present application mainly includes steps S11 and S12.
  • the predefined operations include one or more of the following:
  • receiving the PEI signal prior to PO includes:
  • the PEI signal is received at the PEI time-frequency resource position within the PEI receiving window.
  • the PEI signal further includes one or more of the following information:
  • the relevant information of the PEI receiving window is configured by the base station according to one or more of the following information: terminal capability, terminal type, and DRX configuration information;
  • the relevant information of the PEI receiving window includes one or more of the following: the starting position of the PEI receiving window, the ending position of the PEI receiving window, and the duration of the PEI receiving window.
  • the end position of the PEI receiving window is the PO start position; or, the end position of the PEI receiving window is before the PO start position.
  • the duration of the PEI receive window is associated with the period of the SSB: the duration of the PEI receive window is equal to N SSB periods plus an offset, where N ⁇ 0, the offset is greater than or equal to 0 .
  • the time domain location of the PEI signal is determined by the SSB associated with the PEI signal.
  • the PEI signal is received at the PEI time-frequency resource position in the PEI receiving window, including one or more of the following:
  • the PEI signal is received at a third preset position within the PEI receiving window, where the third preset position is determined based on measurement results of the last one or more paging cycles.
  • the time domain position of the PEI signal is associated with the Nth SSB before PO, where N is a positive integer.
  • the SSB associated with the PEI signal satisfies one or more of the following conditions:
  • the associated SSB is the SSB closest to the PEI signal
  • the associated SSB has a quasi-co-location relationship with the PEI signal
  • the associated SSB and the PEI signal have the same beam direction or the same quasi-co-location type
  • the associated SSB has the same index as the PEI signal
  • the associated SSB index has the same arrangement position as the PEI signal index
  • the associated SSB is configured by higher layer signaling or system messages
  • the associated SSB is determined in a predefined manner.
  • the positional relationship between the PEI signal and the SSB associated with the PEI signal is determined by one or more of the following parameters:
  • the transmission location between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same time slot;
  • the transmission position of the PEI signal is before the transmission position of the SSB associated with the PEI signal;
  • the transmission position of the PEI signal is after the transmission position of the SSB associated with the PEI signal;
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same half frame.
  • the distance between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI is the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI.
  • the distance between the PEI signal and the SSB associated with the PEI signal is determined by a first parameter; wherein the first parameter includes one or more of the following:
  • the first parameter is a number greater than or equal to 0;
  • the first parameter is any natural number
  • the first parameter is determined in a predefined manner
  • the first parameter is determined by high-level parameters
  • the first parameter is determined by UE capability
  • the first parameter is determined by the DRX parameter.
  • the N is determined within a specified range; wherein, the specified range is configured by a high-layer parameter, or the specified range is determined by pre-definition, or is indicated by downlink control information DCI.
  • the N is determined within a specified range based on one or more of the following parameters: channel measurement results, channel conditions.
  • the Nth SSB preceding the PO associated with the PEI comprises one or more of the following:
  • the SSB with the SSB index in the Nth SSB burst is the SSB with the SSB index in the Nth SSB burst.
  • the time domain location of the PEI signal is related to a preconfigured reference point prior to PO.
  • the reference points include:
  • the reference point is determined by high-level parameters
  • the distance from the reference point to PO is an integer number of SSB cycles plus an offset
  • the time domain location of the PEI signal is determined based on the distance between the PEI signal and a reference point.
  • the relationship between the PEI signal and the reference point includes at least one of the following:
  • the distance between the PEI signal and the reference point is determined by a second parameter; wherein the second parameter includes one or more of the following:
  • the second parameter is a number greater than or equal to 0;
  • the second parameter is any natural number
  • the second parameter is determined in a predefined manner
  • the second parameter is determined by high-level parameters
  • the second parameter is determined by the DRX parameter.
  • the method further includes:
  • the UE When the PEI signal is not detected on the time-frequency domain resources of the PEI or there is no detection opportunity in the paging cycle, the UE receives the PO;
  • the UE does not receive the PO
  • whether the UE receives the PO is determined by the high layer parameters.
  • the lack of PEI detection opportunities includes: at least one or all PEI detection opportunities in the PEI detection opportunities collide with or overlap with at least one of the following resources:
  • the method further includes:
  • a predefined operation is performed based on the resource overlap.
  • predefined operations are performed based on resource overlap, including:
  • a signal with a high priority is received; wherein, the predefined priority includes one or more of the following situations:
  • the priority of the PEI signal and the PDSCH is determined by the information type carried by the PDSCH and the radio network temporary identifier (Radio Network Temporary Identifier, RNTI) type of the PDCCH that scrambles and schedules the PDSCH;
  • radio network temporary identifier Radio Network Temporary Identifier, RNTI
  • the priority of the PEI signal and the access response is determined by the reason for triggering the random access response window.
  • a corresponding operation is performed based on a resource overlapping situation, including one or more of the following:
  • a signal transmission method is provided, the method is applied to a base station, and the signal transmission method is suitable for the situation of determining multiple PEI time-domain positions.
  • the signal sending method provided by the embodiment of the present application mainly includes step S21.
  • the predefined operations include one or more of the following:
  • sending the PEI signal prior to the PO includes:
  • the PEI signal is sent at the PEI time-frequency resource position within the PEI sending window.
  • the PEI signal further includes one or more of the following information:
  • the PEI signal is sent on the PEI time-frequency resource within the PEI sending window, including:
  • the PEI signal is sent according to a preset period at the PEI time-frequency resource position within the PEI sending window.
  • the preset period is a multiple of the SSB period.
  • sending the PEI signal prior to the PO includes sending the PEI at a PEI location associated with the Nth SSB prior to the PO.
  • the relevant information of the PEI transmission window is configured by the base station according to one or more of the following information: terminal capability, terminal type, and DRX configuration information;
  • the relevant information of the PEI sending window includes one or more of the following: the starting position of the PEI sending window, the ending position of the PEI sending window, and the duration of the PEI sending window.
  • the end position of the PEI transmission window is the PO start position; or, the end position of the PEI transmission window is before the PO start position.
  • the duration of the PEI transmission window is associated with the period of the SSB: the duration of the PEI transmission window is equal to N SSB periods plus an offset, where N ⁇ 0, the offset is greater than or equal to 0 .
  • the time domain location of the PEI signal is determined by the SSB associated with the PEI signal.
  • the PEI signal is received at the PEI time-frequency resource position within the PEI transmission window, including one or more of the following:
  • the second preset position in the PEI transmission window receives the PEI signal, and the second preset position is determined based on the number of SSBs processed before the PO in the last paging cycle;
  • the PEI signal is received at a third preset position within the PEI transmission window, where the third preset position is determined based on measurement results of the last one or more paging cycles.
  • the time domain position of the PEI signal is associated with the Nth SSB before PO, where N is a positive integer.
  • the SSB associated with the PEI signal satisfies one or more of the following conditions:
  • the associated SSB is the SSB closest to the PEI signal
  • the associated SSB has a quasi-co-location relationship with the PEI signal
  • the associated SSB and the PEI signal have the same beam direction or the same quasi-co-location type
  • the associated SSB has the same index as the PEI signal
  • the associated SSB index has the same arrangement position as the PEI signal index
  • the associated SSB is configured by higher layer signaling or system messages
  • the associated SSB is determined in a predefined manner.
  • the positional relationship between the PEI signal and the SSB associated with the PEI signal is determined by one or more of the following parameters:
  • the transmission location between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same time slot;
  • the transmission position of the PEI signal is before the transmission position of the SSB associated with the PEI signal;
  • the transmission position of the PEI signal is after the transmission position of the SSB associated with the PEI signal;
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same half frame.
  • the distance between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI is the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI.
  • the distance between the PEI signal and the SSB associated with the PEI signal is determined by a first parameter; wherein the first parameter includes one or more of the following:
  • the first parameter is a number greater than or equal to 0;
  • the first parameter is any natural number
  • the first parameter is determined in a predefined manner
  • the first parameter is determined by high-level parameters
  • the first parameter is determined by UE capability
  • the first parameter is determined by the DRX parameter.
  • the N is determined within a specified range; wherein, the specified range is configured by a high-layer parameter, or the specified range is determined by pre-definition, or is indicated by the downlink control information DCI.
  • the N is determined within a specified range based on one or more of the following parameters: channel measurement results, channel conditions.
  • the Nth SSB preceding the PO associated with the PEI comprises one or more of the following:
  • the SSB with the SSB index in the Nth SSB burst is the SSB with the SSB index in the Nth SSB burst.
  • transmitting the PEI signal prior to the PO includes transmitting the PEI at a PEI location associated with the pre-PO reference point.
  • the reference points include:
  • the reference point is determined by high-level parameters
  • the distance from the reference point to PO is an integer number of SSB cycles plus an offset
  • the time domain location of the PEI signal is determined based on the distance between the PEI signal and a reference point.
  • the relationship between the PEI signal and the reference point includes at least one of the following:
  • the distance between the PEI signal and the reference point is determined by a second parameter; wherein the second parameter includes one or more of the following:
  • the second parameter is a number greater than or equal to 0;
  • the second parameter is any natural number
  • the second parameter is determined in a predefined manner
  • the second parameter is determined by high-level parameters
  • the second parameter is determined by UE capability
  • the second parameter is determined by the DRX parameter
  • the information indicated by the PEI includes at least one of the following:
  • the reference signal resource or reference signal resource set indication includes one of the following:
  • the reference signal resource or the reference signal resource set is updated, activated or deactivated.
  • a signal receiving method is provided, the method is applied to a terminal, and the signal receiving method is suitable for determining how to handle resource collision or overlap.
  • the signal receiving method provided by the embodiment of the present application mainly includes steps S31, S32 and S33.
  • the terminal works in a connected state.
  • S31 Receive a data transmission resource indication, wherein the data transmission resource includes PDSCH and PDCCH;
  • the first resource is associated with a PEI signal.
  • the data transmission and the priority of the first resource include one or more of the following conditions:
  • the priority of the data transmission and the first resource is determined by at least one of the information type carried by the PDSCH, the RNTI type of the PDCCH that scrambles and schedules the PDSCH, and the triggering method;
  • the priority of the data transmission and the first resource is determined by the reason for triggering the random access response window
  • the priority of the data transmission and the first resource is the information type carried by the PDCCH, the control information format carried by the PDCCH, the RNTI type of the scrambled PDCCH, the PDCCH-related control resource set, the PDCCH At least one of the relevant search space types is determined;
  • the priority of the data transmission and the first resource is determined by at least one of the type of the reference signal, the time characteristic of the reference signal, and the triggering method of the reference signal;
  • the data transmission resource is the SSB time-frequency resource
  • the data transmission and the first resource are determined by the time-frequency resource related to the PEI.
  • information about the PEI receive window is provided. It mainly includes the meaning of the window, the size of the window, and how to configure it.
  • the PEI receive window from the UE's point of view, it is the PEI receive window, and from the base station's point of view, it is the PEI transmit window, that is, the meaning of the PEI receive window and the PEI transmit window, the size of the window, the occupied time-frequency resources, and the configuration information are all The same, only the description angle is different.
  • the base station sends the PEI signal at the PEI time-frequency resource position within the PEI sending window.
  • the PEI sending window is a period of time before PO, and the duration is PO_PEI_offset, that is, the duration of the PEI receiving window is equal to N SSB cycles plus an offset offset. where N is an integer. From the UE's point of view, it can be called the PEI receive window.
  • the end position of the PEI transmission window is the PO start position.
  • the UE detects the PEI signal at the corresponding time position within the PEI receiving window. If the PEI signal is successfully detected, a predefined operation is performed according to the indication of the PEI signal.
  • the PEI sending window is a distance before the PO, but the end position of the PEI sending window is not the position where the PO starts, but a position at a certain distance from the PO.
  • the distance between the cut-off position of the PEI transmission window and the PO may be a predefined fixed value.
  • the distance between the position where the PEI sending window ends and the PO is configured by high-level parameters.
  • the configuration information of the PEI transmission window is related to UE capability/UE type/DRX configuration.
  • the configuration of the PEI sending window includes one or more of the following: the starting position of the PEI sending window, the ending position of the PEI sending window, and the length of the PEI sending window.
  • the network/base station side configures the PEI sending window according to the capabilities of the UE, including the starting position of the PEI sending window, the ending position of the PEI sending window, and the length of the PEI sending window.
  • the UE capability includes at least one of the following: the number of receiving antennas, the number of transmitting antennas, whether coverage enhancement is supported, and the supported maximum (downlink or uplink) bandwidth.
  • the DRX configuration includes: a first type of DRX configuration, or a second type of DRX configuration. Wherein, the second type of DRX configuration includes that the DRX period is greater than or equal to 1024 ⁇ 10ms. The first type of DRX configuration includes that the DRX cycle is less than 1024 ⁇ 10ms.
  • PO_PEI_offset is a millisecond level greater than or equal to the SSB period, such as 50ms, 80ms, etc.
  • the unit of PO_PEI_offset is Slot, such as 40slots, 80slots, etc.
  • the maximum or minimum value of PO_PEI_offset is the millisecond level greater than or equal to the SSB period. For example, there is an opportunity for at least one SSB to appear within the PEI transmission window.
  • PO_PEI_offset can be related to the period value of SSB, for example, PO_PEI_offset is greater than N SSB periods; or, PO_PEI_offset is greater than or equal to N SSB periods, that is, it is guaranteed that there are N SSB occurrence opportunities within the PEI occurrence window.
  • the maximum or minimum value of PO_PEI_offset is greater than N SSB cycles; or, the maximum or minimum value of PO_PEI_offset is greater than or equal to N SSB cycles, that is, it is guaranteed that there are N SSB occurrence opportunities within the PEI occurrence window.
  • the value of PO_PEI_offset is equal to N times the SSB period plus an offset offset, where N ⁇ 0 and offset ⁇ 0.
  • the maximum or minimum value of PO_PEI_offset is equal to N times the SSB period plus an offset offset.
  • the value range of PO_PEI_offset depends on different scenarios or UE capabilities or UE types. For example, for a normal UE, the range of PO_PEI_offset is 0-3 SSB cycles; for a UE with reduced complexity (RedCap UE), the range of PO_PEI_offset is 0-5 SSB cycles.
  • the base station periodically transmits the PEI signal.
  • the base station periodically transmits the PEI signal within the PEI transmission window.
  • the transmission period of the PEI signal is determined according to the SSB period, for example, the transmission period of the PEI signal is the same as the SSB period. For example, both are 20ms. In this way, it can be ensured that there is a PEI transmission opportunity near each SSB in the PEI transmission window, and the distance between the position of each PEI and the position of the adjacent SSB is equal.
  • the transmission period of the PEI signal is a multiple of the SSB period.
  • the maximum transmission period or the minimum transmission period of the PEI is a multiple of the SSB period.
  • PEI signals sent within the same PEI sending window are completely consistent.
  • the UE detects at least one PEI in one paging cycle.
  • the value of PO_PEI_offset is a fixed value, such as 60ms.
  • the value of PO_PEI_offset is configured by higher layer parameters.
  • the value configured by the high layer parameter is used as the actual size of the PEI sending window.
  • the value of PO_PEI_offset is configured by a high-level parameter, and the high-level parameter is configured as a range value (such as a maximum value), and the UE selects the actually adopted PEI receiving window according to the actual situation.
  • Defining the PEI transmission window can avoid the problem that the base station only sends PEI in one location, which may cause the UE to miss detection, and also avoid the problem of additional energy consumption/resource overhead caused by the base station sending PEI frequently.
  • the positional relationship of the PEI signal to the SSB is provided.
  • the UE In order to obtain greater power saving gain, the UE should minimize the chance of ramp up/down and increase the time of deep sleep. For different UEs, the distance between the SSB and the PO before the PO is random. When the PEI is located around the SSB, the UE does not have to wake up multiple times, but can concentrate on processing the SSB and PEI for a period of time, so that the UE can obtain a higher Power saving gain.
  • the time domain location of the PEI is related to the associated SSB.
  • the location relationship between the PEI and the associated SSB is determined by at least one of a predefined manner, higher layer signaling, system messages, UE capability, UE type, or DRX parameter configuration.
  • the associated SSB satisfies at least one of the following relationships:
  • the associated SSB is the SSB closest to the PEI; in this application, when there are multiple SSBs, the SSB closest to the PEI is referred to as the SSB adjacent to the PEI;
  • the associated SSB is an SSB having a quasi-colocation (QCL) relationship with the PEI;
  • the associated SSB is an SSB having the same beam direction or the same quasi-co-location type D (QCL-Type D) relationship with the PEI;
  • the associated SSB corresponds to the PEI
  • the associated SSB and PEI have the same index; for example, both the PEI and the SSB are multi-beam transmission, and the PEI index is 0-3 respectively, and the SSB index is also 0-3. Then the PEIs with the same index (for example, both are 1) correspond to the SSB.
  • the index of the associated SSB and the index of the PEI have the same arrangement position
  • the position of the associated SSB index in the SSB index set is related to the position of the PEI index in the PEI index set; for example, the configured SSB index set is ⁇ 1, 3, 5 ⁇ , and the configured PEI index set is ⁇ 2, 4, 6 ⁇ , then the SSB with index 3 and the PEI with index 4 are in the same position in the corresponding index set (both are the second index), then the SSB with index 3 is associated with the PEI with index 4 .
  • the associated SSB is configured by higher layer signaling or system messages
  • the associated SSB is determined in a predefined manner (eg, with the smallest SSB index or the largest SSB index).
  • the positional relationship between the PEI and the associated SSB is related to at least one of the following factors:
  • the SSB pattern depends on the higher layer signaling ssb-PositionsInBurst.
  • spectrum types include licensed spectrum or unlicensed spectrum.
  • PEI is transmitted within the same half frame as the associated SSB.
  • PEI and associated SSB occupy different symbols in the same field.
  • PEI is transmitted in the same time slot as the associated SSB.
  • PEI is transmitted in the first N1 symbols of the time slot where the SSB is located, 1 ⁇ N1 ⁇ 4.
  • PEI is transmitted in the first 1 or 2 symbols of the time slot where the SSB is located. This can not only ensure that the impact of PDCCH transmission is reduced (PDCCH is usually in the first three symbols of a time slot), but also can ensure that the UE processes PEI and SSB within the concentrated time.
  • PEI is transmitted before the associated SSB.
  • the sending timing of PEI starts from the starting position of the associated SSB (for example, the position with the smallest SSB index---the index of the actual sending SSB is notified by the broadcast message/higher layer signaling ssb-PositionsInBurst, not necessarily starting from 0) before Start with n time slots, n ⁇ 1.
  • the start position or end position of the PEI transmission occasion is n time slots before the start position of the associated SSB, n ⁇ 1.
  • the PEI is transmitted after the associated SSB, for example, the transmission opportunity of the PEI starts from the nth time slot after the start position of the associated SSB (ie, the position with the smallest or largest SSB index), where n ⁇ 1.
  • Case A In one instance, Case A:
  • the index of the PEI transmitted symbol in a field includes at least one of the set ⁇ 0, 1, 2, ..., 13 ⁇ / ⁇ 2, 8 ⁇ +14 ⁇ n. (excluding SSB)
  • ⁇ A ⁇ / ⁇ B ⁇ represents the difference between sets ⁇ A ⁇ and ⁇ B ⁇ , that is, it consists of elements that belong to set ⁇ A ⁇ but do not belong to set ⁇ B ⁇ .
  • the symbol index 0 is the index of the first symbol in the field
  • the symbol index 1 is the index of the second symbol in the field, and so on.
  • Case B is a first instance.
  • the index of the transmitted symbol in a field includes at least one of the set ⁇ 0, 1, 2, ..., 27 ⁇ / ⁇ 4, 8, 16, 20 ⁇ +28 ⁇ n. (excluding SSB).
  • the index of the transmitted symbol in the field includes at least one of the set ⁇ 0, 1, 2, 3, 12, 13 ⁇ +14 ⁇ n+i ⁇ 6 .
  • i is an even number.
  • the index of the transmitted symbol within a field includes at least one of the set ⁇ 2, 3, 12, 13, 14, 15 ⁇ +14 ⁇ n+j ⁇ 6 . where j is an odd number.
  • Case C In one instance, Case C:
  • the index of the transmitted symbol in a field includes at least one of the set ⁇ 0, 1, 2, ..., 13 ⁇ / ⁇ 2, 8 ⁇ +14 ⁇ n. (Excluding SSB ⁇ 2,8 ⁇ +14 ⁇ n ⁇
  • Case D is a first instance.
  • the index of the transmitted symbol in the field includes at least one of the set ⁇ 0, 1, 2, 3, 12, 13 ⁇ +14 ⁇ n+i ⁇ 6 .
  • i is an even number.
  • the index of the transmitted symbol within a field includes at least one of the set ⁇ 2, 3, 12, 13, 14, 15 ⁇ +14 ⁇ n+j ⁇ 6 . where j is an odd number.
  • Case E In one instance, Case E:
  • the indices of transmitted symbols in a field include the set ⁇ 0, 1, 2, ..., 55 ⁇ / ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ +56* at least one of n.
  • the indices of the transmitted symbols in the field include the set ⁇ 0, 1, 12, 13 ⁇ +14 ⁇ n+i+mod(1,4) ⁇ 12 at least one.
  • i is an integer.
  • the first frequency range includes frequency bands below 6 GHz.
  • the second frequency range includes the frequency band from 24 GHz to 52.6 GHz, alternatively, the second frequency range includes the frequency band from 24 GHz to 100 GHz.
  • the positional relationship between the PEI and the associated SSB can be matched.
  • the distance between the PEI and the associated SSB is defined as PEI_SSB_offset.
  • the PEI_SSB_offset is the distance between the starting position of the PEI and the starting position of the associated SSB.
  • the PEI_SSB_offset is the distance between the starting position of the PEI and the position of the SSB having the same beam direction as the PEI.
  • the PEI_SSB_offset is the distance between the starting position of the PEI and the specified index position of the SSB (for example, the SSB index number is 1).
  • the PEI_SSB_offset is the distance between the end position of the PEI and the start position of the associated SSB.
  • the PEI_SSB_offset is the distance between the start position of the PEI and the end position of the associated SSB.
  • the PEI_SSB_offset is the distance between the end position of the PEI and the end position of the associated SSB.
  • the absolute value of PEI_SSB_offset is less than half the SSB period.
  • the SSB refers to the SSB whose distance from the PEI is less than half an SSB period.
  • the value of PEI_SSB_offset is always greater than or equal to zero.
  • the relative positions of PEI and associated SSB are specified in a predefined manner. For example, PEI is located in front of the associated SSB, or PEI is located behind the SSB, or PEI and SSB overlap in time domain position, where the slot level overlaps, i.e. PEI and SSB can be processed in the same slot, but they occupy different symbols ; or, the occupied symbols are the same, but the frequency resources are different.
  • duration is equal to 3 slots.
  • PEI_SSB_offset is exactly equal to 3 slots, PEI and SSB are next to each other.
  • the PEI_SSB_offset is greater than 3 slots, the PEI is before the SSB, but not next to it.
  • PEI_SSB_offset is less than 3 slots, the UE has both PEI and SSB in some slots.
  • PEI_SSB_offset is equal to 0, the starting position of PEI and the starting position of SSB overlap. At this time, if the processing time of the SSB is greater than 3 slots, all the reception occasions of the PEI overlap with the SSB.
  • the duration described in this application is the duration of the PEI.
  • the duration may be the one in the search space (search space set) configuration. parameter.
  • the duration can be the number of time slots for continuously sending the PEI.
  • PEI_SSB_offset 0 indicates that the PEI and the SSB are immediately adjacent.
  • PEI_SSB_offset If the PEI is located after the SSB, when the receiving time of the SSB is greater than PEI_SSB_offset, it indicates that the PEI and the SSB overlap in the time domain.
  • PEI_SSB_offset should satisfy the condition: PEI and SSB do not overlap in time domain. That is, when the PEI is located before the SSB, all detection timings of the PEI are required to be located before the SSB. For example, when PEI is before SSB, PEI_SSB_offset is the distance between the starting position of PEI and the starting position of SSB. When the duration of PEI is 3 slots, PEI_SSB_offset is required to be greater than or equal to 3 slots.
  • the UE when the PEI and the SSB overlap in the time domain due to the duration of the PEI or the processing time of the SSB, the UE only processes the non-overlapping part of the PEI. For example, when PEI and SSB overlap in time domain but not in frequency due to PEI duration or SSB processing time, the UE both detects PEI and processes SSB in the overlapping time portion.
  • the value of PEI_SSB_offset can be positive, negative or 0.
  • the positive and negative values of PEI_SSB_offset are used to indicate the context of PEI and associated SSB. For example, when PEI_SSB_offset is positive, it indicates that PEI is before SSB, and when PEI_SSB_offset is negative, it indicates that PEI is behind SSB. Or conversely, when PEI_SSB_offset is positive, it indicates that PEI is behind SSB, and when PEI_SSB_offset is negative, it indicates that PEI is ahead of SSB.
  • PEI_SSB_offset to represent the distance between the starting position of PEI and the starting position of SSB as an example
  • PEI_SSB_offset>0 means that the starting position of PEI is located before the starting position of SSB;
  • PEI_SSB_offset 0, indicating that the starting position of PEI is between the starting position of SSB and the starting position of SSB.
  • PEI_SSB_offset ⁇ 0 indicating that the starting position of PEI is after the starting position of SSB.
  • PEI_SSB_offset when PEI_SSB_offset>0 or PEI_SSB_offset ⁇ 0, PEI_SSB_offset should satisfy the condition: PEI and SSB do not overlap in time domain.
  • PEI_SSB_offset represents the distance between the starting position of PEI and the starting position of SSB, in order to make PEI and SSB time domain not overlapped, PEI_SSB_offset>duration or PEI_SSB_offset ⁇ -SSB processing time is required.
  • the UE when PEI and SSB overlap in the time domain due to the PEI duration (duration) or the processing time of the SSB, the UE only processes the non-overlapping PEI. For example, when the PEI and the SSB overlap in the time domain due to the duration of the PEI or the processing time of the SSB, the UE both detects the PEI and processes the SSB in the overlapping portion.
  • the location relationship of PEI and associated SSB is signaled by higher layers.
  • the first layer signaling determines the context of the PEI and the associated SSB; the second layer signaling determines the offset between the PEI and the associated SSB, i.e., PEI_SSB_offset.
  • PEI_SSB_offset the offset between the PEI and the associated SSB.
  • the third layer signaling is configured as PEI_SSB_offset, it means that the PEI is before the associated SSB, and the offset is PEI_SSB_offset;
  • the fourth layer signaling is configured as PEI_SSB_offset, it means that the PEI is after the associated SSB, and the offset is PEI_SSB_offset.
  • the first layer signaling depends on at least one of UE capability, UE type, DRX parameters, frequency range, or spectrum type.
  • the second layer signaling depends on at least one of UE capability, UE type, DRX parameters, frequency range, or spectrum type.
  • a method of where the UE detects the PEI signal, the number of the detected PEI signal, and how to operate if the detection is missed is provided.
  • the base station periodically sends the PEI within the PEI sending window, and the UE can receive the PEI at the corresponding position.
  • the UE does not need to detect every PEI.
  • the UE detects PEI on different PEI transmission opportunities and finally achieves different power saving gains, and detecting PEI on the first PEI detection opportunity within the PEI receiving window cannot always achieve good power saving gains.
  • it is necessary to define at which PEI opportunity the UE detects the PEI.
  • the vicinity of the SSB mentioned in this application may refer to before the SSB, in the SSB, or after the SSB.
  • the base station transmits PEI signals at all PEI positions within the PEI transmission window, and the UE only detects PEI signals associated with (or near) the first SSB actually processed by the UE within the PEI transmission window. For example, if the PEI transmission window contains 3 SSB processing opportunities, and the UE processes the first SSB in the window, the UE detects the PEI at the PEI transmission position near the first SSB, and performs corresponding operations according to the PEI instructions. If the UE does not process the SSB at the first SSB processing opportunity within the PEI transmission window and the UE processes the second SSB, the UE does not detect the first PEI transmission opportunity within the PEI transmission window. The UE detects the PEI near the second SSB in the PEI sending window, that is, the second PEI sending position (as shown in Figures 3 and 4).
  • the UE only detects one or more PEI signals within the PEI transmission window that have a predefined positional relationship with the associated SSB.
  • the predefined positional relationship is determined by an offset.
  • the offset is determined with at least one of UE capability, UE type, frequency range, and frequency offset type.
  • the UE detects the PEI at the next PEI transmission opportunity.
  • the UE For example, if none of the SSBs in the PEI transmission window are processed by the UE, for example, there are two SSB processing opportunities in the PEI transmission window, but the UE only processes one SSB outside the PEI transmission window, the first SSB in the PEI transmission window will be processed by the UE.
  • PEI is detected at the PEI sending position. For example, if none of the SSBs in the PEI transmission window are processed by the UE, the UE detects the PEI at the last PEI transmission position in the PEI transmission window. For example, if none of the SSBs in the PEI transmission window are processed by the UE, the UE does not detect PEI in this paging cycle.
  • the UE always detects PEI at the first PEI transmission position within the PEI transmission window.
  • PEI is detected at the first PEI transmission location regardless of whether the UE handles SSBs near the first PEI transmission location. For example, the UE only needs to successfully detect the PEI once in one paging cycle, and if the detection is successful, the subsequent PEI will not be detected.
  • the UE determines the position to detect the PEI according to the number of SSBs processed before the PO in the previous paging cycle. For example, the UE only processed one SSB before the PO in the last paging cycle, then the UE detects the PEI near the SSB closest to the PO in the next paging cycle. If the last paging cycle processed three SSBs before PO, the next paging cycle also starts to detect PEI from the vicinity of the third SSB before PO, if the detection fails, PEI is detected again during/after the next SSB processing .
  • the length of the PEI transmission window be greater than the distance between the PO and the first SSB processed in this paging cycle.
  • the PEI is detected at the first PEI position in the PEI transmission window.
  • the UE determines where to detect the PEI based on the measurement results of the last one or more paging cycles. For example, the UE determines the position of the PEI according to the measurement result of the previous paging cycle (such as Reference Signal Received Power (RSRP, Reference Signal Received Power)) value. For example, the UE determines the location of the PEI according to the average of the measurement results of the first M paging cycles. For example, an RSRP threshold is set, and the number of received SSBs is determined according to the range of RSRP values in the last one or more paging cycles, and then the position of the PEI is determined.
  • RSRP Reference Signal Received Power
  • RSRP>A in the last/multiple paging cycles it indicates that the channel conditions are good, and it is considered that in the next paging cycle, the UE only needs to process one SSB. , that is, the PEI is detected at the PEI position closest to PO.
  • B ⁇ RSRP ⁇ A in the last/multiple paging cycles it indicates that the current channel conditions are normal, and the UE may need to process 2 SSBs before the PO, then the UE processes the two SSBs that are closer to the PO in this paging cycle, And detect PEI near processing the first SSB.
  • the RSRP of the last/multiple paging cycles is less than B, it indicates that the current channel condition is poor, the UE needs to process 3 or more SSBs, and detects PEI near the first SSB processed in the window.
  • the UE performs a predefined operation.
  • the predefined operation is that the UE receives paging DCI at the PO.
  • the predefined operation is that the UE does not receive paging DCI at the PO.
  • the UE skips the PO reception of the paging cycle, and the default sleep operation is performed. For example, if the UE is configured with time-frequency domain resources of PEI but does not detect PEI or has no detection opportunity in the paging cycle, whether the UE receives paging is indicated by a high layer parameter.
  • no PEI detection opportunities include at least one or all of the PEI detection opportunities that collide with or overlap with at least one of the following resources:
  • control resource set 0, or,
  • the UE in order to obtain a greater power saving gain, the UE should try to reduce the power consumption of ramp up/down and increase the time of deep sleep.
  • the PEI is located around the SSB, the UE can obtain a higher power saving gain under the same channel conditions. Therefore, referring to the SSB is a valid option when determining the PEI location.
  • the present application determines the location of the PEI by means of a two-level indication. Associating the PEI with the SSB enables the UE to obtain the highest power saving gain. And the unique PEI position can reduce the power consumption of the base station for sending PEI multiple times. The unique PEI sending position also enables the UE to accurately find the PEI detection timing, so as to obtain the PEI signal and achieve the effect of power saving.
  • a first-level indication method is provided, that is, the position of the PEI signal is determined by the SSB.
  • the PEI position is associated with the Nth SSB before PO, N>0.
  • the Nth SSB refers to the SSB within the Nth SMTC window.
  • the Nth SSB refers to the Nth SSB burst.
  • the Nth SSB refers to an SSB with a certain SSB index in the Nth SSB burst, for example, the SSB index is equal to 0.
  • the value of N is indicated by other signaling, such as physical layer signaling.
  • it is carried by PEI and used to indicate the N value of the next/multiple paging cycles.
  • paging DCI or other signaling.
  • the high-layer parameter configures the range of N values, and the specific N value is determined by the UE.
  • the high-layer parameter is configured with a range of N values, and the specifically adopted N value is related to the UE capability/UE type.
  • the base station/network side determines the specific N value according to the UE capability/UE type.
  • the N value is reported by the UE.
  • the UE determines the most suitable N value according to the previous measurement results and channel conditions, etc., and reports it to the base station/network side.
  • the base station/network side configures a default value, and the value is known to the UE. When the UE does not report a value, the default value is used. After the UE reports the value, the value reported by the UE is adopted.
  • the second level is indicated as the positional relationship between the PEI and the associated SSB.
  • the exact PEI sending/receiving position can be determined by determining the positional relationship between the PEI and the SSB associated therewith.
  • the positional relationship between the PEI and the Nth SSB associated therewith may be as described in Embodiment 2.
  • the base station may transmit the PEI multiple times after determining the PEI location.
  • the UE performs the operation when PEI is not introduced (Legacy UE; Rel-15/16 UE).
  • the UE normally receives paging DCI at the PO.
  • whether the UE normally receives paging is indicated by a high layer parameter.
  • the present application determines the location of the PEI through a two-level indication method. First, the reference point associated with the PEI position is determined, which can make the configuration more flexible while the UE obtains a higher power saving gain.
  • the reference point is located before PO.
  • the location of the reference point ie the location from the PO
  • the location of the reference point is determined by high-level parameters.
  • the location of the reference point is related to the SSB period.
  • the distance between the reference point and PO is an integer multiple of the SSB period; eg.
  • the distance between the reference point and PO is an integer multiple of the SSB period plus an offset.
  • a reference point corresponds to a PEI location.
  • the PEI contents sent at the PEI positions associated with the C reference points are exactly the same.
  • the UE detects all PEI locations.
  • the UE detects only one PEI in a paging cycle.
  • the position of the PEI is determined by the positional relationship between the PEI and the reference point.
  • the distance between the PEI and the reference point is PEI_Refer_offset.
  • PEI_Refer_offset is the distance from the starting position of the PEI to the reference point.
  • PEI_Refer_offset is the distance from the end position of PEI to the reference point. Similar to the positional relationship between PEI and SSB described in other embodiments herein, PEI_Refer_offset may have different configurations, and the reference point may be before the PEI, overlap with the starting position of the PEI, or the reference point may be after the PEI.
  • PEI_SSB_offset can also be used to describe PEI_Refer_offset.
  • the time domain location of the PEI is relative to the associated reference point.
  • the positional relationship between the PEI and the associated reference point is fixed, for example, in a predefined manner, or determined by high-layer signaling, or configured by system messages.
  • the positional relationship between the PEI and the associated reference point is related to at least one of the following factors:
  • carrier frequency sub-carrier spacing
  • spectrum type include licensed spectrum or unlicensed spectrum.
  • PEI is transmitted within the same half frame as the associated reference point.
  • the PEI and the associated reference point occupy different symbols within the same field.
  • PEI is transmitted before the associated reference point.
  • the transmission occasion of PEI starts from n time slots before the associated reference point, n ⁇ 1.
  • the start position or the end position of the PEI transmission timing is n time slots before the associated reference point position, and n ⁇ 1.
  • PEI is transmitted after the associated SSB, eg, the transmission timing of PEI starts from the nth time slot after the associated reference point, n ⁇ 1.
  • the absolute value of PEI_refer_offset is less than half an SSB period.
  • the value of PEI_refer_offset is always greater than or equal to 0.
  • the relative position of the PEI and the associated reference point is specified in a predefined manner.
  • PEI_refer_offset can be positive, negative or 0.
  • the positive and negative values of PEI_refer_offset are used to indicate the context of PEI and associated SSB.
  • PEI_refer_offset is a positive value, it indicates that the PEI is before the reference point, and when PEI_refer_offset is a negative value, it indicates that the PEI is behind the reference point.
  • PEI_reference_offset is a positive value, it indicates that the PEI is behind the reference point
  • PEI_reference_offset is a negative value
  • the positional relationship of PEI and associated reference points is signaled by higher layers.
  • the first layer signaling determines the context of the PEI and the associated reference point; the second layer signaling determines the offset between the PEI and the associated reference point, i.e., PEI_refer_offset.
  • PEI_refer_offset For example, if the third layer signaling is configured as PEI_refer_offset, it means that the PEI is before the associated reference point, and the offset is PEI_refer_offset; if the fourth higher layer signaling is configured as PEI_refer_offset, it means that the PEI is after the associated reference point, and the offset is PEI_refer_offset. Shift to PEI_refer_offset.
  • the SSB here refers to the SSB within an SSB reception window.
  • SSB here refers to an SS block burst.
  • SSB here refers to an SSB with a certain index/beam direction. For example, there is only one chance of an SSB occurring between the PEI start position and the reference point.
  • the value of PEI_SSB_offset is not greater than the SSB period.
  • a threshold value such as s time slots (where s is a positive integer, for example, 1-9), or 1/4 SSB cycle.
  • a threshold such as half an SSB cycle, or 1/4 SSB cycle, or s time slots.
  • the UE performs the operation when PEI is not introduced (the UE follows legacy UE, Rel-15/Rel- 16UE operations to perform).
  • the UE normally receives paging DCI at the PO.
  • whether the UE normally receives paging is indicated by a high layer parameter.
  • the PEI described in this application may be in the form of DCI, or may be in the form of a sequence.
  • the PEI has periodicity in the time domain.
  • the period of PEI is equal to the period of SSB.
  • the period of PEI is equal to the period of N SSBs.
  • the PEI uses the same frequency domain resources as CORESET 0 in the frequency domain.
  • the PEI uses frequency domain resources adjacent to the frequency domain of the paging DCI in the frequency domain.
  • the PEI can be configured with CORESET 0.
  • the PEI can be configured as a frequency domain location adjacent to CORESET 0, which ensures that the UE does not need to switch between different frequency bands/frequency, reducing additional power consumption.
  • a solution for possible resource collision of the first type of PEI is provided.
  • the PEI is the first type of PEI.
  • the first type of PEI is DCI-based PEI.
  • the UE when the PEI is configured with CSS (common search space, common search space) type-0, the UE does not expect the PEI to be sent at the RE position corresponding to the SSB. For example, when the PEI configuration is not CSS type-0, and the PEI overlaps with the REs of the SSB, the UE does not expect to monitor the PDCCH (detect PEI) on the overlapped resources. For example, when SSB and PEI have the same QCL-type D attribute, SSB and PEI are allowed to receive on the same symbol. For example, the UE does not expect to listen to the PDCCH (detect PEI) on the CRS-configured resource. For example, for unavailable resources, the UE does not expect to monitor the PDCCH (detect PEI).
  • CSS common search space, common search space
  • CSI-RS channel state information-reference signal
  • PEI when channel state information-reference signal (CSI-RS) and PEI have the same QCL-type D attribute, CSI-RS and PEI are allowed to be received on different subcarriers of the same symbol.
  • CSI-RS and PEI when the PEI collides with the PDCCH configured with the Type1-PDCCH CSS set and does not have the same QCL-type D attribute as the PDCCH of the Type1-PDCCH CSS set, the UE does not monitor the PEI.
  • the priority of the PEI and the PDSCH depends on the information type carried by the PDSCH and the RNTI type of the PDCCH that scrambles and schedules the PDSCH. For example, when the PDSCH is scheduled by PDCCH scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI, PEI is preferentially mapped. When the PDSCH is scheduled by the PDCCH scrambled by RA-RNTI, MsgB-RNTI, P-RNTI, SI-RNTI or TC-RNTI, the PDSCH is preferentially mapped. When the PDSCH is a system message, the PDSCH is preferentially mapped.
  • the priority is determined according to the reason for triggering the RAR window. For example, when RAR is triggered by initial access (Triggered by initial access), the RAR has a high priority, and RAR is processed first; when RAR is triggered by beam/radio link monitoring failure (Triggered by beam failure/radio link monitoring failure) , the PEI has a high priority, and the PEI is processed first.
  • RAR window random access response window
  • the information carried by the resource is transparent to the connected UE, that is, the base station informs the connected UE that the content of the information carried by the resource is PEI or other signals/channels.
  • whether to receive the data is decided according to the priority sum of the data transmission and the first resource.
  • the first resource is related to PEI.
  • the priority of the data transmission and the first resource is determined by at least one of the information type carried by the PDSCH, the RNTI type of the PDCCH that scrambles and schedules the PDSCH, and the triggering method;
  • the priority of the data transmission and the first resource is determined by the reason for triggering the random access response window
  • the data transmission resource is PDCCH data transmission
  • the data transmission and the priority of the first resource are the information type carried by the PDCCH, the control information format carried by the PDCCH, the RNTI type of the scrambled PDCCH, the PDCCH-related control resource set, the PDCCH At least one of the relevant search space types is determined;
  • the priority of the data transmission and the first resource is determined by at least one of the type of the reference signal, the time characteristic of the reference signal, and the triggering method of the reference signal;
  • the data transmission resource is the SSB time-frequency resource
  • the data transmission and the first resource are determined by the time-frequency resource related to the PEI.
  • the priority of the first resource and the PDSCH depends on the information type carried by the PDSCH and the RNTI type of the PDCCH that scrambles and schedules the PDSCH. For example, when the PDSCH is scheduled by PDCCH scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI, PEI is preferentially mapped. When the PDSCH is scheduled by the PDCCH scrambled by RA-RNTI, MsgB-RNTI, P-RNTI, SI-RNTI or TC-RNTI, the PDSCH is preferentially mapped. When the PDSCH is a system message, the PDSCH is preferentially mapped.
  • the priority of the first resource and the reference signal is determined by at least one of the type of the reference signal, the time characteristic of the reference signal, and the triggering method of the reference signal.
  • the reference signal is an SSB or a positioning reference signal
  • the SSB or the positioning reference signal is preferentially mapped.
  • the reference signal is a CSI-RS
  • the time characteristic of the CSI-RS is periodic
  • the periodic CSI-RS is not received.
  • the reference signal is a CSI-RS
  • the time characteristic of the CSI-RS is a DCI trigger
  • the priority is determined according to the reason for triggering the RAR window. For example, when RAR is triggered by initial access (Triggered by initial access), the RAR has a high priority, and RAR is processed first; when RAR is triggered by beam/radio link monitoring failure (Triggered by beam failure/radio link monitoring failure) , the RAR priority is low.
  • PEI and other signaling/signals including but not limited to SSB, Channel-state Information Reference Signal (CSI-RS), unavailable resource block (RB) (NR-U), measurement gap
  • CSI-RS Channel-state Information Reference Signal
  • RB unavailable resource block
  • RAR window Random Access Response
  • the UE monitors the PO when the resource overlap/collision causes it to fail to monitor.
  • the PEI and other signaling/signals overlap/collide with resources and cannot monitor, the UE does not monitor the PEI, and whether to monitor the PO is configured by the high layer.
  • the PEI and other signaling/signals overlap/collide with resources and cannot monitor, the UE does not monitor the PO.
  • the UE is configured to monitor the PEI timing, but when no PEI is detected, the UE monitors the PO.
  • the UE is configured to monitor the PEI timing, but when the PEI is not detected, the UE does not monitor the PO by default. For example, when the UE does not detect the PEI, whether the UE monitors the PO is determined by the high layer configuration/signaling.
  • a solution to possible resource collision of the second type of PEI is provided.
  • the PEI is the second type of PEI.
  • the second type of PEI is sequence-based PEI.
  • PEI and SSB have the same QCL-type D attribute
  • PEI and SSB are allowed to be configured on the same symbol and different subcarriers, otherwise, the UE does not expect PEI and SSB to be configured on the same symbol.
  • the UE does not expect the PEI to be on the same symbol as the CRS.
  • the UE does not detect PEI.
  • the UE does not expect to detect PEI.
  • PEI and CSI-RS, DM-RS, and PRS have the same QCL-type D attribute
  • PEI is allowed to be on the same symbol as CSI-RS, DM-RS, and PRS, otherwise, UE does not expect PEI and CSI -RS, DM-RS, PRS are on the same symbol.
  • UE does not expect to monitor PEI if PEI has resource overlap/collision with PDCCH configured with Type0/0A/1/2-PDCCH CSS set. For example, UE does not expect to monitor Type3-PDCCH CSS or UE specific search space, if PEI has resource overlap/collision with PDCCH configured with Type3-PDCCH CSS or UE specific search space.
  • the priority of the PEI and the PDSCH depends on the information type carried by the PDSCH and the RNTI type of the PDCCH that scrambles and schedules the PDSCH. For example, when the PDSCH is scheduled by PDCCH scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI, PEI is preferentially mapped. When the PDSCH is scheduled by the PDCCH scrambled by RA-RNTI, MsgB-RNTI, P-RNTI or TC-RNTI, the PDSCH is preferentially mapped. When the PDSCH is a system message, the PDSCH is preferentially mapped.
  • the priority is determined according to the reason for triggering the RAR window. For example, when RAR is triggered by initial access (Triggered by initial access), the RAR has a high priority, and RAR is processed first; when RAR is triggered by beam/radio link monitoring failure (Triggered by beam failure/radio link monitoring failure) , the PEI has a high priority, and the PEI is processed first.
  • the information carried by the resource is transparent to the connected UE, that is, the base station will inform the connected UE whether the content of the information carried by the resource is PEI or other signals/channels .
  • the UE executes the Legacy operation, listens to PO by default. For example, when the PEI and other signaling/signals overlap/collide with resources and cannot monitor, whether the UE monitors the PO is configured by the higher layer.
  • the UE configures the timing for monitoring PEI, but when no PEI is detected, the UE performs legacy operation by default and monitors PO by default.
  • the UE is configured to monitor the PEI timing, but when the PEI is not detected, the UE does not monitor the PO by default.
  • the UE does not detect the PEI, whether the UE monitors the PO is determined by the high layer configuration/signaling.
  • a signal receiving apparatus is provided, the apparatus is configured in a terminal, and the signal receiving apparatus is suitable for determining multiple PEI time-domain positions.
  • the signal receiving apparatus provided in the embodiment of the present application mainly includes a receiving module 91 and an executing module 92 . in,
  • the receiving module 91 is configured to receive a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to indicate whether the terminal UE receives PO within the paging period;
  • the execution module 92 is configured to execute a predefined operation based on the PEI signal.
  • the predefined operations include one or more of the following:
  • receiving the PEI signal prior to PO includes:
  • the PEI signal is received at the PEI time-frequency resource position within the PEI receiving window.
  • the PEI signal further includes one or more of the following information:
  • the relevant information of the PEI receiving window is configured by the base station according to one or more of the following information: terminal capability, terminal type, and DRX configuration information;
  • the relevant information of the PEI receiving window includes one or more of the following: the starting position of the PEI receiving window, the ending position of the PEI receiving window, and the duration of the PEI receiving window.
  • the end position of the PEI receiving window is the PO start position; or, the end position of the PEI receiving window is before the PO start position.
  • the duration of the PEI receive window is associated with the period of the SSB: the duration of the PEI receive window is equal to N SSB periods plus an offset, where N ⁇ 0, the offset is greater than or equal to 0 .
  • the time domain location of the PEI signal is determined by the SSB associated with the PEI signal.
  • the PEI signal is received at the PEI time-frequency resource position in the PEI receiving window, including one or more of the following:
  • the PEI signal is received at a third preset position within the PEI receiving window, where the third preset position is determined based on measurement results of the last one or more paging cycles.
  • the time domain position of the PEI signal is associated with the Nth SSB before PO, where N is a positive integer.
  • the SSB associated with the PEI signal satisfies one or more of the following conditions:
  • the associated SSB is the SSB closest to the PEI signal
  • the associated SSB has a quasi-co-location relationship with the PEI signal
  • the associated SSB and the PEI signal have the same beam direction or the same quasi-co-location type
  • the associated SSB has the same index as the PEI signal
  • the associated SSB index has the same arrangement position as the PEI signal index
  • the associated SSB is configured by higher layer signaling or system messages
  • the associated SSB is determined in a predefined manner.
  • the positional relationship between the PEI signal and the SSB associated with the PEI signal is determined by one or more of the following parameters:
  • the transmission location between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same time slot;
  • the transmission position of the PEI signal is before the transmission position of the SSB associated with the PEI signal;
  • the transmission position of the PEI signal is after the transmission position of the SSB associated with the PEI signal;
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same half frame.
  • the distance between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI is the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI.
  • the distance between the PEI signal and the SSB associated with the PEI signal is determined by a first parameter; wherein the first parameter includes one or more of the following:
  • the first parameter is a number greater than or equal to 0;
  • the first parameter is any natural number
  • the first parameter is determined in a predefined manner
  • the first parameter is determined by high-level parameters
  • the first parameter is determined by UE capability
  • the first parameter is determined by the DRX parameter.
  • the N is determined within a specified range; wherein, the specified range is configured by a high-layer parameter, or the specified range is determined by pre-definition, or is indicated by the downlink control information DCI.
  • the N is determined within a specified range based on one or more of the following parameters: channel measurement results, channel conditions.
  • the Nth SSB preceding the PO associated with the PEI comprises one or more of the following:
  • the SSB with the SSB index in the Nth SSB burst is the SSB with the SSB index in the Nth SSB burst.
  • the time domain location of the PEI signal is related to a preconfigured reference point prior to PO.
  • the reference points include:
  • the reference point is determined by high-level parameters
  • the distance from the reference point to PO is an integer number of SSB cycles plus an offset
  • the time domain location of the PEI signal is determined based on the distance between the PEI signal and a reference point.
  • the relationship between the PEI signal and the reference point includes at least one of the following:
  • the distance between the PEI signal and the reference point is determined by a second parameter; wherein the second parameter includes one or more of the following:
  • the second parameter is a number greater than or equal to 0;
  • the second parameter is any natural number
  • the second parameter is determined in a predefined manner
  • the second parameter is determined by high-level parameters
  • the second parameter is determined by the DRX parameter. .
  • the method further includes:
  • the UE When the PEI signal is not detected on the time-frequency domain resources of the PEI or there is no detection opportunity in the paging cycle, the UE receives the PO;
  • the UE does not receive the PO
  • whether the UE receives the PO is determined by high layer parameters.
  • the lack of PEI detection opportunities includes: at least one or all PEI detection opportunities in the PEI detection opportunities collide with or overlap with at least one of the following resources:
  • the method further includes:
  • a predefined operation is performed based on the resource overlap.
  • predefined operations are performed based on resource overlap, including:
  • a signal with a high priority is received; wherein, the predefined priority includes one or more of the following situations:
  • the priority of the PEI signal and the PDSCH is determined by the information type carried by the PDSCH and the RNTI type of the PDCCH that scrambles and schedules the PDSCH;
  • the priority of the PEI signal and the access response is determined by the reason for triggering the random access response window.
  • a corresponding operation is performed based on a resource overlapping situation, including one or more of the following:
  • the signal receiving apparatus provided in this embodiment can execute the signal receiving method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the signal receiving apparatus provided in this embodiment, can execute the signal receiving method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized; in addition, The specific names of the multiple functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • a signal transmission apparatus is provided, the apparatus is configured in a base station, and the signal transmission apparatus is suitable for determining multiple PEI time domain positions.
  • the signal sending apparatus provided by the embodiment of the present application mainly includes a sending module 101 .
  • the sending module is configured to send a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to instruct the terminal UE to perform a predefined operation based on the PEI signal.
  • the predefined operations include one or more of the following:
  • sending the PEI signal prior to the PO includes:
  • the PEI signal is sent at the PEI time-frequency resource position within the PEI sending window.
  • the PEI signal further includes one or more of the following information:
  • the PEI signal is sent on the PEI time-frequency resource within the PEI sending window, including:
  • the PEI signal is sent according to a preset period at the PEI time-frequency resource position within the PEI sending window.
  • the preset period is a multiple of the SSB period.
  • sending the PEI signal prior to the PO includes sending the PEI at a PEI location associated with the Nth SSB prior to the PO.
  • the relevant information of the PEI transmission window is configured by the base station according to one or more of the following information: terminal capability, terminal type, and DRX configuration information;
  • the relevant information of the PEI sending window includes one or more of the following: the starting position of the PEI sending window, the ending position of the PEI sending window, and the duration of the PEI sending window.
  • the end position of the PEI transmission window is the PO start position; or, the end position of the PEI transmission window is before the PO start position.
  • the duration of the PEI transmission window is associated with the period of the SSB: the duration of the PEI transmission window is equal to N SSB periods plus an offset, where N ⁇ 0, the offset is greater than or equal to 0 .
  • the time domain location of the PEI signal is determined by the SSB associated with the PEI signal.
  • the PEI signal is received at the PEI time-frequency resource position within the PEI transmission window, including one or more of the following:
  • the PEI signal is received at a third preset position within the PEI transmission window, where the third preset position is determined based on measurement results of the last one or more paging cycles.
  • the time domain position of the PEI signal is associated with the Nth SSB before PO, where N is a positive integer.
  • the SSB associated with the PEI signal satisfies one or more of the following conditions:
  • the associated SSB is the SSB closest to the PEI signal
  • the associated SSB has a quasi-co-location relationship with the PEI signal
  • the associated SSB and the PEI signal have the same beam direction or the same quasi-co-location type
  • the associated SSB has the same index as the PEI signal
  • the associated SSB index has the same arrangement position as the PEI signal index
  • the associated SSB is configured by higher layer signaling or system messages
  • the associated SSB is determined in a predefined manner.
  • the positional relationship between the PEI signal and the SSB associated with the PEI signal is determined by one or more of the following parameters:
  • the transmission location between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same time slot;
  • the transmission position of the PEI signal is before the transmission position of the SSB associated with the PEI signal;
  • the transmission position of the PEI signal is after the transmission position of the SSB associated with the PEI signal;
  • the PEI signal and the SSB associated with the PEI signal are transmitted in the same half frame.
  • the distance between the PEI signal and the SSB associated with the PEI signal includes one or more of the following:
  • the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI is the distance between the starting position of the PEI signal and the starting position of the SSB associated with that PEI.
  • the distance between the PEI signal and the SSB associated with the PEI signal is determined by a first parameter; wherein the first parameter includes one or more of the following:
  • the first parameter is a number greater than or equal to 0;
  • the first parameter is any natural number
  • the first parameter is determined in a predefined manner
  • the first parameter is determined by high-level parameters
  • the first parameter is determined by UE capability
  • the first parameter is determined by the DRX parameter.
  • the N is determined within a specified range; wherein, the specified range is configured by a high-layer parameter, or the specified range is determined by pre-definition, or is indicated by downlink control information DCI.
  • the N is determined within a specified range based on one or more of the following parameters: channel measurement results, channel conditions.
  • the Nth SSB preceding the PO associated with the PEI comprises one or more of the following:
  • the SSB with the SSB index in the Nth SSB burst is the SSB with the SSB index in the Nth SSB burst.
  • transmitting the PEI signal prior to the PO includes transmitting the PEI at a PEI location associated with the pre-PO reference point.
  • the reference points include:
  • the reference point is determined by high-level parameters
  • the distance from the reference point to PO is an integer number of SSB cycles plus an offset
  • the time domain location of the PEI signal is determined based on the distance between the PEI signal and a reference point.
  • the relationship between the PEI signal and the reference point includes at least one of the following:
  • the distance between the PEI signal and the reference point is determined by a second parameter; wherein the second parameter includes one or more of the following:
  • the second parameter is a number greater than or equal to 0;
  • the second parameter is any natural number
  • the second parameter is determined in a predefined manner
  • the second parameter is determined by high-level parameters
  • the second parameter is determined by UE capability
  • the second parameter is determined by the DRX parameter
  • the information indicated by the PEI includes at least one of the following:
  • the reference signal resource or reference signal resource set indication includes one of the following:
  • the reference signal resource or the reference signal resource set is updated, activated or deactivated.
  • the signal sending apparatus provided in this embodiment can execute the signal sending method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the signal sending apparatus provided in this embodiment, can execute the signal sending method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized; in addition, The specific names of the multiple functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • a signal receiving apparatus is provided, the apparatus is configured in a terminal, and the signal receiving apparatus is suitable for determining how to handle resource collision or overlap.
  • the signal receiving apparatus provided by the embodiment of the present application mainly includes a second receiving module and a judging module. Wherein, the terminal works in a connected state.
  • a second receiving module configured to receive a data transmission resource indication, wherein the data transmission resource includes PDSCH and PDCCH; receive the first resource indication;
  • the judging module is configured to decide whether to receive data according to the priority of the data transmission resource and the first resource when the data transmission resource and the first resource overlap.
  • the first resource is associated with a PEI signal.
  • the data transmission and the priority of the first resource include one or more of the following conditions:
  • the priority of the data transmission and the first resource is determined by at least one of the information type carried by the PDSCH, the RNTI type of the PDCCH that scrambles and schedules the PDSCH, and the trigger mode;
  • the priority of the data transmission and the first resource is determined by the reason for triggering the random access response window
  • the data transmission resource is PDCCH data transmission
  • the data transmission and the priority of the first resource are the information type carried by the PDCCH, the control information format carried by the PDCCH, the RNTI type of the scrambled PDCCH, the PDCCH-related control resource set, the PDCCH At least one of the relevant search space types is determined;
  • the priority of the data transmission and the first resource is determined by at least one of the type of the reference signal, the time characteristic of the reference signal, and the triggering method of the reference signal;
  • the data transmission resource is the SSB time-frequency resource
  • the data transmission and the first resource are determined by the time-frequency resource related to the PEI.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 111 , a memory 112 , an input device 113 , an output device 114 and Communication device 115; the number of processors 111 in the device may be one or more, and one processor 111 is taken as an example in FIG. 11; the processor 111, memory 112, input device 113 and output device 114 in the device can be For connection in other ways, in FIG. 11, the connection through the bus is taken as an example.
  • the memory 112 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 111 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 112 , that is, implements any method provided by the embodiments of the present application.
  • the memory 112 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 112 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some examples, memory 112 may include memory located remotely from processor 111, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 113 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 114 may include a display device such as a display screen.
  • the communication device 115 may include a receiver and a transmitter.
  • the communication device 115 is configured to transmit and receive information according to the control of the processor 111 .
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a signal receiving method when executed by a computer processor, and the Methods are applied to the terminal, including:
  • a paging indication PEI signal before the paging occasion PO, wherein the PEI signal is used to indicate whether the terminal UE receives PO within the paging cycle;
  • a predefined operation is performed based on the PEI signal.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the signal receiving methods provided in any of the embodiments of the present application. related operations.
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, the computer-executable instructions being used to execute a signal sending method when executed by a computer processor, the The method is applied to the base station, including:
  • a paging indication PEI signal is sent before the paging occasion PO, where the PEI signal is used to instruct the terminal UE to perform a predefined operation based on the PEI signal.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the signal sending methods provided by any embodiment of the present application. related operations.
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a signal receiving method when executed by a computer processor, and the Methods are applied to the terminal, including:
  • the data transmission resource includes PDSCH and PDCCH
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the signal receiving methods provided in any of the embodiments of the present application. related operations.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and certainly can also be implemented by hardware.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • a computer device which can be a personal computer, A server, or a network device, etc.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • the computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology such as, but not limited to, read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号发送和接收方法、装置、设备和存储介质,上述信号接收方法包括:在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;基于所述PEI信号执行预定义的操作。

Description

信号发送和接收方法、装置、设备和存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种信号发送和接收方法、装置、设备和存储介质。
背景技术
根据相关技术中第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议描述,终端在无线资源控制休眠态(Radio Resource Control IDLE,RRC_IDLE)和无线资源控制激活态(Radio Resource Control INACTIVE,RRC_INACTIVE)状态下在每个寻呼周期(paging cycle,PC)都需要监听一个寻呼时机(paging occasion,PO)。但是,终端并不是在每个寻呼周期都有寻呼消息。尤其对于寻呼概率低的UE,大量的不必要的寻呼接收导致高功率消耗。
发明内容
本申请提供的资源确定方法、装置、设备和存储介质,实现确定PDSCH调度延迟,进而确本申请提供的信号发送和接收方法、装置、设备和存储介质,实现减少寻呼接收带来功耗。
第一方面,本申请实施例提供一种信号接收方法,所述方法应用于终端,包括:
在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
基于所述PEI信号执行预定义的操作。
第二方面,本申请实施例提供一种信号发送方法,所述方法应用于基站,包括:
在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
第三方面,本申请实施例提供一种信号接收方法,所述方法应用于终端,包括:
接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;
接收第一资源指示;
当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
第四方面,本申请实施例提供一种信号接收装置,所述装置配置于终端,包括:
接收模块,被配置为在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
执行模块,被配置为基于所述PEI信号执行预定义的操作。
第五方面,本申请实施例提供一种信号发送装置,所述装置配置于基站,包括:
发送模块,被配置为在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号 用于指示终端UE基于所述PEI信号执行预定义的操作。
第六方面,本申请实施例提供一种信号接收装置,所述装置配置于终端,包括:
第二接收模块,被配置为接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;接收第一资源指示;
判断模块,被配置为当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
第七方面,本申请实施例提供一种设备,包括:
至少一个处理器;
存储器,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如本申请实施例提供的任一项所述的方法。
第八方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例提供的任一项所述的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请实施例提供的一种信号接收方法的流程图;
图2a是本申请实施例提供的一种信号发送方法的流程图;
图2b是本申请实施例提供的一种信号接收方法的流程图;
图3是本申请实施例提供的一种PEI发送窗的示意图;
图4是本申请实施例提供的另一种PEI发送窗的示意图;
图5是本申请实施例提供的又一种PEI发送窗的示意图;
图6是本申请实施例提供的一种PEI_SSB_offset的示意图;
图7是本申请实施例提供的一种PEI和第N个SSB的位置的示意图;
图8是本申请实施例提供的一种PEI和参考点的位置的示意图;
图9是本申请实施例提供的一种信号接收装置的示意图;
图10是本申请实施例提供的一种信号发送装置的示意图;
图11是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于多种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信技术(5th generation wireless systems,5G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例中,基站可以是能和用户终端进行通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。在本申请中以5G基站为例进行说明。
本申请实施例中,用户终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户终端有时也可以称为终端、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
处于RRC_IDLE态或RRC_INACTIVE态的UE在每一个寻呼周期都需要监听PO。所述PO包含多个下行控制信道监听时机(PDCCH monitor occasion)。将UE在PO处检测到的PDCCH称为寻呼下行控制信息(paging,Downlink Control Information,paging DCI),将该paging DCI所调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)承载的信息称为寻呼消息(paging message)。UE为了能够成功的检测到paging DCI和寻呼消息,需要在PO之前完成同步、自动增益控制(Automatic Gain Control,AGC)等操作。且每个寻呼周期中,UE都需要进行一次测量。因此,在PO之前,UE需要先处理一个或多个同步信号块(Synchronizing Signal Block,SSB)。而UE处理的SSB的个数,可能会随着信道条件的不同而变化。且不同UE的PO和SSB之间的距离也可能不同。
寻呼的寻呼帧(paging frame,PF)和PO由以下公式决定:
PF的系统帧号(system frame number,SFN)满足条件:
(SFN+PF_offset)×T=(T/N)×(UE_ID×N);
其中,SFN是PF的系统帧号,PF_offset是PF的偏移量,UE_ID是UE的ID号,T是非连续接收(Discontinuous Reception,DRX)周期。N是一个DRX周期内的寻呼帧的个数。
指示PO的索引号i_s由以下公式决定:i_s=floor(UE_ID/N)×Ns。
其中,UE_ID是UE的ID号,i_s是指示PO的索引号,floor(·)是向下取整函数,N 是一个DRX周期内的寻呼帧的个数,Ns是一个寻呼帧内PO的个数。
其中UE_ID=5G-S-TMSI×1024,5G-S-TMSI为48bit长的bit字符串。
一个天线端口符号上的信道特性可以从另一个天线端口推导出,则认为这两个端口准共位置(Quasi Co-Location,QCL),从一个端口获得的信道估计结果,可以用于另一个端口。
QCL有四种类型:QCL-TypeA具有多普勒偏移、多普勒扩展、平均时延、时延扩展特性,作用是获得信道估计信息;QCL-TypeB具有多普勒偏移、多普勒扩展特性,作用是获得信道估计信息;QCL-TypeC具有多普勒偏移、平均时延特性,作用是获得RSRP等测量信息;QCL-TypeD具有空间接收天线参数特性,作用是辅助UE波束赋形。
为了减少UE接收不必要的PO而造成的功耗,可以在PO之前引入一个寻呼指示(paging early indication,PEI)信号,PEI信号可提前告知UE是否需要唤醒UE接收PO。PEI相对于PO和SSB处在不同位置会带来不同的节电效果,合适的配置可以获得较好的节电增益,配置不合理时,节电增益将大大降低,甚至会呈现负效果。
在PO之前引入一个PEI信号,可以在接收PO之前通知UE在一个或多个寻呼周期中是否需要唤醒UE来接收PO。如果UE不需要接收PO,则该UE可以保持或进入睡眠状态,从而减少接收PO的功耗,还可以减少从睡眠状态切换到接收PO状态以及从接收PO状态切换到睡眠状态(称之为ramp up和ramp down)所需要的额外功耗。所述PEI信号的时域位置对UE节省功耗的效果有着重要的作用。如果PEI位置配置不合适,可能导致UE需要额外增加接收PEI所带来的ramp up和ramp down的功耗,使得节电效果下降,甚至出现反效果。合理的配置PEI的位置是实现UE省电的关键因素。
在实现上,UE在接收PO之前需要处理一个或多个SSB来实现同步、AGC、(同频(同频或者异频)小区测量、服务小区测量等目的。
在不同的信道条件下,UE对SSB个数的要求可能不同。例如对于小区中心的UE而言,信道条件较好,UE需要少量,如一个,SSB即可达到同步和测量的效果,因此UE在PO之前只需要处理一个SSB。当UE位于小区边缘时,信道条件差,一个SSB可能不能满足同步的精度要求,此时,UE需要处理多个SSB才能达到同步、测量等需求。
对于不同的场景,UE在一个寻呼周期内执行的操作(包括,处理的SSB的数量)不同,能达到最佳节电增益所对应的PEI的位置也不相同。
不同类型或者能力的UE,对SSB个数的要求可能不同。例如,有4,2或1个接收天线的UE,所需要处理的SSB个数不同,能达到最佳节电增益所对应的PEI的位置也不相同。例如,普通UE和弱能力UE(reduced capability UE,RedCap UE),所需要处理的SSB个数不同,能达到最佳节电增益所对应的PEI的位置也不相同。
因此,固定的一个PEI位置不能满足需求。基于此,本申请提出一种信号发送和接收方法、装置、设备和存储介质,在尽可能低的资源开销和复杂度前提下能够获取尽可能高的节电增益。
结合下述实施例对信号发送和接收方法、装置、设备和存储介质进行详细介绍。
在一个实施例中,提供一种信号接收方法,所述方法应用于终端,所述信号接收方法适用于确定多种PEI时域位置的情况。如图1所示,本申请实施例提供的信号接收方法主要包括步骤S11、S12。
S11、在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
S12、基于所述PEI信号执行预定义的操作。
在一个实施方式中,所述预定义的操作,包括如下一种或多种:
接收PO;
不接收PO;
接收寻呼DCI。
在一个实施方式中,在PO之前接收PEI信号,包括:
在PEI接收窗内的PEI时频资源位置上接收PEI信号。
在一个实施方式中,所述PEI信号还包括如下一种或多种信息:
参考信号资源或者参考信号资源集合指示;
是否接收广播多播消息;
系统消息更新指示。
在一个实施方式中,所述PEI接收窗的相关信息由基站根据如下一个或多个信息进行配置:终端能力,终端类型,DRX配置信息;
所述PEI接收窗的相关信息包括如下一个或多个:所述PEI接收窗的起始位置,PEI接收窗的结束位置,所述PEI接收窗的持续时间。
在一个实施方式中,所述PEI接收窗的结束位置是PO开始位置;或,所述PEI接收窗的结束位置在PO开始位置之前。
在一个实施方式中,所述PEI接收窗的持续时间与SSB的周期相关联:PEI接收窗的持续时间等于N个SSB周期加一个偏移量,其中N≥0,偏移量大于或等于0。
在一个实施方式中,所述PEI信号的时域位置由与所述PEI信号相关联的SSB确定。
在一个实施方式中,在PEI接收窗内的PEI时频资源位置上接收PEI信号,包括如下一种或多种:
在所述PEI接收窗内的首个PEI接收位置上接收所述PEI信号;
在所述PEI接收窗内的第一预设位置接收所述PEI信号,所述第一预设位置与所述PEI相关联的SSB相关;
在所述PEI接收窗内的第二预设位置接收所述PEI信号,所述第二预设位置是基于上一寻呼周期中PO之前处理的SSB的个数确定;
在所述PEI接收窗内的第三预设位置接收所述PEI信号,所述第三预设位置是基于上一个或者多个寻呼周期的测量结果确定。
在一个实施方式中,所述PEI信号的时域位置与PO之前的第N个SSB相关联,其中N为正整数。
在一个实施方式中,与所述PEI信号相关联的SSB满足如下一个或多个条件:
所述相关联SSB为与所述PEI信号距离最近的SSB;
所述相关联SSB与所述PEI信号具有准共位置关系;
所述相关联SSB与所述PEI信号具有相同波束方向或相同准共位置类型;
所述相关联SSB与所述PEI信号具有相同的索引;
所述相关联SSB索引与所述PEI信号索引具有相同排列位置;
所述相关联SSB由高层信令或者系统消息配置;
所述相关联SSB由预定义方式确定。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的位置关系由如下一个或多个参数确定:
载波频率,子载波间隔,SSB图样,SSB周期,SSB索引,SSB与控制资源集CORESET的复用图样,频谱类型。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的传输位置包括如下一种或多种:
所述PEI信号与该PEI信号相关联的SSB在同一个时隙传输;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之前;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之后;
所述PEI信号与该PEI信号相关联的SSB在同一个半帧内传输。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离,包括如下一种或多种:
PEI信号的起始位置和该PEI相关联的SSB的起始位置之间的距离。
PEI信号的起始位置与该PEI波束方向相同的SSB位置之间的距离;
PEI信号的起始位置和该PEI相关联的SSB的指定索引位置之间的距离。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离由第一参数确定;其中,第一参数包括如下一种或多种:
所述第一参数是大于或等于0的数;
所述第一参数为任一自然数;
所述第一参数由预定义的方式决定;
所述第一参数由高层参数决定;
所述第一参数由UE能力决定;
所述第一参数由DRX参数决定。
在一个实施方式中,所述N在指定范围内确定;其中,所述指定范围由高层参数配置,或所述指定范围由预定义确定,或,由下行控制信息DCI指示。
在一个实施方式中,所述N基于如下一个或多个参数在指定范围内确定:信道测量结果,信道条件。
在一个实施方式中,与所述PEI相关联的所述PO之前的第N个SSB包括如下一种或多种:
第N个SMTC(SSB Measurement Timing Configuration)窗内的SSB;
第N个SSB突发;
第N个SSB突发中具有SSB索引的SSB。
在一个实施方式中,所述PEI信号的时域位置与PO之前的预先配置的参考点相关。
在一个实施方式中,所述参考点包括:
所述参考点由高层参数决定;
所述参考点距离PO的距离为整数个SSB周期加一个偏移;
所述参考点满足SFN mod M=0,M为正整数。
在一个实施方式中,所述PEI信号的时域位置是基于PEI信号与参考点之间的距离确定。
在一个实施方式中,所述PEI信号与参考点之间的关系,包括以下至少之一:
所述PEI信号的起始位置与所述参考点之间有SSB;
所述PEI信号的结束位置与所述参考点之间有SSB;
所述PO与所述参考点之间有SSB。
在一个实施方式中,所述PEI信号与参考点之间的距离由第二参数确定;其中,第二参数包括如下一种或多种:
所述第二参数是大于或等于0的数;
所述第二参数为任一自然数;
所述第二参数由预定义的方式决定;
所述第二参数由高层参数决定;
所述第二参数由DRX参数决定。
在一个实施方式中,所述方法还包括:
在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE接收PO;
或,在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE不接收PO;
或,在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE是否接收PO由高层参数决定。
在一个实施方式中,所述没有PEI检测机会包括:所述PEI检测时机中至少一个或所有PEI检测时机与至少以下之一资源碰撞或重叠:
SSB资源;
SMTC窗;
测量间隔;
定位参考信号;
系统消息;
随机接入响应窗;
控制资源集合0;
预配置时频资源。
在一个实施方式中,所述方法还包括:
在PEI时频资源与非PEI时频资源发生资源重叠的情况下,基于资源重叠情况执行预定义的操作。
在一个实施方式中,基于资源重叠情况执行预定义的操作,包括:
按照预定义的优先级,接收优先级高的信号;其中,所述预定义的优先级包括如下一种或多种情况:
当PEI时频资源与PDSCH时频资源重叠时,PEI信号与PDSCH的优先级由PDSCH承载的信息类型和加扰调度PDSCH的PDCCH的无线网络临时标识符(Radio Network Temporary Identifier,RNTI)类型确定;
当PEI时频资源与随机接入响应窗发生资源重叠时,PEI信号与接入响应的优先级由触发随机接入响应窗的原因确定。
在一个实施方式中,在所述PEI信号由DCI指示的情况下,基于资源重叠情况执行相应的操作,包括如下一种或多种:
当PEI与其它信令和/或信号发生资源重叠时,监听PO;
当PEI与其它信令和/或信号发生资源重叠时,基于高层配置确定是否监听PO。
在一个实施例中,提供一种信号发送方法,所述方法应用于基站,所述信号发送方法适用于确定多种PEI时域位置的情况。如图2a所示,本申请实施例提供的信号发送方法主要包括步骤S21。
S21、在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
在一个实施方式中,所述预定义的操作,包括如下一种或多种:
接收PO;
不接收PO;
接收寻呼DCI。
在一个实施方式中,在PO之前发送PEI信号,包括:
在PEI发送窗内的PEI时频资源位置上发送PEI信号。
在一个实施方式中,所述PEI信号还包括如下一种或多种信息:
参考信号资源或者参考信号资源集合指示;
是否接收广播多播消息;系统消息更新指示。
在一个实施方式中,在PEI发送窗内的PEI时频资源上发送PEI信号,包括:
在PEI发送窗内的PEI时频资源位置上按照预设周期发送PEI信号。
在一个实施方式中,所述预设周期是SSB周期的倍数。
在一个实施方式中,在PO之前发送PEI信号,包括:在与PO之前第N个SSB相关联的PEI位置发送PEI。
在一个实施方式中,所述PEI发送窗的相关信息由基站根据如下一个或多个信息进行配置:终端能力,终端类型,DRX配置信息;
所述PEI发送窗的相关信息包括如下一个或多个:所述PEI发送窗的起始位置,PEI发送窗的结束位置,所述PEI发送窗的持续时间。
在一个实施方式中,所述PEI发送窗的结束位置是PO开始位置;或,所述PEI发送窗的结束位置在PO开始位置之前。
在一个实施方式中,所述PEI发送窗的持续时间与SSB的周期相关联:PEI发送窗的持续时间等于N个SSB周期加一个偏移量,其中N≥0,偏移量大于或等于0。
在一个实施方式中,所述PEI信号的时域位置由与所述PEI信号相关联的SSB确定。
在一个实施方式中,在PEI发送窗内的PEI时频资源位置上接收PEI信号,包括如下一种或多种:
在所述PEI发送窗内的首个PEI接收位置上接收所述PEI信号;
在所述PEI发送窗内的第一预设位置接收所述PEI信号,所述第一预设位置与所述PEI相关联的SSB相关;
在所述PEI发送窗内的第二预设位置接收所述PEI信号,所述第二预设位置是基于上一 寻呼周期中PO之前处理的SSB的个数确定;
在所述PEI发送窗内的第三预设位置接收所述PEI信号,所述第三预设位置是基于上一个或者多个寻呼周期的测量结果确定。
在一个实施方式中,所述PEI信号的时域位置与PO之前的第N个SSB相关联,其中N为正整数。
在一个实施方式中,与所述PEI信号相关联的SSB满足如下一个或多个条件:
所述相关联SSB为与所述PEI信号距离最近的SSB;
所述相关联SSB与所述PEI信号具有准共位置关系;
所述相关联SSB与所述PEI信号具有相同波束方向或相同准共位置类型;
所述相关联SSB与所述PEI信号具有相同的索引;
所述相关联SSB索引与所述PEI信号索引具有相同排列位置;
所述相关联SSB由高层信令或者系统消息配置;
所述相关联SSB由预定义方式确定。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的位置关系由如下一个或多个参数确定:
载波频率,子载波间隔,SSB图样,SSB周期,SSB索引,SSB与控制资源集CORESET的复用图样,频谱类型。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的传输位置包括如下一种或多种:
所述PEI信号与该PEI信号相关联的SSB在同一个时隙传输;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之前;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之后;
所述PEI信号与该PEI信号相关联的SSB在同一个半帧内传输。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离,包括如下一种或多种:
PEI信号的起始位置和该PEI相关联的SSB的起始位置之间的距离。
PEI信号的起始位置与该PEI波束方向相同的SSB位置之间的距离;
PEI信号的起始位置和该PEI相关联的SSB的指定索引位置之间的距离。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离由第一参数确定;其中,第一参数包括如下一种或多种:
所述第一参数是大于或等于0的数;
所述第一参数为任一自然数;
所述第一参数由预定义的方式决定;
所述第一参数由高层参数决定;
所述第一参数由UE能力决定;
所述第一参数由DRX参数决定。
在一个实施方式中,所述N在指定范围内确定;其中,所述指定范围由高层参数配置,或所述指定范围由预定义确定,或,由下行控制信息DCI指示。
在一个实施方式中,所述N基于如下一个或多个参数在指定范围内确定:信道测量结果, 信道条件。
在一个实施方式中,与所述PEI相关联的所述PO之前的第N个SSB包括如下一种或多种:
第N个SMTC窗内的SSB;
第N个SSB突发;
第N个SSB突发中具有SSB索引的SSB。
在一个实施方式中,在PO之前发送PEI信号,包括:在与PO之前参考点相关联的PEI位置发送PEI。
在一个实施方式中,所述参考点包括:
所述参考点由高层参数决定;
所述参考点距离PO的距离为整数个SSB周期加一个偏移;
所述参考点满足SFN mod M=0,M为正整数。
在一个实施方式中,所述PEI信号的时域位置是基于PEI信号与参考点之间的距离确定。
在一个实施方式中,所述PEI信号与参考点之间的关系,包括以下至少之一:
所述PEI信号的起始位置与所述参考点之间有SSB;
所述PEI信号的结束位置与所述参考点之间有SSB;
所述PO与所述参考点之间有SSB。
在一个实施方式中,所述PEI信号与参考点之间的距离由第二参数确定;其中,第二参数包括如下一种或多种:
所述第二参数是大于或等于0的数;
所述第二参数为任一自然数;
所述第二参数由预定义的方式决定;
所述第二参数由高层参数决定;
所述第二参数由UE能力决定;
所述第二参数由DRX参数决定;
在一个实施例中,PEI指示的信息包括以下至少之一:
是否接收m个PO;
是否接收寻呼DCI;
是否接收寻呼PDSCH或者寻呼消息;
是否接收广播多播消息;
参考信号资源或者参考信号资源集合指示;或,
系统消息更新指示。
所述参考信号资源或者参考信号资源集合指示包括以下之一:
所述参考信号资源或者参考信号资源集合是否存在;
UE是否需要盲检测参考信号资源或者参考信号资源集合;
所述参考信号资源或者参考信号资源集合是否更新或激活或去激活。
在一个实施例中,提供一种信号接收方法,所述方法应用于终端,所述信号接收方法适用于确定资源碰撞或者重叠如何处理的情况。如图2b所示,本申请实施例提供的信号接收方 法主要包括步骤S31、S32和S33。其中,所述终端工作在连接态。
S31、接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;
S32、接收第一资源指示;
S33、当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
在一个实施方式中,所述第一资源与PEI信号相关。
在一个实施方式中,所述数据传输和第一资源的优先级包括如下一种或多种情况:
当所述数据传输资源为PDSCH数据传输资源时,数据传输和第一资源的优先级由PDSCH承载的信息类型,加扰调度PDSCH的PDCCH的RNTI类型,和触发方式中至少之一确定;
当所述数据传输资源为随机接入响应窗时,数据传输和第一资源的优先级由触发随机接入响应窗的原因确定;
当所述数据传输资源为PDCCH数据传输时,数据传输和第一资源的优先级由PDCCH承载的信息类型,PDCCH承的控制信息格式,加扰PDCCH的RNTI类型,PDCCH相关的控制资源集,PDCCH相关的搜索空间类型中至少之一确定;
当所述数据传输资源为参考信号时频资源时,数据传输和第一资源的优先级由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定;
当所述数据传输资源为当SSB时频资源时,数据传输和第一资源由PEI相关的时频资源确定。
在一个实施例中,提供PEI接收窗的相关信息。主要包括窗的意义,窗的大小,如何配置等信息。
需要说明的是,在UE看来,为PEI接收窗,在基站看来,为PEI发送窗,即PEI接收窗和PEI发送窗的意义,窗的大小,占用的时频资源,配置信息都是相同的,只是描述角度不同。
基站在PEI发送窗内的PEI时频资源位置上发送PEI信号。所述PEI发送窗为PO之前的一段时间,持续时间为PO_PEI_offset,即PEI接收窗的持续时间等于N个SSB周期加一个偏移量offset。其中,N为整数。从UE的角度来看,可称其为PEI接收窗。
如图3和图4所示,PEI发送窗的结束位置为PO开始位置。UE在PEI接收窗内对应的时间位置检测PEI信号。如成功检测到PEI信号,则根据PEI信号的指示执行预定义的操作。
如图5所示,所述PEI发送窗为PO之前一段距离,但PEI发送窗的结束位置不是PO开始的位置,而是距离PO一定距离的位置。在此情况下,PEI发送窗截止位置到PO之间的距离可以是预定义的固定值。或者PEI发送窗结束的位置到PO之间的距离由高层参数配置。
例如,所述PEI发送窗的配置信息和UE能力/UE类型/DRX配置相关。其中,PEI发送窗的配置包括如下一种或多种:PEI发送窗的起始位置,PEI发送窗截止位置,PEI发送窗窗的长度。
例如,网络/基站侧根据UE的能力来配置PEI发送窗,包括PEI发送窗的起始位置,PEI发送窗截止位置以及PEI发送窗的长度。例如,所述UE能力包括以下至少之一:接收天线数,发送天线数,是否支持覆盖增强,支持的最大(下行或者上行)带宽。例如,所述DRX 配置包括:第一类DRX配置,或第二类DRX配置。其中,所述,第二类DRX配置包括DRX周期大于或等于1024×10ms。所述,第一类DRX配置包括DRX周期小于1024×10ms。
PO_PEI_offset为大于或等于SSB周期的毫秒级别,如50ms,80ms等。例如,PO_PEI_offset的单位为Slot,如40slots,80slots等。PO_PEI_offset的最大值或者最小值为大于或等于SSB周期的毫秒级别。例如,PEI发送窗内至少有一个SSB出现的机会。PO_PEI_offset可以和SSB的周期值相关,例如PO_PEI_offset大于N个SSB周期;或者,PO_PEI_offset大于或等于N个SSB周期,即保证在PEI发生窗内有N个SSB出现的机会。例如,PO_PEI_offset的最大值或者最小值大于N个SSB周期;或者,PO_PEI_offset的最大值或者最小值大于或等于N个SSB周期,即保证在PEI发生窗内有N个SSB出现的机会。例如,PO_PEI_offset的值等于N倍SSB周期加一个偏移量offset,其中N≥0,offset≥0。例如,PO_PEI_offset的最大值或者最小值等于N倍SSB周期加一个偏移量offset。例如,PO_PEI_offset取值范围取决于不同场景或UE能力或UE类型。例如,对于普通UE而言,PO_PEI_offset的范围为0-3个SSB周期;对于减少复杂度的UE(RedCap UE)而言,PO_PEI_offset的范围为0-5个SSB周期。
基站周期地发送PEI信号。例如,基站在PEI发送窗内周期地发送PEI信号。例如,PEI信号的发送周期是根据SSB周期确定的,例如PEI信号的发送周期和SSB周期相同。例如,均为20ms。如此可保证在PEI发送窗内的每一个SSB附近都有一个PEI发送机会,且每一个PEI的位置和相邻的SSB的位置之间的距离相等。PEI信号的发送周期为SSB周期的倍数。例如,PEI的最大发送周期或最小发送周期为SSB周期的倍数。
例如,在同一个PEI发送窗内发送的PEI信号的内容完全一致。
例如,UE在一个寻呼周期至少检测一个PEI。
例如,PO_PEI_offset的值为固定值,如60ms。例如,PO_PEI_offset的值由高层参数配置。高层参数配置的值就作为实际的PEI发送窗的大小。例如,PO_PEI_offset的值由高层参数配置,且高层参数配置的为一个范围值(如最大值),UE根据实际情况选择实际采用的PEI接收窗。
定义PEI发送窗可以避免基站只在一个位置上发送PEI从而导致UE漏检的问题,同时还可以避免基站需要频繁发送PEI而导致的额外的能耗/资源开销问题。在PEI发送窗内总是会有SSB接收的机会,从而可以令PEI的位置与SSB位置相邻,通过增加睡眠时间来最大化节电增益。也可使得新版UE(例如,3GPP Release 17或者之后版本的UE)可以像老式UE(例如,3GPP Release 17之前版本的UE)一样,选择/使用SSB来做测量、同步等工作。
在一个实施例中,提供PEI信号与SSB的位置关系。
为了获取更大的节电增益,UE应尽量减少ramp up/down的机会,增加深度睡眠的时间。对于不同UE而言,PO之前的SSB与PO之间的距离随机,当PEI位于SSB周围的时候,UE不必多次醒来,而能集中一段时间处理SSB和PEI,可以使UE获得较高的节电增益。
PEI的时域位置与相关联SSB相关。例如,PEI与相关联SSB之间的位置关系由预定义的方式,高层信令,系统消息,UE能力,UE类型,或DRX参数配置中至少之一确定。
例如,所述相关联的SSB至少满足以下关系之一:
所述相关联的SSB为与PEI距离最近的SSB;在本申请中,当有多个SSB时,将距离PEI最近的SSB称之为与PEI相邻的SSB;
所述相关联的SSB为与PEI具有准共位置(quasi-colocation,QCL)关系的SSB;
所述相关联的SSB为与PEI具有相同波束方向或相同准共位置类型D(QCL-Type D)关系的SSB;
所述相关联的SSB与PEI相对应(correspond);
所述相关联的SSB与PEI具有相同的索引;例如,PEI与SSB均为多波束发送,且PEI索引分别为0-3,SSB索引也为0-3。则索引相同(例如都为1)的PEI与SSB相对应。
所述相关联的SSB的索引与PEI的索引具有相同排列位置;
所述相关联的SSB的索引在SSB索引集合中位置与PEI的索引在PEI索引集合中排列位置相关;例如,配置的SSB索引集合为{1,3,5},配置的PEI索引集合为{2,4,6},则索引为3的SSB与索引为4的PEI在对应索引集合中位置相同(都是第二个索引),那么,索引为3的SSB与索引为4的PEI相关联。
所述相关联的SSB由高层信令或者系统消息配置;
所述相关联的SSB为预定义方式确定(例如,具有最小SSB索引或者最大SSB索引)。
例如,所述PEI与相关联的SSB之间的位置关系至少与以下因素之一相关:
载波频率(carrier frequency),子载波间隔(sub-carrier spacing),SSB图样,SSB周期,SSB索引,SSB与控制资源集(control resource set,CORESET)0的复用图样(multiplexing pattern),频谱类型,频谱范围。SSB图样取决于高层信令ssb-PositionsInBurst。例如,频谱类型包括,授权频谱或非授权频谱。
例如,PEI与相关联SSB在同一个半帧(half frame)内传输。例如,PEI与相关联SSB在同一个半帧内占用不同符号。
例如,PEI与相关联SSB在同一个时隙传输。例如,PEI在SSB所在时隙的最前面N1个符号传输,1≤N1≤4。例如,PEI在SSB所在时隙的最前面1个或2个符号传输。这样既可以保证减小PDCCH传输的影响(PDCCH通常在一个时隙的前三个符号),也可以保证UE在集中时间内处理PEI与SSB。
例如,PEI在相关联SSB之前传输。例如,PEI的发送时机从相关联SSB开始位置(例如,SSB索引最小的位置---实际发送SSB的索引是由广播消息/高层信令ssb-PositionsInBurst通知的,不一定从0开始)之前的n个时隙开始,n≥1。例如,PEI的发送时机的开始位置或者结束位置为相关联SSB开始位置之前的n个时隙,n≥1。例如,PEI在相关联SSB之后传输,例如,PEI的发送时机从相关联SSB起始位置(即SSB索引最小或者索引最大的位置)之后的第n个时隙开始,n≥1。
在一个实例中,Case A:
15kHz SCS:PEI在半帧内发送符号的索引包括集合{{0,1,2,...,13}/{2,8}}+14×n中至少之一。(除去SSB)
其中,载波频率小于或等于3GHz,n=0,1。
其中,载波频率大于3GHz,且属于第一频率范围(frequency range 1,FR1),n=0,1,2,3.
其中{A}/{B}表示集合{A}与{B}的差集,即由属于集合{A}但是不属于集合{B}的元素组成。
其中,符号索引0为半帧中第一个符号的索引,符号索引1为半帧中第二个符号的索引,依次类推。
可以再从中选一些符号索引作为实施例。例如,对于与SSB索引为i的相关联的PEI,其在半帧内发送符号的索引包括集合{0,1,6,7}+14*n+i*6中至少之一。其中,i=0或1。
在一个实例中,Case B:
30kHz SCS:PEI在半帧内发送符号的索引包括集合{{0,1,2,...,27}/{4,8,16,20}}+28×n中至少之一。(除去SSB)。
其中,载波频率小于或等于3GHz,n=0。其中,载波频率大于3GHz,且属于第一频率范围3GHz,n=0,1。
例如,对于与SSB索引为i的相关联的PEI,其在半帧内发送符号的索引包括集合{0,1,2,3,12,13}+14×n+i×6中至少之一。其中,i为偶数。例如,对于与SSB索引为j的相关联的PEI,其在半帧内发送符号的索引包括集合{2,3,12,13,14,15}+14×n+j×6中至少之一。其中,j为奇数。
在一个实例中,Case C:
30kHz SCS:PEI在半帧内发送符号的索引包括集合{{0,1,2,...,13}/{2,8}}+14×n中至少之一。(除去SSB{2,8}+14·n}
其中,载波频率小于或等于3GHz,n=0,1。其中,载波频率大于3GHz,且属于第一频率范围,n=0,1,2,3。
其中,对于非成对频偏,载波频率小于1.88GHz,n=0,1。其中,载波频率大于或等于1.88GHz,且属于第一频率范围,n=0,1,2,3。
例如,对于与SSB索引为i的相关联的PEI,其在半帧内发送符号的索引包括集合{0,1,6,7}+14*n+i*6中至少之一。其中,i=0,1,2,3。
在一个实例中,Case D:
120kHz SCS:PEI在半帧内发送符号的索引包括集合{{0,1,2,...,27}/{4,8,16,20}}+28×n中至少之一。(除去SSB{4,8,16,20}+28·n)其中,载波频率属于第二频率范围(frequency range 2,FR2),n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
例如,对于与SSB索引为i的相关联的PEI,其在半帧内发送符号的索引包括集合{0,1,2,3,12,13}+14×n+i×6中至少之一。其中,i为偶数。例如,对于与SSB索引为j的相关联的PEI,其在半帧内发送符号的索引包括集合{2,3,12,13,14,15}+14×n+j×6中至少之一。其中,j为奇数。
在一个实例中,Case E:
240kHz SCS:PEI在半帧内发送符号的索引包括集合{{0,1,2,...,55}/{8,12,16,20,32,36,40,44}}+56*n中至少之一。其中,载波频率属于第二频率范围,n=0,1,2,3,5,6,7,8。
例如,对于与SSB索引为i的相关联的PEI,其在半帧内发送符号的索引包括集合{0,1,12,13}+14×n+i+mod(I,4)×12中至少之一。其中,i为整数。
在一个实施例中,第一频率范围包括6GHz以下的频带。
在一个实施例中,第二频率范围包括24GHz到52.6GHz的频带,或者,第二频率范围包括24GHz到100GHz的频带。
例如,PEI与相关联SSB之间的位置关系可配。定义PEI与相关联SSB之间的距离为PEI_SSB_offset。例如,所述PEI_SSB_offset为PEI的起始位置和相关联SSB的起始位置之 间的距离。例如,所述PEI_SSB_offset为PEI的起始位置和与该PEI波束方向相同的SSB位置之间的距离。例如,所述PEI_SSB_offset为PEI的起始位置和SSB的指定索引位置(如SSB索引号为1)之间的距离。例如,所述PEI_SSB_offset为PEI的结束位置和相关联SSB的起始位置之间的距离。例如,所述PEI_SSB_offset为PEI的起始位置和相关联SSB的结束位置之间的距离。例如,所述PEI_SSB_offset为PEI的结束位置和相关联SSB的结束位置之间的距离。
例如,PEI_SSB_offset的绝对值小于半个SSB周期。当定义PEI位于相关联SSB之前或之后时,所述SSB指的是与PEI之间的距离小于半个SSB周期的SSB。
在一个实例中,PEI_SSB_offset的值始终大于或等于0。采用预定义的方式说明PEI和相关联SSB的相对位置。例如,PEI位于相关联SSB的前面,或PEI位于SSB后面,或PEI和SSB在时域位置上重叠,其中,slot级别重叠,即PEI和SSB可以在同一slot处理,但二者占用的符号不同;或者,占用的符号相同,但频率资源不同。
以PEI_SSB_offset表示PEI的起始位置和SSB的起始位置之间的距离为例说明如下。
如6所示,假如预定义PEI位于SSB之前,且PEI的持续时间:duration等于3个slot。当PEI_SSB_offset刚好等于3个slot时,此时PEI和SSB紧挨着。当PEI_SSB_offset大于3个slot时,则PEI在SSB之前,但非紧挨着,UE在接收完PEI之后,接收SSB之前有一段可用来睡眠的时间。当PEI_SSB_offset小于3个slot时,则UE在部分slot上既有PEI又有SSB。当PEI_SSB_offset等于0时,PEI的起始位置和SSB的起始位置重叠。在此时,如果SSB的处理时间大于3个slot,则PEI的所有接收时机都与SSB重叠。
需要说明的是,本申请中所述duration为PEI的持续时间,当PEI为PDCCH(基于下行控制信息(downlink control information,DCI)格式)时,duration可以是搜索空间(search space set)配置中的参数。当PEI为序列形式时,duration可以是连续发送PEI的时隙数量。
如果PEI在SSB之前且PEI_SSB_offset为PEI的结束位置和相关联SSB的起始位置之间的距离,则PEI_SSB_offset=0表示PEI和SSB紧邻。
如果PEI位于SSB之后,则SSB的接收时间大于PEI_SSB_offset时,表明PEI和SSB在时域上有重叠。
例如,当预定义PEI在SSB之前或SSB之后时,PEI_SSB_offset应满足条件:PEI和SSB在时域上无重叠。即,PEI位于SSB之前时,要求PEI的所有检测时机均在SSB之前。例如,PEI在SSB之前,PEI_SSB_offset为PEI的起始位置和SSB的起始位置之间的距离,PEI的duration为3个slot时,要求PEI_SSB_offset大于或等于3个slot。
例如,由于PEI的持续时间(duration)或SSB的处理时间导致PEI和SSB在时域有重叠时,UE只处理未重叠部分的PEI。例如,由于PEI的持续时间(duration)或SSB的处理时间导致PEI和SSB在时域有重叠但在频率上没有重叠时,UE在重叠的时间部分既检测PEI又处理SSB。
在一个实例中,PEI_SSB_offset的值可以为正,可以为负也可以为0。PEI_SSB_offset的正负值用来表示PEI和相关联SSB的前后关系。例如,PEI_SSB_offset为正值时,表明PEI在SSB之前,PEI_SSB_offset为负值时,表明PEI在SSB之后。或相反的,PEI_SSB_offset 为正值时,表明PEI在SSB之后,PEI_SSB_offset为负值时,表明PEI在SSB之前。
以PEI_SSB_offset表示PEI的起始位置和SSB的起始位置之间的距离为例,PEI_SSB_offset>0,表示PEI的起始位置位于SSB起始位置之前;PEI_SSB_offset=0,表示PEI起始位置和SSB起始位置重叠;PEI_SSB_offset<0,表示PEI起始位置在SSB起始位置之后。
与上述实例类似。例如,当PEI_SSB_offset>0或PEI_SSB_offset<0时,PEI_SSB_offset应满足条件:PEI和SSB在时域上无重叠。例如,当PEI_SSB_offset表示PEI的起始位置和SSB的起始位置之间的距离时,为了使得PEI与SSB时域无重叠,要求PEI_SSB_offset>duration或者PEI_SSB_offset<﹣SSB处理时间。例如,不限制PEI_SSB_offset,由于PEI的持续时间(duration)或SSB的处理时间导致PEI和SSB在时域有重叠时,UE只处理未重叠部分的PEI。例如,由于PEI的持续时间(duration)或SSB的处理时间导致PEI和SSB在时域有重叠时,UE在重叠部分既检测PEI又处理SSB。
例如,PEI和相关联SSB的位置关系由高层信令。例如,第一高层信令决定PEI和相关联SSB的前后关系;第二高层信令决定PEI和相关联SSB之间的偏移,i.e.,PEI_SSB_offset。例如,若第三高层信令配置为PEI_SSB_offset,则表示PEI在相关联SSB之前,且偏移为PEI_SSB_offset;若第四高层信令配置为PEI_SSB_offset,则表示PEI在相关联SSB之后,且偏移为PEI_SSB_offset。
例如,第一高层信令取决于UE能力,UE类型,DRX参数,频率范围,或频谱类型中至少之一。
例如,第二高层信令取决于UE能力,UE类型,DRX参数,频率范围,或频谱类型中至少之一。
在一个实施例中,提供UE在何位置检测PEI信号,检测PEI信号的个数,如果漏检如何操作的方法。
基站在PEI发送窗内周期性的发送PEI,UE可在对应位置接收PEI。当PEI发送窗内有多个PEI发送机会时,UE并不需要检测每一个PEI。且UE在不同的PEI发送机会上检测PEI最终实现的节电增益不同,在PEI接收窗内的第一个PEI检测机会上检测PEI并不总能实现好的节电增益。为了实现最优的节电增益,需要定义UE在哪个PEI机会检测PEI。
值得注意的是,本申请中所述的SSB附近指的可以是SSB之前,SSB之中,也可以是SSB之后。
在一个实例中,基站在PEI发送窗内的所有PEI位置上发送PEI信号,UE只检测PEI发送窗内UE实际处理的第一个SSB相关联(或附近)的PEI信号。例如,PEI发送窗内包含3个SSB处理时机,且UE处理窗内的第一个SSB,则UE在第一个SSB附近的PEI发送位置上检测PEI,并根据PEI的指示执行对应操作。如果UE不在PEI发送窗内的第一个SSB处理机会处处理SSB,UE处理第二个SSB,则UE不检测PEI发送窗内的第一个PEI发送机会。UE在PEI发送窗内的第二个SSB附近,即第二个PEI发送位置检测PEI(如图3和图4所示)。
例如,UE只检测PEI发送窗内与相关联SSB具有预定义位置关系的一个或多个PEI信号。例如,所述预定义位置关系由偏置(offset)确定。例如,所述偏置与UE能力,UE类型,频率范围,频偏类型中至少之一确定。
例如,若UE成功检测到一个PEI,则无论UE是否处理PEI发送窗内的剩余SSB,UE均不再检测剩余PEI。例如,若UE在PEI发送窗内的第一个PEI检测位置上未成功检测到PEI,则UE在下一个PEI位置上继续检测PEI。例如,若UE成功检测到一个PEI,则不再检测当前发送窗内其他PEI。例如,一个发送窗内仅发送或配置L个PEI。其中,L为正整数,例如,L=1。例如,一个配置PEI的搜索空间集(search space set)周期内仅发送或配置L个PEI。
例如,如果UE在PEI发送窗内处理的第一个SSB附近没有PEI发送机会,例如PEI在SSB之前,刚好被划在PEI发送窗之外,则UE在下一个PEI发送机会处检测PEI。
例如,如果PEI发送窗内的SSB均不被UE处理,例如PEI发送窗内有两个SSB处理机会,但是UE只处理了PEI发送窗外的一个SSB,则UE在PEI发送窗内的第一个PEI发送位置上检测PEI。例如,如果PEI发送窗内的SSB均不被UE处理,则UE在PEI发送窗内的最后一个PEI发送位置上检测PEI。例如,如果PEI发送窗内的SSB均不被UE处理,则UE在该寻呼周期不检测PEI。
在一个实例中,UE总是在PEI发送窗内的第一个PEI发送位置上检测PEI。无论UE是否处理第一个PEI发送位置附近的SSB,均在第一个PEI发送位置上检测PEI。例如,UE在一个寻呼周期内只需成功检测一次PEI,若检测成功,则不检测后续PEI。
在一个实例中,例如,UE根据上一寻呼周期中PO之前处理的SSB的个数来决定检测PEI的位置。如:UE上一个寻呼周期在PO之前只处理了一个SSB,则UE在下一个寻呼周期在离PO最近的SSB附近检测PEI。如果上一个寻呼周期在PO之前处理了三个SSB,则下一个寻呼周期也从PO前第三个SSB附近开始检测PEI,如果检测失败,则在下一个SSB处理之中/后再次检测PEI。
例如,令PEI发送窗的长度大于PO和该寻呼周期处理的第一个SSB之间的距离。PEI发送窗的长度小于PO和该寻呼周期处理的第一个SSB之间的距离时,在PEI发送窗内的第一个PEI位置检测PEI。
在一个实例中,UE根据上一个或多个寻呼周期的测量结果来确定检测PEI的位置。例如,UE根据上一个寻呼周期的测量结果(如参考信号接收功率(RSRP,Reference Signal Received Power))值来确定PEI的位置。例如,UE根据前M个寻呼周期的测量结果的平均值来确定PEI的位置。例如,设置RSRP门限,根据上一个或多个寻呼周期的RSRP值的范围决定接收SSB的个数,进而确定PEI的位置。如:上一/多个寻呼周期的RSRP>A,则表明信道条件较好,则认为下一寻呼周期,UE只需要处理一个SSB,UE处理距离PO最近的SSB,并在该SSB附近,即距离PO最近的PEI位置上检测PEI。当上一/多个寻呼周期的B<RSRP<A时,表明当前信道条件一般,UE可能需要在PO之前处理2个SSB,则该寻呼周期UE处理距离PO较近的两个SSB,并且在处理第一个SSB附近检测PEI。当上一/多个寻呼周期的RSRP<B时,表明当前信道条件较差,UE需要处理3个或更多SSB,且在窗内处理的第一个SSB附近检测PEI。
例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,UE执行预定义操作。例如,预定义操作为UE在PO处接收paging DCI。预定义操作为UE在PO处不接收paging DCI。例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE跳过该paging cycle的PO接收,默认sleep操作。例如,若 UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE是否接收寻呼由高层参数指示。
例如,没有PEI检测机会包括PEI检测时机中至少一个或所有PEI检测时机与至少以下之一资源碰撞或重叠:
SSB资源;
SMTC窗;
测量间隔;
定位参考信号;
系统消息;
随机接入响应窗;
控制资源集合0,或,
预配置时频资源。
在一个实施例中,为了获取更大的节电增益,UE应尽量减少ramp up/down的功耗,增加深度睡眠的时间。当PEI位于SSB周围的时候在同样的信道条件下可以使UE获得较高的节电增益。因此,当确定PEI位置时,以SSB为参考是一个有效的选择。
本申请通过两级指示的方法来确定PEI的位置。将PEI与SSB关联,可以使得UE获取最高的省电增益。且唯一的PEI位置可以减少基站多次发送PEI的功率消耗。唯一的PEI发送位置也可以使得UE准确地找到PEI的检测时机,从而获取PEI信号,实现省电的效果。
在一个实施中,提供一种第一级指示方式,即通过SSB确定PEI信号的位置。
如图7所示,PEI位置与PO之前的第N个SSB相关联,N>0。例如,第N个SSB指的是第N个SMTC window内的SSB。例如,第N个SSB指的是第N个SSB突发。例如,第N个SSB指的是第N个SSB突发中具有某一SSB索引的SSB,如SSB索引等于0。例如,N的取值范围为1-5,如N=1,N=3。需要说明的是,此处定义距离PO最近的SSSB突发出现的机会为PO之前的第一个SSB突发,以此往前类推。
例如,N的值为预定义的固定值,例如N=1,N=3等。
例如,N的值可配。例如,由高层参数决定。例如,高层参数配置N=1,则在该参数改变之前,PEI位置与PO之前的第一个SSB关联。当UE环境变化时,例如从小区中央移动到小区边缘后,可以通过重配N的值来改变PEI发送/接收的位置。如,配置N=3,PEI位置与PO之前的第3个SSB关联,UE在PO之前的第三个SSB相关联的位置测PEI。
例如,N的值由其它信令指示,如物理层信令。例如由PEI携带,用来指示下一/多个寻呼周期的N值。或者由paging DCI或其它信令携带。
例如,高层参数配置了N值的范围,具体的N值由UE决定。例如,高层参数配置了N值的范围,具体采用的N值与UE能力/UE类型相关。基站/网络侧根据UE能力/UE类型来决定具体的N值。例如,高层配置N的取值为3或5,对于高UE能力等级的UE而言默认采用N=3,对于低UE能力等级的UE而言默认采用N=5。
例如,N值由UE上报。例如,UE根据之前的测量结果,根据信道条件等确定最适合的N值,上报给基站/网络侧。例如,基站/网络侧配置默认值,且该值对UE可知,当UE未上 报数值时,采用默认值。当UE上报数值之后,则采用UE上报的数值。
第二级指示为PEI与相关联的SSB之间的位置关系。
确定N值之后,通过确定PEI和与之相关联的SSB之间的位置关系即可确定准确的PEI发送/接收位置。其中PEI和与之相关联的第N个SSB之间的位置关系可以如实施例2的描述。例如,基站可以在确定PEI位置后多次发射PEI。
例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE按照未引入PEI时(Legacy UE;Rel-15/16UE)的操作执行。默认的,UE在PO处正常接收paging DCI。例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE是否正常接收寻呼由高层参数指示。
在一个实施例中,本申请通过两级指示的方法来确定PEI的位置。首先确定与PEI位置相关联的参考点,可以使得UE获取较高省电增益的同时配置更加灵活。
所述参考点位于PO之前。例如,该参考点的位置(即距离PO的位置)由高层参数决定。例如,该参考点的位置与SSB周期相关。例如。该参考点距离PO之间的距离是SSB周期的整数倍;例如。该参考点距离PO之间的距离是SSB周期的整数倍加一个offset。例如,该参考点具有特殊的特征,例如该参考点的SFN mod N=0,N为正整数,例如,N=256。
例如,一个参考点对应一个PEI位置。例如,有C个参考点分别关联C个PEI位置,其中1≤C≤5。例如,C个参考点相关联的PEI位置上发送的PEI内容完全相同。例如,UE检测所有的PEI位置。例如,UE在一个paging cycle仅检测一个PEI。
确定参考点之后通过PEI和参考点之间的位置关系来确定PEI的位置。例如,PEI与参考点之间的距离为PEI_Refer_offset。例如,PEI_Refer_offset为PEI的起始位置到参考点的距离。例如,PEI_Refer_offset为PEI的结束位置到参考点的距离。类似于本文其它实施例中描述的PEI与SSB之间的位置关系,PEI_Refer_offset可以有不同的配置,参考点可以在PEI之前,与PEI起始位置重叠或参考点在PEI之后。
上述实施例中描述的PEI与相邻SSB之间的位置关系同样适用于用来描述PEI与参考点之间的位置关系。PEI_SSB_offset的取值和配置也同样可以用来描述PEI_Refer_offset。
PEI的时域位置与相关联的参考点相关。例如,PEI与相关联参考点之间的位置关系固定,例如,采用预定义的方式,或由高层信令决定,或由系统消息配置。
例如,所述PEI与相关联的参考点之间的位置关系至少与以下因素之一相关:
载波频率(carrier frequency),sub-carrier spacing,频谱类型。例如,频谱类型包括,授权频谱或非授权频谱。
例如,PEI与相关联参考点在同一个半帧(half frame)内传输。例如,PEI与相关联参考点在同一个半帧内占用不同符号。
例如,PEI在相关联参考点之前传输。例如,PEI的发送时机从相关联参考点之前的n个时隙开始,n≥1。例如,PEI的发送时机的开始位置或者结束位置为相关联参考点位置之前的n个时隙,n≥1。例如,PEI在相关联SSB之后传输,例如,PEI的发送时机从相关联参考点之后的第n个时隙开始,n≥1。
例如,PEI_refer_offset的绝对值小于半个SSB周期。
Case 1:例如,PEI_refer_offset的值始终大于或等于0。采用预定义的方式说明PEI和相 关联参考点的相对位置。例如,预定义PEI位于相关联参考点的前面,当PEI_refer_offset=5slot时,PEI位于参考点之前相距5个slot的位置。再例如,预定义PEI位于参考点后面,当PEI_refer_offset=5slot时,PEI位于参考点之后相距5个slot的位置。PEI_refer_offset=0slot时,PEI从参考点位置开始。
Case 2:例如,PEI_refer_offset的值可以为正,可以为负也可以为0。PEI_refer_offset的正负值用来表示PEI和相关联SSB的前后关系。例如,PEI_refer_offset=0表明PEI位置从参考点处开始。PEI_refer_offset为正值时,表明PEI在参考点之前,PEI_refer_offset为负值时,表明PEI在参考点之后。或相反的,PEI_参考点_offset为正值时,表明PEI在参考点之后,PEI_参考点_offset为负值时,表明PEI在参考点之前。
例如,PEI和相关联参考点的位置关系由高层信令。例如,第一高层信令决定PEI和相关联参考点的前后关系;第二高层信令决定PEI和相关联参考点之间的偏移,i.e.,PEI_refer_offset。例如,若第三高层信令配置为PEI_refer_offset,则表示PEI在相关联参考点之前,且偏移为PEI_refer_offset;若第四高层信令配置为PEI_refer_offset,则表示PEI在相关联参考点之后,且偏移为PEI_refer_offset。
例如,在配置参考点和PEI_SSB_offset时,需满足PEI起始位置到参考点之间有SSB出现的机会。例如,此处的SSB指的是一个SSB接收窗内的SSB。例如,此处的SSB指的是一个SS block burst。例如,此处的SSB指的是具有某个特定索引/波束方向的SSB。例如,PEI起始位置到参考点之间有且仅有一个SSB出现的机会。例如,PEI_SSB_offset的值不大于SSB周期。例如,PEI起始位置到参考点之间有SSB出现的机会,且PEI与该SSB之间的距离小于一个域值,如s个时隙(其中s为正整数,例如,1-9),或1/4个SSB周期。例如,PEI与参考点之间没有SSB出现的机会,且PEI与距离最近的SSB之间的距离小于一个阈值,如半个SSB周期,或1/4个SSB周期,或s个时隙。
例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE按照未引入PEI时的操作执行(UE按照legacy UE、Rel-15/Rel-16UE的操作来执行)。默认的,UE在PO处正常接收paging DCI。例如,若UE被配置了PEI的时频域资源但未检测到PEI或在该寻呼周期没有检测机会,则UE是否正常接收寻呼由高层参数指示。
在一个实施例中,本申请所述PEI可以为DCI形式,也可以是一个序列的形式。
例如,所述PEI在时域上具有周期性。例如,PEI的周期等于SSB的周期。例如,PEI的周期等于N个SSB的周期。
例如,所述PEI在频域上采用和CORESET 0相同的频域资源。例如,所述PEI在频域上采用和paging DCI频域相邻的频域资源。例如,当PEI为DCI格式时,如果paging DCI配置了CORESET 0,则PEI可配置为CORESET 0。例如,如果paging DCI配置了CORESET 0,则PEI可配置为与CORESET 0相邻的频域位置,如此可保证UE不需要在不同频段/频率之间相互切换,减少额外功耗。
在一个实施例中,提供第一类PEI可能的资源碰撞时的解决方法。例如,在本实施例中PEI为第一类PEI。例如,以所述第一类PEI为DCI-based PEI。
例如,当PEI配置CSS(common search space,公共搜索空间)type-0时,UE不期望PEI 在与SSB相对应的RE位置发送。例如,当PEI配置不是CSS type-0,且PEI与SSB的RE有重叠时,UE不期望在所述重叠资源上监测PDCCH(检测PEI)。例如,当SSB和PEI有相同的QCL-type D属性时,允许SSB和PEI在相同符号上接收。例如,UE不期望在配置了CRS的资源上监听PDCCH(检测PEI)。例如,对于不可用资源(unavailable resource),UE不期望监听PDCCH(检测PEI)。
例如,当channel state information-reference signal(CSI-RS)和PEI有相同的QCL-type D属性时,允许CSI-RS和PEI在相同符号的不同子载波上接收。例如,当PEI与配置了Type1-PDCCH CSS set的PDCCH冲突,且与Type1-PDCCH CSS set的PDCCH没有相同的QCL-type D属性时,UE不监听PEI。
例如,当PEI与PDSCH的资源重叠时,PEI与PDSCH的优先级取决于PDSCH承载的信息类型和加扰调度PDSCH的PDCCH的RNTI类型。例如,当所述PDSCH由C-RNTI,CS-RNTI,MCS-C-RNTI加扰的PDCCH调度时,优先映射PEI。当所述PDSCH由RA-RNTI,MsgB-RNTI,P-RNTI,SI-RNTI或TC-RNTI加扰的PDCCH调度时,优先映射PDSCH。当所述PDSCH为系统消息时,优先映射PDSCH。
例如,当PEI与随机接入响应窗(random access response window,RAR window)发生资源碰撞时,根据触发RAR window的原因决定优先级。例如,当RAR由初始接入触发(Triggered by initial access)时,则RAR优先级高,优先处理RAR;当RAR由波束/无线链路监听失败(Triggered by beam failure/radio link monitoring failure)触发时,则PEI优先级高,优先处理PEI。
例如,当PEI与其它信令/信号发生资源碰撞时,所述资源承载的信息对连接态UE透明,即,基站通过配置第一资源通知连接态UE所述资源承载的信息内容是PEI或是其它信号/信道。
例如,当数据传输资源和第一资源重叠时,根据数据传输和第一资源的优先级和决定是否接收数据。例如,第一资源与PEI相关。
所述数据传输和第一资源的优先级包括如下一种或多种情况:
当所述数据传输资源为PDSCH数据传输资源时,数据传输和第一资源的优先级由PDSCH承载的信息类型,加扰调度PDSCH的PDCCH的RNTI类型,和触发方式中至少之一确定;
当所述数据传输资源为随机接入响应窗时,数据传输和第一资源的优先级由触发随机接入响应窗的原因确定;
当所述数据传输资源为PDCCH数据传输时,数据传输和第一资源的优先级由PDCCH承载的信息类型,PDCCH承的控制信息格式,加扰PDCCH的RNTI类型,PDCCH相关的控制资源集,PDCCH相关的搜索空间类型中至少之一确定;
当所述数据传输资源为参考信号时频资源时,数据传输和第一资源的优先级由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定;
当所述数据传输资源为当SSB时频资源时,数据传输和第一资源由PEI相关的时频资源确定。
例如,当第一资源与PDSCH的资源重叠时,第一资源与PDSCH的优先级取决于PDSCH 承载的信息类型和加扰调度PDSCH的PDCCH的RNTI类型。例如,当所述PDSCH由C-RNTI,CS-RNTI,MCS-C-RNTI加扰的PDCCH调度时,优先映射PEI。当所述PDSCH由RA-RNTI,MsgB-RNTI,P-RNTI,SI-RNTI或TC-RNTI加扰的PDCCH调度时,优先映射PDSCH。当所述PDSCH为系统消息时,优先映射PDSCH。
例如,当第一资源与参考信号的资源重叠时,第一资源与参考信号的优先级取决于由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定。例如,当所述参考信号为SSB或定位参考信号时,优先映射SSB或定位参考信号。例如,当所述参考信号为CSI-RS时,若CSI-RS时间特征为周期性,则不接收周期性CSI-RS。例如,当所述参考信号为CSI-RS时,若CSI-RS时间特征为DCI触发,则接收CSI-RS。
例如,当第一资源与随机接入响应窗(random access response window,RAR window)发生资源碰撞时,根据触发RAR window的原因决定优先级。例如,当RAR由初始接入触发(Triggered by initial access)时,则RAR优先级高,优先处理RAR;当RAR由波束/无线链路监听失败(Triggered by beam failure/radio link monitoring failure)触发时,则RAR优先级低。
例如,当PEI与其它信令/信号(包括但不限于SSB,信道状态信息参考信号(Channel-state information Reference Signal,CSI-RS),unvailable resource block(RB)(NR-U),measurement gap,某一类PDSCH,随机接入响应(Random Access Response,RAR window))发生资源重叠/碰撞导致无法监听时,UE监听PO。例如,当PEI与其它信令/信号发生资源重叠/碰撞导致无法监听时,UE不监听PEI,是否监听PO由高层配置。当PEI与其它信令/信号发生资源重叠/碰撞导致无法监听时,UE不监听PO。
例如,UE配置了监听PEI的时机,但未检测到PEI时,UE监听PO。例如,UE配置了监听PEI的时机,但未检测到PEI时,UE默认不监听PO。例如,UE未检测到PEI时,UE是否监听PO由高层配置/信令决定。
在一个实施例中,提供第二类PEI可能的资源碰撞时的解决方法。例如,在本实施例中PEI为第二类PEI。例如,所述第二类PEI为sequence-based PEI。
例如,当PEI与SSB具有相同的QCL-type D属性时,允许PEI与SSB配置在相同的符号不同子载波上,否则,UE不期望PEI与SSB配置在相同的符号上。例如,UE不期望PEI与CRS在相同的符号上。当PEI与CRS在相同符号上时,UE不检测PEI。例如,在unavailable resource,UE不期望检测PEI。例如,当PEI与CSI-RS,DM-RS,PRS具有相同的QCL-type D属性时,允许PEI与CSI-RS,DM-RS,PRS在相同的符号上,否则,UE不期望PEI与CSI-RS,DM-RS,PRS在相同的符号上。
例如,UE不期望监听PEI,如果PEI与配置了Type0/0A/1/2-PDCCH CSS set的PDCCH发生资源重叠/碰撞。例如,UE不期望监听Type3-PDCCH CSS或UE specific search space,如果PEI与配置了Type3-PDCCH CSS或UE specific search space的PDCCH发生资源重叠/碰撞。
例如,当PEI与PDSCH的资源重叠时,PEI与PDSCH的优先级取决于PDSCH承载的信息类型和加扰调度PDSCH的PDCCH的RNTI类型。例如,当所述PDSCH由C-RNTI, CS-RNTI,MCS-C-RNTI加扰的PDCCH调度时,优先映射PEI。当所述PDSCH由RA-RNTI,MsgB-RNTI,P-RNTI或TC-RNTI加扰的PDCCH调度时,优先映射PDSCH。当所述PDSCH为系统消息时,优先映射PDSCH。
例如,当PEI与随机接入响应窗(RAR window)发生资源碰撞时,根据触发RAR window的原因决定优先级。例如,当RAR由初始接入触发(Triggered by initial access)时,则RAR优先级高,优先处理RAR;当RAR由波束/无线链路监听失败(Triggered by beam failure/radio link monitoring failure)触发时,则PEI优先级高,优先处理PEI。
例如,当PEI与其它信令/信号发生资源碰撞时,所述资源承载的信息对连接态UE透明,即,基站将告知连接态UE所述资源承载的信息内容是PEI或是其它信号/信道。
例如,当PEI与其它信令/信号(包括但不限于SSB,CRS,unvailable RB(NR-U),measurement gap,某一类PDSCH,RAR window)发生资源重叠/碰撞导致无法监听时,UE执行legacy操作,默认监听PO。例如,当PEI与其它信令/信号发生资源重叠/碰撞导致无法监听时,UE是否监听PO由高层配置。
例如,UE配置了监听PEI的时机,但未检测到PEI时,UE默认执行legacy操作,默认监听PO。例如,UE配置了监听PEI的时机,但未检测到PEI时,UE默认不监听PO。例如,UE未检测到PEI时,UE是否监听PO由高层配置/信令决定。
在一个实施例中,提供一种信号接收装置,所述装置配置于终端,所述信号接收装置适用于确定多种PEI时域位置的情况。如图9所示,本申请实施例提供的信号接收装置主要包括接收模块91和执行模块92。其中,
接收模块91,被配置为在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
执行模块92,被配置为基于所述PEI信号执行预定义的操作。
在一个实施方式中,所述预定义的操作,包括如下一种或多种:
接收PO;
不接收PO;
接收寻呼DCI。
在一个实施方式中,在PO之前接收PEI信号,包括:
在PEI接收窗内的PEI时频资源位置上接收PEI信号。
在一个实施方式中,所述PEI信号还包括如下一种或多种信息:
参考信号资源或者参考信号资源集合指示;
是否接收广播多播消息;系统消息更新指示。
在一个实施方式中,所述PEI接收窗的相关信息由基站根据如下一个或多个信息进行配置:终端能力,终端类型,DRX配置信息;
所述PEI接收窗的相关信息包括如下一个或多个:所述PEI接收窗的起始位置,PEI接收窗的结束位置,所述PEI接收窗的持续时间。
在一个实施方式中,所述PEI接收窗的结束位置是PO开始位置;或,所述PEI接收窗的结束位置在PO开始位置之前。
在一个实施方式中,所述PEI接收窗的持续时间与SSB的周期相关联:PEI接收窗的持 续时间等于N个SSB周期加一个偏移量,其中N≥0,偏移量大于或等于0。
在一个实施方式中,所述PEI信号的时域位置由与所述PEI信号相关联的SSB确定。
在一个实施方式中,在PEI接收窗内的PEI时频资源位置上接收PEI信号,包括如下一种或多种:
在所述PEI接收窗内的首个PEI接收位置上接收所述PEI信号;
在所述PEI接收窗内的第一预设位置接收所述PEI信号,所述第一预设位置与所述PEI相关联的SSB相关;
在所述PEI接收窗内的第二预设位置接收所述PEI信号,所述第二预设位置是基于上一寻呼周期中PO之前处理的SSB的个数确定;
在所述PEI接收窗内的第三预设位置接收所述PEI信号,所述第三预设位置是基于上一个或者多个寻呼周期的测量结果确定。
在一个实施方式中,所述PEI信号的时域位置与PO之前的第N个SSB相关联,其中N为正整数。
在一个实施方式中,与所述PEI信号相关联的SSB满足如下一个或多个条件:
所述相关联SSB为与所述PEI信号距离最近的SSB;
所述相关联SSB与所述PEI信号具有准共位置关系;
所述相关联SSB与所述PEI信号具有相同波束方向或相同准共位置类型;
所述相关联SSB与所述PEI信号具有相同的索引;
所述相关联SSB索引与所述PEI信号索引具有相同排列位置;
所述相关联SSB由高层信令或者系统消息配置;
所述相关联SSB由预定义方式确定。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的位置关系由如下一个或多个参数确定:
载波频率,子载波间隔,SSB图样,SSB周期,SSB索引,SSB与控制资源集CORESET的复用图样,频谱类型。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的传输位置包括如下一种或多种:
所述PEI信号与该PEI信号相关联的SSB在同一个时隙传输;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之前;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之后;
所述PEI信号与该PEI信号相关联的SSB在同一个半帧内传输。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离,包括如下一种或多种:
PEI信号的起始位置和该PEI相关联的SSB的起始位置之间的距离。
PEI信号的起始位置与该PEI波束方向相同的SSB位置之间的距离;
PEI信号的起始位置和该PEI相关联的SSB的指定索引位置之间的距离。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离由第一参数确定;其中,第一参数包括如下一种或多种:
所述第一参数是大于或等于0的数;
所述第一参数为任一自然数;
所述第一参数由预定义的方式决定;
所述第一参数由高层参数决定;
所述第一参数由UE能力决定;
所述第一参数由DRX参数决定。
在一个实施方式中,所述N在指定范围内确定;其中,所述指定范围由高层参数配置,或所述指定范围由预定义确定,或,由下行控制信息DCI指示。
在一个实施方式中,所述N基于如下一个或多个参数在指定范围内确定:信道测量结果,信道条件。
在一个实施方式中,与所述PEI相关联的所述PO之前的第N个SSB包括如下一种或多种:
第N个SMTC窗内的SSB;
第N个SSB突发;
第N个SSB突发中具有SSB索引的SSB。
在一个实施方式中,所述PEI信号的时域位置与PO之前的预先配置的参考点相关。
在一个实施方式中,所述参考点包括:
所述参考点由高层参数决定;
所述参考点距离PO的距离为整数个SSB周期加一个偏移;
所述参考点满足SFN mod M=0,M为正整数。
在一个实施方式中,所述PEI信号的时域位置是基于PEI信号与参考点之间的距离确定。
在一个实施方式中,所述PEI信号与参考点之间的关系,包括以下至少之一:
所述PEI信号的起始位置与所述参考点之间有SSB;
所述PEI信号的结束位置与所述参考点之间有SSB;
所述PO与所述参考点之间有SSB。
在一个实施方式中,所述PEI信号与参考点之间的距离由第二参数确定;其中,第二参数包括如下一种或多种:
所述第二参数是大于或等于0的数;
所述第二参数为任一自然数;
所述第二参数由预定义的方式决定;
所述第二参数由高层参数决定;
所述第二参数由DRX参数决定。。
在一个实施方式中,所述方法还包括:
在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE接收PO;
或,在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE不接收PO;
或,在PEI的时频域资源上未检测到PEI信号或在该寻呼周期没有检测机会时,UE是否接收PO由高层参数决定。
在一个实施方式中,所述没有PEI检测机会包括:所述PEI检测时机中至少一个或所有PEI检测时机与至少以下之一资源碰撞或重叠:
SSB资源;
SMTC窗;
测量间隔;
定位参考信号;
系统消息;
随机接入响应窗;
控制资源集合0;
预配置时频资源。
在一个实施方式中,所述方法还包括:
在PEI时频资源与非PEI时频资源发生资源重叠的情况下,基于资源重叠情况执行预定义的操作。
在一个实施方式中,基于资源重叠情况执行预定义的操作,包括:
按照预定义的优先级,接收优先级高的信号;其中,所述预定义的优先级包括如下一种或多种情况:
当PEI时频资源与PDSCH时频资源重叠时,PEI信号与PDSCH的优先级由PDSCH承载的信息类型和加扰调度PDSCH的PDCCH的RNTI类型确定;
当PEI时频资源与随机接入响应窗发生资源重叠时,PEI信号与接入响应的优先级由触发随机接入响应窗的原因确定。
在一个实施方式中,在所述PEI信号由DCI指示的情况下,基于资源重叠情况执行相应的操作,包括如下一种或多种:
当PEI与其它信令和/或信号发生资源重叠时,监听PO;
当PEI与其它信令和/或信号发生资源重叠时,基于高层配置确定是否监听PO。
本实施例中提供的信号接收装置可执行本发明任意实施例所提供的信号接收方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明任意实施例所提供的信号接收方法。
值得注意的是,上述信号接收装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
在一个实施例中,提供一种信号发送装置,所述装置配置于基站,所述信号发送装置适用于确定多种PEI时域位置的情况。如图10所示,本申请实施例提供的信号发送装置主要包括发送模块101。
发送模块,被配置为在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
在一个实施方式中,所述预定义的操作,包括如下一种或多种:
接收PO;
不接收PO;
接收寻呼DCI。
在一个实施方式中,在PO之前发送PEI信号,包括:
在PEI发送窗内的PEI时频资源位置上发送PEI信号。
在一个实施方式中,所述PEI信号还包括如下一种或多种信息:
参考信号资源或者参考信号资源集合指示;
是否接收广播多播消息;系统消息更新指示。
在一个实施方式中,在PEI发送窗内的PEI时频资源上发送PEI信号,包括:
在PEI发送窗内的PEI时频资源位置上按照预设周期发送PEI信号。
在一个实施方式中,所述预设周期是SSB周期的倍数。
在一个实施方式中,在PO之前发送PEI信号,包括:在与PO之前第N个SSB相关联的PEI位置发送PEI。
在一个实施方式中,所述PEI发送窗的相关信息由基站根据如下一个或多个信息进行配置:终端能力,终端类型,DRX配置信息;
所述PEI发送窗的相关信息包括如下一个或多个:所述PEI发送窗的起始位置,PEI发送窗的结束位置,所述PEI发送窗的持续时间。
在一个实施方式中,所述PEI发送窗的结束位置是PO开始位置;或,所述PEI发送窗的结束位置在PO开始位置之前。
在一个实施方式中,所述PEI发送窗的持续时间与SSB的周期相关联:PEI发送窗的持续时间等于N个SSB周期加一个偏移量,其中N≥0,偏移量大于或等于0。
在一个实施方式中,所述PEI信号的时域位置由与所述PEI信号相关联的SSB确定。
在一个实施方式中,在PEI发送窗内的PEI时频资源位置上接收PEI信号,包括如下一种或多种:
在所述PEI发送窗内的首个PEI接收位置上接收所述PEI信号;
在所述PEI发送窗内的第一预设位置接收所述PEI信号,所述第一预设位置与所述PEI相关联的SSB相关;
在所述PEI发送窗内的第二预设位置接收所述PEI信号,所述第二预设位置是基于上一寻呼周期中PO之前处理的SSB的个数确定;
在所述PEI发送窗内的第三预设位置接收所述PEI信号,所述第三预设位置是基于上一个或者多个寻呼周期的测量结果确定。
在一个实施方式中,所述PEI信号的时域位置与PO之前的第N个SSB相关联,其中N为正整数。
在一个实施方式中,与所述PEI信号相关联的SSB满足如下一个或多个条件:
所述相关联SSB为与所述PEI信号距离最近的SSB;
所述相关联SSB与所述PEI信号具有准共位置关系;
所述相关联SSB与所述PEI信号具有相同波束方向或相同准共位置类型;
所述相关联SSB与所述PEI信号具有相同的索引;
所述相关联SSB索引与所述PEI信号索引具有相同排列位置;
所述相关联SSB由高层信令或者系统消息配置;
所述相关联SSB由预定义方式确定。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的位置关系由如下一个或多个参数确定:
载波频率,子载波间隔,SSB图样,SSB周期,SSB索引,SSB与控制资源集CORESET的复用图样,频谱类型。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的传输位置包括如下一种或多种:
所述PEI信号与该PEI信号相关联的SSB在同一个时隙传输;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之前;
所述PEI信号的传输位置在该PEI信号相关联的SSB的传输位置之后;
所述PEI信号与该PEI信号相关联的SSB在同一个半帧内传输。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离,包括如下一种或多种:
PEI信号的起始位置和该PEI相关联的SSB的起始位置之间的距离。
PEI信号的起始位置与该PEI波束方向相同的SSB位置之间的距离;
PEI信号的起始位置和该PEI相关联的SSB的指定索引位置之间的距离。
在一个实施方式中,所述PEI信号与所述PEI信号相关联的SSB之间的距离由第一参数确定;其中,第一参数包括如下一种或多种:
所述第一参数是大于或等于0的数;
所述第一参数为任一自然数;
所述第一参数由预定义的方式决定;
所述第一参数由高层参数决定;
所述第一参数由UE能力决定;
所述第一参数由DRX参数决定。
在一个实施方式中,所述N在指定范围内确定;其中,所述指定范围由高层参数配置,或所述指定范围由预定义确定,或,由下行控制信息DCI指示。
在一个实施方式中,所述N基于如下一个或多个参数在指定范围内确定:信道测量结果,信道条件。
在一个实施方式中,与所述PEI相关联的所述PO之前的第N个SSB包括如下一种或多种:
第N个SMTC窗内的SSB;
第N个SSB突发;
第N个SSB突发中具有SSB索引的SSB。
在一个实施方式中,在PO之前发送PEI信号,包括:在与PO之前参考点相关联的PEI位置发送PEI。
在一个实施方式中,所述参考点包括:
所述参考点由高层参数决定;
所述参考点距离PO的距离为整数个SSB周期加一个偏移;
所述参考点满足SFN mod M=0,M为正整数。
在一个实施方式中,所述PEI信号的时域位置是基于PEI信号与参考点之间的距离确定。
在一个实施方式中,所述PEI信号与参考点之间的关系,包括以下至少之一:
所述PEI信号的起始位置与所述参考点之间有SSB;
所述PEI信号的结束位置与所述参考点之间有SSB;
所述PO与所述参考点之间有SSB。
在一个实施方式中,所述PEI信号与参考点之间的距离由第二参数确定;其中,第二参数包括如下一种或多种:
所述第二参数是大于或等于0的数;
所述第二参数为任一自然数;
所述第二参数由预定义的方式决定;
所述第二参数由高层参数决定;
所述第二参数由UE能力决定;
所述第二参数由DRX参数决定;
在一个实施例中,PEI指示的信息包括以下至少之一:
是否接收m个PO;
是否接收寻呼DCI;
是否接收寻呼PDSCH或者寻呼消息;
是否接收广播多播消息;
参考信号资源或者参考信号资源集合指示;或,
系统消息更新指示。
所述参考信号资源或者参考信号资源集合指示包括以下之一:
所述参考信号资源或者参考信号资源集合是否存在;
UE是否需要盲检测参考信号资源或者参考信号资源集合;
所述参考信号资源或者参考信号资源集合是否更新或激活或去激活。
本实施例中提供的信号发送装置可执行本发明任意实施例所提供的信号发送方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明任意实施例所提供的信号发送方法。
值得注意的是,上述信号发送装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
在一个实施例中,提供一种信号接收装置,所述装置配置于终端,所述信号接收装置适用于确定资源碰撞或者重叠如何处理的情况。本申请实施例提供的信号接收装置主要包括第二接收模块和判断模块。其中,所述终端工作在连接态。
第二接收模块,被配置为接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;接收第一资源指示;
判断模块,被配置为当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
在一个实施方式中,所述第一资源与PEI信号相关。
在一个实施方式中,所述数据传输和第一资源的优先级包括如下一种或多种情况:
当所述数据传输资源为PDSCH数据传输资源时,数据传输和第一资源的优先级由PDSCH承载的信息类型,加扰调度PDSCH的PDCCH的RNTI类型,和触发方式中至少之 一确定;
当所述数据传输资源为随机接入响应窗时,数据传输和第一资源的优先级由触发随机接入响应窗的原因确定;
当所述数据传输资源为PDCCH数据传输时,数据传输和第一资源的优先级由PDCCH承载的信息类型,PDCCH承的控制信息格式,加扰PDCCH的RNTI类型,PDCCH相关的控制资源集,PDCCH相关的搜索空间类型中至少之一确定;
当所述数据传输资源为参考信号时频资源时,数据传输和第一资源的优先级由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定;
当所述数据传输资源为当SSB时频资源时,数据传输和第一资源由PEI相关的时频资源确定。
本申请实施例还提供一种设备,图11是本申请实施例提供的一种设备的结构示意图,如图11所示,该设备包括处理器111、存储器112、输入装置113、输出装置114和通信装置115;设备中处理器111的数量可以是一个或多个,图11中以一个处理器111为例;设备中的处理器111、存储器112、输入装置113和输出装置114可以通过总线或其他方式连接,图11中以通过总线连接为例。
存储器112作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器111通过运行存储在存储器112中的软件程序、指令以及模块,从而执行设备的多种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器112可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器112可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器112可包括相对于处理器111远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置113可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置114可包括显示屏等显示设备。
通信装置115可以包括接收器和发送器。通信装置115设置为根据处理器111的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信号接收方法,所述方法应用于终端,包括:
在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
基于所述PEI信号执行预定义的操作。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信号接收方法中的 相关操作。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信号发送方法,所述方法应用于基站,包括:
在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信号发送方法中的相关操作。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信号接收方法,所述方法应用于终端,包括:
接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;
接收第一资源指示;
当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信号接收方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可 以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本发明的范围。因此,本发明的恰当范围将根据权利要求确定。

Claims (44)

  1. 一种信号接收方法,应用于终端,包括:
    在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
    基于所述PEI信号执行预定义的操作。
  2. 根据权利要求1所述的方法,其中,所述预定义的操作,包括如下至少之一:
    接收PO;
    不接收PO;以及
    接收寻呼下行控制信息DCI。
  3. 根据权利要求1所述的方法,其中,所述PEI信号包括如下至少一种信息:
    参考信号资源或者参考信号资源集合指示;
    是否接收广播多播消息;以及
    系统消息更新指示。
  4. 根据权利要求1所述的方法,其中,所述在PO之前接收PEI信号,包括:
    在PEI接收窗内的PEI时频资源位置上接收所述PEI信号。
  5. 根据权利要求4所述的方法,其中,所述PEI接收窗的相关信息由基站根据如下至少一个信息进行配置:终端能力,终端类型,以及非连续接收DRX配置信息;
    所述PEI接收窗的相关信息包括如下至少之一:所述PEI接收窗的起始位置,所述PEI接收窗的结束位置,以及所述PEI接收窗的持续时间。
  6. 根据权利要求5所述的方法,其中,所述PEI接收窗的结束位置是PO开始位置;或,所述PEI接收窗的结束位置在PO开始位置之前。
  7. 根据权利要求5所述的方法,其中,所述PEI接收窗的持续时间与同步信号块SSB的周期相关联:所述PEI接收窗的持续时间等于N个SSB周期加一个偏移量,其中N≥0,偏移量大于或等于0。
  8. 根据权利要求1所述的方法,其中,所述PEI信号的位置由与所述PEI信号相关联的SSB确定。
  9. 根据权利要求4所述的方法,其中,所述在PEI接收窗内的PEI时频资源位置上接收所述PEI信号,包括如下至少之一:
    在所述PEI接收窗内的首个PEI接收位置上接收所述PEI信号;
    在所述PEI接收窗内的第一预设位置接收所述PEI信号,所述第一预设位置与所述PEI相关联的SSB相关;
    在所述PEI接收窗内的第二预设位置接收所述PEI信号,所述第二预设位置是基于上一个或者多个寻呼周期中PO之前处理的SSB的个数确定;以及
    在所述PEI接收窗内的第三预设位置接收所述PEI信号,所述第三预设位置是基于上一个或者多个寻呼周期的测量结果确定。
  10. 根据权利要求1所述的方法,其中,所述PEI信号的时域位置与PO之前的第N个SSB相关联,其中N为正整数。
  11. 根据权利要求8-10中任一项所述的方法,其中,与所述PEI信号相关联的SSB满足如下至少一个条件:
    所述相关联SSB为与所述PEI信号距离最近的SSB;
    所述相关联SSB与所述PEI信号具有准共位置关系;
    所述相关联SSB与所述PEI信号具有相同波束方向或相同准共位置类型;
    所述相关联SSB与所述PEI信号具有相同的索引;
    所述相关联SSB索引与所述PEI信号索引具有相同排列位置;
    所述相关联SSB由高层信令或者系统消息配置;以及
    所述相关联SSB由预定义方式确定。
  12. 根据权利要求8-10中任一项所述的方法,其中,所述PEI信号与所述PEI信号相关联的SSB之间的位置关系由如下至少一个参数确定:
    载波频率,子载波间隔,SSB图样,SSB周期,SSB索引,SSB与控制资源集CORESET的复用图样,以及频谱类型。
  13. 根据权利要求8-10中任一项所述的方法,其中,所述PEI信号与所述PEI信号相关联的SSB之间的传输位置包括如下至少之一:
    所述PEI信号与所述PEI信号相关联的SSB在同一个时隙传输;
    所述PEI信号的传输位置在所述PEI信号相关联的SSB的传输位置之前;
    所述PEI信号的传输位置在所述PEI信号相关联的SSB的传输位置之后;以及
    所述PEI信号与所述PEI信号相关联的SSB在同一个半帧内传输。
  14. 根据权利要求8-10中任一项所述的方法,其中,所述PEI信号与所述PEI信号相关联的SSB之间的距离,包括如下至少一种:
    所述PEI信号的起始位置和所述PEI信号相关联的SSB的起始位置之间的距离;
    所述PEI信号的起始位置与所述PEI信号波束方向相同的SSB位置之间的距离;
    所述PEI信号的起始位置和所述PEI信号相关联SSB位置之间的距离。
  15. 根据权利要求8或10所述的方法,其中,所述PEI信号与所述PEI信号相关联的SSB之间的距离由第一参数确定;其中,第一参数满足如下至少之一的条件:
    所述第一参数是大于或等于0的数;
    所述第一参数为任一自然数;
    所述第一参数由预定义的方式决定;以及
    所述第一参数由高层参数决定。
  16. 根据权利要求10所述的方法,其中,所述N在指定范围内确定;其中,所述指定范围通过以下之一的方式确定:由高层参数配置,由预定义确定,以及由下行控制信息DCI指示。
  17. 根据权利要求10或16所述的方法,其中,所述N基于如下至少一个参数在指定范围内确定:信道测量结果,信道条件。
  18. 根据权利要求10所述的方法,其中,与所述PEI信号相关联的所述PO之前的第N个SSB包括如下至少一种:
    第N个同步信号块测量时序配置SMTC窗内的SSB;
    第N个SSB突发;以及
    第N个SSB突发中SSB索引为S的SSB,其中,S≥0。
  19. 根据权利要求1所述的方法,其中,所述PEI信号的时域位置与所述PO之前的预 先配置的参考点相关。
  20. 根据权利要求19所述的方法,其中,所述参考点满足以下条件:
    所述参考点由高层参数决定;
    所述参考点距离所述PO的距离为整数个SSB周期加一个偏移量;
    所述参考点满足系统帧号SFN mod M=0,M为正整数。
  21. 根据权利要求19所述的方法,其中,所述PEI信号的时域位置是基于所述PEI信号与所述参考点之间的距离确定。
  22. 根据权利要求19-21任一项所述的方法,其中,所述PEI信号与所述参考点之间的关系,包括以下至少之一:
    所述PEI信号的起始位置与所述参考点之间有SSB;
    所述PEI信号的结束位置与所述参考点之间有SSB;
    所述PO与所述参考点之间有SSB。
  23. 根据权利要求21所述的方法,其中,所述PEI信号与参考点之间的距离由第二参数确定;其中,第二参数满足如下至少之一的条件:
    所述第二参数是大于或等于0的数;
    所述第二参数为任一自然数;
    所述第二参数由预定义的方式决定;以及
    所述第二参数由高层参数决定。
  24. 根据权利要求1所述的方法,还包括以下之一:
    响应于确定PEI的时频域资源上未检测到所述PEI信号或在所述寻呼周期没有PEI检测机会,所述UE接收所述PO;
    响应于确定PEI的时频域资源上未检测到所述PEI信号或在所述寻呼周期没有PEI检测机会,所述UE不接收所述PO;以及
    响应于确定PEI的时频域资源上未检测到所述PEI信号或在所述寻呼周期没有PEI检测机会,所述UE是否接收所述PO由高层参数决定。
  25. 根据权利要求24所述的方法,其中,所述没有PEI检测机会包括:所述PEI检测时机中至少一个或所有PEI检测时机与至少以下之一资源碰撞或重叠:
    SSB资源;
    SMTC窗;
    测量间隔;
    定位参考信号;
    系统消息;
    随机接入响应窗;
    控制资源集合0;以及
    预配置时频资源。
  26. 根据权利要求1或25所述的方法,还包括:
    在PEI时频资源与非PEI时频资源发生资源重叠的情况下,基于资源重叠情况执行预定义的操作。
  27. 根据权利要求26所述的方法,其中,所述基于资源重叠情况执行预定义的操作,包 括:
    按照预定义的优先级,接收优先级高的PEI信号;其中,所述预定义的优先级包括如下至少一种情况:
    响应于确定PEI时频资源与物理下行共享信道PDSCH时频资源重叠,所述PEI信号与PDSCH的优先级由PDSCH承载的信息类型和加扰调度PDSCH的物理下行控制信道PDCCH的无线网络临时标识符RNTI类型确定;以及
    响应于确定PEI时频资源与随机接入响应窗发生资源重叠,所述PEI信号与接入响应的优先级由触发随机接入响应窗的原因确定。
  28. 根据权利要求26所述的方法,其中,在所述PEI信号由DCI指示的情况下,所述基于资源重叠情况执行相应的操作,包括如下至少之一:
    响应于确定所述PEI信号与其它信令和信号中的至少一种发生资源重叠,监听所述PO;以及
    响应于确定所述PEI信号与其它信令和信号中的至少一种发生资源重叠,基于高层配置确定是否监听所述PO。
  29. 一种信号发送方法,应用于基站,包括:
    在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
  30. 根据权利要求29所述的方法,其中,所述在PO之前发送PEI信号,包括:
    在PEI发送窗内的PEI时频资源位置上发送所述PEI信号。
  31. 根据权利要求30所述的方法,其中,所述在PEI发送窗内的PEI时频资源上发送所述PEI信号,包括:
    在所述PEI发送窗内的PEI时频资源位置上按照预设周期发送所述PEI信号。
  32. 根据权利要求31所述的方法,其中,所述预设周期是同步信号块SSB周期的倍数。
  33. 根据权利要求27所述的方法,其中,所述在PO之前发送PEI信号,包括:在与所述PO之前第N个SSB相关联的PEI位置发送所述PEI信号。
  34. 根据权利要求29所述的方法,其中,所述在PO之前发送PEI信号,包括:在与所述PO之前参考点相关联的PEI位置发送所述PEI信号。
  35. 根据权利要求29所述的方法,还包括:
    在PEI时频资源与非PEI时频资源发生资源重叠的情况下,基于资源重叠情况执行预定义的操作。
  36. 根据权利要求35所述的方法,其中,所述基于资源重叠情况执行预定义的操作,包括:
    按照预定义的优先级,发送优先级高的PEI信号;其中,所述预定义的优先级包括如下至少一种情况:
    响应于确定PEI时频资源与物理下行共享信道PDSCH时频资源重叠,所述PEI时频资源与PDSCH的优先级由PDSCH承载的信息类型,加扰调度PDSCH的物理下行控制信道PDCCH的无线网络临时标识符RNTI类型,和触发方式中至少之一确定;
    响应于确定PEI时频资源与随机接入响应窗发生资源重叠,所述PEI时频资源与接入响应的优先级由触发所述随机接入响应窗的原因确定;
    响应于确定PEI时频资源与PDCCH时频资源重叠,所述PEI时频资源与PDCCH的优先级由PDCCH承载的信息类型,PDCCH承载的控制信息格式,加扰PDCCH的RNTI类型,PDCCH相关的控制资源集,PDCCH相关的搜索空间类型中至少之一确定;
    响应于确定PEI时频资源与参考信号时频资源重叠,所述PEI时频资源与参考信号的优先级由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定;以及
    响应于确定PEI时频资源与SSB重叠,所述PEI时频资源与SSB优先级由所述PEI时频资源确定。
  37. 一种信号接收方法,应用于终端,包括:
    接收数据传输资源指示,其中所述数据传输资源包括物理下行共享信道PDSCH,物理下行控制信道PDCCH;
    接收第一资源指示;
    响应于确定所述数据传输资源和第一资源重叠时,根据所述数据传输资源和所述第一资源的优先级决定是否接收数据。
  38. 据权利要求37所述的方法,其中,所述第一资源与寻呼指示PEI信号相关。
  39. 据权利要求37所述的方法,其中,所述数据传输资源和第一资源的优先级包括如下至少一种情况:
    响应于确定所述数据传输资源为PDSCH数据传输资源,所述数据传输资源和所述第一资源的优先级由PDSCH承载的信息类型,加扰调度PDSCH的PDCCH的RNTI类型,和触发方式中至少之一确定;
    响应于确定所述数据传输资源为随机接入响应窗,所述数据传输资源和所述第一资源的优先级由触发随机接入响应窗的原因确定;
    响应于确定所述数据传输资源为PDCCH数据传输,所述数据传输资源和所述第一资源的优先级由PDCCH承载的信息类型,PDCCH承的控制信息格式,加扰PDCCH的RNTI类型,PDCCH相关的控制资源集,PDCCH相关的搜索空间类型中至少之一确定;
    响应于确定所述数据传输资源为参考信号时频资源,所述数据传输资源和所述第一资源的优先级由参考信号的类型,参考信号的时间特征,参考信号的触发方式中至少之一确定;以及
    响应于确定所述数据传输资源为当SSB时频资源,所述数据传输资源和所述第一资源由所述PEI时频资源确定。
  40. 一种信号接收装置,配置于终端,包括:
    第一接收模块,被配置为在寻呼时机PO之前接收寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE在寻呼周期内是否接收PO;
    执行模块,被配置为基于所述PEI信号执行预定义的操作。
  41. 一种信号发送装置,配置于基站,包括:
    发送模块,被配置为在寻呼时机PO之前发送寻呼指示PEI信号,其中,所述PEI信号用于指示终端UE基于所述PEI信号执行预定义的操作。
  42. 一种信号接收装置,配置于终端,包括:
    第二接收模块,被配置为接收数据传输资源指示,其中所述数据传输资源包括PDSCH,PDCCH;接收第一资源指示;
    判断模块,被配置为当数据传输资源和第一资源重叠时,根据数据传输资源和第一资源的优先级决定是否接收数据。
  43. 一种设备,包括:
    至少一个处理器;
    存储器,设置为存储一至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上述权利要求中任一项所述的方法。
  44. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求中任一项所述的方法。
PCT/CN2021/142567 2021-01-15 2021-12-29 信号发送和接收方法、装置、设备和存储介质 WO2022151979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21919166.5A EP4280702A1 (en) 2021-01-15 2021-12-29 Signal transmitting method and apparatus, signal receiving method and apparatus, device and storage medium
US18/271,949 US20240089921A1 (en) 2021-01-15 2021-12-29 Signal transmitting method and apparatus, signal receiving method and apparatus, device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057515.5A CN113163476A (zh) 2021-01-15 2021-01-15 信号发送和接收方法、装置、设备和存储介质
CN202110057515.5 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022151979A1 true WO2022151979A1 (zh) 2022-07-21

Family

ID=76878399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142567 WO2022151979A1 (zh) 2021-01-15 2021-12-29 信号发送和接收方法、装置、设备和存储介质

Country Status (4)

Country Link
US (1) US20240089921A1 (zh)
EP (1) EP4280702A1 (zh)
CN (1) CN113163476A (zh)
WO (1) WO2022151979A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081569A1 (en) * 2021-11-05 2023-05-11 Qualcomm Incorporated Paging early indication for paging occasion
US11889468B2 (en) 2021-11-05 2024-01-30 Qualcomm Incorporated Paging early indication for paging occasion

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163476A (zh) * 2021-01-15 2021-07-23 中兴通讯股份有限公司 信号发送和接收方法、装置、设备和存储介质
CN115696573A (zh) * 2021-07-30 2023-02-03 中国移动通信有限公司研究院 信号或信道的检测方法、装置、终端及存储介质
CN115053574A (zh) * 2021-08-04 2022-09-13 深圳传音控股股份有限公司 处理方法、终端设备、网络设备及存储介质
EP4383865A1 (en) * 2021-08-06 2024-06-12 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for transmitting paging early indication, and device
WO2023010541A1 (en) * 2021-08-06 2023-02-09 Lenovo (Beijing) Limited Paging early indication
CN117441383A (zh) * 2021-08-26 2024-01-23 Oppo广东移动通信有限公司 一种时间窗口的确定方法及装置、终端设备
CN117441380A (zh) * 2021-08-26 2024-01-23 Oppo广东移动通信有限公司 一种节能信号的传输资源的确定方法及装置、终端设备
CN115884442A (zh) * 2021-09-28 2023-03-31 夏普株式会社 由用户设备执行的确定pei机会的方法以及用户设备
CN115884328A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 一种用于寻呼的方法和通信装置
WO2023050113A1 (en) * 2021-09-29 2023-04-06 Zte Corporation Method, device, and system for paging indication in wireless networks
US11576146B1 (en) * 2021-10-04 2023-02-07 Qualcomm Incorporated Configuration and procedure for PDCCH-based paging early indication
WO2023064243A1 (en) * 2021-10-14 2023-04-20 Intel Corporation User equipment paging monitoring
US11627552B1 (en) 2021-10-15 2023-04-11 Nokia Technologies Oy Offset value for paging early indication
CN115336338A (zh) * 2021-10-28 2022-11-11 深圳传音控股股份有限公司 处理方法、通信设备、通信系统及存储介质
CN113993174A (zh) * 2021-10-30 2022-01-28 Oppo广东移动通信有限公司 接收ssb的方法及通信设备、存储介质
CN113992283B (zh) * 2021-10-30 2024-06-25 Oppo广东移动通信有限公司 接收ssb的方法及装置、设备、存储介质
WO2023070688A1 (en) * 2021-11-01 2023-05-04 Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd Base station, user equipment, and method for processing paging early indication
US20230135662A1 (en) * 2021-11-02 2023-05-04 Mediatek Inc. Power saving feature assistance information in 5gs and eps
CN116074953A (zh) * 2021-11-04 2023-05-05 维沃移动通信有限公司 Pei检测方法、确定接收时间方法、装置、设备以及介质
CN116095830A (zh) * 2021-11-05 2023-05-09 华为技术有限公司 通信方法和装置
WO2023077438A1 (en) * 2021-11-05 2023-05-11 Zte Corporation Methods, devices, and systems for transmitting and receiving signal for paging messages
CN116156541A (zh) * 2021-11-19 2023-05-23 维沃软件技术有限公司 感知测量方法、感知测量指示方法、终端及网络侧设备
CN114124338B (zh) * 2021-12-01 2023-05-02 上海移远通信技术股份有限公司 无线通信方法、终端和网络设备
WO2023102790A1 (zh) * 2021-12-08 2023-06-15 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
WO2023102856A1 (zh) * 2021-12-09 2023-06-15 北京小米移动软件有限公司 一种确定和接收下行控制信息的方法、装置、设备及存储介质
CN114402668B (zh) * 2021-12-10 2024-02-23 北京小米移动软件有限公司 一种确定寻呼预告指示pei对应的首寻呼帧的方法、装置及可读存储介质
CN115316020A (zh) * 2021-12-28 2022-11-08 上海移远通信技术股份有限公司 无线通信的方法和通信装置
CN118160267A (zh) * 2022-01-07 2024-06-07 Oppo广东移动通信有限公司 一种无线通信方法及装置、终端设备、网络设备
CN114450985A (zh) * 2022-01-10 2022-05-06 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
CN116746224A (zh) * 2022-01-10 2023-09-12 北京小米移动软件有限公司 搜索空间配置、确定方法和装置、通信装置和存储介质
US20230319741A1 (en) * 2022-04-01 2023-10-05 Qualcomm Incorporated Techniques for power reduction in single subscriber identity module (ssim) and multi-sim (msim) 5g new radio (nr) standalone (sa) user equipment (ue) devices
US20230319859A1 (en) * 2022-04-05 2023-10-05 Samsung Electronics Co., Ltd. Method and apparatus for paging early indication monitoring based on ue type in wireless communication system
WO2024060230A1 (en) * 2022-09-23 2024-03-28 Zte Corporation Techniques for communicating positioning related reference signals for wireless devices
WO2024065401A1 (en) * 2022-09-29 2024-04-04 Nokia Shanghai Bell Co., Ltd. Paging early indication monitoring in user equipment specific discontinuous reception

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309555A (zh) * 2017-07-27 2019-02-05 夏普株式会社 基站、用户设备和相关方法
CN110831125A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 发送和接收寻呼消息的方法以及通信装置
WO2020143707A1 (zh) * 2019-01-11 2020-07-16 展讯通信(上海)有限公司 一种上行传输资源选择方法、终端和存储介质
WO2020231182A1 (ko) * 2019-05-14 2020-11-19 삼성전자 주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
CN113163476A (zh) * 2021-01-15 2021-07-23 中兴通讯股份有限公司 信号发送和接收方法、装置、设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831122B (zh) * 2018-08-10 2022-12-02 中兴通讯股份有限公司 信号的发送、接收方法、装置、存储介质及电子装置
CN112136349B (zh) * 2019-04-25 2023-06-09 联发科技股份有限公司 监测寻呼时机的方法以及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309555A (zh) * 2017-07-27 2019-02-05 夏普株式会社 基站、用户设备和相关方法
CN110831125A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 发送和接收寻呼消息的方法以及通信装置
WO2020143707A1 (zh) * 2019-01-11 2020-07-16 展讯通信(上海)有限公司 一种上行传输资源选择方法、终端和存储介质
WO2020231182A1 (ko) * 2019-05-14 2020-11-19 삼성전자 주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
CN113163476A (zh) * 2021-01-15 2021-07-23 中兴通讯股份有限公司 信号发送和接收方法、装置、设备和存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Evaluation methodology and paging enhancements for idle/inactive mode UE power saving", 3GPP DRAFT; R1-2005615, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917589 *
MEDIATEK INC.: "Paging Enhancements for UE Power Saving in NR", 3GPP DRAFT; R2-2008361, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 14 August 2020 (2020-08-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051920674 *
MODERATOR (MEDIATEK): "Summary for Paging Enhancements", 3GPP DRAFT; R1-2101948, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 22 February 2021 (2021-02-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051980194 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081569A1 (en) * 2021-11-05 2023-05-11 Qualcomm Incorporated Paging early indication for paging occasion
US11889468B2 (en) 2021-11-05 2024-01-30 Qualcomm Incorporated Paging early indication for paging occasion

Also Published As

Publication number Publication date
CN113163476A (zh) 2021-07-23
EP4280702A1 (en) 2023-11-22
US20240089921A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022151979A1 (zh) 信号发送和接收方法、装置、设备和存储介质
US11343772B2 (en) Two-part wake-up signal
CN110383901B (zh) 用于使用唤醒信号进行控制信道监视的技术和装置
EP3025556B1 (en) Methods and apparatuses for paging a user equipment
EP3799485B1 (en) Method for receiving a signal, network apparatus, and terminal apparatus
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
JP2020511884A (ja) Mtc機器の電力消費を抑えるシグナリング指標
US20160205659A1 (en) Paging in Coverage Extension Mode
EP3433966B1 (en) Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
CN114788360A (zh) 一种寻呼方法、电子设备及存储介质
RU2737282C1 (ru) Узел радиосети, беспроводное устройство и выполняемые на них способы
KR102457879B1 (ko) 정보 전송 방법, 네트워크 기기 및 단말
EP3771268A1 (en) Signal transmission method and device
EP3036961A1 (en) Coordination for pbch
KR20190095357A (ko) 불연속 수신 방법 및 장치
WO2020001123A1 (zh) 一种下行控制信道的检测方法及装置、终端设备
US20220394671A1 (en) Systems and Methods for UE-specific Notifications with Beamforming
US20210321480A1 (en) Power saving for extended reality (xr) communication
US11722911B2 (en) Coverage enhancement indication via wake-up signaling
EP3120618A1 (en) Network node, wireless device and method performed therein
WO2023024005A1 (zh) 一种时间窗口的确定方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18271949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919166

Country of ref document: EP

Effective date: 20230816