WO2023070688A1 - Base station, user equipment, and method for processing paging early indication - Google Patents

Base station, user equipment, and method for processing paging early indication Download PDF

Info

Publication number
WO2023070688A1
WO2023070688A1 PCT/CN2021/128014 CN2021128014W WO2023070688A1 WO 2023070688 A1 WO2023070688 A1 WO 2023070688A1 CN 2021128014 W CN2021128014 W CN 2021128014W WO 2023070688 A1 WO2023070688 A1 WO 2023070688A1
Authority
WO
WIPO (PCT)
Prior art keywords
pei
paging
indication
pos
trs
Prior art date
Application number
PCT/CN2021/128014
Other languages
French (fr)
Inventor
Shahid JAN
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd
Priority to PCT/CN2021/128014 priority Critical patent/WO2023070688A1/en
Publication of WO2023070688A1 publication Critical patent/WO2023070688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to paging early indication method, user equipment, and base station.
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • the 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards being a broadband and mobile system.
  • UE user equipment
  • RAN radio access network
  • the RAN comprises a set of base stations (BSs) that provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • a UE can perform discontinuous reception (DRX) and spent a significant time in a radio resource control (RRC) idle mode or an RRC Inactive mode.
  • RRC radio resource control
  • the UE can stay in a sleeping mode, turn off a radio frequency (RF) circuit and periodically wake up to monitor physical downlink control channel (PDCCH) for checking the presence of paging messages.
  • RF radio frequency
  • PDCCH physical downlink control channel
  • AGC Automatic gain control
  • loop convergence time frequency synchronization
  • DCI downlink control information
  • P-RNTI paging radio network temporary identifier
  • the UE decodes the corresponding physical downlink shared channel (PDSCH) ;
  • RACH random access channel
  • a 3GPP RAN working group has approved a work item (WI) for UE power saving enhancements, which includes the following objectives:
  • Specify means to provide potential tracking reference signal (TRS) /channel state information (CSI) -reference signal (CSI-RS) occasion (s) available in an RRC connected mode to idle/inactive-mode UEs while minimizing system overhead impact.
  • TRS tracking reference signal
  • CSI-RS channel state information -reference signal
  • UE subgroup paging is developed as an effective method with a reduced paging rate per group to achieve a reduction in the false paging rate.
  • PEI paging early indication
  • PO target paging occasion
  • UEs in the UE subgroup wake up the baseband circuit and start the paging process. If PEI is not detected, the UEs in the UE subgroup stay in the sleeping mode, thus, to avoid unnecessary paging and save power.
  • the physical layer channel of PEI is only based on PDCCH-based PEI and for NR Rel-17, paging indication to the idle/inactive UE subgroups are carried only in PEI.
  • the payload size of new DCI format for PDCCH based PEI is still under discussion.
  • a large payload size of PEI DCI may affect the PEI detection performance.
  • a small payload size of PEI DCI cannot be used to transmit the indication information for multiple POs as well as perform additional functions such as TRS availability indication and SI/ETWS indication.
  • a small payload size of PEI DCI may lead the BS to transmit PEI to the UE in each PO which results into increasing the UE power consumption.
  • the time domain location of PEI occasion affects the PEI additional functions capability and power saving gain. Therefore, it is desirable to define an efficient PEI DCI format with a payload size and a suitable location of PEI-O in time domain to improve the detection performance and functions of PEI.
  • An object of the present disclosure is to propose a user equipment (UE) , a base station, and a method for processing early paging indication.
  • UE user equipment
  • an embodiment of the invention provides a method for processing early paging indication executable in a user equipment (UE) , comprising: receiving a paging early indication (PEI) carrying indication information in a PEI monitoring occasion in a radio resource control (RRC) idle mode or a RRC inactive mode, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification; and performing a paging operation or not in a target paging occasion (PO) indicated by the indication information based on the indication information carried by the received PEI.
  • PEI paging early indication
  • RRC radio resource control
  • EWS earthquake and tsunami warning system
  • an embodiment of the invention provides a user equipment (UE) comprising a processor configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the disclosed method.
  • UE user equipment
  • an embodiment of the invention provides a method for processing early paging indication executable in a base station, comprising: the base station transmitting a paging early indication (PEI) carrying indication information in a time-domain location of a PEI monitoring occasion, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification.
  • PKI paging early indication
  • an embodiment of the invention provides a base station comprising a processor configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the disclosed method.
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as a computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
  • PEI physical layer channel
  • paging indication to the idle/inactive UEs in UE subgroups are carried only in PEI.
  • to define an efficient PEI DCI format with a payload size is critical to improve detection performance and functions of PEI, such as paging indication, TRS availability indication, system information (SI) change indication and earthquake and tsunami warning system (ETWS) notification.
  • SI system information
  • EWS earthquake and tsunami warning system
  • the disclosure provides a PEI DCI format with a payload size associated with respective AL candidates. Additionally, the disclosure defines the time-domain location of a PEI monitoring occasion. Further, the disclosure defines one PEI mapping to multiple POs in a single PF or across multiple PFs.
  • FIG. 1 illustrates a schematic view of a telecommunication system.
  • FIG. 2 illustrates a schematic view showing a method for processing PEI according to an embodiment of the disclosure.
  • FIG. 3 illustrates a schematic view showing an example of a PEI occasion (PEI-O) location with an incoming target paging occasion (PO) as a reference point in a good channel condition.
  • PEI-O PEI occasion
  • PO target paging occasion
  • FIG. 4 illustrates a schematic view showing an example of a PEI-O location with an incoming target paging occasion (PO) as a reference point in a bad channel condition.
  • PO target paging occasion
  • FIG. 5 illustrates a schematic view showing an example of a PEI-O location which is located 3 SSB earlier than the incoming target PO that is used as a reference point.
  • FIG. 6 illustrates a schematic view showing an example of a PEI-O location with a previous PO as a reference point in a good channel condition.
  • FIG. 7 illustrates a schematic view showing an example of a PEI-O location with a previous PO as a reference point in a bad channel condition.
  • FIG. 8 illustrates a schematic view showing an example of a PEI mapping to one PO in a PF.
  • FIG. 9 illustrates a schematic view showing an example of a PEI mapping to two POs in a PF.
  • FIG. 10 illustrates a schematic view showing an example of a PEI mapping to four POs in a PF.
  • FIG. 11 illustrates a schematic view showing an example of a PEI mapping to four POs in four PFs.
  • FIG. 12 illustrates a schematic view showing an example of a PEI mapping to four POs in two PFs.
  • FIG. 13 illustrates a schematic view showing an example of a PEI mapping to three POs in two PFs.
  • FIG. 14 illustrates a schematic view showing an example of a PEI mapping to one PO in a PF.
  • FIG. 15 illustrates a schematic view showing an example of a PEI mapping to three POs in one PF.
  • FIG. 16 illustrates a schematic view showing an example of a PEI mapping to one PO in another PF.
  • FIG. 17 illustrates a schematic view showing an example of a PEI mapping to four POs in four PFs.
  • FIG. 18 illustrates a schematic view showing an example of a PEI mapping to four POs in three PFs.
  • FIG. 19 illustrates a schematic view showing an example of a PEI mapping to four POs in two PFs.
  • FIG. 20 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
  • This invention is related to the 5G NR wireless communication system and, more particularly, paging enhancement for UEs in the RRC idle/inactive mode.
  • Embodiments of paging early indication (PEI) DCI formats, the time-domain location of a PEI monitoring occasion, and a mapping between PEI and one or multiple POs are detailed in the following.
  • the term "/" should be interpreted as "or. " A UE in the RRC idle mode is referred to as an idle UE, and a UE in the RRC inactive mode is referred to as an inactive UE.
  • a telecommunication system including a UE 10a, a UE 10b, a base station (BS) 20a, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure.
  • FIG. 1 is shown for illustrative, not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b.
  • the base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a.
  • the network entity device 30 may include a processor 31, a memory 32, and a transceiver 33.
  • Each of the processors 11a, 11b, 21a, and 31 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the processors 11a, 11b, 21a, and 31.
  • Each of the memory 12a, 12b, 22a, and 32 operatively stores a variety of programs and information to operate a connected processor.
  • Each of the transceivers 13a, 13b, 23a, and 33 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • the base station 20a may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a and UE 10b.
  • the telecommunication system comprises a plurality of UEs belonging to a UE subgroup 14 and a plurality of UEs belonging to a UE subgroup 15. UEs belong to the UE subgroup 14 comprise UE 10a, and UEs belong to the UE subgroup 15 comprise UE10b.
  • Each of the processors 11a, 11b, 21a, and 31 may include an application-specific integrated circuit (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • ASICs application-specific integrated circuit
  • Each of the memory 12a, 12b, 22a, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceivers 13a, 13b, 23a, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the network entity device 30 may be a CN node, i.e., a node in a CN.
  • CN may include LTE CN and/or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • This disclosure provides a PEI DCI format with a payload size and PEI configuration, such as essential and additional functions and aggregation level (AL) candidates, a time-domain location of a PEI monitoring occasion with reference to a PO/PF, and one PEI mapping to multiple POs in a paging frame (PF) or across multiple PFs.
  • An embodiment of the invention defines a PEI DCI size.
  • An embodiment of the invention provides examples of the time-domain location of a PEI monitoring occasion.
  • An embodiment of the invention provides examples of one PEI mapping to multiple POs in a paging frame or across multiple paging frames.
  • an example of a UE 10 in the description may include one of the UE 10a or UE 10b.
  • An example of a base station 20 in the description may include the base station 200a.
  • the disclosed method may be implemented in any other types of base stations, such as an eNB or a base station for beyond 5G.
  • Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station.
  • Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
  • the disclosed method is detailed in the following.
  • the UE 10 and the base station 20, such as a gNB execute the method for processing paging early indication.
  • the base station 20 transmits a paging early indication (PEI) 203 carrying indication information to one or more UE subgroups including the UE 10 in a PEI monitoring occasion, wherein the PEI 203 include one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification (200) .
  • PEI paging early indication
  • UEs in the one or more UE subgroups including the UE 10 perform PEI monitoring and receive the PEI 203 carrying the indication information in the PEI monitoring occasion in a radio resource control (RRC) idle mode or an RRC inactive mode (202) .
  • RRC radio resource control
  • the base station 20 transmits a paging message 205 to UEs in the one or more UE subgroups including the UE 10 (204) .
  • Each UE in the one or more UE subgroups including the UE 10 performs a paging operation or not in a target paging occasion (PO) indicated by the indication information based on the indication information carried by the received PEI 203 (206) .
  • the paging operation may comprise the UE 10 waking up from a sleep mode, transiting from an RRC idle/inactive mode to an RRC connected mode, receiving and decoding the paging message 205 when the PEI 203 indicates the paging message 205 in the target PO is for the UE 10.
  • the UE 10 does not perform the paging operation when the PEI 203 indicates the paging message in the target PO is not for the UE 10.
  • PDCCH-based PEI uses a new DCI to transmit indication information to one or more idle/inactive UEs in one or more UE subgroups, where the indication information can include one or more of UE subgroup paging indication, TRS availability indication, and SI/ETWS notification.
  • the indication information may include all of UE subgroup paging indication, TRS availability indication, and SI/ETWS notification in one PEI.
  • the UE subgroup paging indication is a paging indication transmitted from a gNB to a subgroup of UEs. A subgroup of UEs is referred to as a UE subgroup.
  • a paging indication in a PEI may comprise indication information that indicates to a UE in a UE subgroup whether a paging message located in a paging occasion is transmitted for the UE.
  • a paging indication in a PEI such as the PEI 203, may comprise indication information that indicates to UEs in the one or more UE subgroups whether one or more paging messages located in one or more paging occasions are transmitted for the UEs in the one or more UE subgroups.
  • the indication information in a PEI such as the PEI 203, associates the PEI with one or more paging occasions.
  • a relationship between the associated PEI and one or more paging occasions is referred to as a mapping between the PEI and one or more paging occasions.
  • An embodiment of the invention provides a payload size of PEI DCI format designed in an effective way to improve the PEI detection performance and effectively use the available bits for the essential and additional functions of PDCCH-based PEI.
  • An embodiment of the invention provides a PEI DCI with a payload size that comprises a number of bits to accommodate the following fields.
  • UE subgroup paging indication field One PEI, such as the PEI 203, can be used to indicate to UE subgroups about up to 4 POs in one PF or across multiple PFs. As up to 8 UE subgroups can be paged in each PO, and each UE subgroup needs at least 1 bit in the UE subgroup paging indication field for paging indication.
  • the UE subgroup paging indication field in a PEI such as the PEI 203, of a PEI DCI format proposed in the embodiment comprises a size of 32 bits, of which each bit is configured as a UE subgroup paging indication for a UE subgroup to indicate paging for the UE subgroup in a PO.
  • the UE subgroup paging indication field in the PEI such as the PEI 203, comprises paging indication of up to four paging occasions (POs) in one paging frame (PF) or across multiple PFs, and the paging indication is for up to 8 UE subgroups in each PO.
  • TRS availability indication field In paging DCI, the TRS availability indication field has 6 reserved bits which is used for TRS availability indication. For TRS availability indication, the same mechanism/principle can be used for both paging DCI and PEI. Similar to the number of bits reserved in paging DCI, an embodiment of the invention proposes to use at least 6 bits in the TRS availability indication field in the PEI, such as the PEI 203, for TRS availability indication.
  • SI/ETWS notification field The PEI, such as the PEI 203, may comprise an SI/ETWS notification field that indicates SI change and/or ETWS notification, which may help the UE to avoid the unnecessary decoding of paging DCI when the paging DCI is only used for SI change or ETWS notification. At least 2 bits in PEI, such as the PEI 203, can be used for SI or ETWS notification, in which one bit is used for SI change and 1 bit for ETWS notification.
  • the total payload size of a PEI is at least 40 bits.
  • the PEI may comprise cyclic redundancy check (CRC) bits scrambled with P-RNTI or PEI-RNTI.
  • CRC cyclic redundancy check
  • the PEI DCI may have 80 bits as shown in Table 1.
  • aggregation level is used to define the number of control channel element (CCE) candidates for a PDCCH.
  • the CCE candidates are physical radio resources in the control region (s) for DCI transmission.
  • the PDCCH transmission with high AL is very resource-consuming and may cause a PDCCH blocking problem because the network may not have sufficient resources in the control region (s) for other UE subgroups on the same occasion. Therefore, in an embodiment, a UE or UEs in one or more UE subgroups can be configured with lower AL for reception of PEI, such as the PEI 203.
  • the payload size of the PEI must not exceed the number of bits within the capacity of PDCCH CCEs with a configured AL.
  • the configured AL may be one of 1, 2, 4, 8, or 16.
  • the capacity of PDCCH CCEs with a configured AL may be calculated according to the current specification TS 38.213, as shown in Table 2.
  • DMRS demodulation reference signal
  • the total payload size of the PEI, such as the PEI 203, in the PEI DCI format after being scrambled with P-RNTI/PEI-RNTI of 16 bits and added with 24 bits CRC is 80 bits.
  • PDCCH CCE with AL 1, of which capacity is around 108 bits, can provide a good forward error correction protection for efficient decoding of PDCCH-based PEI, so that the idle/inactive UE can receive and decode the PEI message successfully.
  • a DCI scrambled with common RNTI e.g., P-RNTI or PEI RNTI
  • a common search space e.g., a paging search space or a dedicated PEI search space
  • the required AL for PDCCH-based PEI such as the PEI 203, shall be configurable.
  • the required AL for PDCCH-based PEI can be 1, 2, 4, 8 or 16 to provide better flexibility for the base station 20 (e.g., gNB) and guarantee the detection performance.
  • a PEI monitoring occasion is a set of PDCCH monitoring occasions specified as time units (e.g., subframe, slot, or OFDM symbol) where PEI, such as the PEI 203, can be sent by a gNB, such as the base station 20.
  • OFDM stands for orthogonal frequency division multiplexing.
  • a PEI such as the PEI 203
  • the base station 20 should transmit a PEI, such as the PEI 203, before the incoming target PO.
  • a time-domain location of a PEI monitoring occasion of a PEI is located with respect to a reference point and defines a time offset between the reference point and PEI monitoring occasion.
  • the PEI monitoring occasion is a time offset away from the reference point.
  • the reference point may be the previous PO before the PEI or an incoming target PO after the PEI.
  • the time offset may be specified by S SSB bursts and indicates that the PEI is S SSB bursts away from the previous PO or the incoming target PO.
  • the SSB stands for synchronization signal block.
  • a time-domain location of a PEI monitoring occasion may be referred to as a PEI-O location in the following.
  • a time-domain location of a PEI monitoring occasion of a PEI can be associated with the incoming target PO. That is, the incoming target PO is used as the reference point of the time-domain location of the PEI monitoring occasion. Since the UE 10 in the one or more UE subgroups in the RRC idle/inactive mode is out of synchronization with the network, the UE 10 may need at least 1 SSB burst in good channel conditions and 3 SSB bursts in bad channel conditions for AGC and time/frequency synchronization before performing PEI monitoring in the PEI monitoring occasion. As shown in FIG. 3 and FIG.
  • the PEI monitoring occasion in case the reference point for the time-domain location of the PEI monitoring occasion is the incoming target PO, and the PEI monitoring occasion is configured in a way that no SSB burst is between the PEI monitoring occasion and the incoming target PO, the PEI can be used only for paging indication but cannot be used for TRS availability indication. In this case, even if a TRS is configured for the idle/inactive UE 10 for AGC and time/frequency synchronization, and a PEI is used for TRS availability indication, the UE 10 cannot detect the TRS because the PEI which carries the TRS availability indication is transmitted after a TRS occasion of the TRS.
  • the PEI such as the PEI 203
  • the PEI can be used for paging indication as well as the TRS availability indication, because a time offset between the PEI monitoring occasion and the incoming target PO is sufficiently long so that the base station 20 can transmit the PEI to carry the TRS availability indication to the one or more UE subgroups including the UE 10, and the UE 10 can receive the PEI and decode the TRS availability indication in the PEI before the TRS occasion.
  • the base station 20 can transmit the PEI to carry the TRS availability indication to the one or more UE subgroups including the UE 10
  • the UE 10 can receive the PEI and decode the TRS availability indication in the PEI before the TRS occasion.
  • the time offset between the reference point (i.e., the incoming target PO) and the PEI monitoring occasion shall be at least 3 SSB bursts and the PEI shall be transmitted at least 3 SSB earlier than the incoming target PO.
  • the PEI comprises TRS availability indication when the PEI monitoring occasion is three SSB bursts away from the reference point, and the PEI does not comprise TRS availability indication when the PEI monitoring occasion is less than three SSB bursts away from the reference point.
  • the reference point may be a previous PO before the PEI.
  • the PEI monitoring occasion may be one, or two, or three SSB bursts away from the reference point.
  • FIG. 6 and FIG. 7 when a PEI monitoring occasion time-domain location is associated with the previous PO before the incoming target PO, which may need at least 1 SSB burst in good channel condition and 3 SSBs in bad channel condition respectively, the time-domain location of the PEI monitoring occasion needs to be at least 3 SSB burst after the previous PO in order to guarantee the idle/inactive UE 10 in the one or more UE subgroups to synchronize with the network before receiving the PEI, such as the PEI 203.
  • the base station 20 configures a time-domain location of a PEI monitoring occasion with reference to the previous PO.
  • the base station 20 configures the time-domain location of a PEI monitoring occasion with a time offset of at least 3 SSB bursts so that the time-domain location of the PEI monitoring occasion is 3 SSB bursts after the previous PO.
  • the advantage of associating the time-domain location of the PEI monitoring occasion to the previous PO is that the UE 10 can receive the indication information early and go back to deep sleep until the incoming target PO.
  • PEI such as the PEI 203
  • the PEI may carry indication information comprising one or more of UE subgroup paging indication, TRS availability indication, or SI/ETWS notification.
  • PEI such as the PEI 203
  • in a PEI-O location with reference to the incoming target PO may have various mappings from the PEI to one or multiple POs.
  • PEI such as the PEI 203
  • in a PEI-O location with reference to the previous PO may have various mappings from the PEI to one or multiple POs.
  • 2, or 4 POs can be configured in a PF, and a PEI, such as the PEI 203, can be used to transmit the indication information for up to 4 POs.
  • a PEI such as the PEI 203, can be used to transmit the indication information for one or multiple POs in a PF or across multiple PFs when a PEI-O location of the PEI is associated with the incoming target PO.
  • the PEI can be at least 3 SSB earlier than the incoming target PO. The following examples show all the possible mappings of one PEI to 1 PO or multiple POs in one PF or across multiple PFs.
  • the PEI can be used to transmit the indication information for 1, 2 or 4 POs in a PF depending on the number of configured PO in a PF.
  • the PEI may comprise the indication information that includes paging indication of up to four POs in one or more paging frames.
  • the paging indication of up to four POs may include the incoming target PO after the PEI and three POs following the incoming target PO.
  • Each paging frame in the one or more paging frames may be configured to include one, two, or four POs. Different paging frames in the one or more paging frames may be configured to include different numbers of POs.
  • a single PEI such as the PEI 203, can be used to transmit the indication information for the PO in the PF.
  • a single PEI such as the PEI 203, can be used to transmit the indication information for the two POs in the PF.
  • one PEI can be used to transmit the indication information for 4 POs in a PF.
  • the PEI can also be used to transmit the indication information for 1, 2, 3 or 4 POs across multiple PFs.
  • one PEI such as the PEI 203
  • the PEI can be used to transmit the indication information for each PO in four PFs.
  • a PEI, such as the PEI 203, in Nth PF is used to transmit the indication information for each PO in PFs N, N+1, N+2 and N+3.
  • one PEI such as the PEI 203
  • one PEI can be used to transmit the indication information for each POs in a PF.
  • a PEI, such as the PEI 203, in Nth PF is used to transmit the indication information for each PO in PFs N and N+1.
  • different numbers of POs are configured in each PF. As shown in FIG. 13, for example, one PO is configured in PF N while two POs are configured in PF N+2. In this case, one PEI, such as the PEI 203, in PF N can be used to transmit the indication information for one PO in PF N, and two POs in PF N+2.
  • a PEI such as the PEI 203
  • the time-domain location of the PEI monitoring occasion of a PEI, such as the PEI 203 can be configured at least 3 SSB bursts after the previous PO to guarantee synchronization before transmission of the PEI in good and bad channel conditions.
  • the PEI may comprise the indication information that includes paging indication of up to four POs in one or more paging frames.
  • the paging indication of up to four POs may include the incoming target PO after the PEI and three POs following the incoming target PO.
  • Each paging frame in the one or more paging frames may be configured to include one, two, three, or four POs. Different paging frames in the one or more paging frames may be configured to include different numbers of POs.
  • the following examples show all the possible mappings of one PEI to one PO or multiple POs in one PF or across multiple PFs.
  • the PEI can also be used to transmit the indication information for 1, or 3 POs in a PF.
  • the base station 20 needs to configure at least 2 POs in a PF.
  • one PEI associated with PO1 is used to transmit the indication information for a target PO i.e., PO2.
  • one PEI such as the PEI 203, can be used to transmit the indication information for the remaining 3 POs in the PF.
  • the PEI can be used to transmit the indication information for 1, 2, 3 or 4 POs across multiple PFs. As shown in FIG. 16, for example, the PEI located in PF N associated with PO1 in PF N can be used to transmit the indication information for the incoming target PO in PF N+1.
  • a PEI such as the PEI 203, in PF N can be used to transmit the indication information for each PO in PF N+1, N+2, N+3, and N+4.
  • a PEI such as the PEI 203, in PF N can be used to transmit the indication information for PO2 in PF N, PO1 and PO2 in PF N+1, and PO1 in PF N+2.
  • a PEI such as the PEI 203, can be used to transmit the indication information for PO1, PO2, PO3 in PF N and PO1 in PF N+1.
  • FIG. 20 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 20 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • the system may have more or less components, and/or different architectures.
  • the methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • the disclosure provides a PEI DCI format with a payload size associated with respective AL candidates. Additionally, the disclosure defines the time-domain location of a PEI monitoring occasion. Further, the disclosure defines one PEI mapping to multiple POs in a single PF or across multiple PFs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The disclosure provides a base station, a user equipment (UE), and a method for processing paging early indication (PEI). A PEI downlink control information (DCI) format with a payload size associated with respective aggregation level (AL) candidates is provided. Additionally, the disclosure defines the time-domain location of a PEI monitoring occasion. Further, the disclosure defines one PEI mapping to multiple POs in a single PF or across multiple PFs.

Description

BASE STATION, USER EQUIPMENT, AND METHOD FOR PROCESSING PAGING EARLY INDICATION Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to paging early indication method, user equipment, and base station.
Background Art
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) that provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB.
Power saving techniques play a key role in 5G New Radio (NR) system to support low power devices, such as industrial wireless sensors, video surveillance, and wearables etc. To save energy and conserve battery, a UE can perform discontinuous reception (DRX) and spent a significant time in a radio resource control (RRC) idle mode or an RRC Inactive mode. During the RRC idle/inactive mode, the UE can stay in a sleeping mode, turn off a radio frequency (RF) circuit and periodically wake up to monitor physical downlink control channel (PDCCH) for checking the presence of paging messages. Generally, a UE performs the following steps to monitor paging:
1. Waking up before the paging occasion;
2. Turning on RF and baseband circuits;
3. Automatic gain control (AGC) and time frequency synchronization (referred to as loop convergence) as well as serving cell confirmation;
4. Attempting to perform PDCCH decoding for downlink control information (DCI) scrambled with paging radio network temporary identifier (P-RNTI) ;
5. Returning to DRX If no paging is found;
6. If Paging DCI is found, depending on the payload, the UE decodes the corresponding physical downlink shared channel (PDSCH) ; and
7. If UE identity of the UE is included in the PDSCH, the UE starts random access channel (RACH) procedure, otherwise the UE goes back to DRX.
The paging process consume more energy and waste UE power, especially in so called false paging case, where a UE decode paging PDCCH and found that the UE is not being paged. To save power and reduce unnecessary UE paging reception, a 3GPP RAN working group has approved a work item (WI) for UE power saving enhancements, which includes the following objectives:
(1) Specify enhancements for idle/inactive-mode UE power saving, considering system performance aspects:
(a) Study and specify paging enhancement (s) to reduce unnecessary UE paging receptions, subject to no impact to legacy UEs;
(b) Specify means to provide potential tracking reference signal (TRS) /channel state information (CSI) -reference signal (CSI-RS) occasion (s) available in an RRC connected mode to idle/inactive-mode UEs while minimizing system overhead impact.
To reduce unnecessary paging and save power, UE subgroup paging is developed as an effective method with a reduced paging rate per group to achieve a reduction in the false paging rate. Similarly, paging early indication (PEI) has been introduced in 3GPP standard Rel-17 paging enhancement, in which a PEI is transmitted before a target paging occasion (PO) to indicates to a UE subgroup whether to monitor PDCCH scrambled with P-RNTI or not. When detecting a PEI, UEs in the UE subgroup wake up the baseband circuit and start the paging process. If PEI is not detected, the UEs in the UE subgroup stay in the sleeping mode, thus, to avoid unnecessary paging and save power.
Technical Problem
According to current standardization agreements, the physical layer channel of PEI is only based on PDCCH-based PEI and for NR Rel-17, paging indication to the idle/inactive UE subgroups are carried only in PEI. However, the payload size of new DCI format for PDCCH based PEI is still under discussion. A large payload size of PEI DCI may affect the PEI detection performance. But on the other hand, a small payload size of PEI DCI cannot be used to transmit the indication information for multiple POs as well as perform additional functions such as TRS availability indication and SI/ETWS indication. Furthermore, a small payload size of PEI DCI may lead the BS to transmit PEI to the UE in each PO which results into increasing the UE power consumption. Similarly, the time domain location of PEI occasion affects the PEI additional functions capability and power saving gain. Therefore, it is desirable to define an efficient PEI DCI format with a payload size and a suitable location of PEI-O in time domain to improve the detection performance and functions of PEI.
Technical Solution
An object of the present disclosure is to propose a user equipment (UE) , a base station, and a method for processing early paging indication.
In a first aspect, an embodiment of the invention provides a method for processing early paging indication executable in a user equipment (UE) , comprising: receiving a paging early indication (PEI) carrying indication information in a PEI monitoring occasion in a radio resource control (RRC) idle mode or a RRC inactive mode, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification; and performing a paging operation or not in a target paging occasion (PO) indicated by the indication information  based on the indication information carried by the received PEI.
In a second aspect, an embodiment of the invention provides a user equipment (UE) comprising a processor configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the disclosed method.
In a third aspect, an embodiment of the invention provides a method for processing early paging indication executable in a base station, comprising: the base station transmitting a paging early indication (PEI) carrying indication information in a time-domain location of a PEI monitoring occasion, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification.
In a fourth aspect, an embodiment of the invention provides a base station comprising a processor configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the disclosed method.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as a computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
As mentioned in agreements in current 3GPP standardization efforts, that the physical layer channel of PEI is only based on PDCCH-based PEI and for NR Rel-17, paging indication to the idle/inactive UEs in UE subgroups are carried only in PEI. However, to define an efficient PEI DCI format with a payload size is critical to improve detection performance and functions of PEI, such as paging indication, TRS availability indication, system information (SI) change indication and earthquake and tsunami warning system (ETWS) notification. Furthermore, the reference point of a time-domain location of a PEI monitoring occasion, and the indication information carried in PEI are still under discussion and there is no concrete agreement in this regard. Therefore, the disclosure provides a PEI DCI format with a payload size associated with respective AL candidates. Additionally, the disclosure defines the time-domain location of a PEI monitoring occasion. Further, the disclosure defines one PEI mapping to multiple POs in a single PF or across multiple PFs.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 illustrates a schematic view of a telecommunication system.
FIG. 2 illustrates a schematic view showing a method for processing PEI according to an embodiment of the disclosure.
FIG. 3 illustrates a schematic view showing an example of a PEI occasion (PEI-O) location with an incoming target paging occasion (PO) as a reference point in a good channel condition.
FIG. 4 illustrates a schematic view showing an example of a PEI-O location with an incoming target paging occasion (PO) as a reference point in a bad channel condition.
FIG. 5 illustrates a schematic view showing an example of a PEI-O location which is located 3 SSB earlier than the incoming target PO that is used as a reference point.
FIG. 6 illustrates a schematic view showing an example of a PEI-O location with a previous PO as a reference point in a good channel condition.
FIG. 7 illustrates a schematic view showing an example of a PEI-O location with a previous PO as a reference point in a bad channel condition.
FIG. 8 illustrates a schematic view showing an example of a PEI mapping to one PO in a PF.
FIG. 9 illustrates a schematic view showing an example of a PEI mapping to two POs in a PF.
FIG. 10 illustrates a schematic view showing an example of a PEI mapping to four POs in a PF.
FIG. 11 illustrates a schematic view showing an example of a PEI mapping to four POs in four PFs.
FIG. 12 illustrates a schematic view showing an example of a PEI mapping to four POs in two PFs.
FIG. 13 illustrates a schematic view showing an example of a PEI mapping to three POs in two PFs.
FIG. 14 illustrates a schematic view showing an example of a PEI mapping to one PO in a PF.
FIG. 15 illustrates a schematic view showing an example of a PEI mapping to three POs in one PF.
FIG. 16 illustrates a schematic view showing an example of a PEI mapping to one PO in another PF.
FIG. 17 illustrates a schematic view showing an example of a PEI mapping to four POs in four PFs.
FIG. 18 illustrates a schematic view showing an example of a PEI mapping to four POs in three PFs.
FIG. 19 illustrates a schematic view showing an example of a PEI mapping to four POs in two PFs.
FIG. 20 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
This invention is related to the 5G NR wireless communication system and, more particularly, paging enhancement for UEs in the RRC idle/inactive mode. Embodiments of paging early indication (PEI) DCI formats, the time-domain location of a PEI monitoring occasion, and a mapping between PEI and one or multiple POs are detailed in the following. In this document, the term "/" should be interpreted as "or. " A UE in the RRC idle mode is referred to as an idle UE, and a UE in the RRC inactive mode is referred to as an inactive UE.
With reference to FIG. 1, a telecommunication system including a UE 10a, a UE 10b, a base station (BS) 20a, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure. FIG. 1 is shown for illustrative, not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b. The base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a. The network entity device 30 may include a processor 31, a memory 32, and a transceiver 33. Each of the  processors  11a, 11b, 21a, and 31 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11a, 11b, 21a, and 31. Each of the  memory  12a, 12b, 22a, and 32 operatively stores a variety of programs and information to operate a connected processor. Each of the  transceivers  13a, 13b, 23a, and 33 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. The base station 20a may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a and UE 10b. The telecommunication system comprises a plurality of UEs belonging to a UE subgroup 14 and a plurality of UEs belonging to a UE subgroup 15. UEs belong to the UE subgroup 14 comprise UE 10a, and UEs belong to the UE subgroup 15 comprise UE10b.
Each of the  processors  11a, 11b, 21a, and 31 may include an application-specific integrated circuit (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 12b, 22a, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceivers  13a, 13b, 23a, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities, and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 30 may be a CN node, i.e., a node in a CN. CN may include LTE CN and/or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) ,  mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
This disclosure provides a PEI DCI format with a payload size and PEI configuration, such as essential and additional functions and aggregation level (AL) candidates, a time-domain location of a PEI monitoring occasion with reference to a PO/PF, and one PEI mapping to multiple POs in a paging frame (PF) or across multiple PFs. An embodiment of the invention defines a PEI DCI size. An embodiment of the invention provides examples of the time-domain location of a PEI monitoring occasion. An embodiment of the invention provides examples of one PEI mapping to multiple POs in a paging frame or across multiple paging frames.
With reference to FIG. 2, an example of a UE 10 in the description may include one of the UE 10a or UE 10b. An example of a base station 20 in the description may include the base station 200a. Note that even though the gNB is described as an example of a base station in the following, the disclosed method may be implemented in any other types of base stations, such as an eNB or a base station for beyond 5G. Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station. Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE. The disclosed method is detailed in the following. The UE 10 and the base station 20, such as a gNB, execute the method for processing paging early indication.
The base station 20 transmits a paging early indication (PEI) 203 carrying indication information to one or more UE subgroups including the UE 10 in a PEI monitoring occasion, wherein the PEI 203 include one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification (200) .
UEs in the one or more UE subgroups including the UE 10 perform PEI monitoring and receive the PEI 203 carrying the indication information in the PEI monitoring occasion in a radio resource control (RRC) idle mode or an RRC inactive mode (202) .
The base station 20 transmits a paging message 205 to UEs in the one or more UE subgroups including the UE 10 (204) . Each UE in the one or more UE subgroups including the UE 10 performs a paging operation or not in a target paging occasion (PO) indicated by the indication information based on the indication information carried by the received PEI 203 (206) . The paging operation may comprise the UE 10 waking up from a sleep mode, transiting from an RRC idle/inactive mode to an RRC connected mode, receiving and decoding the paging message 205 when the PEI 203 indicates the paging message 205 in the target PO is for the UE 10. The UE 10 does not perform the paging operation when the PEI 203 indicates the paging message in the target PO is not for the UE 10.
1.1 PEI DCI Format:
PDCCH-based PEI uses a new DCI to transmit indication information to one or more idle/inactive UEs in one or more UE subgroups, where the indication information can include one or more of UE subgroup paging indication, TRS availability indication, and SI/ETWS notification. The indication information may include all of UE subgroup paging indication, TRS availability indication, and SI/ETWS notification in one PEI. The UE subgroup paging indication is a paging indication transmitted from a gNB to a subgroup of UEs. A subgroup of UEs is referred to as a UE subgroup. A paging indication in a PEI, such  as the PEI 203, may comprise indication information that indicates to a UE in a UE subgroup whether a paging message located in a paging occasion is transmitted for the UE. Similarly, a paging indication in a PEI, such as the PEI 203, may comprise indication information that indicates to UEs in the one or more UE subgroups whether one or more paging messages located in one or more paging occasions are transmitted for the UEs in the one or more UE subgroups. Thus, the indication information in a PEI, such as the PEI 203, associates the PEI with one or more paging occasions. A relationship between the associated PEI and one or more paging occasions is referred to as a mapping between the PEI and one or more paging occasions.
1.1.1 PEI DCI Size:
An embodiment of the invention provides a payload size of PEI DCI format designed in an effective way to improve the PEI detection performance and effectively use the available bits for the essential and additional functions of PDCCH-based PEI.
An embodiment of the invention provides a PEI DCI with a payload size that comprises a number of bits to accommodate the following fields.
1. UE subgroup paging indication field: One PEI, such as the PEI 203, can be used to indicate to UE subgroups about up to 4 POs in one PF or across multiple PFs. As up to 8 UE subgroups can be paged in each PO, and each UE subgroup needs at least 1 bit in the UE subgroup paging indication field for paging indication. The UE subgroup paging indication field can contain maximum up to 4*8=32 UE subgroup paging indications for 4 POs. Thus, the UE subgroup paging indication field in a PEI, such as the PEI 203, of a PEI DCI format proposed in the embodiment comprises a size of 32 bits, of which each bit is configured as a UE subgroup paging indication for a UE subgroup to indicate paging for the UE subgroup in a PO. Thus, the UE subgroup paging indication field in the PEI, such as the PEI 203, comprises paging indication of up to four paging occasions (POs) in one paging frame (PF) or across multiple PFs, and the paging indication is for up to 8 UE subgroups in each PO.
2. TRS availability indication field: In paging DCI, the TRS availability indication field has 6 reserved bits which is used for TRS availability indication. For TRS availability indication, the same mechanism/principle can be used for both paging DCI and PEI. Similar to the number of bits reserved in paging DCI, an embodiment of the invention proposes to use at least 6 bits in the TRS availability indication field in the PEI, such as the PEI 203, for TRS availability indication.
3. SI/ETWS notification field: The PEI, such as the PEI 203, may comprise an SI/ETWS notification field that indicates SI change and/or ETWS notification, which may help the UE to avoid the unnecessary decoding of paging DCI when the paging DCI is only used for SI change or ETWS notification. At least 2 bits in PEI, such as the PEI 203, can be used for SI or ETWS notification, in which one bit is used for SI change and 1 bit for ETWS notification.
With 32 bits of the UE subgroup paging indication field, 6 bits of the TRS availability indication field, and 2 bits for SI or ETWS notification, the total payload size of a PEI, such as the PEI 203, is at least 40 bits. The PEI may comprise cyclic redundancy check (CRC) bits scrambled with P-RNTI or PEI-RNTI.  When the base station 20 transmits the PEI, such as the PEI 203, with cyclic redundancy check (CRC) bits scrambled with P-RNTI/PEI-RNTI, the PEI DCI may have 80 bits as shown in Table 1.
Table 1 PEI DCI Payload Size
Field items Bits
UE subgroup paging indication 32
TRS availability indication 6
SI/ETWS notification 2
P-RNTI or PEI–RNTI 16
CRC scrambled 24
Total payload 80 bits
1.1.2 Aggregation Level (AL) candidates:
In NR, aggregation level (AL) is used to define the number of control channel element (CCE) candidates for a PDCCH. The CCE candidates are physical radio resources in the control region (s) for DCI transmission. The PDCCH transmission with high AL is very resource-consuming and may cause a PDCCH blocking problem because the network may not have sufficient resources in the control region (s) for other UE subgroups on the same occasion. Therefore, in an embodiment, a UE or UEs in one or more UE subgroups can be configured with lower AL for reception of PEI, such as the PEI 203. Furthermore, the payload size of the PEI must not exceed the number of bits within the capacity of PDCCH CCEs with a configured AL. The configured AL may be one of 1, 2, 4, 8, or 16. In NR, for example, the capacity of PDCCH CCEs with a configured AL may be calculated according to the current specification TS 38.213, as shown in Table 2.
Table 2 PDCCH AL and capacity
Figure PCTCN2021128014-appb-000001
DMRS stands for demodulation reference signal (s) . The total payload size of the PEI, such as the PEI 203, in the PEI DCI format after being scrambled with P-RNTI/PEI-RNTI of 16 bits and added with 24 bits CRC is 80 bits. PDCCH CCE with AL 1, of which capacity is around 108 bits, can provide a good  forward error correction protection for efficient decoding of PDCCH-based PEI, so that the idle/inactive UE can receive and decode the PEI message successfully. However, in the current specification, a DCI scrambled with common RNTI (e.g., P-RNTI or PEI RNTI) , and allocated in a common search space (e.g., a paging search space or a dedicated PEI search space) should always use the highest aggregation level such as 4 or 8. Therefore, the required AL for PDCCH-based PEI, such as the PEI 203, shall be configurable. Specifically, similar to UE-specific PDCCH, the required AL for PDCCH-based PEI can be 1, 2, 4, 8 or 16 to provide better flexibility for the base station 20 (e.g., gNB) and guarantee the detection performance.
1.2 Time-domain location of a PEI monitoring occasion:
A PEI monitoring occasion is a set of PDCCH monitoring occasions specified as time units (e.g., subframe, slot, or OFDM symbol) where PEI, such as the PEI 203, can be sent by a gNB, such as the base station 20. OFDM stands for orthogonal frequency division multiplexing.
A PEI, such as the PEI 203, is used to transmit the indication information that indicates the target PO before the target PO. Therefore, the base station 20 should transmit a PEI, such as the PEI 203, before the incoming target PO. Accordingly, an embodiment of the present disclosure proposes that a time-domain location of a PEI monitoring occasion of a PEI, such as the PEI 203, is located with respect to a reference point and defines a time offset between the reference point and PEI monitoring occasion. The PEI monitoring occasion is a time offset away from the reference point. The reference point may be the previous PO before the PEI or an incoming target PO after the PEI. The time offset may be specified by S SSB bursts and indicates that the PEI is S SSB bursts away from the previous PO or the incoming target PO. The SSB stands for synchronization signal block. A time-domain location of a PEI monitoring occasion may be referred to as a PEI-O location in the following.
(A) A time-domain location of a PEI monitoring occasion with reference to the incoming target PO:
As shown in FIG. 3 and FIG. 4, a time-domain location of a PEI monitoring occasion of a PEI, such as the PEI 203, can be associated with the incoming target PO. That is, the incoming target PO is used as the reference point of the time-domain location of the PEI monitoring occasion. Since the UE 10 in the one or more UE subgroups in the RRC idle/inactive mode is out of synchronization with the network, the UE 10 may need at least 1 SSB burst in good channel conditions and 3 SSB bursts in bad channel conditions for AGC and time/frequency synchronization before performing PEI monitoring in the PEI monitoring occasion. As shown in FIG. 3 and FIG. 4, in case the reference point for the time-domain location of the PEI monitoring occasion is the incoming target PO, and the PEI monitoring occasion is configured in a way that no SSB burst is between the PEI monitoring occasion and the incoming target PO, the PEI can be used only for paging indication but cannot be used for TRS availability indication. In this case, even if a TRS is configured for the idle/inactive UE 10 for AGC and time/frequency synchronization, and a PEI is used for TRS availability indication, the UE 10 cannot detect the TRS because the PEI which carries the TRS availability indication is transmitted after a TRS occasion of the TRS.
However, if the reference point is the incoming target PO, and the PEI monitoring occasion is located at least 3 SSB bursts earlier than the incoming target PO, the PEI, such as the PEI 203, can be used for paging indication as well as the TRS availability indication, because a time offset between the PEI monitoring occasion and the incoming target PO is sufficiently long so that the base station 20 can transmit the PEI to carry the TRS availability indication to the one or more UE subgroups including the UE 10, and  the UE 10 can receive the PEI and decode the TRS availability indication in the PEI before the TRS occasion. As shown in FIG. 5, in an embodiment of the disclosure, in case the reference point for the time-domain location of the PEI monitoring occasion is associated with the incoming target PO, the time offset between the reference point (i.e., the incoming target PO) and the PEI monitoring occasion shall be at least 3 SSB bursts and the PEI shall be transmitted at least 3 SSB earlier than the incoming target PO. In an embodiment, the PEI comprises TRS availability indication when the PEI monitoring occasion is three SSB bursts away from the reference point, and the PEI does not comprise TRS availability indication when the PEI monitoring occasion is less than three SSB bursts away from the reference point.
(B) PEI-O location reference to the previous PO:
The reference point may be a previous PO before the PEI. The PEI monitoring occasion may be one, or two, or three SSB bursts away from the reference point. As shown in FIG. 6 and FIG. 7, when a PEI monitoring occasion time-domain location is associated with the previous PO before the incoming target PO, which may need at least 1 SSB burst in good channel condition and 3 SSBs in bad channel condition respectively, the time-domain location of the PEI monitoring occasion needs to be at least 3 SSB burst after the previous PO in order to guarantee the idle/inactive UE 10 in the one or more UE subgroups to synchronize with the network before receiving the PEI, such as the PEI 203. In this case, the PEI can be used for the UE subgroup paging indication as well as the TRS availability indication. Therefore, in an embodiment of the disclosure, the base station 20 configures a time-domain location of a PEI monitoring occasion with reference to the previous PO. For example, the base station 20 configures the time-domain location of a PEI monitoring occasion with a time offset of at least 3 SSB bursts so that the time-domain location of the PEI monitoring occasion is 3 SSB bursts after the previous PO. The advantage of associating the time-domain location of the PEI monitoring occasion to the previous PO is that the UE 10 can receive the indication information early and go back to deep sleep until the incoming target PO.
1.3 PEI mapping to PO:
Examples of a PEI, such as the PEI 203, indicating one PO or multiple POs in one paging frame (PF) or across multiple PFs are detailed in the following. The PEI may carry indication information comprising one or more of UE subgroup paging indication, TRS availability indication, or SI/ETWS notification. PEI, such as the PEI 203, in a PEI-O location with reference to the incoming target PO may have various mappings from the PEI to one or multiple POs. Similarly, PEI, such as the PEI 203, in a PEI-O location with reference to the previous PO may have various mappings from the PEI to one or multiple POs.
It shall be noted that in  current specification  1, 2, or 4 POs can be configured in a PF, and a PEI, such as the PEI 203, can be used to transmit the indication information for up to 4 POs.
1.3.1 PEI indicating one or multiple POs when the reference point of the PEI-O location of the PEI is the incoming target PO:
In an embodiment, a PEI, such as the PEI 203, can be used to transmit the indication information for one or multiple POs in a PF or across multiple PFs when a PEI-O location of the PEI is associated with the incoming target PO. As detailed in the aforementioned embodiments, the PEI can be at least 3 SSB earlier than the incoming target PO. The following examples show all the possible mappings of one PEI to 1 PO or multiple POs in one PF or across multiple PFs.
(A) One PEI mapping to one PO or multiple POs in a PF:
When the reference point of the time-domain location of the PEI monitoring occasion of a PEI, such as the PEI 203, is the incoming target PO after the PEI, the PEI can be used to transmit the indication information for 1, 2 or 4 POs in a PF depending on the number of configured PO in a PF. The PEI may comprise the indication information that includes paging indication of up to four POs in one or more paging frames. The paging indication of up to four POs may include the incoming target PO after the PEI and three POs following the incoming target PO. Each paging frame in the one or more paging frames may be configured to include one, two, or four POs. Different paging frames in the one or more paging frames may be configured to include different numbers of POs. With reference to FIG. 8, for example, when one PO is configured in a PF, then a single PEI, such as the PEI 203, can be used to transmit the indication information for the PO in the PF.
Similarly, as shown in the FIG. 9, when two POs are configured in a PF, a single PEI, such as the PEI 203, can be used to transmit the indication information for the two POs in the PF.
As shown in FIG. 10, when 4 POs are configured in a PF, one PEI can be used to transmit the indication information for 4 POs in a PF.
(B) PEI mapping to 1 PO or multiple POs across multiple PFs:
When the reference point of the time-domain location of the PEI monitoring occasion of the PEI, such as the PEI 203, is the incoming target PO, the PEI can also be used to transmit the indication information for 1, 2, 3 or 4 POs across multiple PFs. For example, when one PO is configured in each PF, one PEI, such as the PEI 203, can be used to transmit the indication information for each PO in four PFs. As shown in FIG. 11, a PEI, such as the PEI 203, in Nth PF is used to transmit the indication information for each PO in PFs N, N+1, N+2 and N+3.
Similarly, when two POs are configured in each PF, one PEI, such as the PEI 203, can be used to transmit the indication information for each POs in a PF. As shown in FIG. 12, a PEI, such as the PEI 203, in Nth PF is used to transmit the indication information for each PO in PFs N and N+1.
In another example, different numbers of POs are configured in each PF. As shown in FIG. 13, for example, one PO is configured in PF N while two POs are configured in PF N+2. In this case, one PEI, such as the PEI 203, in PF N can be used to transmit the indication information for one PO in PF N, and two POs in PF N+2.
1.3.2 PEI indicating one or multiple POs when the reference point of the PEI-O location of the PEI is the previous PO before the incoming target PO:
In an embodiment, a PEI, such as the PEI 203, can be used to transmit the indication information for one PO or multiple POs in a PF or across multiple PFs when PEI-O location is associated with the previous PO before the incoming target PO. In this case, the time-domain location of the PEI monitoring occasion of a PEI, such as the PEI 203, can be configured at least 3 SSB bursts after the previous PO to guarantee synchronization before transmission of the PEI in good and bad channel conditions. The PEI may comprise the indication information that includes paging indication of up to four POs in one or more paging frames. The paging indication of up to four POs may include the incoming target PO after the PEI and three POs following the incoming target PO. Each paging frame in the one or more paging frames may be configured to include one, two, three, or four POs. Different paging frames in the one or more paging  frames may be configured to include different numbers of POs. The following examples show all the possible mappings of one PEI to one PO or multiple POs in one PF or across multiple PFs.
(A) One PEI mapping to one PO or multiple POs in a PF:
When the reference point of the time-domain location of the PEI monitoring occasion of a PEI, such as the PEI 203, is the previous PO before the PEI, the PEI can also be used to transmit the indication information for 1, or 3 POs in a PF. With reference to FIG. 14, in this case, if one PEI, such as the PEI 203, is used to transmit the indication information for one PO, then the base station 20 needs to configure at least 2 POs in a PF. For example, one PEI associated with PO1 is used to transmit the indication information for a target PO i.e., PO2.
As shown in FIG. 15, similarly, when 4 POs are configured in a PF, one PEI, such as the PEI 203, can be used to transmit the indication information for the remaining 3 POs in the PF.
(B) PEI mapping to one PO or multiple POs across multiple PFs:
When the reference point of the time-domain location of the PEI monitoring occasion of a PEI, such as the PEI 203, is associated with the previous PO before the PEI, the PEI can be used to transmit the indication information for 1, 2, 3 or 4 POs across multiple PFs. As shown in FIG. 16, for example, the PEI located in PF N associated with PO1 in PF N can be used to transmit the indication information for the incoming target PO in PF N+1.
As shown in FIG. 17, similarly, when one PO is configured in each PF, a PEI, such as the PEI 203, in PF N can be used to transmit the indication information for each PO in PF N+1, N+2, N+3, and N+4.
As shown in FIG. 18, when two POs are configured in each PF, a PEI, such as the PEI 203, in PF N can be used to transmit the indication information for PO2 in PF N, PO1 and PO2 in PF N+1, and PO1 in PF N+2.
As shown in FIG 19, similarly, when 4 POs are configured in each PF, a PEI, such as the PEI 203, can be used to transmit the indication information for PO1, PO2, PO3 in PF N and PO1 in PF N+1.
FIG. 20 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 20 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local  area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, the system may have more or less components, and/or different architectures. Where appropriate, the methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
The disclosure provides a PEI DCI format with a payload size associated with respective AL candidates. Additionally, the disclosure defines the time-domain location of a PEI monitoring occasion. Further, the disclosure defines one PEI mapping to multiple POs in a single PF or across multiple PFs.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (62)

  1. A method for processing early paging indication executable in a user equipment (UE) , comprising:
    receiving a paging early indication (PEI) carrying indication information in a PEI monitoring occasion in a radio resource control (RRC) idle mode or an RRC inactive mode, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification; and
    performing a paging operation or not in a target paging occasion (PO) indicated by the indication information based on the indication information carried by the received PEI.
  2. The method of claim 1, wherein the PEI comprises a UE subgroup paging indication field.
  3. The method of claim 2, wherein the UE subgroup paging indication field in the PEI comprises paging indication of up to four paging occasions (POs) in one paging frame (PF) or across multiple PFs, and the paging indication is for up to 8 UE subgroups in each PO.
  4. The method of claim 2, wherein the UE subgroup paging indication field in the PEI comprises 32 bits.
  5. The method of claim 1, wherein the PEI comprises a TRS availability indication field.
  6. The method of claim 5, wherein the TRS availability indication field in the PEI comprises TRS availability indication.
  7. The method of claim 5, wherein the TRS availability indication field in the PEI comprises 6 bits.
  8. The method of claim 1, wherein the PEI comprises a SI/ETWS notification field.
  9. The method of claim 8, wherein the SI/ETWS notification field in the PEI comprises SI/ETWS notification.
  10. The method of claim 8, wherein the SI/ETWS notification field in the PEI comprises 2 bits.
  11. The method of claim 1, wherein the UE is configured with a lower aggregation level (AL) for PEI reception.
  12. The method of claim 11, wherein a payload size of the PEI does not exceed a number of bits within capacity of PDCCH CCEs with a configured AL.
  13. The method of claim 12, wherein the configured AL comprises one of 1, 2, 4, 8, or 16.
  14. The method of claim 1, wherein the time-domain location of the PEI monitoring occasion is located with respect to a reference point that is a time offset away from the PEI monitoring occasion.
  15. The method of claim 14, wherein the time offset is specified by S synchronization signal block (SSB) bursts.
  16. The method of claim 1, wherein the reference point is an incoming target PO after the PEI.
  17. The method of claim 16, wherein the PEI comprises TRS availability indication when the PEI monitoring occasion is three SSB bursts away from the reference point; and
    the PEI does not comprise TRS availability indication when the PEI monitoring occasion is less than three SSB bursts away from the reference point.
  18. The method of claim 16, wherein the PEI comprises indication information that includes paging indication of up to four POs in one or more paging frames.
  19. The method of claim 18, wherein the paging indication of up to four POs including the incoming target PO after the PEI.
  20. The method of claim 18, wherein each paging frame in the one or more paging frames is configured to  include one, two, or four POs.
  21. The method of claim 18, wherein two different paging frames in the one or more paging frames are configured to include different numbers of POs.
  22. The method of claim 1, wherein the reference point is a previous PO before the PEI.
  23. The method of claim 22, wherein the PEI monitoring occasion is one, or two, or three SSB bursts away from the reference point.
  24. The method of claim 22, wherein the PEI comprises indication information that includes paging indication of up to four POs in one or more paging frames.
  25. The method of claim 24, wherein each paging frame in the one or more paging frames is configured to include one, two, or four POs.
  26. The method of claim 24, wherein two different paging frames in the one or more paging frames are configured to include different numbers of POs.
  27. A user equipment (UE) comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the method of any of claims 1 to 26.
  28. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 1 to 26.
  29. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 1 to 26.
  30. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any of claims 1 to 26.
  31. A computer program, wherein the computer program causes a computer to execute the method of any of claims 1 to 26.
  32. A method for processing early paging indication executable in a base station, comprising:
    the base station transmitting a paging early indication (PEI) carrying indication information in a PEI monitoring occasion, wherein the indication information includes one or more of UE subgroup paging indication, TRS availability indication, system information (SI) notification, and earthquake and tsunami warning system (ETWS) notification.
  33. The method of claim 32, wherein the PEI comprises a UE subgroup paging indication field.
  34. The method of claim 33, wherein the UE subgroup paging indication field in the PEI comprises paging indication of up to four paging occasions (POs) in one paging frame (PF) or across multiple PFs, and the paging indication is for up to 8 UE subgroups in each PO.
  35. The method of claim 33, wherein the UE subgroup paging indication field in the PEI comprises 32 bits.
  36. The method of claim 32, wherein the PEI comprises a TRS availability indication field.
  37. The method of claim 36, wherein the TRS availability indication field in the PEI comprises TRS availability indication.
  38. The method of claim 36, wherein the TRS availability indication field in the PEI comprises 6 bits.
  39. The method of claim 32, wherein the PEI comprises a SI/ETWS notification field.
  40. The method of claim 39, wherein the SI/ETWS notification field in the PEI comprises SI/ETWS  notification.
  41. The method of claim 39, wherein the SI/ETWS notification field in the PEI comprises 2 bits.
  42. The method of claim 32, wherein the UE is configured with a lower aggregation level (AL) for PEI reception.
  43. The method of claim 42, wherein a payload size of the PEI does not exceed a number of bits within capacity of PDCCH CCEs with a configured AL.
  44. The method of claim 43, wherein the configured AL comprises one of 1, 2, 4, 8, or 16.
  45. The method of claim 32, wherein the time-domain location of the PEI monitoring occasion is located with respect to a reference point that is a time offset away from the PEI monitoring occasion.
  46. The method of claim 45, wherein the time offset is specified by S synchronization signal block (SSB) bursts.
  47. The method of claim 32, wherein the reference point is an incoming target PO after the PEI.
  48. The method of claim 47, wherein the PEI comprises TRS availability indication when the PEI monitoring occasion is three SSB bursts away from the reference point; and
    the PEI does not comprise TRS availability indication when the PEI monitoring occasion is less than three SSB bursts away from the reference point.
  49. The method of claim 47, wherein the PEI comprises indication information that includes paging indication of up to four POs in one or more paging frames.
  50. The method of claim 49, wherein the paging indication of up to four POs including the incoming target PO after the PEI.
  51. The method of claim 49, wherein each paging frame in the one or more paging frames is configured to include one, two, or four POs.
  52. The method of claim 49, wherein two different paging frames in the one or more paging frames are configured to include different numbers of POs.
  53. The method of claim 32, wherein the reference point is a previous PO before the PEI.
  54. The method of claim 53, wherein the PEI monitoring occasion is one, or two, or three SSB bursts away from the reference point.
  55. The method of claim 53, wherein the PEI comprises indication information that includes paging indication of up to four POs in one or more paging frames.
  56. The method of claim 55, wherein each paging frame in the one or more paging frames is configured to include one, two, or four POs.
  57. The method of claim 55, wherein two different paging frames in the one or more paging frames are configured to include different numbers of POs.
  58. A base station comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the processor is installed to execute the method of any of claims 32 to 57.
  59. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which  the chip is installed to execute the method of any of claims 32 to 57.
  60. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 32 to 57.
  61. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any of claims 32 to 57.
  62. A computer program, wherein the computer program causes a computer to execute the method of any of claims 32 to 57.
PCT/CN2021/128014 2021-11-01 2021-11-01 Base station, user equipment, and method for processing paging early indication WO2023070688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128014 WO2023070688A1 (en) 2021-11-01 2021-11-01 Base station, user equipment, and method for processing paging early indication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128014 WO2023070688A1 (en) 2021-11-01 2021-11-01 Base station, user equipment, and method for processing paging early indication

Publications (1)

Publication Number Publication Date
WO2023070688A1 true WO2023070688A1 (en) 2023-05-04

Family

ID=86159973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128014 WO2023070688A1 (en) 2021-11-01 2021-11-01 Base station, user equipment, and method for processing paging early indication

Country Status (1)

Country Link
WO (1) WO2023070688A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163476A (en) * 2021-01-15 2021-07-23 中兴通讯股份有限公司 Signal transmitting and receiving method, device, equipment and storage medium
US20210258930A1 (en) * 2020-02-18 2021-08-19 Qualcomm Incorporated Paging procedure enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210258930A1 (en) * 2020-02-18 2021-08-19 Qualcomm Incorporated Paging procedure enhancement
CN113163476A (en) * 2021-01-15 2021-07-23 中兴通讯股份有限公司 Signal transmitting and receiving method, device, equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (MEDIATEK): "Summary#5 of Paging Enhancements", 3GPP DRAFT; R1-2110671, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052065871 *

Similar Documents

Publication Publication Date Title
CN110431891B (en) Apparatus and method for reducing power consumption of MTC device
EP3661094B1 (en) Base station, user equipment, and related method
US11751136B2 (en) Power optimization method and device, system, and user equipment
US9769788B2 (en) Coverage constrained devices and paging method
KR101515864B1 (en) User equipment
US20220232514A1 (en) Ue grouping for paging enhancement
US20200169982A1 (en) Technique for Idle Mode Paging in a Radio Communicaiton between a Network Node and a Radio Device
US20220070780A1 (en) Communication Method And Device
WO2022007876A1 (en) Downlink control information-based paging early indicator
EP4152832A1 (en) Paging indication method and related apparatus
CN116095831A (en) Method and apparatus for enhanced paging advance indication (PEI) design
US20240064700A1 (en) Methods and apparatuses for paging
WO2022141009A1 (en) Method and apparatus for sending paging message
US20230319845A1 (en) Method, apparatus and system for a control channel monitoring procedure
US20230146553A1 (en) Downlink control information-based paging early indicator
US20230050894A1 (en) Method and user equipment for pdcch paging early indication detection
WO2023070688A1 (en) Base station, user equipment, and method for processing paging early indication
US20240163846A1 (en) User equipment, base station, and wireless communication method
WO2021219043A1 (en) Service indication method, terminal and network device
US20230022160A1 (en) Extensions of wus for paging for rrc inactive
US20220303897A1 (en) Wake-up Signal Reception for Paging Operations
EP3343982B1 (en) Paging method, synchronization method, and user equipment
WO2023010524A1 (en) User equipment, base station, and wireless communication method
WO2023044908A1 (en) Validity time method of availability indication, user equipment and base station
WO2023279261A1 (en) User equipment and base station for availability indication signaling of trs/csi‐rs occasion to idle/inactive ueser equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962038

Country of ref document: EP

Kind code of ref document: A1