WO2023044908A1 - Validity time method of availability indication, user equipment and base station - Google Patents

Validity time method of availability indication, user equipment and base station Download PDF

Info

Publication number
WO2023044908A1
WO2023044908A1 PCT/CN2021/120983 CN2021120983W WO2023044908A1 WO 2023044908 A1 WO2023044908 A1 WO 2023044908A1 CN 2021120983 W CN2021120983 W CN 2021120983W WO 2023044908 A1 WO2023044908 A1 WO 2023044908A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
trs
availability indication
duration
indication
Prior art date
Application number
PCT/CN2021/120983
Other languages
French (fr)
Inventor
Shahid JAN
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority to PCT/CN2021/120983 priority Critical patent/WO2023044908A1/en
Publication of WO2023044908A1 publication Critical patent/WO2023044908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to wireless communication, and more particularly, to a validity time method of an availability indication, a user equipment (UE) and a base station (BS) .
  • UE user equipment
  • BS base station
  • Wireless communication systems such as the third ⁇ generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • the 3rd generation of wireless communications has generally been developed to support macro ⁇ cell mobile phone communications.
  • Communication systems and networks have developed towards being a broadband and mobile system.
  • UE user equipment
  • RAN radio access network
  • the RAN includes a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base stations, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conducts respective functions in relation to the overall network.
  • LTE Long ⁇ Term Evolution
  • E ⁇ UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • the 5G standard will support a multitude of different services each with very different requirements. These services include Enhanced Mobile Broadband (eMBB) for high data rate transmission, Ultra ⁇ Reliable Low Latency Communication (URLLC) for devices requiring low latency and high link reliability and Massive Machine ⁇ Type Communication (mMTC) to support a large number of low ⁇ power devices for a long life ⁇ time requiring highly energy efficient communication.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra ⁇ Reliable Low Latency Communication
  • mMTC Massive Machine ⁇ Type Communication
  • a UE uses Discontinuous Reception (DRx) in Radio Resource Control (RRC) ⁇ IDLE/INACTIVE mode, turns off the Radio Frequency (RF) and periodically wakes up to monitor Physical Downlink Control Channel (PDCCH) for checking the presence of paging messages.
  • RRC Radio Resource Control
  • RF Radio Frequency
  • PDCCH Physical Downlink Control Channel
  • AGC Automatic Gain Control
  • T/F time/frequency channel tracking.
  • LTE supports always ⁇ on Cell Specific Reference Signal (CRS) in every sub frame as illustrated in FIG. 1.
  • CRS Cell Specific Reference Signal
  • NR supports Synchronization Signal Block (SSB) and usually needs several SSB burst which is transmitted with longer periodicity (e.g., 20ms) compared to LTE CRS thus leading UE to consume more power than LTE as shown in FIG. 2.
  • SSB Synchronization Signal Block
  • NR a UE in IDLE/INACTIVE mode needs to wake ⁇ up much earlier, much longer, and more frequently compared to LTE UE for the subsequent activities (e.g., AGC and T/F tracking) . Accordingly, the power consumption of NR UE in IDLE/INACTIVE mode is much higher than the power consumption of LTE UE in IDLE mode.
  • 3GPP RAN WG has agreed to specify potential Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) occasion (s) for IDLE/INACTIVE mode UE in order to replace the legacy SSB based synchronization before a paging occasion (PO) and enhance power saving as shown in FIG. 3.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • TRS/CSI ⁇ RS occasion (s) available in connected mode UEs can be configured to the idle/inactive ⁇ mode UEs, and thus the TRS/CSI ⁇ RS availability in a network depends on connected UEs in the network.
  • an idle/inactive UE may perform blind detection to monitor TRS/CSI ⁇ RS occasion, which consume more power. To avoid this blind detection, an idle/inactive UE is informed early that the TRS/CSI ⁇ RS is available at the configured occasion.
  • an idle/inactive UE assumes that the TRS/CSI ⁇ RS availability indication is valid for a validity time, and unavailable upon the expiry of the validity time. Validity time of TRS/CSI ⁇ RS availability indication is necessary, otherwise an idle/inactive UE will assume that the TRS/CSI ⁇ RS occasion is available until it receives an unavailability indication signaling.
  • Layer 1 (L1) based availability indication of TRS/CSI ⁇ RS at the configured occasion (s) to the idle/inactive UEs is valid for a time duration of the validity time.
  • an idle/inactive UE When an idle/inactive UE receives TRS/CSI ⁇ RS availability indication, the UE assumes that the indicated TRS/CSI ⁇ RS occasion is available for a validity time, and unavailable upon the expiry of validity time.
  • the goal of validity time is to avoid the transmission of extra signaling which may use to indicate the unavailability of TRS/CSI ⁇ RS occasion (s) when TRS/CSI ⁇ RS is not available in the network.
  • the validity time is significantly affected by the signaling type used for TRS/CSI ⁇ RS availability indication such as L1 based signaling (e.g., P ⁇ DCI and PEI) and SIB based signaling.
  • L1 based signaling e.g., P ⁇ DCI and PEI
  • SIB SIB based signaling.
  • a common validity time for all TRS/CSI ⁇ RS availability indication signaling may lead the network to configure inaccurate validity time to the idle/inactive UE.
  • the unstable on/off status of TRS/CSI ⁇ RS in the network may also affect the validity
  • the objective of the present application is to provide a validity time method of an availability indication, a user equipment (UE) and a base station (BS) for solving the problems in the existing arts.
  • an embodiment of the present application provides a validity time method of an availability indication, performed by a user equipment (UE) in a network, the method including: receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) occasion in an idle/inactive state from the network through a signaling; and being configured by the network with validity time of the TRS/CSI ⁇ RS availability indication, wherein the validity time of the TRS/CSI ⁇ RS availability indication is based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication, the validity time of the TRS/CSI ⁇ RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI ⁇ RS availability indication is valid and the reference point is a time location where the TRS/CSI ⁇ RS availability indication becomes effective.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • an embodiment of the present application provides a validity time method of an availability indication, performed by a base station (BS) in a network, the method including: transmitting to a user equipment (UE) an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) occasion in an idle/inactive state of the UE through a signaling; and configuring the UE with validity time of the TRS/CSI ⁇ RS availability indication, wherein the validity time of the TRS/CSI ⁇ RS availability indication is based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication, the validity time of the TRS/CSI ⁇ RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI ⁇ RS availability indication is valid and the reference point is a time location where the TRS/CSI ⁇ RS availability indication becomes effective.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • an embodiment of the present application provides a user equipment (UE) , communicating with a base station (BS) in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute: receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) occasion in an idle/inactive state from the network through a signaling; and being configured by the network with validity time of the TRS/CSI ⁇ RS availability indication, wherein the validity time of the TRS/CSI ⁇ RS availability indication is based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication, the validity time of the TRS/CSI ⁇ RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI ⁇ RS availability indication is valid and the reference point is a time location where the TRS/CSI ⁇ RS availability indication becomes effective.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • an embodiment of the present application provides a base station (BS) , communicating with a user equipement (UE) in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute: transmitting to the UE an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) occasion in an idle/inactive state of the UE through a signaling; and configuring the UE with validity time of the TRS/CSI ⁇ RS availability indication, wherein the validity time of the TRS/CSI ⁇ RS availability indication is based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication, the validity time of the TRS/CSI ⁇ RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI ⁇ RS availability indication is valid and the reference point is a time location where the TRS/CSI ⁇ RS availability indication becomes effective.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • an embodiment of the present application provides a computer readable storage medium provided for storing a computer program, which enables a computer to execute the method of the first aspect.
  • an embodiment of the present application provides a computer readable storage medium provided for storing a computer program, which enables a computer to execute the method of the second aspect.
  • an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of the first aspect.
  • an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of the second aspect.
  • an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of the first aspect.
  • an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of the second aspect.
  • a general validity time is configured for all TRS/CSI ⁇ RS availability indication without considering the TRS/CSI ⁇ RS availability indication signaling and/or on/off status of TRS/CSI ⁇ RS in the network, which may lead the network to configure an inaccurate validity time of TRS/CSI ⁇ RS availability indication to the idle/inactive UE.
  • validity time of TRS/CSI ⁇ RS availability indication is designed and configured according to the signaling used for TRS/CSI ⁇ RS availability indication, and in another aspect, according to on/off status of TRS/CSI ⁇ RS in the network. This allows the BS/network to configure an accurate validity time of TRS/CSI ⁇ RS availability indication to the idle/inactive UE and results in power saving.
  • FIG. 1 is a schematic diagram illustrating LTE idle UE Synchronization from a serving cell in existing arts.
  • FIG. 2 is a schematic diagram illustrating NR idle/inactive mode UE Synchronization using SSB from a serving cell in existing arts.
  • FIG. 3 is a schematic diagram illustrating NR idle/inactive mode UE Synchronization using TRS/CSI ⁇ RS from a serving cell in existing arts.
  • FIG. 4 is a block diagram illustrating one or more UEs and a base station in a communication network system according to an embodiment of the present application.
  • FIG. 5 illustrates a validity time method of an availability indication performed by a UE according to an embodiment of the present application.
  • FIG. 6 illustrates a validity time method of an availability indication performed by a base station according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram illustrating validity time of P ⁇ DCI based indication for one Paging Cycle according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram illustrating validity time of P ⁇ DCI based indication for N Paging Cycle according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram illustrating validity time of PEI based indication for one Paging Cycle according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram illustrating validity time of PEI based indication for N Paging Cycles according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram illustrating validity time of P ⁇ DCI based indication with unstable on/off TRS status according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram illustrating validity time of PEI based indication with unstable on/off TRS status according to an embodiment of the present application.
  • This application is related to a wireless communication system (e.g., a 5G NR system) and focuses on power saving enhancement of user equipment (UE) in idle/inactive mode. More specifically, this application is related to the design of validity time for Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI ⁇ RS) availability indication according to its signaling.
  • TRS Tracking Reference Signal
  • CSI ⁇ RS Channel State Information Reference Signal
  • the main objective of this disclosure is to design and configure validity time of TRS/CSI ⁇ RS availability indication according to the TRS/CSI ⁇ RS availability indication signaling, and in another aspect, according to on/off status of TRS/CSI ⁇ RS in the network.
  • the proposed solutions to achieve the objective are summarized below.
  • the validity time design and configuration are proposed according to the TRS/CSI ⁇ RS availability indication signaling such as Layer 1 (L1) based singling (e.g., paging Downlink Control Information (P ⁇ DCI) and Paging Early Indication (PEI) ) and System Information Block (SIB) based signaling.
  • L1 Layer 1
  • P ⁇ DCI paging Downlink Control Information
  • PEI Paging Early Indication
  • SIB System Information Block
  • TRS/CSI ⁇ RS availability indication The validity time of TRS/CSI ⁇ RS availability indication according to the L1 based indication for one paging cycle or N paging cycles is proposed. High layer configuration for validity time of TRS/CSI ⁇ RS availability indication according to signaling type and on/off status of TRS/CSI ⁇ RS in network is proposed.
  • Beneficial effects of the invention of this application includes, but is not limited to, at least one of the followings.
  • Extra unavailability signaling is avoided when the TRS/CSI ⁇ RS is not available in the network.
  • Accurate validity time is configured to the idle/inactive UE according to the TRS/CSI ⁇ RS availability indication signalling, and its power consumption is reduced.
  • the network on/off status of TRS/CSI ⁇ RS is considered in the design of validity time which leads the network to reduce its extra signalling overhead.
  • FIG. 4 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for wireless communication in a communication network system 30 according to an embodiment of the present application are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description.
  • Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application ⁇ specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read ⁇ only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • FIG. 5 illustrates a validity time method of an availability indication 500 performed by a UE according to an embodiment of the present application.
  • FIG. 6 illustrates a validity time method of an availability indication 600 performed by a base station according to an embodiment of the present application.
  • the UE receives an indication of availability of TRS/CSI ⁇ RS occasion in an idle/inactive state from the BS/network through a signaling; in block 602 of the method 600, the BS transmits to the UE an indication of availability of TRS/CSI ⁇ RS occasion in an idle/inactive state of the UE through a signaling.
  • the UE is configured by the BS/network with validity time of the TRS/CSI ⁇ RS availability indication based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication; in block 604 of the method 600, the base station configures the UE with validity time of the TRS/CSI ⁇ RS availability indication based on a type of the signaling used for the TRS/CSI ⁇ RS availability indication.
  • the validity time of the TRS/CSI ⁇ RS availability indication is based on the type of the signaling used for the TRS/CSI ⁇ RS availability indication,
  • the type of the signaling includes, but is not limited to, L1 based singling (e.g., P ⁇ DCI and PEI) and SIB based signaling.
  • the validity time of TRS/CSI ⁇ RS availability is composed of two components, the effective duration and the reference point.
  • the effective duration is the time until which the TRS/CSI ⁇ RS availability indication is valid.
  • the reference point is the time location where the TRS/CSI ⁇ RS availability indication becomes effective, more specifically, the time location where the idle/inactive UE receives the availability indication and becomes effective.
  • the validity time of the TRS/CSI ⁇ RS availability indication depends whether an on/off status of the TRS/CSI ⁇ RS in the network is stable.
  • the on/off status of the TRS/CSI ⁇ RS in the network is stable if the TRS/CSI ⁇ RS remains ON or OFF for a specific duration before and after the TRS/CSI ⁇ RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI ⁇ RS in the network is not stable if the TRS/CSI ⁇ RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI ⁇ RS availability indication is being transmitted by the network.
  • the TRS/CSI ⁇ RS remains ON or OFF for a stable duration when the on/off status of the TRS/CSI ⁇ RS in the network is stable.
  • the TRS/CSI ⁇ RS switches from ON to OFF immediately when the on/off status of the TRS/CSI ⁇ RS in the network is not stable.
  • the validity time of the TRS/CSI ⁇ RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI ⁇ RS availability indication. If the on/off status of the TRS/CSI ⁇ RS in the network is stable, in case of P ⁇ DCI based TRS/CSI ⁇ RS availability indication signaling (i.e., a type of L1 signaling) , the P ⁇ DCI may carry the TRS/CSI ⁇ RS availability indication for one paging cycle or N paging cycles (where N is an integer greater than 1) .
  • the PEI may carry the TRS/CSI ⁇ RS availability indication for one paging cycle or N paging cycles (where N is an integer greater than 1) .
  • the P ⁇ DCI may carry the TRS/CSI ⁇ RS availability indication for one paging cycle but not for N paging cycles.
  • the PEI may carry the TRS/CSI ⁇ RS availability indication for one paging cycle but not for N paging cycles.
  • the validity time of the TRS/CSI ⁇ RS availability indication may or may not across a plurality of paging cycles.
  • the effective duration is until a start of a next paging occasion (PO) from a first PO for the P ⁇ DCI and the reference point is the time location where the first PO is finished.
  • the effective duration is a duration of the paging cycle minus a duration of the PO.
  • the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P ⁇ DCI is finished.
  • the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
  • the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received.
  • the effective duration is a duration of the paging cycle minus the application delay.
  • the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received.
  • the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
  • the validity time of the TRS/CSI ⁇ RS availability indication is configured by a higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI ⁇ RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
  • SIB System Information Block
  • the on/off status of the TRS/CSI ⁇ RS in the network is unstable and the P ⁇ DCI based TRS/CSI ⁇ RS availability indication signaling is used.
  • the followings may apply.
  • the effective duration is until the TRS/CSI ⁇ RS switches from on to off in the network and the reference point is the time location when a PO carrying the P ⁇ DCI is ended.
  • the effective duration is until the TRS/CSI ⁇ RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a PO of a paging cycle where the PEI is located, until the PEI is received.
  • the validity time of the SIB based TRS/CSI ⁇ RS availability indication is based on an explicit availability indication or an implicit availability indication.
  • the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and the reference point is from a time duration when the explicit availability indication is decoded.
  • the effective duration is until a current presence of TRS/CSI ⁇ RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI ⁇ RS configuration is applied.
  • the UE When idle/inactive UE receives TRS/CSI ⁇ RS availability indication, the UE assumes the indicated TRS/CSI ⁇ RS occasions are available for a validity time, and unavailable upon the expiry of validity time.
  • the validity time is beneficial in configuration flexibility and it allows the network to reduce the transmission of extra signaling (e.g., unavailability signaling) when the TRS/CSI ⁇ RS on the configured occasion (s) is not available in the network.
  • the validity time of TRS/CSI ⁇ RS availability indication is designed according to the signaling method used for TRS/CSI ⁇ RS availability indication, and in another aspect, according to on/off switching stability status of TRS/CSI ⁇ RS in the network.
  • Embodiments of the present application will be described in more detail below in three different aspects, i.e., (1) the validity time of L1 based TRS/CSI ⁇ RS availability indication when the status of TRS/CSI ⁇ RS in the network is stable (i.e., the TRS/CSI ⁇ RS remains ON or OFF for a stable duration before and after the indication is being transmitted by the network) ; (2) the validity time of L1 based TRS/CSI ⁇ RS availability indication when the status of TRS/CSI ⁇ RS in the network is not stable (i.e., the TRS/CSI ⁇ RS switches from ON to OFF immediately when the availability indication is being transmitted by the network) ; and (3) the validity time of TRS/CSI ⁇ RS availability indication when SIB based signaling is used for TRS/CSI ⁇ RS availability indication.
  • This embodiment of the present application explains the validity time of P ⁇ DCI based TRS/CSI ⁇ RS availability indication and PEI based TRS/CSI ⁇ RS availability indication when the on/off status of TRS/CSI ⁇ RS is stable in the network before and after the availability indication is being transmitted by the network.
  • the validity time of P ⁇ DCI based TRS/CSI ⁇ RS availability indication depends on the number of paging cycles for which the P ⁇ DCI based signaling carries the TRS/CSI ⁇ RS availability indication. For instance, when the P ⁇ DCI carries the TRS/CSI ⁇ RS availability indication for only one paging cycle which is the next paging cycle, the validity time can be calculated based on one paging cycle duration as shown in FIG. 7.
  • the validity duration i.e., the effective duration
  • the validity time duration is until the next PO which is PO2
  • the reference point is the time location when paging monitoring occasion is finished. Since the PO duration and paging cycle duration is already defined and known to the UE, the validity time duration (i.e., the effective duration) can be calculated by the following equation.
  • the P ⁇ DCI based validity time of TRS/CSI ⁇ RS availability indication for one paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI ⁇ RS resources for idle/inactive UE.
  • SIB_X e.g., X is an integer selected from 2 to 13
  • IE higher layer information element
  • the validity time duration can be calculated based on the N paging cycles duration as shown in FIG. 8.
  • the time duration of validity time i.e., the effective duration
  • the reference point is the time location where the paging monitoring occasion is finished. Since the paging cycle time duration and PO duration is known to the UE, the validity time duration (i.e., the effective duration) can be calculated based on the following equation.
  • the P ⁇ DCI based validity time of TRS/CSI ⁇ RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI ⁇ RS resources for idle/inactive UE.
  • SIB_X e.g., X is an integer selected from 2 to 13
  • the validity time design for PEI based TRS/CSI ⁇ RS availability indication depends on the number of paging cycles for which the PEI based indication carries the TRS/CSI ⁇ RS availability indication. For instance, when a PEI is used to indicate the TRS/CSI ⁇ RS availability for one paging cycle, the validity time can be calculated based on the duration of one paging cycle as shown in FIG. 9. In this case the validity duration (i.e., the effective duration) is until the start of the next PO which is PO2 and the reference point can be calculated from the application delay, where the application delay is the time domain duration starting from PO1 until the UE receives PEI.
  • the validity time duration (i.e., the effective duration) and application delay can be calculated as given by the following equations.
  • the PEI based validity time of TRS/CSI ⁇ RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI ⁇ RS resources for idle/inactive UE.
  • SIB_X e.g., X is an integer selected from 2 to 13
  • the validity time duration can be calculated based on the N paging cycles duration as shown in FIG. 10.
  • the duration of validity time i.e., the effective duration
  • the application delay is the duration starting from PO1 until the UE receives PEI.
  • the validity duration (i.e., the effective duration) and application delay can be calculated as given by the following equations.
  • the PEI based validity time of TRS/CSI ⁇ RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI ⁇ RS resources for idle/inactive UE.
  • SIB_X e.g., X is an integer selected from 2 to 13
  • This embodiment of the present application explains the validity time of P ⁇ DCI based TRS/CSI ⁇ RS availability indication and PEI based TRS/CSI ⁇ RS availability indication when the on/off status of TRS/CSI ⁇ RS is not stable before and after the availability indication is being transmitted by the network. Since the network/gNB cannot switch off the TRS/CSI ⁇ RS immediately considering different UEs monitoring P ⁇ DCI/PEI in different occasion. Network/gNB can stop the TRS/CSI ⁇ RS transmission after all UEs receive the TRS/CSI ⁇ RS. Hence the TRS/CSI ⁇ RS is available in the network for a short duration, and based on its availability the network may transmit its availability indication.
  • the TRS/CSI ⁇ RS status is on before the transmission of availability indication and it switches off immediately after the TRS/CSI ⁇ RS availability indication is being transmitted by gNB, which may misguide UE in AGC and Synchronization process.
  • the validity time is very necessary, which guide the UE that the TRS/CSI ⁇ RS is available for very short duration of time and cannot be used for AGC and synchronization purposes.
  • the TRS/CSI ⁇ RS availability indication cannot be used for N paging cycles as the TRS/CSI ⁇ RS on/off switching status is not stable.
  • the validity time of TRS/CSI ⁇ RS availability indication can be calculated based on the TRS/CSI ⁇ RS on/off switching condition in the network. For instance, the duration of TRS/CSI ⁇ RS availability indication validity time is effective until the TRS/CSI ⁇ RS switches from on to off in the network and the reference point is the time domain location when PO duration is ended as shown in FIG. 11.
  • the validity time of TRS/CSI ⁇ RS availability indication can be calculated based on the TRS/CSI ⁇ RS on/off switching condition in the network. For instance, the validity duration of TRS/CSI ⁇ RS availability indication is effective until the TRS/CSI ⁇ RS switches from on to off in the network and the reference point can be calculated from the application delay, where the application delay is the duration starting from PO1 until the UE receives PEI as shown in FIG. 12.
  • the validity time expires, the UE enters into TRS/CSI ⁇ RS invalid duration and it can rely on SSB based synchronization before paging.
  • SIB based signaling is used in some scenarios to transmit the TRS/CSI ⁇ RS availability indication, such as when a UE does not have a valid version of a stored SIB_X (for example, X is an integer selected from 2 to 13) which is used for TRS/CSI ⁇ RS configuration or a UE is moving to new cell.
  • the validity time of SIB based TRS/CSI ⁇ RS availability indication can be designed according to the explicit or implicit availability indication, where the explicit availability indication is a 1 ⁇ bit indication carried in the SIB_X which is used for TRS/CSI ⁇ RS configuration to the idle/inactive mode UE, and the implicit availability indication is based on the presence/absence of TRS/CSI ⁇ RS configuration in SIB_X.
  • the effective duration of validity time is until the next PO and the reference point is from the time duration when UE decodes the SIB_X based explicit availability indication.
  • the effective duration of validity time of SIB based implicit availability indication is valid until the presence (e.g., the current presence) of TRS/CSI ⁇ RS configuration in the SIB_X without taking PO duration into account, and the reference point is the time location when UE receives TRS/CSI ⁇ RS configuration in the SIB_X.
  • a general validity time is configured for all TRS/CSI ⁇ RS availability indication without considering the TRS/CSI ⁇ RS availability indication signaling and/or on/off status of TRS/CSI ⁇ RS in the network, which may lead the network to configure an inaccurate validity time of TRS/CSI ⁇ RS availability indication to the idle/inactive UE.
  • validity time of TRS/CSI ⁇ RS availability indication is designed and configured according to the signaling used for TRS/CSI ⁇ RS availability indication, and in another aspect, according to on/off status of TRS/CSI ⁇ RS in the network. This allows the BS/network to configure an accurate validity time of TRS/CSI ⁇ RS availability indication to the idle/inactive UE and results in power saving.
  • Some embodiments of the present application are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present application could be adopted in the 5G NR unlicensed band communications. Some embodiments of the present application propose technical mechanisms.
  • the embodiment of the present invention further provides a computer readable storage medium for storing a computer program.
  • the computer readable storage medium enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.
  • the embodiment of the present invention further provides a computer program product including computer program instructions.
  • the computer program product enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.
  • the embodiment of the present invention further provides a computer program.
  • the computer program enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.

Abstract

A validity time method of an availability indication, a user equipment (UE) and a base station (BS) are provided. The method includes receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state from the network through a signaling; and being configured by the network with validity time of the TRS/CSI‐RS availability indication, wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication. This allows the BS/network to configure an accurate validity time of TRS/CSI‐RS availability indication to the idle/inactive UE and results in power saving.

Description

VALIDITY TIME METHOD OF AVAILABILITY INDICATION, USER EQUIPMENT AND BASE STATION TECHNICAL FIELD
The present application relates to wireless communication, and more particularly, to a validity time method of an availability indication, a user equipment (UE) and a base station (BS) .
BACKGROUND ART
Wireless communication systems, such as the third‐generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro‐cell mobile phone communications. Communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN includes a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base stations, and an interface to a core network (CN) which provides overall network control. The RAN and CN each conducts respective functions in relation to the overall network.
The 3rd Generation Partnership Project has developed the so‐called Long‐Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network (E‐UTRAN) , for a mobile access network where one or more macro‐cells are supported by base station knowns as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so‐called 5G or NR (new radio) systems where one or more cells are supported by base stations known as a next generation Node B called gNodeB (gNB) .
The 5G standard will support a multitude of different services each with very different requirements. These services include Enhanced Mobile Broadband (eMBB) for high data rate transmission, Ultra‐Reliable Low Latency Communication (URLLC) for devices requiring low latency and high link reliability and Massive Machine‐Type Communication (mMTC) to support a large number of low‐power devices for a long life‐time requiring highly energy efficient communication.
Energy efficiency is one of the key players in 5G NR to support diversified use cases including the eMBB, mMTC and URLLC. To conserve energy and enhance battery life time, a UE uses Discontinuous Reception (DRx) in Radio Resource Control (RRC) ‐IDLE/INACTIVE mode, turns off the Radio Frequency (RF) and periodically wakes up to monitor Physical Downlink Control Channel (PDCCH) for checking the presence of paging messages. Before paging monitoring a UE performs various activities such as Automatic Gain Control (AGC) and time/frequency (T/F) channel tracking. For this purpose, LTE supports always‐on Cell Specific Reference Signal (CRS) in every sub frame as illustrated in FIG. 1. On the other hand, NR supports Synchronization Signal Block (SSB) and usually needs several SSB burst which is transmitted with longer periodicity (e.g., 20ms) compared to LTE CRS thus leading UE to consume more power than LTE as shown in FIG. 2.
In NR a UE in IDLE/INACTIVE mode, needs to wake‐up much earlier, much longer, and more frequently compared to LTE UE for the subsequent activities (e.g., AGC and T/F tracking) . Accordingly, the power consumption of NR UE in IDLE/INACTIVE mode is much higher than the power consumption of LTE UE in IDLE mode. Based on this motivation, 3GPP RAN WG has agreed to specify potential Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion (s) for IDLE/INACTIVE mode UE in order to replace the legacy SSB based synchronization before a paging occasion (PO) and enhance power saving as shown in FIG. 3.
TRS/CSI‐RS occasion (s) available in connected mode UEs can be configured to the idle/inactive‐mode UEs, and thus the TRS/CSI‐RS availability in a network depends on connected UEs in the network. However, an idle/inactive UE may perform blind detection to monitor TRS/CSI‐RS occasion, which consume more power. To avoid this blind detection, an idle/inactive UE is informed early that the TRS/CSI‐RS is available at the configured occasion.
In addition, to avoid always‐on TRS/CSI‐RS occasion an idle/inactive UE assumes that the TRS/CSI‐RS availability indication is valid for a validity time, and unavailable upon the expiry of the validity time. Validity time of TRS/CSI‐RS availability indication is necessary, otherwise an idle/inactive UE will assume that the TRS/CSI‐RS occasion is available until it receives an unavailability indication signaling. For this purpose, Layer 1 (L1) based availability indication of TRS/CSI‐RS at the configured occasion (s) to the idle/inactive UEs is valid for a time duration of the validity time.
When an idle/inactive UE receives TRS/CSI‐RS availability indication, the UE assumes that the indicated TRS/CSI‐RS occasion is available for a validity time, and unavailable upon the expiry of validity time. The goal of validity time is to avoid the transmission of extra signaling which may use to indicate the unavailability of TRS/CSI‐RS occasion (s) when TRS/CSI‐RS is not available in the network. However, the validity time is significantly affected by the signaling type used for TRS/CSI‐RS availability indication such as L1 based signaling (e.g., P‐DCI and PEI) and SIB based signaling. A common validity time for all TRS/CSI‐RS availability indication signaling may lead the network to configure inaccurate validity time to the idle/inactive UE. Furthermore, the unstable on/off status of TRS/CSI‐RS in the network may also affect the validity time design.
SUMMARY
The objective of the present application is to provide a validity time method of an availability indication, a user equipment (UE) and a base station (BS) for solving the problems in the existing arts.
In a first aspect, an embodiment of the present application provides a validity time method of an availability indication, performed by a user equipment (UE) in a network, the method including: receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state from the network through a signaling; and being configured by the network with validity time of the TRS/CSI‐RS availability indication, wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective  duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
In a second aspect, an embodiment of the present application provides a validity time method of an availability indication, performed by a base station (BS) in a network, the method including: transmitting to a user equipment (UE) an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state of the UE through a signaling; and configuring the UE with validity time of the TRS/CSI‐RS availability indication, wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
In a third aspect, an embodiment of the present application provides a user equipment (UE) , communicating with a base station (BS) in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute: receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state from the network through a signaling; and being configured by the network with validity time of the TRS/CSI‐RS availability indication, wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
In a fourth aspect, an embodiment of the present application provides a base station (BS) , communicating with a user equipement (UE) in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute: transmitting to the UE an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state of the UE through a signaling; and configuring the UE with validity time of the TRS/CSI‐RS availability indication, wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
In a fifth aspect, an embodiment of the present application provides a computer readable storage medium provided for storing a computer program, which enables a computer to execute the method of the first aspect.
In a sixth aspect, an embodiment of the present application provides a computer readable storage  medium provided for storing a computer program, which enables a computer to execute the method of the second aspect.
In a seventh aspect, an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of the first aspect.
In an eighth aspect, an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of the second aspect.
In a ninth aspect, an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of the first aspect.
In a tenth aspect, an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of the second aspect.
In the existing arts, a general validity time is configured for all TRS/CSI‐RS availability indication without considering the TRS/CSI‐RS availability indication signaling and/or on/off status of TRS/CSI‐RS in the network, which may lead the network to configure an inaccurate validity time of TRS/CSI‐RS availability indication to the idle/inactive UE. Compared to the existing arts, it is proposed in this application that validity time of TRS/CSI‐RS availability indication is designed and configured according to the signaling used for TRS/CSI‐RS availability indication, and in another aspect, according to on/off status of TRS/CSI‐RS in the network. This allows the BS/network to configure an accurate validity time of TRS/CSI‐RS availability indication to the idle/inactive UE and results in power saving.
DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present application or related art, the following figures that will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present application, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram illustrating LTE idle UE Synchronization from a serving cell in existing arts.
FIG. 2 is a schematic diagram illustrating NR idle/inactive mode UE Synchronization using SSB from a serving cell in existing arts.
FIG. 3 is a schematic diagram illustrating NR idle/inactive mode UE Synchronization using TRS/CSI‐RS from a serving cell in existing arts.
FIG. 4 is a block diagram illustrating one or more UEs and a base station in a communication network system according to an embodiment of the present application.
FIG. 5 illustrates a validity time method of an availability indication performed by a UE according to an embodiment of the present application.
FIG. 6 illustrates a validity time method of an availability indication performed by a base station according to an embodiment of the present application.
FIG. 7 is a schematic diagram illustrating validity time of P‐DCI based indication for one Paging Cycle according to an embodiment of the present application.
FIG. 8 is a schematic diagram illustrating validity time of P‐DCI based indication for N Paging Cycle according to an embodiment of the present application.
FIG. 9 is a schematic diagram illustrating validity time of PEI based indication for one Paging Cycle according to an embodiment of the present application.
FIG. 10 is a schematic diagram illustrating validity time of PEI based indication for N Paging Cycles according to an embodiment of the present application.
FIG. 11 is a schematic diagram illustrating validity time of P‐DCI based indication with unstable on/off TRS status according to an embodiment of the present application.
FIG. 12 is a schematic diagram illustrating validity time of PEI based indication with unstable on/off TRS status according to an embodiment of the present application.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present application are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
The following table includes some abbreviations, which may be used in some embodiments of the present application:
Abbreviation Full name
UE user equipment
BS base station
TRS Tracking Reference Signal
CSI‐RS Channel State Information Reference Signal
SIB System Information Block
L1 Layer 1
PO paging occasion
PEI Paging Early Indication
DCI Downlink Control Information
P‐DCI paging Downlink Control Information
DRx Discontinuous Reception
RRC Radio Resource Control
AGC Automatic Gain Control
T/F time/frequency
CRS Cell Specific Reference Signal
SSB Synchronization Signal Block
In this document, the term "/" should be interpreted to indicate "and/or. "
This application is related to a wireless communication system (e.g., a 5G NR system) and focuses on power saving enhancement of user equipment (UE) in idle/inactive mode. More specifically, this application is related to the design of validity time for Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) availability indication according to its signaling.
The main objective of this disclosure is to design and configure validity time of TRS/CSI‐RS availability indication according to the TRS/CSI‐RS availability indication signaling, and in another aspect, according to on/off status of TRS/CSI‐RS in the network. The proposed solutions to achieve the objective are summarized below. The validity time design and configuration are proposed according to the TRS/CSI‐RS availability indication signaling such as Layer 1 (L1) based singling (e.g., paging Downlink Control Information (P‐DCI) and Paging Early Indication (PEI) ) and System Information Block (SIB) based signaling. Factors affecting the validity time design are considered such as stable and unstable on/off status of TRS/CSI‐RS occasion in the network. The validity time of TRS/CSI‐RS availability indication according to the L1 based indication for one paging cycle or N paging cycles is proposed. High layer configuration for validity time of TRS/CSI‐RS availability indication according to signaling type and on/off status of TRS/CSI‐RS in network is proposed.
Beneficial effects of the invention of this application includes, but is not limited to, at least one of the followings. Extra unavailability signaling is avoided when the TRS/CSI‐RS is not available in the network. Accurate validity time is configured to the idle/inactive UE according to the TRS/CSI‐RS availability indication signalling, and its power consumption is reduced. The network on/off status of TRS/CSI‐RS is considered in the design of validity time which leads the network to reduce its extra signalling overhead.
FIG. 4 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for wireless communication in a communication network system 30 according to an embodiment of the present application are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application‐specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read‐only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the  embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
FIG. 5 illustrates a validity time method of an availability indication 500 performed by a UE according to an embodiment of the present application. FIG. 6 illustrates a validity time method of an availability indication 600 performed by a base station according to an embodiment of the present application. In some embodiments, referring to FIGs. 5 and 6 in conjunction with FIG. 4, in block 502 of the method 500, the UE receives an indication of availability of TRS/CSI‐RS occasion in an idle/inactive state from the BS/network through a signaling; in block 602 of the method 600, the BS transmits to the UE an indication of availability of TRS/CSI‐RS occasion in an idle/inactive state of the UE through a signaling. In block 504 of the method 500, the UE is configured by the BS/network with validity time of the TRS/CSI‐RS availability indication based on a type of the signaling used for the TRS/CSI‐RS availability indication; in block 604 of the method 600, the base station configures the UE with validity time of the TRS/CSI‐RS availability indication based on a type of the signaling used for the TRS/CSI‐RS availability indication. This can solve issues in the existing arts, reduce signalling overhead, avoid extra unavailability signaling when the TRS/CSI‐RS is not available in the network, provide accurate validity time of the TRS/CSI‐RS availability indication, and/or provide good communication performance.
The validity time of the TRS/CSI‐RS availability indication is based on the type of the signaling used for the TRS/CSI‐RS availability indication, The type of the signaling (i.e., the TRS/CSI‐RS availability indication signaling) includes, but is not limited to, L1 based singling (e.g., P‐DCI and PEI) and SIB based signaling.
The validity time of TRS/CSI‐RS availability is composed of two components, the effective duration and the reference point. The effective duration is the time until which the TRS/CSI‐RS availability indication is valid. The reference point is the time location where the TRS/CSI‐RS availability indication becomes effective, more specifically, the time location where the idle/inactive UE receives the availability indication and becomes effective.
In an embodiment of the present application, the validity time of the TRS/CSI‐RS availability indication depends whether an on/off status of the TRS/CSI‐RS in the network is stable. The on/off status of the TRS/CSI‐RS in the network is stable if the TRS/CSI‐RS remains ON or OFF for a specific duration before and after the TRS/CSI‐RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI‐RS in the network is not stable if the TRS/CSI‐RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI‐RS availability indication is being transmitted by the network. Specifically, the TRS/CSI‐RS remains ON or OFF for a stable duration when the on/off status of the TRS/CSI‐RS in the network is stable. The TRS/CSI‐RS switches from ON to OFF immediately when the on/off status of the TRS/CSI‐RS in the network is not stable.
In an embodiment of the present application, the validity time of the TRS/CSI‐RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI‐RS availability indication. If the on/off status of the TRS/CSI‐RS in the network is stable, in case of P‐DCI based TRS/CSI‐RS availability indication signaling (i.e., a type of L1 signaling) , the P‐DCI may carry the TRS/CSI‐RS availability indication for one paging cycle or N paging cycles (where N is an integer greater than 1) . If the on/off status of the TRS/CSI‐RS in the network is stable, in case of PEI based TRS/CSI‐RS availability indication signaling (i.e., a type of L1 signaling) , the PEI may carry the TRS/CSI‐RS availability indication for one paging cycle or N paging cycles (where N is an integer greater than 1) . If the on/off status of the TRS/CSI‐RS in the network is unstable, in case of P‐DCI based TRS/CSI‐RS availability indication signaling, the P‐DCI may carry the TRS/CSI‐RS availability indication for one paging cycle but not for N paging cycles. If the on/off status of the TRS/CSI‐RS in the network is unstable, in case of PEI based TRS/CSI‐RS availability indication signaling, the PEI may carry the TRS/CSI‐RS availability indication for one paging cycle but not for N paging cycles. In another aspect, in case of SIB based TRS/CSI‐RS availability indication signaling, the validity time of the TRS/CSI‐RS availability indication may or may not across a plurality of paging cycles.
In an embodiment of the present application, if the on/off status of the TRS/CSI‐RS in the network is stable and the P‐DCI based TRS/CSI‐RS availability indication signaling is used. The followings may apply. When the P‐DCI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next paging occasion (PO) from a first PO for the P‐DCI and the reference point is the time location where the first PO is finished. For example, the effective duration is a duration of the paging cycle minus a duration of the PO. When the P‐DCI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P‐DCI is finished. For example, the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
In an embodiment of the present application, if the on/off status of the TRS/CSI‐RS in the network is stable and the PEI based TRS/CSI‐RS availability indication signaling is used. The followings may apply. When the PEI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received. For example, the effective duration is a duration of the paging cycle minus the application delay. When the PEI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received. For example, the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
In an embodiment of the present application, the validity time of the TRS/CSI‐RS availability indication is configured by a higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI‐RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
In an embodiment of the present application, if the on/off status of the TRS/CSI‐RS in the network is unstable and the P‐DCI based TRS/CSI‐RS availability indication signaling is used. The followings may apply. The effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time location when a PO carrying the P‐DCI is ended.
In an embodiment of the present application, if the on/off status of the TRS/CSI‐RS in the network is unstable and the PEI based TRS/CSI‐RS availability indication signaling is used. The followings may apply. The effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a PO of a paging cycle where the PEI is located, until the PEI is received.
In an embodiment of the present application, if SIB based TRS/CSI‐RS availability indication signaling is used, the validity time of the SIB based TRS/CSI‐RS availability indication is based on an explicit availability indication or an implicit availability indication. In case of the explicit availability indication, the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and the reference point is from a time duration when the explicit availability indication is decoded. In case of the implicit availability indication, the effective duration is until a current presence of TRS/CSI‐RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI‐RS configuration is applied.
When idle/inactive UE receives TRS/CSI‐RS availability indication, the UE assumes the indicated TRS/CSI‐RS occasions are available for a validity time, and unavailable upon the expiry of validity time. The validity time is beneficial in configuration flexibility and it allows the network to reduce the transmission of extra signaling (e.g., unavailability signaling) when the TRS/CSI‐RS on the configured occasion (s) is not available in the network. In this disclosure, the validity time of TRS/CSI‐RS availability indication is designed according to the signaling method used for TRS/CSI‐RS availability indication, and in another aspect, according to on/off switching stability status of TRS/CSI‐RS in the network. Embodiments of the present application will be described in more detail below in three different aspects, i.e., (1) the validity time of L1 based TRS/CSI‐RS availability indication when the status of TRS/CSI‐RS in the network is stable (i.e., the TRS/CSI‐RS remains ON or OFF for a stable duration before and after the indication is being transmitted by the network) ; (2) the validity time of L1 based TRS/CSI‐RS availability indication when the status of TRS/CSI‐RS in the network is not stable (i.e., the TRS/CSI‐RS switches from ON to OFF immediately when the availability indication is being transmitted by the network) ; and (3) the validity time of TRS/CSI‐RS availability indication when SIB based signaling is used for TRS/CSI‐RS availability indication.
(1) Validity of L1 signaling Indication when the On/Off status of TRS/CSI‐RS is stable
This embodiment of the present application explains the validity time of P‐DCI based TRS/CSI‐RS availability indication and PEI based TRS/CSI‐RS availability indication when the on/off status of TRS/CSI‐RS is stable in the network before and after the availability indication is being transmitted by the network.
It is provided an exemplary example of P‐DCI based indication validity time below.
The validity time of P‐DCI based TRS/CSI‐RS availability indication depends on the number of paging cycles for which the P‐DCI based signaling carries the TRS/CSI‐RS availability indication. For instance, when the P‐DCI carries the TRS/CSI‐RS availability indication for only one paging cycle which is the next paging cycle, the validity time can be calculated based on one paging cycle duration as shown in FIG. 7. Here, the validity duration (i.e., the effective duration) is until the next PO which is PO2, and the reference point is the time location when paging monitoring occasion is finished. Since the PO duration and paging cycle duration is already defined and known to the UE, the validity time duration (i.e., the effective duration) can be calculated by the following equation.
Duration = Paging cycle duration –PO
Higher layer Configuration:
The P‐DCI based validity time of TRS/CSI‐RS availability indication for one paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI‐RS resources for idle/inactive UE. The higher layer information element (IE) for this configuration is given below.
Figure PCTCN2021120983-appb-000001
Similarly, when P‐DCI is used to indicate the TRS/CSI‐RS availability indication for the N paging cycles, the validity time duration can be calculated based on the N paging cycles duration as shown in FIG. 8. In this case, the time duration of validity time (i.e., the effective duration) is until the start of the (N+1) th paging cycle, where N is an integer greater than 1 (e.g., N is an integer N= {2, 3, 4} ) , and the reference point is the time location where the paging monitoring occasion is finished. Since the paging cycle time duration  and PO duration is known to the UE, the validity time duration (i.e., the effective duration) can be calculated based on the following equation.
Duration = N × Paging Cycle duration –PO
Higher layer Configuration:
The P‐DCI based validity time of TRS/CSI‐RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI‐RS resources for idle/inactive UE. The higher layer IE for this configuration is given below.
Figure PCTCN2021120983-appb-000002
It is provided an exemplary example of PEI based indication validity time below
The validity time design for PEI based TRS/CSI‐RS availability indication depends on the number of paging cycles for which the PEI based indication carries the TRS/CSI‐RS availability indication. For instance, when a PEI is used to indicate the TRS/CSI‐RS availability for one paging cycle, the validity time can be calculated based on the duration of one paging cycle as shown in FIG. 9. In this case the validity duration (i.e., the effective duration) is until the start of the next PO which is PO2 and the reference point can be calculated from the application delay, where the application delay is the time domain duration starting from PO1 until the UE receives PEI. The validity time duration (i.e., the effective duration) and application delay can be calculated as given by the following equations.
Duration = Paging cycle –application delay
application delay = PO+PEI duration
Higher layer Configuration:
The PEI based validity time of TRS/CSI‐RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used  to configure the TRS/CSI‐RS resources for idle/inactive UE. The higher layer IE for this configuration is given below.
Figure PCTCN2021120983-appb-000003
Similarly, when the PEI based signaling is used to indicate the TRS/CSI‐RS availability indication for the N paging cycles, the validity time duration can be calculated based on the N paging cycles duration as shown in FIG. 10. The duration of validity time (i.e., the effective duration) is until the start of the (N+1) th paging cycle and the reference point can be calculated from the application delay, where the application delay is the duration starting from PO1 until the UE receives PEI. The validity duration (i.e., the effective duration) and application delay can be calculated as given by the following equations.
Duration =N× Paging cycle –application delay
application delay = PO+PEI duration
Higher layer Configuration:
The PEI based validity time of TRS/CSI‐RS availability indication for N paging cycle can be configured by the higher layer in the same SIB_X (e.g., X is an integer selected from 2 to 13) which is used to configure the TRS/CSI‐RS resources for idle/inactive UE. The higher layer IE for this configuration is given below
Figure PCTCN2021120983-appb-000004
Figure PCTCN2021120983-appb-000005
(2) Validity time of L1 signaling when the On/Off status of TRS/CSI‐RS is not stable
This embodiment of the present application explains the validity time of P‐DCI based TRS/CSI‐RS availability indication and PEI based TRS/CSI‐RS availability indication when the on/off status of TRS/CSI‐RS is not stable before and after the availability indication is being transmitted by the network. Since the network/gNB cannot switch off the TRS/CSI‐RS immediately considering different UEs monitoring P‐DCI/PEI in different occasion. Network/gNB can stop the TRS/CSI‐RS transmission after all UEs receive the TRS/CSI‐RS. Hence the TRS/CSI‐RS is available in the network for a short duration, and based on its availability the network may transmit its availability indication. In other words, the TRS/CSI‐RS status is on before the transmission of availability indication and it switches off immediately after the TRS/CSI‐RS availability indication is being transmitted by gNB, which may misguide UE in AGC and Synchronization process. In this case, the validity time is very necessary, which guide the UE that the TRS/CSI‐RS is available for very short duration of time and cannot be used for AGC and synchronization purposes. Furthermore, in this case the TRS/CSI‐RS availability indication cannot be used for N paging cycles as the TRS/CSI‐RS on/off switching status is not stable.
It is provided an exemplary example of P‐DCI based indication validity time below.
When the TRS/CSI‐RS on/off status is not stable and P‐DCI based TRS/CSI‐RS availability indication is used, the validity time of TRS/CSI‐RS availability indication can be calculated based on the TRS/CSI‐RS on/off switching condition in the network. For instance, the duration of TRS/CSI‐RS availability indication validity time is effective until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time domain location when PO duration is ended as shown in FIG. 11.
It is provided an exemplary example of PEI based indication validity time below.
When the TRS/CSI‐RS on/off status is not stable and PEI based TRS/CSI‐RS availability indication is used, the validity time of TRS/CSI‐RS availability indication can be calculated based on the TRS/CSI‐RS on/off switching condition in the network. For instance, the validity duration of TRS/CSI‐RS availability indication is effective until the TRS/CSI‐RS switches from on to off in the network and the reference point can be calculated from the application delay, where the application delay is the duration starting from PO1 until the UE receives PEI as shown in FIG. 12. When the validity time expires, the UE enters into TRS/CSI‐RS invalid duration and it can rely on SSB based synchronization before paging.
(3) Validity time of SIB based signaling Indication
SIB based signaling is used in some scenarios to transmit the TRS/CSI‐RS availability indication, such as when a UE does not have a valid version of a stored SIB_X (for example, X is an integer selected from 2 to 13) which is used for TRS/CSI‐RS configuration or a UE is moving to new cell. The validity time of SIB based TRS/CSI‐RS availability indication can be designed according to the explicit or implicit availability indication, where the explicit availability indication is a 1‐bit indication carried in the SIB_X  which is used for TRS/CSI‐RS configuration to the idle/inactive mode UE, and the implicit availability indication is based on the presence/absence of TRS/CSI‐RS configuration in SIB_X.
In case of explicit SIB based availability indication, the effective duration of validity time is until the next PO and the reference point is from the time duration when UE decodes the SIB_X based explicit availability indication. On the other hand, the effective duration of validity time of SIB based implicit availability indication is valid until the presence (e.g., the current presence) of TRS/CSI‐RS configuration in the SIB_X without taking PO duration into account, and the reference point is the time location when UE receives TRS/CSI‐RS configuration in the SIB_X.
In the existing arts, a general validity time is configured for all TRS/CSI‐RS availability indication without considering the TRS/CSI‐RS availability indication signaling and/or on/off status of TRS/CSI‐RS in the network, which may lead the network to configure an inaccurate validity time of TRS/CSI‐RS availability indication to the idle/inactive UE. Compared to the existing arts, it is proposed in this application that validity time of TRS/CSI‐RS availability indication is designed and configured according to the signaling used for TRS/CSI‐RS availability indication, and in another aspect, according to on/off status of TRS/CSI‐RS in the network. This allows the BS/network to configure an accurate validity time of TRS/CSI‐RS availability indication to the idle/inactive UE and results in power saving.
Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Reducing signaling overhead. 3. Avoiding extra unavailability signaling. 4. Providing accurate validity time of the TRS/CSI‐RS availability indication. 5. Providing a good communication performance. Some embodiments of the present application are used by 5G‐NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto‐bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present application are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present application could be adopted in the 5G NR unlicensed band communications. Some embodiments of the present application propose technical mechanisms.
The embodiment of the present invention further provides a computer readable storage medium for storing a computer program. The computer readable storage medium enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.
The embodiment of the present invention further provides a computer program product including computer program instructions. The computer program product enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.
The embodiment of the present invention further provides a computer program. The computer program enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present invention. For brevity, details will not be described herein again.
A person of ordinary skill in the art may be aware that, in combination with the examples described in the embodiments disclosed in this specification, units and algorithm steps may be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether the functions are performed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. A person skilled in the art may use different approaches to implement the described functions for each particular application, but it should not be considered that the implementation goes beyond the scope of the present invention.
While the present application has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present application is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (86)

  1. A validity time method of an availability indication , performed by a user equipment (UE) in a network, the method comprising:
    receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state from the network through a signaling; and
    being configured by the network with validity time of the TRS/CSI‐RS availability indication,
    wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
  2. The method of claim 1, wherein the validity time of the TRS/CSI‐RS availability indication depends whether an on/off status of the TRS/CSI‐RS in the network is stable.
  3. The method of claim 1, wherein the on/off status of the TRS/CSI‐RS in the network is stable if the TRS/CSI‐RS remains ON or OFF for a specific duration before and after the TRS/CSI‐RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI‐RS in the network is not stable if the TRS/CSI‐RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI‐RS availability indication is being transmitted by the network.
  4. The method of claim 1, wherein the validity time of the TRS/CSI‐RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI‐RS availability indication.
  5. The method of any of claims 1 to 4, wherein the TRS/CSI‐RS availability indication is a paging Downlink Control Information (P‐DCI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  6. The method of claim 5, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next paging occasion (PO) from a first PO for the P‐DCI and the reference point is the time location where the first PO is finished.
  7. The method of claim 6, wherein the effective duration is a duration of the paging cycle minus a duration of the PO.
  8. The method of claim 5, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P‐DCI is finished.
  9. The method of claim 8, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
  10. The method of any of claims 1 to 4, wherein the TRS/CSI‐RS availability indication is a paging Early Indication (PEI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  11. The method of claim 10, wherein when the PEI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received.
  12. The method of claim 11, wherein the effective duration is a duration of the paging cycle minus the application delay.
  13. The method of claim 10, wherein when the PEI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received.
  14. The method of claim 13, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
  15. The method of any of claims 1 to 14, wherein the validity time of the TRS/CSI‐RS availability indication is configured by higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI‐RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
  16. The method of any of claims 1 to 3, wherein the TRS/CSI‐RS availability indication is a P‐DCI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time location when a PO carrying the P‐DCI is ended .
  17. The method of any of claims 1 to 3, wherein the TRS/CSI‐RS availability indication is a PEI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a PO of a paging cycle where the PEI is located, until the PEI is received.
  18. The method of claim 1, wherein the TRS/CSI‐RS availability indication is a System Information Block (SIB) based TRS/CSI‐RS availability indication carried by SIB based signaling, and the validity time of the SIB based TRS/CSI‐RS availability indication is based on an explicit availability indication or an implicit availability indication.
  19. The method of claim 18, wherein in case of the explicit availability indication, the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and the reference point is from a time duration when the explicit availability indication is decoded.
  20. The method of claim 18, wherein in case of the implicit availability indication, the effective duration  is until a current presence of TRS/CSI‐RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI‐RS configuration is applied.
  21. A validity time method of an availability indication, performed by a base station (BS) in a network, the method comprising:
    transmitting to a user equipment (UE) an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state of the UE through a signaling; and
    configuring the UE with validity time of the TRS/CSI‐RS availability indication,
    wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
  22. The method of claim 21, wherein the validity time of the TRS/CSI‐RS availability indication depends whether an on/off status of the TRS/CSI‐RS in the network is stable.
  23. The method of claim 21, wherein the on/off status of the TRS/CSI‐RS in the network is stable if the TRS/CSI‐RS remains ON or OFF for a specific duration before and after the TRS/CSI‐RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI‐RS in the network is not stable if the TRS/CSI‐RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI‐RS availability indication is being transmitted by the network.
  24. The method of claim 21, wherein the validity time of the TRS/CSI‐RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI‐RS availability indication.
  25. The method of any of claims 21 to 24, wherein the TRS/CSI‐RS availability indication is a paging Downlink Control Information (P‐DCI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  26. The method of claim 25, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next paging occasion (PO) from a first PO for the P‐DCI and the reference point is the time location where the first PO is finished.
  27. The method of claim 26, wherein the effective duration is a duration of the paging cycle minus a duration of the PO.
  28. The method of claim 25, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P‐DCI is finished.
  29. The method of claim 28, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
  30. The method of any of claims 21 to 24, wherein the TRS/CSI‐RS availability indication is a paging Early Indication (PEI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  31. The method of claim 30, wherein when the PEI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received.
  32. The method of claim 31, wherein the effective duration is a duration of the paging cycle minus the application delay.
  33. The method of claim 30, wherein when the PEI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received.
  34. The method of claim 33, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
  35. The method of any of claims 21 to 34, wherein the validity time of the TRS/CSI‐RS availability indication is configured by higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI‐RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
  36. The method of any of claims 21 to 23, wherein the TRS/CSI‐RS availability indication is a P‐DCI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time location when a PO carrying the P‐DCI is ended.
  37. The method of any of claims 21 to 23, wherein the TRS/CSI‐RS availability indication is a PEI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a PO of a paging cycle where the PEI is located, until the PEI is received.
  38. The method of claim 21, wherein the TRS/CSI‐RS availability indication is a System Information Block (SIB) based TRS/CSI‐RS availability indication carried by SIB based signaling, and the validity time of the SIB based TRS/CSI‐RS availability indication is based on an explicit availability indication or an implicit availability indication.
  39. The method of claim 38, wherein in case of the explicit availability indication, the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and  the reference point is from a time duration when the explicit availability indication is decoded.
  40. The method of claim 38, wherein in case of the implicit availability indication, the effective duration is until a current presence of TRS/CSI‐RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI‐RS configuration is applied.
  41. A user equipment (UE) , communicating with a base station (BS) in a network, the UE comprising a processor, configured to call and run program instructions stored in a memory, to execute:
    receiving an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state from the network through a signaling; and
    being configured by the network with validity time of the TRS/CSI‐RS availability indication,
    wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
  42. The UE of claim 41, wherein the validity time of the TRS/CSI‐RS availability indication depends whether an on/off status of the TRS/CSI‐RS in the network is stable.
  43. The UE of claim 41, wherein the on/off status of the TRS/CSI‐RS in the network is stable if the TRS/CSI‐RS remains ON or OFF for a specific duration before and after the TRS/CSI‐RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI‐RS in the network is not stable if the TRS/CSI‐RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI‐RS availability indication is being transmitted by the network.
  44. The UE of claim 41, wherein the validity time of the TRS/CSI‐RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI‐RS availability indication.
  45. The UE of any of claims 41 to 44, wherein the TRS/CSI‐RS availability indication is a paging Downlink Control Information (P‐DCI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  46. The UE of claim 45, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next paging occasion (PO) from a first PO for the P‐DCI and the reference point is the time location where the first PO is finished.
  47. The UE of claim 46, wherein the effective duration is a duration of the paging cycle minus a duration of the PO.
  48. The UE of claim 45, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P‐DCI is finished.
  49. The UE of claim 48, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
  50. The UE of any of claims 41 to 44, wherein the TRS/CSI‐RS availability indication is a paging Early Indication (PEI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  51. The UE of claim 50, wherein when the PEI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received.
  52. The UE of claim 51, wherein the effective duration is a duration of the paging cycle minus the application delay.
  53. The UE of claim 50, wherein when the PEI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received.
  54. The UE of claim 53, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
  55. The UE of any of claims 41 to 54, wherein the validity time of the TRS/CSI‐RS availability indication is configured by higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI‐RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
  56. The UE of any of claims 41 to 43, wherein the TRS/CSI‐RS availability indication is a P‐DCI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time location when a PO carrying the P‐DCI is ended.
  57. The UE of any of claims 41 to 43, wherein the TRS/CSI‐RS availability indication is a PEI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a first PO of a paging cycle where the PEI is located, until the PEI is received.
  58. The UE of claim 41, wherein the TRS/CSI‐RS availability indication is a System Information Block (SIB) based TRS/CSI‐RS availability indication carried by SIB based signaling, and the validity time of the SIB based TRS/CSI‐RS availability indication is based on an explicit availability indication or an implicit availability indication.
  59. The UE of claim 58, wherein in case of the explicit availability indication, the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and the reference point is from a time duration when the explicit availability indication is decoded.
  60. The UE of claim 58, wherein in case of the implicit availability indication, the effective duration is until a current presence of TRS/CSI‐RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI‐RS configuration is applied.
  61. A base station (BS) , communicating with a user equipement (UE) in a network, the BS comprising a processor, configured to call and run program instructions stored in a memory, to execute:
    transmitting to the UE an indication of availability of Tracking Reference Signal (TRS) /Channel State Information Reference Signal (CSI‐RS) occasion in an idle/inactive state of the UE through a signaling; and
    configuring the UE with validity time of the TRS/CSI‐RS availability indication,
    wherein the validity time of the TRS/CSI‐RS availability indication is based on a type of the signaling used for the TRS/CSI‐RS availability indication, the validity time of the TRS/CSI‐RS availability indication is represented by an effective duration and a reference point, where the effective duration is the time until which the TRS/CSI‐RS availability indication is valid and the reference point is a time location where the TRS/CSI‐RS availability indication becomes effective.
  62. The BS of claim 61, wherein the validity time of the TRS/CSI‐RS availability indication depends whether an on/off status of the TRS/CSI‐RS in the network is stable.
  63. The BS of claim 61, wherein the on/off status of the TRS/CSI‐RS in the network is stable if the TRS/CSI‐RS remains ON or OFF for a specific duration before and after the TRS/CSI‐RS availability indication is being transmitted by the network; and the on/off status of the TRS/CSI‐RS in the network is not stable if the TRS/CSI‐RS switches between ON and OFF for a duration comparative to the specific duration when the TRS/CSI‐RS availability indication is being transmitted by the network.
  64. The BS of claim 61, wherein the validity time of the TRS/CSI‐RS availability indication depends on the number of paging cycles for which the signaling carries the TRS/CSI‐RS availability indication.
  65. The BS of any of claims 61 to 64, wherein the TRS/CSI‐RS availability indication is a paging Downlink Control Information (P‐DCI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  66. The BS of claim 65, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next paging occasion (PO) from a first PO for the P‐DCI and the reference point is the time location where the first PO is finished.
  67. The BS of claim 66, wherein the effective duration is a duration of the paging cycle minus a duration of the PO.
  68. The BS of claim 65, wherein when the P‐DCI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is the time location where the first PO for the P‐DCI is finished.
  69. The BS of claim 68, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus a duration of the PO.
  70. The BS of any of claims 61 to 64, wherein the TRS/CSI‐RS availability indication is a paging Early  Indication (PEI) based TRS/CSI‐RS availability indication carried by L1 signaling.
  71. The BS of claim 70, wherein when the PEI carries the TRS/CSI‐RS availability indication for one paging cycle, the effective duration is until a start of a next PO from a first PO of a paging cycle where the PEI is located and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO until the PEI is received.
  72. The BS of claim 71, wherein the effective duration is a duration of the paging cycle minus the application delay.
  73. The BS of claim 70, wherein when the PEI carries the TRS/CSI‐RS availability indication for N paging cycles, the effective duration is until a start of a (N+1) th paging cycle from a first PO and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of the first PO of a paging cycle where the PEI is located, until the PEI is received.
  74. The BS of claim 73, wherein the effective duration is a duration of one paging cycle multiplied by N, then minus the application delay.
  75. The BS of any of claims 61 to 74, wherein the validity time of the TRS/CSI‐RS availability indication is configured by a higher layer in a same System Information Block (SIB) _X which is used to configure TRS/CSI‐RS resources for the UE in the idle/inactive state, where X is an integer selected from 2 to 13.
  76. The BS of any of claims 61 to 63, wherein the TRS/CSI‐RS availability indication is a P‐DCI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is the time location when a PO carrying the P‐DCI is ended .
  77. The BS of any of claims 61 to 63, wherein the TRS/CSI‐RS availability indication is a PEI based TRS/CSI‐RS availability indication carried by L1 signaling, and if the on/off status of the TRS/CSI‐RS in the network is unstable, the effective duration is until the TRS/CSI‐RS switches from on to off in the network and the reference point is calculated from an application delay, where the application delay is a time domain duration starting from a start of a PO of a paging cycle where the PEI is located, until the PEI is received.
  78. The BS of claim 61, wherein the TRS/CSI‐RS availability indication is a System Information Block (SIB) based TRS/CSI‐RS availability indication carried by SIB based signaling, and the validity time of the SIB based TRS/CSI‐RS availability indication is based on an explicit availability indication or an implicit availability indication.
  79. The BS of claim 78, wherein in case of the explicit availability indication, the effective duration is until a start of a next PO from a first PO of a paging cycle where the SIB based signaling is applied and the reference point is from a time duration when the explicit availability indication is decoded.
  80. The BS of claim 78, wherein in case of the implicit availability indication, the effective duration is  until a current presence of TRS/CSI‐RS configuration without taking PO duration into account and the reference point is the time location when the TRS/CSI‐RS configuration is applied.
  81. A computer readable storage medium, configured to store a computer program, which enables a computer to execute the method of any of claims 1 to 20.
  82. A computer readable storage medium, configured to store a computer program, which enables a computer to execute the method of any of claims 21 to 40.
  83. A computer program product, comprising computer program instructions, which enable a computer to execute the method of any of claims 1 to 20.
  84. A computer program product, comprising computer program instructions, which enable a computer to execute the method of any of claims 21 to 40.
  85. A computer program, enabling a computer to execute the method of any of claims 1 to 20.
  86. A computer program, enabling a computer to execute the method of any of claims 21 to 40.
PCT/CN2021/120983 2021-09-27 2021-09-27 Validity time method of availability indication, user equipment and base station WO2023044908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120983 WO2023044908A1 (en) 2021-09-27 2021-09-27 Validity time method of availability indication, user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120983 WO2023044908A1 (en) 2021-09-27 2021-09-27 Validity time method of availability indication, user equipment and base station

Publications (1)

Publication Number Publication Date
WO2023044908A1 true WO2023044908A1 (en) 2023-03-30

Family

ID=85719882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120983 WO2023044908A1 (en) 2021-09-27 2021-09-27 Validity time method of availability indication, user equipment and base station

Country Status (1)

Country Link
WO (1) WO2023044908A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228647A1 (en) * 2019-05-13 2020-11-19 华为技术有限公司 Communication method and device
US20210007054A1 (en) * 2018-02-12 2021-01-07 Vivo Mobile Communication Co., Ltd. Method for detecting information, method for transmitting information, user equipment and network device
US20210227496A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Reference signal monitoring occasion updates for idle and inactive user equipment
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210007054A1 (en) * 2018-02-12 2021-01-07 Vivo Mobile Communication Co., Ltd. Method for detecting information, method for transmitting information, user equipment and network device
WO2020228647A1 (en) * 2019-05-13 2020-11-19 华为技术有限公司 Communication method and device
US20210227496A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Reference signal monitoring occasion updates for idle and inactive user equipment
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state

Similar Documents

Publication Publication Date Title
CN111510262B (en) Method for receiving reference signal, method and device for transmitting reference signal
CN114982317B (en) Paging method and device
CN114270917B (en) DRX configuration method and device, terminal equipment and network equipment
CN116248241A (en) Communication method and device
US20240080766A1 (en) Communication method and apparatus, device, storage medium and program product
US20220369418A1 (en) Methods and devices for signal processing
US10492176B2 (en) Methods, network node, wireless device, computer programs and computer program products for use with discontinuous reception
WO2021068248A1 (en) Apparatus, method, and computer program
EP3935896A1 (en) Assignment of a second ue identity to adjust paging timing for ue for wireless network
US20240064700A1 (en) Methods and apparatuses for paging
US20230397115A1 (en) Employing paging early indicator for idle mode wireless communication device power savings
WO2023044908A1 (en) Validity time method of availability indication, user equipment and base station
CN115087083A (en) Method and device for receiving paging message and computer readable storage medium
WO2022197394A1 (en) Multi-usim suspension and optimized resumption
WO2022236620A1 (en) User equipment, base station, and wireless communication method
EP4351229A1 (en) Method and apparatus for determining energy-saving signal monitoring occasion, and terminal device
EP4346290A1 (en) Time window determination method and apparatus and terminal device
WO2022027677A1 (en) Communication method and apparatus, and computer readable storage medium
US20230232492A1 (en) Method and apparatus for sidelink drx alignment
US20240147371A1 (en) Method for determining energy-saving signal monitoring occasion, terminal device and chip
WO2022205335A1 (en) Method and apparatus for sidelink communication
WO2022188148A1 (en) Methods and apparatuses for power saving in discontinuous reception
WO2022188155A1 (en) User equipment, base station, and wireless communication method
CN117812728A (en) Uplink awakening method and device
CN117441380A (en) Method and device for determining transmission resources of energy-saving signals and terminal equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958026

Country of ref document: EP

Kind code of ref document: A1