WO2023010524A1 - User equipment, base station, and wireless communication method - Google Patents

User equipment, base station, and wireless communication method Download PDF

Info

Publication number
WO2023010524A1
WO2023010524A1 PCT/CN2021/111171 CN2021111171W WO2023010524A1 WO 2023010524 A1 WO2023010524 A1 WO 2023010524A1 CN 2021111171 W CN2021111171 W CN 2021111171W WO 2023010524 A1 WO2023010524 A1 WO 2023010524A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging
pei
subgroups
wireless communication
type
Prior art date
Application number
PCT/CN2021/111171
Other languages
French (fr)
Inventor
Shahid JAN
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority to PCT/CN2021/111171 priority Critical patent/WO2023010524A1/en
Priority to CN202180101440.4A priority patent/CN117813870A/en
Publication of WO2023010524A1 publication Critical patent/WO2023010524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication systems such as 5G new radio (NR) wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods, which can provide a potential paging enhancement for idle/inactive mode UE. More specifically, the present disclosure is related to a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to UE’s subgroups for paging.
  • PDCCH physical downlink control channel
  • PSS secondary synchronization signal
  • TRS tracking reference signal
  • CSI-RS channel state information reference signal
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • NR new radio
  • CDMA code division multiple access
  • TDMA time division multiple access
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) .
  • a wireless communication network may include a base station that can support communication for a UE.
  • the UE may communicate with the base station via downlink (DL) and uplink (UL) .
  • the DL refers to a communication link from the base station to the UE
  • the UL refers to a communication link from the UE to the base station.
  • a UE can use discontinuous reception (DRX) and spend a significant time in a radio resource control (RRC) -idle/inactive mode.
  • RRC radio resource control
  • the UE stays in a sleeping mode, turns off a radio frequency (RF) , and periodically wakes up to monitor a physical downlink control channel (PDCCH) for checking the presence of paging messages.
  • RF radio frequency
  • PDCCH physical downlink control channel
  • decoding paging messages is complex and consumes lots of power resources.
  • 3GPP RAN working group approved working item for Rel-17 UE power saving enhancements which includes an objective: Study and specify paging enhancement (s) to reduce unnecessary UE paging receptions, subject to no impact to legacy UEs [RAN2, RAN1] .
  • a user equipment UE
  • a base station a base station
  • wireless communication methods which can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
  • An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method, which can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
  • UE user equipment
  • a wireless communication method performed by a user equipment comprises being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • PDCCH physical downlink control channel
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • CSI-RS channel state information reference signal
  • a wireless communication method performed by a base station comprises configuring, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • PDCCH physical downlink control channel
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • CSI-RS channel state information reference signal
  • a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • PDCCH physical downlink control channel
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • CSI-RS channel
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to configure, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • PDCCH physical downlink control channel
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • gNB base station
  • FIG. 2 is a flowchart illustrating a wireless communication method performed by a user equipment (UE) according to an embodiment of the present disclosure.
  • UE user equipment
  • FIG. 3 is a flowchart illustrating a wireless communication method performed by a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating an example of General codepoint based mapping to UE’s subgroup according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating an example of one paging occasion per paging frame according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an example of two paging occasion per paging frame according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an example of four paging occasion per paging frame according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an example that each code point is mapped to a PRB in the physical resources according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an example that each code point in mapped to the physical resource block according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an example of an RB mapping for SSS based PEI with UE subgroup indication according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD2-TD4' according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD4-TD2' according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD-TD8' according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD8-TD' according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • Power saving techniques play a key role in 5G New Radio (NR) system to support low power devices i.e. industrial wireless sensors, video surveillance, and wearables etc.
  • NR 5G New Radio
  • UE use Discontinuous Reception (DRx) and spent a significant time in RRC-IDLE/Inactive mode.
  • DRx Discontinuous Reception
  • UE stay in sleeping mode, turn off the RF and periodically wake up to monitor PDCCH for checking the presence of paging messages.
  • decoding paging messages is complex and consumes lots of power resources.
  • a UE perform the following steps to monitor paging: 1. UE Wakes up before the paging occasion. 2. Turn on RF and baseband. 3.
  • AGC and time frequency synchronization (referred to as loop convergence) as well as serving cell confirmation. 4. Attempts PDCCH decoding for DCI scrambled with P-RNTI. 5. If no paging is found, the UE goes to DRX. 6. If Paging DCI is found, depending on the payload, the UE decodes the corresponding PDSCH. 7. If UE identity is included in PDSCH, UE starts RACH procedure, otherwise UE goes back to DRX.
  • 3GPP RAN working group approved working item for Rel-17 UE power saving enhancements which includes the following objectives: 1) Specify enhancements for idle/inactive-mode UE power saving, considering system performance aspects [RAN2, RAN1] . a) Study and specify paging enhancement (s) to reduce unnecessary UE paging receptions, subject to no impact to legacy UEs [RAN2, RAN1] . b) Specify means to provide potential TRS/CSI-RS occasion (s) available in connected mode to idle/inactive-mode UEs, minimizing system overhead impact [RAN1] .
  • PEI Paging Early Indication
  • PO target Paging Occasion
  • Behv-A PEI indicates UE should monitor a PO if UE’s group/subgroup is paged. UE is not required to monitor a PO if UE does not detect PEI at all PEI occasion (s) for the PO.
  • Behv-B PEI indicates whether or not UE should monitor a PO. UE is required to monitor a PO if UE does not detect PEI at all PEI occasion (s) for the PO.
  • PDCCH based PEI Primary Synchronization Signal (SSS) based PEI and Tracking Reference Signal /Channel Status Information Reference Signal (TRS/CSI-RS) based PEI has been discussed and it has been agreed to further study the codepoint based mapping design of PDCCH based PEI, Sequence mapping design of SSS based PEI, and sequence mapping design of TRS/CSI-RS based PEI for UE’s subgroups paging indication.
  • SSS Secondary Synchronization Signal
  • TRS/CSI-RS Tracking Reference Signal /Channel Status Information Reference Signal
  • the goal of PEI is to avoid the unnecessary UE paging and save power.
  • PDCCH based PEI Whether code-point based mapping is utilized, and, if so, how to map to the subgroups in a PO.
  • SSS-based PEI how to design Sequence mapping for supporting up to 8 subgroups per PO.
  • TRS/CSI-RS-based PEI whether to use one TRS sequence with orthogonal cover, a set of TRS sequences indicating the subgroups, or multiple TRS resources in the same monitoring occasion to indicate UE subgroups for paging.
  • the main objectives of this invention are summarized as: For PDCCH based PEI, Code-point based mapping is utilized to indicate UE’s subgroups for paging at a PO, where the payload of codepoints is designed according to the configured number of PO per PF. For SSS based PEI, one to one sequence based mapping and common sequence based mapping design are discussed to indicate UE’s subgroups for paging at PO. For TRS/CSI-RS based PEI, several orthogonal CDM sequences of TRS/CSI-RS and its combinations are proposed, to create indication-codes to indicate UE’s subgroups for paging at a PO.
  • Some embodiments of this disclosure discuss the advantages of this invention as: 1. Indicate UE’s subgroups before a target PO whether to monitor PDCCH scrambled with P-RNTI at a PO and thus reduces false paging. 2. Codepoints based mapping, one to one sequence mapping, common sequence mapping and several orthogonal CDM type sequence mappings to UE’s subgroups are used to efficiently utilize the physical resources and indicate UE’s subgroups for paging with lower signaling overhead.
  • FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured, by the base station 20, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • P-RNTI paging-radio network temporary identifier
  • PO paging occasion
  • the processor 21 is configured to configure, to the user equipment (UE) 10, a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • P-RNTI paging-radio network temporary identifier
  • PO paging occasion
  • FIG. 2 illustrates a wireless communication method 200 performed by a user equipment (UE) according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • PDCCH physical downlink control channel
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • FIG. 3 illustrates a wireless communication method 300 performed by a base station according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, configuring, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  • P-RNTI paging-radio network temporary identifier
  • PO paging occasion
  • a code-point based mapping is used to indicate the UE’s subgroups for paging at the PO, where a payload of codepoints is according to a configured number of the PO per paging frame (PF) .
  • PF paging frame
  • a number of codepoints is used from one PDCCH based PEI payload to indicate 8 UE’s subgroups for paging in the PO, the number of codepoints is expressed as 2 N , where N is a number of bits used in the payload of codepoints and ranges between 3 and 5, and the configured number of the PO per PF is ⁇ 1, 2, 4 ⁇ .
  • the codepoints are transmitted by the base station in the PDCCH based PEI using an aggregation level (AL) , and the AL comprises AL4 or AL8.
  • the codepoints can be mapped to physical resources in a frequency division multiplexing (FDM) manner or a time division multiplexing (TDM) manner, and each codepoint is mapped to one physical resource block (PRB) in the physical resources.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • PRB physical resource block
  • a number of resources consumed by a codepoint based mapping to indicate the UE’s subgroups for paging depends on the AL of the PDCCH based PEI.
  • one to one sequence based mapping and common sequence based mapping are used to indicate the UE’s subgroups for paging at the PO.
  • one to one mapping of 8 sequences is used to 8 UE’s subgroups when in the PO, a part of the UE’s subgroups needs paging, and a part of the UE’s subgroups does not need paging.
  • a physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging is FDMed in PRBs of an entire available bandwidth for PEI transmission.
  • orthogonal coded division multiplexed (CDM) sequences of TRS/CSI-RS and combinations thereof are used to provide indication-codes to indicate the UE’s subgroups for paging at the PO.
  • the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each configured TRS/CSI-RS based PEI
  • the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block
  • the sequence generated by r (m) is used to define quantities k′ and l′
  • orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging
  • k′ and l′ index resource elements within a CDM group are corresponding to 8 UE subgroups indication for paging
  • the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each configured TRS/CSI-RS based PEI, the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block, the sequence generated by r (m) is used to define quantities k′ and l′, orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging, and k′ and l′ index resource elements within a CDM group.
  • the TRS/CSI-RS based PEI is a sequence based PEI and a sequence of the TRS/CSI-RS based PEI is generated by the following equation:
  • each CDM group is of size 8 (cdm8) , and at a target PO, only one type of the cdm8 is used to indicate 8 UE’s subgroups for paging per PO.
  • a first type of CDM group is cdm8-FD2-TD4
  • a second type of CDM group is cdm8-FD4-TD2
  • a third type of CDM group is cdm8-FD-TD8
  • a fourth type of CDM group is cdm8-FD8-TD.
  • numerical orthogonal sequences for the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group is FDMed or TDMed and is applied to the TRS/CSI-RS based PEI to provide indication-codes of orthogonal sequences combinations for the UEs subgroup indication for paging.
  • Some embodiments of this disclosure further discuss physical layer mapping design of PDCCH based PEI, SSS based PEI and TRS/CSI-RS based PEI to the UE’s subgroups for paging indication in a PO.
  • the mapping designs of PDCCH based PEI, SSS based PEI, and TRS/CSI-RS based PEI to the UE’s subgroup for paging indication are based on Behv-A, where Behv-Ais defined in RAN1#104-e agreement as: A UE subgroup will monitor a PO if it detects PEI and a UE subgroup will not monitor a PO if it does not detect a PEI.
  • Some embodiments discuss codepoint based mapping design to indicate paging to the UE’s subgroups in a PO. Some embodiments discuss SSS based sequence mapping design to indicate UE’s subgroups for paging. Some embodiments discuss TRS/CSI-RS based mapping design to indicate UE’s subgroups for paging.
  • PDCCH based PEI uses one PEI to indicate subgroups for paging in a PO, where one bit in the DCI payload indicating one subgroup as agreed in 3GPP RAN1 105-e meeting.
  • codepoint based mapping can also be used to indicate UE’s subgroups for paging in a PO.
  • this embodiment of the present disclosure describes codepoint based mapping to UE’s subgroup in PO as well as codepoint based mapping to the physical resources.
  • FIG. 4 illustrates an example of General codepoint based mapping to UE’s subgroup according to an embodiment of the present disclosure.
  • codepoint based mapping to UE’s subgroups in a PO is provided.
  • code-points based mapping is used to indicate the UE’s subgroups in a PO for paging. Since it has been agreed in 3GPP RAN1 105-e meeting, that for UE’s subgroups indication in physical layer, maximum 8 subgroups per PO is supported. Therefore, the mapping design of this disclosure focus on 8 subgroups of UEs in a PO.
  • a general illustrative example of codepoint based mapping is shown in FIG. 4, where 8 codepoints are used from one PDCCH based PEI payload to indicate 8 subgroups of UEs for paging in a PO.
  • the number of codepoints used to map 8 subgroups of UEs and its size can be expressed as 2 N , where N is the number of bits used in the payload design and it range is 3 ⁇ N ⁇ 5.
  • the payload size of each codepoint can be design according to the number of PO in a paging frame (PF) .
  • PF paging frame
  • one paging frame may contain one or multiple PO or starting point of a PO which can be configured according to the pagingSearchSpace.
  • the configured number of PO per PF can be ⁇ 1, 2, 4 ⁇ .
  • an embodiment of this disclosure designs the payload size of each codepoint to indicate 8 subgroups of UEs for paging in a PO according to the number of PO in a PF.
  • Table 1 2 3 codepoints mapping to 8 UE’s subgroups
  • FIG. 6 illustrates an example of two paging occasion per paging frame according to an embodiment of the present disclosure.
  • the first set of codepoints indicate 8 subgroups of UE for paging in PO1 and the second set of codepoints indicate 8 subgroups of UEs for paging in PO2 as illustrated in table 2.
  • FIG. 7 is a schematic diagram illustrating an example of four paging occasion per paging frame according to an embodiment of the present disclosure.
  • the first set of codepoints indicate 8 subgroups of UEs for paging in PO1
  • the second set of codepoints indicate 8 subgroups of UEs for paging in PO2
  • the third set of codepoints indicate 8 subgroups of UEs for paging in PO3
  • the 4 th set of codepoints indicate 8 subgroups of UEs for paging in PO4 respectively as illustrated in table 3.
  • the maximum number of PO in a PF is 4, thus to effectively utilize the number of codepoints, some embodiments of this disclosure proposes to keep the value of N (the payload size of codepoints) in the range of 3 ⁇ N ⁇ 5.
  • N the payload size of codepoints
  • N the number of codepoints available for paging indication
  • FIG. 8 illustrates an example that each code point is mapped to a PRB in the physical resources according to an embodiment of the present disclosure.
  • a codepoint based mapping to the physical resources is provided.
  • codepoints mapping of a PDCCH based PEI to the physical resources are discussed.
  • the payload of each codepoint to indicate 8 subgroups of UEs for paging in a PO can be 3 bits, 4 bits or 5-bits as discussed in the above embodiments.
  • These codepoint can be transmitted by gNB in PDCCH based PEI using Aggregation level (AL) 4 or AL8.
  • AL Aggregation level
  • the codepoints can be map to the physical resources in FDM manner. Where each code point is mapped to a PRB in the physical resources as shown in FIG. 8. As one PRB contains 12 RE and one PRB can accommodate X number of bits which depends on the modulation scheme used for the mapping purpose. Thus. one PRB can be used to map at-least one codepoint.
  • FIG. 9 illustrates an example that each code point in mapped to the physical resource block according to an embodiment of the present disclosure.
  • Codepoints of PDCCH based PEI can be mapped to the physical resources in TDM manner, where each code point is mapped to the physical resource block as shown in FIG. 9.
  • the number of resources consumed by codepoints based mapping to indicate the UE’s subgroups for paging depends on the aggregation level of the PDCCH based PEI. For instance, using AL4, the physical resources consumed for PDCCH based PEI transmission will be 24 PRB (288 REs) , despite of the fact that codepoints mapping to the physical resources may consume less numbers of PRB. Therefore, there is physical resources waste in the PDCCH based PEI especially in a case when the number of subgroups for paging are less or the payload size of codepoints are small.
  • SSS based PEI Mapping to the UE’s Subgroups is provided.
  • This embodiment of the present disclosure explains, SSS based PEI sequence mapping design to indicate 8 UE’s subgroups per PO for paging.
  • SSS based PEI is a sequence based PEI and its sequence d SSS (n) can be generated by the following equations as defined in TS 38.211.
  • d SSS (n) [1-2x 0 ( (n+m 0 ) mod127) ] [1-2x 1 ( (n+m 1 ) mod127) ]
  • a common sequence can also be generated which can indicate all UE’s subgroups for paging.
  • a common sequence can be used in case when all 8 subgroups of UEs need paging in a PO as illustrated in table 4.
  • Table 4 Sequence mapping to UE’s subgroup for paging indication
  • Sequence Index UE Subgroup Mapping Sequence 0 Subgroup 0 Sequence 1 Subgroup 1 Sequence 2 Subgroup 2 Sequence 3 Subgroup 3 Sequence 4 Subgroup 4 Sequence 5 Subgroup 5 Sequence 6 Subgroup 6 Sequence 7 Subgroup 7 Sequence 8 All subgroups
  • the advantage of one to one mapping is that, if more than 1 subgroup are mapped with a common sequence in each set of resources, it may trigger the indication of all the associated subgroups for paging, in which some of the subgroups may not need paging and thus waste its power. Moreover, each sequence can be transmitted in the different set of resources in order to avoid the additional interferences between different sequences.
  • the advantage of common sequence mapping to all UEs subgroups is that it may save the physical resources and avoid the interference which can occur due simultaneous transmission of many one-to-one sequences.
  • FIG. 10 illustrates an example of an RB mapping for SSS based PEI with UE subgroup indication according to an embodiment of the present disclosure.
  • the physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging can be FDMed in the physical resource blocks (PRB) of the entire available bandwidth for PEI transmission as shown in FIG. 10.
  • TRS/CSI-RS based PEI mapping to the UE’s subgroups is provided.
  • TRS/CSI-RS based PEI is a sequence based PEI and its sequence can be generated by the following equation as defined in TS 38.211.
  • the UE subgroups shall assume the sequence r (m) being mapped to resources elements (k, l) , where k is the physical resource mapping in frequency domain and l is the physical resources mapping in time domain within a resource block.
  • the sequence generated by r (m) can be utilized to define the quantities k′ and l′, and orthogonal coded division multiplexed (CDM) sequences w f (k′) and w t (l′) of size 8 which are corresponding to 8 UE subgroups indication for paging.
  • CDM orthogonal coded division multiplexed
  • indices k′ and l′ index resource elements within a CDM group.
  • the embodiments of this disclosure define 4 types of numerical orthogonal CDM groups and each CDM group is of size 8 i.e., cdm8 to indicate 8 UE’s subgroups for paging per PO as explained in the following embodiments.
  • FIG. 11 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD2-TD4' according to an embodiment of the present disclosure.
  • the first type of CDM group is cdm8-FD2-TD4 as defined in Rel-16 specification [TS 38.211] .
  • the numerical orthogonal sequences w f (k′) and w t (l′) for cdm8-FD2-TD4 is shown in table 5.
  • sequences w f (k′) and w t (l′) of cdm8-FD2-TD4 can be Frequency Division Multiplexed (FDMed) and Time Division Multiplexed (TDMed) and apply to TRS/CSI-RS based PEI in order to create indication-codes of sequences combinations w f (k′) and w t (l′) for 8 UEs subgroup as shown in table 6.
  • FDMed Frequency Division Multiplexed
  • TDMed Time Division Multiplexed
  • Each indication-code can be mapped to a UE’s subgroup to indicate paging at a PO.
  • the physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD2-TD4 is illustrated in FIG. 11. Where each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD2-TD4 with corresponding index J is FDMed and TDMed in the physical resources.
  • Table 6 Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD2-TD4'
  • FIG. 12 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD4-TD2' according to an embodiment of the present disclosure.
  • the 2 nd type of CDM group proposed by some embodiments of this disclosure is cdm8-FD4-TD2.
  • the numerical orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD4-TD2 is shown in table 7.
  • sequences w f (k′) and w t (l′) of cdm8-FD4-TD2 can be FDMed and TDMed and apply to TRS/CSI-RS based PEI in order to create indication-codes for 8 UEs subgroup as shown in table 8.
  • Each indication-code can be mapped to a UE’s subgroup to indicate paging before a PO.
  • the physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD4-TD2 is illustrated in FIG. 12.
  • Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD4-TD2 with corresponding index J is FDMed and TDMed in physical resources.
  • Table 2 Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD4-TD2'
  • FIG. 13 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD-TD8' according to an embodiment of the present disclosure.
  • the 3 rd type of CDM group proposed by an embodiment of this disclosure is cdm8-FD-TD8.
  • the numerical orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD-TD8 is shown in table 9.
  • Each indication-code can be mapped to a UEs subgroup to indicate paging before a PO.
  • the physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD-TD8 is illustrated in FIG. 13.
  • Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD-TD8 with corresponding index J is TDMed in physical resources.
  • Table 4 Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD-TD8'
  • FIG. 14 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD8-TD' according to an embodiment of the present disclosure.
  • the 4 th type of CDM group proposed by an embodiment of this disclosure is cdm8-FD8-TD.
  • the orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD8-TD is shown in table 11.
  • Each indication-code can be mapped to a UEs subgroup to indicate paging before a PO.
  • the physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD8-TD is illustrated in FIG. 14.
  • Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD8-TD with corresponding index J is FDMed in physical resources.
  • Table 6 Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD8-TD'
  • Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product.
  • FIG. 15 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 15 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE), a base station, and wireless communication methods are provided. A wireless communication method performed by the UE includes being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI), a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE's subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO), wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI. This can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE's subgroups for paging with lower signaling overhead, and/or provide a good communication performance.

Description

USER EQUIPMENT, BASE STATION, AND WIRELESS COMMUNICATION METHOD
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of wireless communication systems such as 5G new radio (NR) wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods, which can provide a potential paging enhancement for idle/inactive mode UE. More specifically, the present disclosure is related to a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to UE’s subgroups for paging.
2. Description of the Related Art
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform-spread-OFDM (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) . A wireless communication network may include a base station that can support communication for a UE. The UE may communicate with the base station via downlink (DL) and uplink (UL) . The DL refers to a communication link from the base station to the UE, and the UL refers to a communication link from the UE to the base station.
Power saving techniques play a key role in 5G new radio (NR) system to support low power devices such as industrial wireless sensors, video surveillance, and wearables, etc. To save energy and conserve battery, a UE can use discontinuous reception (DRX) and spend a significant time in a radio resource control (RRC) -idle/inactive mode. During the RRC-idle/inactive mode, the UE stays in a sleeping mode, turns off a radio frequency (RF) , and periodically wakes up to monitor a physical downlink control channel (PDCCH) for checking the presence of paging messages. However, decoding paging messages is complex and consumes lots of power resources.
This paging process consume more energy and waste the UE power, especially in so called false paging case, where a UE decode paging PDCCH and found that it is not being paged. Therefore, to save power and reduce unnecessary UE paging reception, 3GPP RAN working group approved working item for Rel-17 UE power saving enhancements, which includes an objective: Study and specify paging enhancement (s) to reduce unnecessary UE paging receptions, subject to no impact to legacy UEs [RAN2, RAN1] .
In 3GPP RAN1 105-e meeting, in an agreement, it is mentioned that for paging indication to the UE’s subgroups in a PO, PDCCH based PEI, SSS based PEI or TRS/CSI-RS based PEI can be utilized. However, the detail mapping design of UE subgroups indication for paging before a PO using PDCCH based PEI, SSS based PEI or TRS/CSI-RS based PEI is still under discussion and there is no concreate proposal in this regard.
Therefore, there is a need for a user equipment (UE) , a base station, and wireless communication methods, which can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for  paging with lower signaling overhead, and/or provide a good communication performance.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method, which can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
In a first aspect of the present disclosure, a wireless communication method performed by a user equipment (UE) comprises being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
In a second aspect of the present disclosure, a wireless communication method performed by a base station comprises configuring, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
In a third aspect of the present disclosure, a user equipment (UE) comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to configure, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a wireless communication method performed by a user equipment (UE) according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a wireless communication method performed by a base station according to an embodiment of the present disclosure.
FIG. 4 is a schematic diagram illustrating an example of General codepoint based mapping to UE’s subgroup according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram illustrating an example of one paging occasion per paging frame according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram illustrating an example of two paging occasion per paging frame according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram illustrating an example of four paging occasion per paging frame according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram illustrating an example that each code point is mapped to a PRB in the physical resources according to an embodiment of the present disclosure.
FIG. 9 is a schematic diagram illustrating an example that each code point in mapped to the physical resource block according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating an example of an RB mapping for SSS based PEI with UE subgroup indication according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD2-TD4' according to an embodiment of the present disclosure.
FIG. 12 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD4-TD2' according to an embodiment of the present disclosure.
FIG. 13 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD-TD8' according to an embodiment of the present disclosure.
FIG. 14 is a schematic diagram illustrating an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD8-TD' according to an embodiment of the present disclosure.
FIG. 15 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Power saving techniques play a key role in 5G New Radio (NR) system to support low power devices i.e. industrial wireless sensors, video surveillance, and wearables etc. To save energy and conserve battery, UE use Discontinuous Reception (DRx) and spent a significant time in RRC-IDLE/Inactive mode. During the idle/inactive mode, UE stay in sleeping mode, turn off the RF and periodically wake up to monitor PDCCH for checking the presence of paging messages. However, decoding paging messages is complex and consumes lots of power resources. Generally, a UE perform the following steps to monitor paging: 1. UE Wakes up before the paging occasion. 2. Turn on RF and baseband. 3. AGC and time frequency synchronization (referred to as loop convergence) as well as serving cell confirmation. 4. Attempts PDCCH decoding for DCI scrambled with P-RNTI. 5. If no paging is found, the UE goes to DRX. 6. If Paging DCI is found, depending on the payload, the UE decodes the corresponding PDSCH. 7. If UE identity is included in PDSCH, UE starts RACH procedure, otherwise UE goes back to DRX.
This paging process consume more energy and waste the UE power, especially in so called false paging case, where a UE decode paging PDCCH and found that it is not being paged. Therefore, to save power and reduce unnecessary UE paging reception, 3GPP RAN working group approved working item for Rel-17 UE power saving enhancements, which includes the following objectives: 1) Specify enhancements for idle/inactive-mode UE power saving, considering system performance aspects [RAN2, RAN1] . a) Study and specify paging enhancement (s) to reduce unnecessary UE paging receptions, subject to no impact to legacy UEs [RAN2, RAN1] . b) Specify means to provide potential TRS/CSI-RS occasion (s) available in connected mode to idle/inactive-mode UEs, minimizing system overhead impact [RAN1] .
To reduce unnecessary paging and save power, UE subgroup paging is in effective method which essentially results in reduced paging rate per group and hence a reduction in false paging is achieved. Similarly, Paging Early Indication (PEI) has been introduced in Rel-17 paging enhancement, in which a PEI is transmitted before a target Paging Occasion (PO) to indicate UE’s subgroup whether to monitor PDCCH scrambled with P-RNTI or not. If PEI is detected, the UEs subgroups wake up the baseband and start paging process. If PEI is not detected, the UE subgroups stay in sleeping mode, avoid unnecessary paging, and thus save power. Furthermore, in 3GGP RAN1#104-e meeting two different UE behaviors for the presence/absence of PEI were agreed as shown in the following agreement.
Agreements: For the evaluation and comparison of PEI candidate designs based on PDCCH, TRS/CSI-RS and SSS, the following are assumed: Behv-A: PEI indicates UE should monitor a PO if UE’s group/subgroup is paged. UE is not required to monitor a PO if UE does not detect PEI at all PEI occasion (s) for the PO. Behv-B: PEI indicates whether or not UE should monitor a PO. UE is required to monitor a PO if UE does not detect PEI at all PEI occasion (s) for the PO.
In 3GPP RAN1#105-e meeting, PDCCH based PEI, Secondary Synchronization Signal (SSS) based PEI and Tracking Reference Signal /Channel Status Information Reference Signal (TRS/CSI-RS) based PEI has been discussed and it has been agreed to further study the codepoint based mapping design of PDCCH based PEI, Sequence mapping design of SSS based PEI, and sequence mapping design of TRS/CSI-RS based PEI for UE’s subgroups paging indication.
The goal of PEI is to avoid the unnecessary UE paging and save power. However, regarding the PDCCH based PEI, SSS based PEI, and TR/CSI-RS based PEI design and its mapping to the UE subgroup has the following issues. For PDCCH based PEI Whether code-point based mapping is utilized, and, if so, how to map to the subgroups in a PO. For SSS-based PEI, how to design Sequence mapping for supporting up to 8 subgroups per PO. For TRS/CSI-RS-based PEI, whether to use one TRS sequence with orthogonal cover, a set of TRS sequences indicating the subgroups, or multiple TRS resources in the same monitoring occasion to indicate UE subgroups for paging.
In some embodiments, the main objectives of this invention are summarized as: For PDCCH based PEI, Code-point based mapping is utilized to indicate UE’s subgroups for paging at a PO, where the payload of codepoints is designed according to the configured number of PO per PF. For SSS based PEI, one to one sequence based mapping and common sequence based mapping design are discussed to indicate UE’s subgroups for paging at PO. For TRS/CSI-RS based PEI,  several orthogonal CDM sequences of TRS/CSI-RS and its combinations are proposed, to create indication-codes to indicate UE’s subgroups for paging at a PO.
Some embodiments of this disclosure discuss the advantages of this invention as: 1. Indicate UE’s subgroups before a target PO whether to monitor PDCCH scrambled with P-RNTI at a PO and thus reduces false paging. 2. Codepoints based mapping, one to one sequence mapping, common sequence mapping and several orthogonal CDM type sequence mappings to UE’s subgroups are used to efficiently utilize the physical resources and indicate UE’s subgroups for paging with lower signaling overhead.
FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured, by the base station 20, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI. This can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
In some embodiments, the processor 21 is configured to configure, to the user equipment (UE) 10, a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI. This can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
FIG. 2 illustrates a wireless communication method 200 performed by a user equipment (UE) according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI. This can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
FIG. 3 illustrates a wireless communication method 300 performed by a base station according to an embodiment of the present disclosure. In some embodiments, the method 300 includes: a block 302, configuring, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI. This can solve issues in the prior art, reduce a false paging, efficiently utilize physical resources and indicate UE’s subgroups for paging with lower signaling overhead, and/or provide a good communication performance.
In some embodiments, for the PDCCH based PEI, a code-point based mapping is used to indicate the UE’s subgroups for paging at the PO, where a payload of codepoints is according to a configured number of the PO per paging frame (PF) . In some embodiments, a number of codepoints is used from one PDCCH based PEI payload to indicate 8 UE’s subgroups for paging in the PO, the number of codepoints is expressed as 2 N, where N is a number of bits used in the payload of codepoints and ranges between 3 and 5, and the configured number of the PO per PF is {1, 2, 4} . In some embodiments, the codepoints are transmitted by the base station in the PDCCH based PEI using an aggregation level (AL) , and the AL comprises AL4 or AL8. In some embodiments, the codepoints can be mapped to physical resources in a frequency division multiplexing (FDM) manner or a time division multiplexing (TDM) manner, and each codepoint is mapped to one physical resource block (PRB) in the physical resources. In some embodiments, in the PDCCH based PEI, a number of resources consumed by a codepoint based mapping to indicate the UE’s subgroups for paging depends on the AL of the PDCCH based PEI. In some embodiments, for the SSS based PEI, one to one sequence based mapping and common sequence based mapping are used to indicate the UE’s subgroups for paging at the PO.
In some embodiments, one to one mapping of 8 sequences is used to 8 UE’s subgroups when in the PO, a part of the UE’s subgroups needs paging, and a part of the UE’s subgroups does not need paging. In some embodiments, a physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging is FDMed in PRBs of an entire available bandwidth for PEI transmission. In some embodiments, for the TRS/CSI-RS based PEI, orthogonal coded division multiplexed (CDM) sequences of TRS/CSI-RS and combinations thereof are used to provide indication-codes to indicate the UE’s subgroups for paging at the PO. In some embodiments, the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each configured TRS/CSI-RS based PEI, the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block, the sequence generated by r (m) is used to define quantities k′ and l′, orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging, and k′ and l′ index resource elements within a CDM group. In some embodiments, the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each  configured TRS/CSI-RS based PEI, the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block, the sequence generated by r (m) is used to define quantities k′ and l′, orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging, and k′ and l′ index resource elements within a CDM group. In details, the TRS/CSI-RS based PEI is a sequence based PEI and a sequence of the TRS/CSI-RS based PEI is generated by the following equation: 
Figure PCTCN2021111171-appb-000001
Figure PCTCN2021111171-appb-000002
In some embodiments, 4 types of numerical orthogonal CDM groups are defined, each CDM group is of size 8 (cdm8) , and at a target PO, only one type of the cdm8 is used to indicate 8 UE’s subgroups for paging per PO. In some embodiments, a first type of CDM group is cdm8-FD2-TD4, a second type of CDM group is cdm8-FD4-TD2, a third type of CDM group is cdm8-FD-TD8, and/or a fourth type of CDM group is cdm8-FD8-TD. In some embodiments, numerical orthogonal sequences for the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group is FDMed or TDMed and is applied to the TRS/CSI-RS based PEI to provide indication-codes of orthogonal sequences combinations for the UEs subgroup indication for paging. In some embodiments, each combination of the orthogonal sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group provide an indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} , each indication-code is mapped to a UE’s subgroup to indicate paging at the PO, and/or each indication-code of each combination of the orthogonal sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group with a corresponding index J is FDMed or TDMed in physical resources.
Some embodiments of this disclosure further discuss physical layer mapping design of PDCCH based PEI, SSS based PEI and TRS/CSI-RS based PEI to the UE’s subgroups for paging indication in a PO. The mapping designs of PDCCH based PEI, SSS based PEI, and TRS/CSI-RS based PEI to the UE’s subgroup for paging indication are based on Behv-A, where Behv-Ais defined in RAN1#104-e agreement as: A UE subgroup will monitor a PO if it detects PEI and a UE subgroup will not monitor a PO if it does not detect a PEI. Some embodiments discuss codepoint based mapping design to indicate paging to the UE’s subgroups in a PO. Some embodiments discuss SSS based sequence mapping design to indicate UE’s subgroups for paging. Some embodiments discuss TRS/CSI-RS based mapping design to indicate UE’s subgroups for paging.
In some embodiments, for PDCCH based PEI Mapping to the UE’s Subgroups, PDCCH based PEI uses one PEI to indicate subgroups for paging in a PO, where one bit in the DCI payload indicating one subgroup as agreed in 3GPP RAN1 105-e meeting. Similarly, codepoint based mapping can also be used to indicate UE’s subgroups for paging in a PO. For this purpose, this embodiment of the present disclosure describes codepoint based mapping to UE’s subgroup in PO as well as codepoint based mapping to the physical resources.
FIG. 4 illustrates an example of General codepoint based mapping to UE’s subgroup according to an embodiment of the present disclosure. In an embodiment, codepoint based mapping to UE’s subgroups in a PO is provided. In this embodiment of the present disclosure, code-points based mapping is used to indicate the UE’s subgroups in a PO for paging. Since it has been agreed in 3GPP RAN1 105-e meeting, that for UE’s subgroups indication in physical layer, maximum 8 subgroups per PO is supported. Therefore, the mapping design of this disclosure focus on 8 subgroups of UEs in a PO. A general illustrative example of codepoint based mapping is shown in FIG. 4, where 8 codepoints are used from one PDCCH based PEI payload to indicate 8 subgroups of UEs for paging in a PO.
The number of codepoints used to map 8 subgroups of UEs and its size can be expressed as 2 N, where N is the number of bits used in the payload design and it range is 3≤ N ≥ 5. The payload size of each codepoint can be design according to the number of PO in a paging frame (PF) . As defined in Rel-16 specification [TS 38.304] , one paging frame may contain one or multiple PO or starting point of a PO which can be configured according to the pagingSearchSpace. The configured number of PO per PF can be {1, 2, 4} . Thus, an embodiment of this disclosure designs the payload size of each codepoint to indicate 8 subgroups of UEs for paging in a PO according to the number of PO in a PF. FIG. 5 illustrates an example of one paging occasion per paging frame according to an embodiment of the present disclosure. For instance, when the number of PO configured in a PF is 1 as shown in FIG. 5, the size of codepoint can be N= 3 bits, and the total number of codepoints can be (2 3) 8, where each codepoint is used to map 8 UE’s subgroups from 0 to 7 as illustrated in table 1.
Table 1: 2 3 codepoints mapping to 8 UE’s subgroups
Codepoint Subgroup Index
000 Subgroup 0
001 Subgroup 1
010 Subgroup 2
011 Subgroup 3
100 Subgroup 4
101 Subgroup 5
110 Subgroup 6
111 Subgroup 7
FIG. 6 illustrates an example of two paging occasion per paging frame according to an embodiment of the present disclosure. Similarly, when the number of PO configured in a PF are 2 as shown in FIG. 6, the size of codepoints can be N=4, and the total number of codepoints can be (2 4) 16, which is partitioned into two sets of codepoints. Where the first set of codepoints indicate 8 subgroups of UE for paging in PO1 and the second set of codepoints indicate 8 subgroups of UEs for paging in PO2 as illustrated in table 2.
Table 2: 2 4 codepoints mapping to 8 UE’s subgroups
Figure PCTCN2021111171-appb-000003
FIG. 7 is a schematic diagram illustrating an example of four paging occasion per paging frame according to an embodiment of the present disclosure. When the number of PO configured in a PF are 4 as shown in FIG. 7, the size of  codepoints can be N=5 and the total number of codepoints can be (2 5) 32, which is partitioned into four sets of codepoints. Where the first set of codepoints indicate 8 subgroups of UEs for paging in PO1, the second set of codepoints indicate 8 subgroups of UEs for paging in PO2, the third set of codepoints indicate 8 subgroups of UEs for paging in PO3 and the 4 th set of codepoints indicate 8 subgroups of UEs for paging in PO4 respectively as illustrated in table 3.
Table 3: 2 3 codepoints mapping to 8 UE’s subgroups
Figure PCTCN2021111171-appb-000004
In 5G NR, the maximum number of PO in a PF is 4, thus to effectively utilize the number of codepoints, some embodiments of this disclosure proposes to keep the value of N (the payload size of codepoints) in the range of 3 ≤ N ≥ 5. Using the value of N lower than the prescribed range e.g. N = 2, the number of codepoints available for paging indication will be (2 2) 4, which is not enough to cover 8 subgroups of UEs for paging indication in a PO. Similarly, increasing the value of N from the prescribed range, e.g., N =6, the number of codepoints available for paging indication will be (2 6) 64, which increase the payload of codepoint and the number of extra codepoints will be wasted. Therefore, it is proposed to keep the size of codepoints of N = {3, 4, 5} , to efficiently utilize the codepoints for one PO in a PF, two PO in a PF, and four PO in a PF respectively.
FIG. 8 illustrates an example that each code point is mapped to a PRB in the physical resources according to an embodiment of the present disclosure. In an embodiment, a codepoint based mapping to the physical resources is provided. In this embodiment of the present disclosure, codepoints mapping of a PDCCH based PEI to the physical resources are discussed. The payload of each codepoint to indicate 8 subgroups of UEs for paging in a PO can be 3 bits, 4 bits or 5-bits as discussed in the above embodiments. These codepoint can be transmitted by gNB in PDCCH based PEI using Aggregation level (AL) 4 or AL8. Here we explain one example of codepoint mapping of a PDCCH based PEI to the physical resources using AL4. The codepoints can be map to the physical resources in FDM manner. Where each code point is mapped to a PRB in the physical resources as shown in FIG. 8. As one PRB contains 12 RE and one PRB can accommodate X number of bits which depends on the modulation scheme used for the mapping purpose. Thus. one PRB can be used to map at-least one codepoint.
FIG. 9 illustrates an example that each code point in mapped to the physical resource block according to an embodiment of the present disclosure. Codepoints of PDCCH based PEI can be mapped to the physical resources in TDM manner, where each code point is mapped to the physical resource block as shown in FIG. 9. In some embodiments, in the PDCCH based PEI, the number of resources consumed by codepoints based mapping to indicate the UE’s subgroups for paging depends on the aggregation level of the PDCCH based PEI. For instance, using AL4, the physical resources consumed for PDCCH based PEI transmission will be 24 PRB (288 REs) , despite of the fact that codepoints mapping to the physical  resources may consume less numbers of PRB. Therefore, there is physical resources waste in the PDCCH based PEI especially in a case when the number of subgroups for paging are less or the payload size of codepoints are small.
In an embodiment, SSS based PEI Mapping to the UE’s Subgroups is provided. This embodiment of the present disclosure explains, SSS based PEI sequence mapping design to indicate 8 UE’s subgroups per PO for paging. SSS based PEI is a sequence based PEI and its sequence d SSS (n) can be generated by the following equations as defined in TS 38.211. d SSS (n) = [1-2x 0 ( (n+m 0) mod127) ] [1-2x 1 ( (n+m 1) mod127) ]
Figure PCTCN2021111171-appb-000005
where
Figure PCTCN2021111171-appb-000006
and
Figure PCTCN2021111171-appb-000007
In SSS based PEI, for 8 UE’s subgroups at most 8 sequences are needed, in which each sequence is associated to a UE’s subgroup for paging indication. Similarly, a common sequence can also be generated which can indicate all UE’s subgroups for paging. In some embodiments of this disclosure, it is proposed to use one to one mapping of 8 sequences to 8 UE’s subgroups in a case when in a PO some of the UE’s subgroups need paging and some of the UE’s subgroups do not need paging. A common sequence can be used in case when all 8 subgroups of UEs need paging in a PO as illustrated in table 4.
Table 4: Sequence mapping to UE’s subgroup for paging indication
Sequence Index UE’s Subgroup Mapping
Sequence
 0 Subgroup 0
Sequence 1 Subgroup 1
Sequence 2 Subgroup 2
Sequence 3 Subgroup 3
Sequence 4 Subgroup 4
Sequence 5 Subgroup 5
Sequence 6 Subgroup 6
Sequence 7 Subgroup 7
Sequence 8 All subgroups
In some embodiments, the advantage of one to one mapping is that, if more than 1 subgroup are mapped with a common sequence in each set of resources, it may trigger the indication of all the associated subgroups for paging, in which some of the subgroups may not need paging and thus waste its power. Moreover, each sequence can be transmitted in the different set of resources in order to avoid the additional interferences between different sequences. The advantage of common sequence mapping to all UEs subgroups is that it may save the physical resources and avoid the interference which can occur due simultaneous transmission of many one-to-one sequences. FIG. 10 illustrates an example of an RB mapping for SSS based PEI with UE subgroup indication according to an embodiment of the present disclosure. The physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging can be FDMed in the physical resource blocks (PRB) of the entire available bandwidth for PEI transmission as shown in FIG. 10.
In an embodiment, TRS/CSI-RS based PEI mapping to the UE’s subgroups is provided. This embodiment of the present disclosure explains, TRS/CSI-RS based PEI sequence mapping design to indicate 8 UE’s subgroups per PO for  paging. TRS/CSI-RS based PEI is a sequence based PEI and its sequence can be generated by the following equation as defined in TS 38.211. 
Figure PCTCN2021111171-appb-000008
For each TRS/CSI-RS based PEI configured, the UE subgroups shall assume the sequence r (m) being mapped to resources elements (k, l) , where k is the physical resource mapping in frequency domain and l is the physical resources mapping in time domain within a resource block. The sequence generated by r (m) can be utilized to define the quantities k′ and l′, and orthogonal coded division multiplexed (CDM) sequences w f (k′) and w t (l′) of size 8 which are corresponding to 8 UE subgroups indication for paging. Where the indices k′ and l′ index resource elements within a CDM group. The embodiments of this disclosure define 4 types of numerical orthogonal CDM groups and each CDM group is of size 8 i.e., cdm8 to indicate 8 UE’s subgroups for paging per PO as explained in the following embodiments.
FIG. 11 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD2-TD4' according to an embodiment of the present disclosure. The first type of CDM group is cdm8-FD2-TD4 as defined in Rel-16 specification [TS 38.211] . The numerical orthogonal sequences w f (k′) and w t (l′) for cdm8-FD2-TD4 is shown in table 5. These sequences w f (k′) and w t (l′) of cdm8-FD2-TD4 can be Frequency Division Multiplexed (FDMed) and Time Division Multiplexed (TDMed) and apply to TRS/CSI-RS based PEI in order to create indication-codes of sequences combinations w f (k′) and w t (l′) for 8 UEs subgroup as shown in table 6. In table 6, each combination of the orthogonal sequences w f (k′) and w t (l′) of cdm8-FD2-TD4 create a unique indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} . Each indication-code can be mapped to a UE’s subgroup to indicate paging at a PO. For instance, the sequences combination ofw f (k′) and w t (l′) of cdm8-FD2-TD4 create 8 unique indication-codes and each indication-code, corresponding to index J = {0, 1, 2, 3, 4, 5, 6, 7} , can be mapped to UE’s subgroups = {0, 1, 2, 3, 4, 5, 6, 7} respectively as illustrated in table 6. The physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD2-TD4 is illustrated in FIG. 11. Where each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD2-TD4 with corresponding index J is FDMed and TDMed in the physical resources.
Table 5: Numerical orthogonal Sequences w f (k′) and w t (l′) for cdm-Type equal to 'cdm8-FD2-TD4'
Index [w f (0) w f (1) ] [w t (0) w t (1) w t (2) w t (3) ]
0 [+1 +1] [+1 +1 +1 +1]
1 [+1 -1] [+1 +1 +1 +1]
2 [+1 +1] [+1 -1 +1 -1]
3 [+1 -1] [+1 -1 +1 -1]
4 [+1 +1] [+1 +1 -1 -1]
5 [+1 -1] [+1 +1 -1 -1]
6 [+1 +1] [+1 -1 -1 +1]
7 [+1 -1] [+1 -1 -1 +1]
Table 6: Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD2-TD4'
Figure PCTCN2021111171-appb-000009
Figure PCTCN2021111171-appb-000010
FIG. 12 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD4-TD2' according to an embodiment of the present disclosure. The 2 nd type of CDM group proposed by some embodiments of this disclosure is cdm8-FD4-TD2. The numerical orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD4-TD2 is shown in table 7. These sequences w f (k′) and w t (l′) of cdm8-FD4-TD2 can be FDMed and TDMed and apply to TRS/CSI-RS based PEI in order to create indication-codes for 8 UEs subgroup as shown in table 8. In table 8, each combination of the orthogonal sequences w f (k′) and w t (l′) of cdm8-FD4-TD2 create a unique indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} . Each indication-code can be mapped to a UE’s subgroup to indicate paging before a PO. For instance, the sequences combination of w f (k′) and w t (l′) of cdm8-FD4-TD2 create 8 unique indication-codes and each indication-code, corresponding to index J = {0, 1, 2, 3, 4, 5, 6, 7} , can be mapped to UE subgroups = {0, 1, 2, 3, 4, 5, 6, 7} respectively. The physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD4-TD2 is illustrated in FIG. 12. Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD4-TD2 with corresponding index J is FDMed and TDMed in physical resources.
Table 1: Numerical orthogonal Sequences w f (k′) and w t (l′) for cdm-Type equal to 'cdm8-FD4-TD2'
Index [w f (0) w f (1) w f (2) w f (3) ] [w t (0) w t (1) ]
0 [+1 +1 +1 +1] [+1 +1]
1 [+1 +1 +1 +1] [+1 -1]
2 [+1 -1 +1 -1] [+1 +1]
3 [+1 -1 +1 -1] [+1 -1]
4 [+1 +1 -1 -1] [+1 +1]
5 [+1 +1 -1 -1] [+1 -1]
6 [+1 -1 -1 +1] [+1 +1]
7 [+1 -1 -1 +1] [+1 -1]
Table 2: Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD4-TD2'
Figure PCTCN2021111171-appb-000011
FIG. 13 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD-TD8' according to an embodiment of the present disclosure. The 3 rd type of CDM group proposed by an embodiment of this disclosure is cdm8-FD-TD8. The numerical orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD-TD8 is shown in table 9. These orthogonal sequences w f (k′) and w t (l′) of cdm8-FD-TD8 can be TDMed and apply to TRS/CSI-RS based PEI to create indication codes for 8 UE’s subgroups as shown in table 10. In table 10, each combination of the orthogonal sequences w f (k′) and w t (l′) of cdm8-FD-TD8 create a unique indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} . Each indication-code can be mapped to a UEs subgroup to indicate  paging before a PO. For instance, the sequences combination ofw f (k′) and w t (l′) of cdm8-FD-TD8 create 8 unique indication-codes and each indication-code, corresponding to index J = {0, 1, 2, 3, 4, 5, 6, 7} , can be mapped to UE subgroups = {0, 1, 2, 3, 4, 5, 6, 7} respectively. The physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD-TD8 is illustrated in FIG. 13. Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD-TD8 with corresponding index J is TDMed in physical resources.
Table 3: Numerical orthogonal Sequences w f (k′) and w t (l′) for cdm-Type equal to 'cdm8-FD-TD8'
Index [w f (0) ] [w t (0) w t (1) w t (2) w t (3) w t (4) w t (5) w t (6) w t (7) ]
0 1 [+1 +1 +1 +1 +1 +1 +1 +1]
1 1 [+1 -1 +1 -1 +1 -1 +1 -1]
2 1 [+1 +1 -1 -1 +1 +1 -1 -1]
3 1 [+1 +1 +1 -1 -1 -1 +1 +1]
4 1 [ +1 +1 +1 +1 -1 -1 -1 -1]
5 1 [-1 -1 +1 +1 -1 -1 +1 +1]
6 1 [-1 +1 -1+1 -1 +1 -1 +1]
7 1 [-1 -1 -1 -1 +1 +1 +1 +1]
Table 4: Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD-TD8'
Figure PCTCN2021111171-appb-000012
FIG. 14 illustrates an example of an RE mapping for TRS/CSI-RS based PEI with UE subgroup indication based 'cdm8-FD8-TD' according to an embodiment of the present disclosure. The 4 th type of CDM group proposed by an embodiment of this disclosure is cdm8-FD8-TD. The orthogonal sequences w f (k′) and w t (l′) for cdm-Type cdm8-FD8-TD is shown in table 11. These orthogonal sequences w f (k′) and w t (l′) of cdm8-FD-TD8 can be FDMed and apply to TRS/CSI-RS based PEI to create 8 unique indication-codes for 8 UEs subgroup as shown in table 12. In table 12, each combination of the orthogonal sequences w f (k′) and w t (l′) of cdm8-FD8-TD create a unique indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} . Each indication-code can be mapped to a UEs subgroup to indicate paging before a PO. For instance, the orthogonal sequences combination ofw f (k′) and w t (l′) of cdm8-FD8-TD create 8 unique indication-codes and each indication-code, corresponding to index J = {0, 1, 2, 3, 4, 5, 6, 7} , can be mapped to UE subgroups = {0, 1, 2, 3, 4, 5, 6, 7} respectively. The physical resource mapping of each indication-codes of orthogonal sequences combinationw f (k′) and w t (l′) of cdm8-FD8-TD is illustrated in FIG. 14. Each indication-code of orthogonal sequences combination w f (k′) and w t (l′) of cdm8-FD8-TD with corresponding index J is FDMed in physical resources.
Table 5: Numerical orthogonal Sequences w f (k′) and w t (l′) for cdm-Type equal to 'cdm8-FD8-TD'
Index J [w f (0) w f (1) w f (2) w f (3) w f (4) w f (5) w f (6) w f (7) ] w t (0)
0 [+1 +1 +1 +1 +1 +1 +1 +1] 1
1 [+1 -1 +1 -1 +1 -1 +1 -1] 1
2 [+1 +1 -1 -1 +1 +1 -1 -1] 1
3 [+1 +1 +1 -1 -1 -1 +1 +1] 1
4 [+1 +1 +1 +1 -1 -1 -1 -1] 1
5 [-1 -1 +1 +1 -1 -1 +1 +1] 1
6 [-1 +1 -1 +1 -1 +1 -1 +1] 1
7 [-1 -1 -1 -1 +1 +1 +1 +1] 1
Table 6: Sequence combination of w f (k′) and w t (l′) to support 8 UE subgroup per 'cdm8-FD8-TD'
Figure PCTCN2021111171-appb-000013
Figure PCTCN2021111171-appb-000014
Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Reducing a false paging. 3. Efficiently utilizing physical resources and indicating UE’s subgroups for paging with lower signaling overhead. 4. Providing a good communication performance. 5. Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure propose technical mechanisms.
FIG. 15 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 15 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (37)

  1. A wireless communication method performed by a user equipment (UE) , comprising:
    being configured, by a base station, with a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  2. The wireless communication method of claim 1, wherein for the PDCCH based PEI, a code-point based mapping is used to indicate the UE’s subgroups for paging at the PO, where a payload of codepoints is according to a configured number of the PO per paging frame (PF) .
  3. The wireless communication method of claim 2, wherein a number of codepoints is used from one PDCCH based PEI payload to indicate 8 UE’s subgroups for paging in the PO, the number of codepoints is expressed as 2 N, where N is a number of bits used in the payload of codepoints and ranges between 3 and 5, and the configured number of the PO per PF is {1, 2, 4} .
  4. The wireless communication method of claim 2, wherein the codepoints are transmitted by the base station in the PDCCH based PEI using an aggregation level (AL) , and the AL comprises AL4 or AL8.
  5. The wireless communication method of claim 4, wherein the codepoints can be mapped to physical resources in a frequency division multiplexing (FDM) manner or a time division multiplexing (TDM) manner, and each codepoint is mapped to one physical resource block (PRB) in the physical resources.
  6. The wireless communication method of claim 4, wherein in the PDCCH based PEI, a number of resources consumed by a codepoint based mapping to indicate the UE’s subgroups for paging depends on the AL of the PDCCH based PEI.
  7. The wireless communication method of claim 1, wherein for the SSS based PEI, one to one sequence based mapping and common sequence based mapping are used to indicate the UE’s subgroups for paging at the PO.
  8. The wireless communication method of claim 7, wherein one to one mapping of 8 sequences is used to 8 UE’s subgroups when in the PO, a part of the UE’s subgroups needs paging, and a part of the UE’s subgroups does not need paging.
  9. The wireless communication method of claim 8, wherein a physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging is FDMed in PRBs of an entire available bandwidth for PEI transmission.
  10. The wireless communication method of claim 1, wherein for the TRS/CSI-RS based PEI, orthogonal coded division multiplexed (CDM) sequences of TRS/CSI-RS and combinations thereof are used to provide indication-codes to indicate the UE’s subgroups for paging at the PO.
  11. The wireless communication method of claim 10, wherein the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each configured TRS/CSI-RS based PEI, the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block, the sequence generated by r (m) is used to define quantities k′ and l′, orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging, and k′ and l′ index resource elements within a CDM group.
  12. The wireless communication method of claim 11, wherein 4 types of numerical orthogonal CDM groups are defined, each CDM group is of size 8 (cdm8) , and at a target PO, only one type of cdm8 is used to indicate 8 UE’s subgroups for paging per PO.
  13. The wireless communication method of claim 12, wherein a first type of CDM group is cdm8-FD2-TD4, a second type  of CDM group is cdm8-FD4-TD2, a third type of CDM group is cdm8-FD-TD8, and/or a fourth type of CDM group is cdm8-FD8-TD.
  14. The wireless communication method of claim 12, wherein numerical orthogonal sequences for the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group is FDMed or TDMed and is applied to the TRS/CSI-RS based PEI to provide indication-codes of orthogonal sequences combinations for the UEs subgroup indication for paging.
  15. The wireless communication method of claim 14, wherein each combination of the orthogonal sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group provide an indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} , each indication-code is mapped to a UE’s subgroup to indicate paging at the PO, and/or each indication-code of each combination of the orthogonal sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group with a corresponding index J is FDMed or TDMed in physical resources.
  16. A wireless communication method performed by a base station, comprising:
    configuring, to a user equipment (UE) , a mapping of a physical downlink control channel (PDCCH) based paging early indication (PEI) , a secondary synchronization signal (SSS) based PEI, and/or a tracking reference signal (TRS) /channel state information reference signal (CSI-RS) based PEI to indicate UE’s subgroups whether to monitor a PDCCH scrambled with a paging-radio network temporary identifier (P-RNTI) at a paging occasion (PO) , wherein a UE subgroup monitors the PO if the UE subgroup detects a PEI and the UE subgroup does not monitor the PO if the UE subgroup does not detect the PEI.
  17. The wireless communication method of claim 16, wherein for the PDCCH based PEI, a code-point based mapping is used to indicate the UE’s subgroups for paging at the PO, where a payload of codepoints is according to a configured number of the PO per paging frame (PF) .
  18. The wireless communication method of claim 17, wherein a number of codepoints is used from one PDCCH based PEI payload to indicate 8 UE’s subgroups for paging in the PO, the number of codepoints is expressed as 2 N, where N is a number of bits used in the payload of codepoints and ranges between 3 and 5, and the configured number of the PO per PF is {1, 2, 4} .
  19. The wireless communication method of claim 17, wherein the codepoints are transmitted by the base station in the PDCCH based PEI using an aggregation level (AL) , and the AL comprises AL4 or AL8.
  20. The wireless communication method of claim 19, wherein the codepoints can be mapped to physical resources in a frequency division multiplexing (FDM) manner or a time division multiplexing (TDM) manner, and each codepoint is mapped to one physical resource block (PRB) in the physical resources.
  21. The wireless communication method of claim 19, wherein in the PDCCH based PEI, a number of resources consumed by a codepoint based mapping to indicate the UE’s subgroups for paging depends on the AL of the PDCCH based PEI.
  22. The wireless communication method of claim 16, wherein for the SSS based PEI, one to one sequence based mapping and common sequence based mapping are used to indicate the UE’s subgroups for paging at the PO.
  23. The wireless communication method of claim 22, wherein one to one mapping of 8 sequences is used to 8 UE’s subgroups when in the PO, a part of the UE’s subgroups needs paging, and a part of the UE’s subgroups does not need paging.
  24. The wireless communication method of claim 23, wherein a physical resource mapping of 8 different sequences, in which each sequence is associated to a UE’s subgroup for paging is FDMed in PRBs of an entire available bandwidth for PEI transmission.
  25. The wireless communication method of claim 16, wherein for the TRS/CSI-RS based PEI, orthogonal coded division multiplexed (CDM) sequences of TRS/CSI-RS and combinations thereof are used to provide indication-codes to indicate  the UE’s subgroups for paging at the PO.
  26. The wireless communication method of claim 25, wherein the TRS/CSI-RS based PEI is a sequence based PEI and a sequence r (m) generated for each configured TRS/CSI-RS based PEI, the UE subgroups assume the sequence r (m) being mapped to resources elements (k, l) , where k is a physical resource mapping in frequency domain and l is a physical resource mapping in time domain within one resource block, the sequence generated by r (m) is used to define quantities k′ and l′, orthogonal CDM sequences w f (k′) and w t (l′) of size 8 are corresponding to 8 UE subgroups indication for paging, and k′ and l′ index resource elements within a CDM group.
  27. The wireless communication method of claim 26, wherein 4 types of numerical orthogonal CDM groups are defined, each CDM group is of size 8 (cdm8) , and at a target PO, only one type of cdm8 is used to indicate 8 UE’s subgroups for paging per PO.
  28. The wireless communication method of claim 27, wherein a first type of CDM group is cdm8-FD2-TD4, a second type of CDM group is cdm8-FD4-TD2, a third type of CDM group is cdm8-FD-TD8, and/or a fourth type of CDM group is cdm8-FD8-TD.
  29. The wireless communication method of claim 27, wherein numerical orthogonal sequences for the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group is FDMed or TDMed and is applied to the TRS/CSI-RS based PEI to provide indication-codes of orthogonal sequences combinations for the UEs subgroup.
  30. The wireless communication method of claim 29, wherein each combination of the sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group provide an indication-code which is corresponding to an index J, where J = {0, 1, 2, 3, 4, 5, 6, 7} , each indication-code is mapped to a UE’s subgroup to indicate paging at the PO, and/or each indication-code of each combination of the orthogonal sequences of the first type of CDM group, the second type of CDM group, the third type of CDM group, and/or the fourth type of CDM group with a corresponding index J is FDMed or TDMed in physical resources.
  31. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 1 to 15.
  32. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 16 to 30.
  33. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 30.
  34. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 30.
  35. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a  computer to execute the method of any one of claims 1 to 30.
  36. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 30.
  37. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 30.
PCT/CN2021/111171 2021-08-06 2021-08-06 User equipment, base station, and wireless communication method WO2023010524A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/111171 WO2023010524A1 (en) 2021-08-06 2021-08-06 User equipment, base station, and wireless communication method
CN202180101440.4A CN117813870A (en) 2021-08-06 2021-08-06 User equipment, base station and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111171 WO2023010524A1 (en) 2021-08-06 2021-08-06 User equipment, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2023010524A1 true WO2023010524A1 (en) 2023-02-09

Family

ID=85154197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111171 WO2023010524A1 (en) 2021-08-06 2021-08-06 User equipment, base station, and wireless communication method

Country Status (2)

Country Link
CN (1) CN117813870A (en)
WO (1) WO2023010524A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200084747A1 (en) * 2018-09-06 2020-03-12 Kt Corporation Methods for controlling a paging operation and apparatuses thereof
CN111869273A (en) * 2018-03-30 2020-10-30 联想(北京)有限公司 Method and apparatus for monitoring paging messages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869273A (en) * 2018-03-30 2020-10-30 联想(北京)有限公司 Method and apparatus for monitoring paging messages
US20200084747A1 (en) * 2018-09-06 2020-03-12 Kt Corporation Methods for controlling a paging operation and apparatuses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR (MEDIATEK): "Summary of Paging Enhancements", 3GPP DRAFT; R1-2106143, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 2 June 2021 (2021-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052019153 *
SAMSUNG: "Discussion on paging enhancements", 3GPP DRAFT; R1-2105321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011367 *
VIVO: "Discussion on paging grouping", 3GPP DRAFT; R1-2007675, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946472 *

Also Published As

Publication number Publication date
CN117813870A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
CN111148221B (en) Paging method, terminal equipment and network equipment
US20200169982A1 (en) Technique for Idle Mode Paging in a Radio Communicaiton between a Network Node and a Radio Device
US10813077B2 (en) Communications device, infrastructure equipment, communication system and methods for group paging and grouping communication devices based on various criteria
CN109661021B (en) Method for multiplexing wake-up signal
CN112073942B (en) Method and equipment for transmitting information
US10271302B2 (en) Method and apparatus for paging terminals in a wireless communication system
KR20220004179A (en) Method and apparatus for waking up a terminal device, network device and terminal device
US11903082B2 (en) Discontinuous reception method, terminal device and network device
WO2016163940A1 (en) Methods wireless communication device and radio network node for managing paging
CN111934829B (en) Method for transmitting signals, terminal device and network device
US20220303900A1 (en) Wake-up signal for discontinuous reception operations
CN109803355A (en) A kind of paging method, terminal, the network equipment and device
EP3905795B1 (en) Pdcch monitoring configuration for a terminal
US20220150869A1 (en) Assignment of a second ue identity to adjust paging timing for ue for wireless network
KR20120025392A (en) Method of performing distributely random access and distributing random access and apparatus thereof
US20240064700A1 (en) Methods and apparatuses for paging
US20220303897A1 (en) Wake-up Signal Reception for Paging Operations
WO2023010524A1 (en) User equipment, base station, and wireless communication method
WO2022188155A1 (en) User equipment, base station, and wireless communication method
CN108668360B (en) Sending method and receiving method of paging message, base station and terminal
CN111756503B (en) Signal detection method and device
WO2022236620A1 (en) User equipment, base station, and wireless communication method
WO2023070688A1 (en) Base station, user equipment, and method for processing paging early indication
WO2023056643A1 (en) Wireless communication method and relevant hardware
WO2022205097A1 (en) User equipment, base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101440.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21952399

Country of ref document: EP

Kind code of ref document: A1