WO2022001848A1 - 一种传输处理方法、装置及终端 - Google Patents

一种传输处理方法、装置及终端 Download PDF

Info

Publication number
WO2022001848A1
WO2022001848A1 PCT/CN2021/102262 CN2021102262W WO2022001848A1 WO 2022001848 A1 WO2022001848 A1 WO 2022001848A1 CN 2021102262 W CN2021102262 W CN 2021102262W WO 2022001848 A1 WO2022001848 A1 WO 2022001848A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
value
signal blocks
downlink control
received
Prior art date
Application number
PCT/CN2021/102262
Other languages
English (en)
French (fr)
Inventor
李娜
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022001848A1 publication Critical patent/WO2022001848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a transmission processing method, device and terminal.
  • the New Radio supports the use of beam sweeping for Synchronization Signal Block (SSB) transmission, that is, the SSB can be transmitted in different beams in a time-division multiplexing manner.
  • the SSB set in the beam scan is called SSB burst set.
  • Each candidate SSB has an index called SSB index.
  • Different SSB indexes can represent different spatial directions. (ie, use a different beam) to transmit the candidate SSB.
  • the Physical Broadcast Channel carries a Master Information Block (MIB), and the MIB contains a small amount of information that the terminal needs to access, so as to be able to obtain the remaining system information (Remaining Minimal System Information, RMSI) broadcast by the network ).
  • the specific scheduling information of the RMSI is configured by System Information Block 1 (SIB1).
  • SIB1 System Information Block 1
  • the MIB provides the parameters required for monitoring the PDCCH in pdcch-ConfigSIB1, such as the Common Control Resource for determining the physical resources of the PDCCH for scheduling SIB1 Set(CORESET#0) is called Type0-PDCCH CORESET.
  • the search space configuration that determines the PDCCH monitoring occasion (monitoring occasion) of scheduling SIB1 is called Type0-PDCCH Common search space (CSS). This monitoring occasion is associated with the SSB index.
  • the terminal can consider that the transmission of the SSB and its associated Type0-PDCCH CSS use the same wave number. Therefore, the terminal detects and measures the SSB, selects a candidate SSB with the strongest reference signal received power (Reference Signal Received Power, RSRP), and obtains the corresponding SSB identifier (index), which establishes the beam correspondence between the network side equipment and the terminal. , the terminal can calculate the monitoring timing of Type0-PDCCH CSS according to the index index, receive the PDCCH that schedules SIB1, and correctly demodulate SIB1, the terminal will start the random access process, and the beams used in the random access process are also the same as those selected above.
  • the SSB index is the same.
  • the terminal needs to reduce the number of receiving antennas, and the reduction in the number of receiving antennas will directly lead to a decrease in downlink coverage.
  • the purpose of the embodiments of the present application is to provide a transmission processing method, device, and terminal, which can solve the problem of downlink coverage reduction.
  • an embodiment of the present application provides a transmission processing method, which is applied to a terminal, and the method includes:
  • the target resource is a synchronization signal block or a control resource set or a system information block SIB1
  • the control resource set is a physical resource used to determine the physical downlink control channel for scheduling SIB1
  • an embodiment of the present application provides a transmission processing device, including:
  • a first processing module configured to combine and receive at least two target resources; wherein, the target resource is a synchronization signal block or a control resource set or a system information block SIB1, and the control resource set is a physical downlink control used to determine the scheduling SIB1 Physical resources of the channel.
  • the target resource is a synchronization signal block or a control resource set or a system information block SIB1
  • the control resource set is a physical downlink control used to determine the scheduling SIB1 Physical resources of the channel.
  • an embodiment of the present application further provides a terminal, the terminal includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being When executed by the processor, the steps of the method according to the first aspect are implemented.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented. step.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the method described.
  • At least two combined receptions can be performed for each of the SSB or the control resource set or SIB1, which improves the receiving capability of the terminal, thereby solving the problem of reduced downlink coverage.
  • 1 is a block diagram of a wireless communication system
  • FIG. 2 is a schematic flowchart of a transmission processing method according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a transmission processing apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal according to another embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6-th Generation (6G) Communication Systems.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • a transmission processing method applied to a terminal, includes:
  • Step 201 Combine and receive at least two target resources; wherein, the target resource is a synchronization signal block or a control resource set or a system information block SIB1, and the control resource set is a physical resource used to determine the physical downlink control channel for scheduling SIB1 .
  • the target resource is a synchronization signal block or a control resource set or a system information block SIB1
  • the control resource set is a physical resource used to determine the physical downlink control channel for scheduling SIB1 .
  • the terminal can perform combined reception of at least two of the synchronization signal blocks SSB or the control resource set or SIB1 respectively, which improves the receiving capability of the terminal and solves the problem of reduced downlink coverage.
  • control resource can be CORESET#0 or SS#0.
  • the combined reception of at least two target resources is not limited to the resources themselves, but also includes information on the resources.
  • the PDCCH can be received on multiple CORESET#0, and the control signaling can be obtained by combining and demodulating.
  • the PDCCH received on CORESET#0 is the broadcast PDCCH, that is, the broadcast PDCCH.
  • step 201 includes:
  • the target resource is a synchronization signal block, in one or X synchronization signal block transmission cycles, combine and receive M synchronization signal blocks;
  • the target resource is a control resource set, receive and decode the physical downlink control channels used for broadcasting on the N control resource sets;
  • X, N, M, and K are all positive integers greater than 1.
  • the terminal may receive M SSBs in combination in one or X SSB transmission periods.
  • the network side device sends L candidate SSBs in one SSB transmission period, and the terminal will receive T SSBs in combination, 1 ⁇ T ⁇ L.
  • T SSBs are sent repeatedly.
  • the terminal may receive and decode the broadcast PDCCHs on N CORESET#0 to obtain control signaling.
  • the N CORESET#0s may be associated with different and/or the same SSB index.
  • Another example is SS#0, the downlink control information DCI is received on N SS#0s, and the N SS#0s may have the same initial CCE index and aggregation level AL; or, the SSB indexes associated with the N SS#0s have common modulus, etc.
  • the terminal may receive and decode K SIB1s.
  • Joint demodulation is performed on the master information block MIB on the M synchronization signal blocks.
  • the terminal can determine whether to camp or generate a measurement report from the reference signal received power of the M synchronization signal blocks.
  • the transmission beam can be determined according to the indices of the M SSBs, and subsequent transmission is completed after the dwell is determined.
  • the PRACH resource of the physical random access channel used for the subsequent random access the number of repeated transmissions, the beam used, and the like can also be determined.
  • the judgment of whether to reside or not is to use the received power of the reference signals of the M synchronization signal blocks Compared with the first preset power threshold (rsrp-ThresholdSSB), if stay; otherwise, do not stay.
  • this method is suitable for UEs with reduced downlink coverage.
  • a target SSB whose RSRP is greater than the second preset power threshold and greater than other RSRPs can be selected, and the target SSB has a corresponding SSB index, Transmission beams and/or cells may be further determined.
  • the first preset power threshold and the second preset power threshold may be the same or different.
  • M synchronization signal blocks in one or X synchronization signal block transmission periods it can also be used for decoding MIB, that is, the UE performs joint demodulation of M SSBs.
  • the value of M is pre-configured, predefined or network-side device configuration; or,
  • M is equal to the number of synchronization signal blocks sent by the network side device, and the synchronization signal blocks sent by the network side device have different identifiers;
  • the sum of the reference signal received powers of the M synchronization signal blocks is greater than or equal to a first threshold, and M is less than or equal to a second threshold, the second threshold and the reference signal received power of the first synchronization signal block received by the terminal correspond;
  • the received reference signal power of the M synchronization signal blocks is greater than the received reference signal power of the remaining received synchronization signal blocks;
  • the M synchronization signal blocks have the same identifier
  • the identifiers of the M synchronization signal blocks and the quasi-co-location parameters satisfy a first correspondence
  • the demodulation reference signal sequence index of the M synchronization signal blocks and the quasi-co-location parameter satisfy the second correspondence
  • the value of M is determined according to the received power of the reference signal of the first synchronization signal block received by the terminal and the preset threshold.
  • the value of M can be superimposed through the RSRP of the SSB until
  • the first threshold may be rsrp-ThresholdSSB, where M ⁇ M_max, that is, the second threshold.
  • M_max corresponds to the reference signal received power of the first synchronization signal block received by the terminal, as shown in Table 1 below:
  • M SSBs with the largest RSRPs are selected, that is, the RSRPs of the M SSBs are all larger than the RSRPs of the remaining SSBs.
  • the selection of M SSBs starts from the SSB with the largest RSRP, and selects them in sequence based on the decreasing RSRP, until
  • the M SSBs have the same index, that is, the value of M is equal to the number of SSBs with the same index.
  • index is the index of the DM-RS sequence of the demodulation reference signal Carrying
  • the network side device sends the same index of the DM-RS sequence in the PBCH in the multiple SSBs in one or X SSB transmission periods, and the number of the multiple SSBs is the value of M.
  • This method of determining the value of M is more suitable for frequency range 2 (FR2, that is, millimeter wave).
  • FR2 frequency range 2
  • the UE needs to read the PBCH to obtain timing within 5ms.
  • the index and quasi-co-location parameters of M SSBs The first correspondence is satisfied.
  • the first correspondence is the index pair of M SSBs
  • the remainder will get the same value, that is, the index of the M SSBs passes the formula get the same value.
  • the network-side device is not allowed to send multiple SSBs with the same index in one SSB cycle; or, the PBCHs in the multiple SSBs that are not allowed to be sent have the same index in
  • the value of can be predefined, as shown in Table 2 below, corresponding to different subcarrier spacing (SCS):
  • M SSB's and The second correspondence is satisfied.
  • the second correspondence is for M SSBs right
  • the remainder will get the same value, that is, the M SSB's by formula get the same value.
  • the network side device is not allowed to send multiple SSBs with the same index in one SSB cycle; or, the PBCHs in the multiple SSBs that are not allowed to be sent have the same index. and
  • the value of can be predefined, as shown in Table 2 above.
  • the number of the preset thresholds is not limited to two, and may be one or more than two, which will not be listed one by one here.
  • the value of N is equal to the value of M
  • N is indicated by the indication field of the main information block.
  • N corresponds to the main information block.
  • the value of N can be determined according to the indication of the indication field of the main information block MIB. For example, as shown in Table 3 below, 1 or 2 bits of reserved (reserved) in the MIB (such as ) to refer to the value of N:
  • the UE can then receive and decode the PDCCH for N CORESET#0 or SS#0 in CORESET#0 or SS#0 associated with multiple SSBs to obtain DCI.
  • the value of N corresponds to the MIB, and the corresponding relationship may be predefined or configured.
  • the Reserved Index can be determined based on MIB to obtain the value of N:
  • Table 4 is a modification to the table of parameters used to determine the PDCCH monitoring timing of the Type0-PDCCH common search space set when the synchronization signal block and control resource set multiplexing mode is 1 on frequency range 1 (FR1). .
  • N in Table 4 applies to UEs with reduced downlink coverage.
  • Table 5 is a modification to the table of parameters used to determine the PDCCH monitoring timing of the Type0-PDCCH common search space set when the synchronization signal block and control resource set multiplexing mode is 1 on FR2.
  • M in Table 4 and Table 5 is not the number of SSBs received in combination in this application, but a parameter in the original table, which is not repeated here.
  • each physical downlink control channel carries downlink control information DCI of the same size and content.
  • the same DCI mapping is associated with the position of each physical downlink control channel.
  • the same DCI is mapped to the position of each physical downlink control channel, and the same DCI may be mapped to the same position of each physical downlink control channel.
  • the DCI is mapped to the first SSB with AL8.
  • a PDCCH candidate the DCI is also mapped to the second SSB, and the third SSB has the first PDCCH candidate of AL8.
  • the UE with reduced downlink coverage (RedCap UE) repeats the blind detection BD of the same PDCCH candidate on N CORESET#0.
  • the same DCI may be mapped at different positions on each physical downlink control channel, and the association may be predefined or configured.
  • the physical downlink control channels used for broadcasting on the N control resource sets correspond to N parts that carry the same DCI.
  • 1 DCI may split the nth PDCCH candidates of a given AL for transmission on N CORESET#0s of multiple SSBs.
  • the time interval of the physical downlink control channel is greater than or equal to the first duration.
  • the PDCCHs are a plurality of PDCCHs scrambled with the cyclic redundancy check code CRC with the system information radio network temporary identifier SI-RNTI.
  • the first duration will be determined by the processing capability of the UE and at least one of the SCS used to transmit the PDCCH or PDSCH.
  • the UE can demodulate multiple repeated PDCCHs independently, or demodulate the first PDCCH independently first, and if the demodulation of the first PDCCH fails, jointly demodulate the first PDCCH and the second PDCCH.
  • the value of K is equal to the value of N; or,
  • the value of K is indicated by the control resource set.
  • K may be determined by the value of N, or may be indicated by the control resource set.
  • the value of K may be indicated implicitly or explicitly in the control resource set, which will not be listed one by one here.
  • the method of the embodiment of the present application can perform at least two combined receptions for each of the SSB or the control resource set or SIB1, which improves the receiving capability of the terminal and thus solves the problem of reduced downlink coverage.
  • the execution body may be a transmission processing apparatus, or a control module in the transmission processing apparatus for executing the loading transmission processing method.
  • the transmission processing method provided by the embodiments of the present application is described by taking the transmission processing apparatus executing the loading and transmission processing method as an example.
  • a transmission processing apparatus 300 includes:
  • the first processing module 310 is configured to combine and receive at least two target resources; wherein, the target resource is a synchronization signal block or a control resource set or a system information block SIB1, and the control resource set is used to determine the physical downlink of the scheduling SIB1 Physical resources for control channels.
  • the target resource is a synchronization signal block or a control resource set or a system information block SIB1
  • the control resource set is used to determine the physical downlink of the scheduling SIB1 Physical resources for control channels.
  • the first processing module includes:
  • a first processing submodule configured to combine and receive M synchronization signal blocks in one or X synchronization signal block transmission cycles if the target resource is a synchronization signal block;
  • a second processing submodule configured to receive and decode the physical downlink control channels used for broadcasting on the N control resource sets if the target resource is a control resource set;
  • a third processing submodule configured to receive and decode K SIB1s if the target resource is SIB1;
  • X, N, M, and K are all positive integers greater than 1.
  • the device further includes at least one of the following:
  • a second processing module configured to determine whether to camp or generate a measurement report according to the received power of the reference signal of the M synchronization signal blocks;
  • a third processing module configured to determine the transmission beam according to the identifiers of the M synchronization signal blocks
  • the fourth processing module is configured to jointly demodulate the main information block MIB on the M synchronization signal blocks.
  • the value of M is pre-configured, predefined or network-side device configuration; or,
  • the value of M is equal to the number of synchronization signal blocks sent by the network side device, and the synchronization signal blocks sent by the network side device have different identifiers;
  • the sum of the reference signal received powers of the M synchronization signal blocks is greater than or equal to a first threshold, and M is less than or equal to a second threshold, the second threshold and the reference signal received power of the first synchronization signal block received by the terminal correspond;
  • the received reference signal power of the M synchronization signal blocks is greater than the received reference signal power of the remaining received synchronization signal blocks;
  • the M synchronization signal blocks have the same identifier
  • the identifiers of the M synchronization signal blocks and the quasi-co-location parameters satisfy a first correspondence
  • the demodulation reference signal sequence index of the M synchronization signal blocks and the quasi-co-location parameter satisfy the second correspondence
  • the value of M is determined according to the received power of the reference signal of the first synchronization signal block received by the terminal and the preset threshold.
  • the value of N is equal to the value of M
  • N is indicated by the indication field of the main information block.
  • N corresponds to the main information block.
  • each physical downlink control channel carries downlink control information DCI of the same size and content.
  • the same DCI mapping is associated with the position of each physical downlink control channel.
  • the physical downlink control channels used for broadcasting on the N control resource sets correspond to N parts that carry the same DCI.
  • the time interval of the physical downlink control channel is greater than or equal to the first duration.
  • the value of K is equal to the value of N; or,
  • the value of K is indicated by the control resource set.
  • the device can perform combined reception of at least two of the SSBs or the control resource set or the SIB1 respectively, which improves the receiving capability of the terminal and thus solves the problem of reduced downlink coverage.
  • the transmission processing apparatus 300 further includes a processor.
  • this device is a device that applies the above-mentioned transmission processing method, and the implementation of the above-mentioned method embodiments is applicable to this device, and can also achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the transmission processing device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the transmission processing device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • an embodiment of the present application further provides a terminal, including a processor 401, a memory 402, a program or instruction stored in the memory 402 and executable on the processor 401, for example,
  • a terminal including a processor 401, a memory 402, a program or instruction stored in the memory 402 and executable on the processor 401, for example,
  • the program or instruction is executed by the processor 401, each process of the above-mentioned transmission processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510 and other components .
  • the terminal 500 may further include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation to the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 501 receives the downlink data from the network side device, and then processes it to the processor 510; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 510.
  • the processor 510 is configured to combine and receive at least two target resources; wherein, the target resource is a synchronization signal block or a control resource set or a system information block SIB1, and the control resource set is a physical downlink used to determine the scheduling SIB1 Physical resources for control channels.
  • the target resource is a synchronization signal block or a control resource set or a system information block SIB1
  • the control resource set is a physical downlink used to determine the scheduling SIB1 Physical resources for control channels.
  • the terminal can perform combined reception of at least two of the SSBs or the control resource set or the SIB1 respectively, which improves the receiving capability of the terminal and solves the problem of reduced downlink coverage.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above transmission processing method embodiments.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above transmission processing method embodiments.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Abstract

本申请公开了一种传输处理方法、装置及终端,涉及通信技术领域。该方法包括:合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。

Description

一种传输处理方法、装置及终端
相关申请的交叉引用
本申请主张在2020年6月30日在中国提交的中国专利申请No.202010622143.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输处理方法、装置及终端。
背景技术
目前,终端进行小区搜索时,会尝试搜索接收同步信号和物理广播信道。而新空口(New Radio,NR)支持使用波束扫描(beam sweeping)进行同步信号块(Synchronization Signal Block,SSB)传输,即以时分复用的方式可以在不同的波束中传输SSB。波束扫描内的SSB集称为SSB burst set,一个SSB burst set里有多个候选SSB(candidate SSB),每个candidate SSB有一个索引称作SSB index,不同的SSB index可以代表在不同的空间方向(即,使用不同的波束)发送candidate SSB。
另外,物理广播信道(Physical Broadcast Channel,PBCH)承载主信息块(Master Information Block,MIB),MIB包含终端需要的接入少量信息,以便能够获取网络广播的剩余系统信息(Remaining Minimal System Information,RMSI)。RMSI具体的调度信息由系统信息块1(SIB1)配置。为了使终端UE能够监视由物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度的SIB1,MIB在pdcch-ConfigSIB1中提供监视PDCCH所需的参数,如确定调度SIB1的PDCCH的物理资源的Common Control Resource Set(CORESET#0)被称为Type0-PDCCH CORESET。而确定调度SIB1的PDCCH监视时机(monitoring occasion)的搜索空间配置被称为Type0-PDCCH Common search space(CSS)。该监视时机与SSB index相关联。
这样,终端可以认为SSB的传输和其关联的Type0-PDCCH CSS使用的是相同的波数。因此,终端检测和测量SSB,选择一个参考信号接收功率 (Reference Signal Received Power,RSRP)最强的candidate SSB,得到相应的SSB标识(index),该index为网络侧设备和终端建立了波束对应关系,终端可以根据该索引index计算出Type0-PDCCH CSS的监视时机,接收调度SIB1的PDCCH,正确解调SIB1后,终端将开始随机接入过程,随机接入过程中使用的波束也和上述选择的SSB index一致。
但是,应垂直行业的需求,终端需要减少接收天线数目,而接收天线数目的减少将直接导致下行的覆盖降低。
发明内容
本申请实施例的目的是提供一种传输处理方法、装置及终端,能够解决下行的覆盖降低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请的实施例提供了一种传输处理方法,应用于终端,该方法包括:
合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源
第二方面,本申请的实施例提供了一种传输处理装置,包括:
第一处理模块,用于合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。
第三方面,本申请实施例还提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信 接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
这样,本申请实施例中,能够针对SSB或控制资源集或SIB1,各自进行至少两个的合并接收,提升了终端的接收能力,从而解决下行的覆盖降低的问题。
附图说明
图1为无线通信系统的框图;
图2为本申请实施例的传输处理方法的流程示意图;
图3为本申请实施例的传输处理装置的结构示意图;
图4为本申请实施例的终端的结构示意图;
图5为本申请另一实施例的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。例如,“A和/或B”,表示“单独A,单独B,以及A和B都存在”三种情况,“A和B中的至少一个”也表示“单独A,单独B,以及A和B都存在”三种情况。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、 时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6-th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的 传输处理方法进行详细地说明。
如图2所示,本申请实施例的一种传输处理方法,应用于终端,包括:
步骤201,合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。
通过上述步骤,终端能够针对同步信号块SSB或控制资源集或SIB1,各自进行至少两个的合并接收,提升了终端的接收能力,从而解决下行的覆盖降低的问题。
其中,控制资源可以是CORESET#0或SS#0。对于至少两个目标资源的合并接收,不限于针对资源本身,还包括资源上的信息。
例如,对于接收天线数目减少的UE,应用本申请实施例的方法,在小区搜索和接入的场景中,可以接收多个SSB,并合并该多个SSB的RSRP作为接入小区的判断;在CORESET#0接收解调广播控制信道的控制信令的场景,可以在多个CORESET#0上接收PDCCH,并合并解调得到控制信令。这里,CORESET#0上接收的PDCCH,是广播PDCCH,即broadcast PDCCH。
在该实施例中,针对不同的目标资源,可选地,步骤201包括:
若所述目标资源为同步信号块,在一个或X个同步信号块传输周期中,合并接收M个同步信号块;
若所述目标资源为控制资源集,对N个控制资源集上用于广播的物理下行控制信道进行接收并解码;
若所述目标资源为SIB1,对K个SIB1进行接收并解码;
其中,X、N、M、K均为大于1的正整数。
这里,对于SSB,终端可以在一个或X个SSB传输周期中,合并接收M个SSB。以一个SSB传输周期,网络侧设备在一个SSB传输周期内发送L个候选SSB,则终端会对T个SSB合并接收,1﹤T≤L。当然,对X个SSB传输周期中M个SSB,是在第一个SSB传输周期合并接收的SSB的RSRP未能达到要求的情况下进一步合并接收的,故,T≤M。而网络侧设备在一个SSB 传输周期内发送的L个候选SSB中,T个SSB是重复发送的。对于低于3GHz的频带,一个SSB burst内最多可以有4个SSB,即L=4;对于3GHz和6GHz之间的频带,一个SSB burst内最多可以有8个SSB,即L=8;对于更高的频段(FR2),SSB burst中最多可以有64个SSB,即L=64。
对于控制资源集,如CORESET#0,终端可以对N个CORESET#0上的broadcast PDCCH进行接收并解码,以得到控制信令。该N个CORESET#0可以和不同的和/或相同的SSB index相关联。又如SS#0,在N个SS#0上接收下行控制信息DCI,该N个SS#0可具有相同的起始CCE index,聚合等级AL;或者,N个SS#0关联的SSB index有共同的模值等。
对于SIB1,终端可以对K个SIB1进行接收并解码。
该实施例中,对于SSB的合并接收,可选地,所述在一个或X个同步信号块传输周期中,合并接收M个同步信号块之后,还包括以下至少一项:
根据所述M个同步信号块的参考信号接收功率,确定是否驻留或生成测量报告;
根据所述M个同步信号块的标识,确定传输波束;
对所述M个同步信号块上的主信息块MIB进行联合解调。
这样,终端可由M个同步信号块的参考信号接收功率来确定是否驻留或生成测量报告。而由SSB的标识(index)与波束的对应关系,可根据该M个SSB的index,确定传输波束,在确定驻留后完成后续传输。当然,根据该M个SSB的index,也可以确定后续的随机接入所使用的物理随机接入信道PRACH资源,重复传输的次数和使用的波束等。
具体的,是否驻留的判断,是将M个同步信号块的参考信号接收功率
Figure PCTCN2021102262-appb-000001
与第一预设功率阈值(rsrp-ThresholdSSB)比较,若
Figure PCTCN2021102262-appb-000002
则驻留;反之,则不驻留。当然,该方式适用于下行覆盖降低的UE,对于未发生下行覆盖降低的UE,可选择RSRP大于第二预设功率阈值,且大于其它RSRP的目标SSB,而该目标SSB具有对应的SSB index,可进一步确定传输波束和/或小区。其中,第一预设功 率阈值与第二预设功率阈值可以相同,可以不同。
此外,对于在一个或X个同步信号块传输周期中,合并接收M个同步信号块,还可用于对MIB的解码,即UE进行M个SSB的联合解调。
该实施例中,可选地,所述M的值是预配置、预定义或网络侧设备配置;或者,
由终端基于预设条件确定。
可选地,
所述M的值等于网络侧设备发送的同步信号块的个数,且所述网络侧设备发送的同步信号块具有不同的标识;
所述M个同步信号块的参考信号接收功率总和大于或等于第一阈值,且M小于或等于第二阈值,所述第二阈值与终端接收到的第一个同步信号块的参考信号接收功率对应;
所述M个同步信号块的参考信号接收功率大于接收到的剩余同步信号块的参考信号接收功率;
所述M个同步信号块具有相同的标识;
所述M个同步信号块的标识与准共址参数满足第一对应关系;
所述M个同步信号块的解调参考信号序列索引与准共址参数满足第二对应关系;或者
根据终端接收到的第一个同步信号块的参考信号接收功率与预设门限的大小确定所述M的值。
如此,M的值可以等于网络侧设备发送的同步信号块的个数,即M=L’,L’是网络侧设备实际发送的SSB的个数,L’≤L,该L’个SSB有不同的SSB index。
或者,M的值可以通过SSB的RSRP叠加,直到
Figure PCTCN2021102262-appb-000003
Figure PCTCN2021102262-appb-000004
第一阈值可以是rsrp-ThresholdSSB,其中M≤M_max,即第二阈值。M_max与终端接收到的第一个同步信号块的参考信号接收功率对应,如下表1所示:
表1
Figure PCTCN2021102262-appb-000005
但是,若M=M_max,而
Figure PCTCN2021102262-appb-000006
则终端放弃接入该小区或者上报无线链路失败(Rradio link failure)。
或者,在接收到的所有SSB中,选取RSRP最大的M个SSB,即该M个SSB的RSRP均大于剩余SSB的RSRP。可选地,M个SSB的选取,是从RSRP最大的SSB开始,基于RSRP递减依次选择,直到
Figure PCTCN2021102262-appb-000007
Figure PCTCN2021102262-appb-000008
或者,M个SSB具有相同的index,即M的值等于具有相同index的SSB个数。例如,考虑到index是由解调参考信号DM-RS序列的索引
Figure PCTCN2021102262-appb-000009
携带,网络侧设备在一个或X个SSB传输周期中,在多个SSB中的PBCH中发送相同的DM-RS序列的索引,该多个SSB的个数即为M的值。该种确定M值的方式,更适用于频率范围2(FR2,即毫米波)。对于FR2,UE需要读取PBCH才能获得5ms内定时。
或者,M个SSB的index与准共址参数
Figure PCTCN2021102262-appb-000010
满足第一对应关系。该第一对应关系是M个SSB的index对
Figure PCTCN2021102262-appb-000011
求余会得到相同值,即该M个SSB的index通过公式
Figure PCTCN2021102262-appb-000012
可得到相同值。此时,不允许网络侧设备在一个SSB周期内,发送多个有相同index的SSB;或者,不允许发送的多个SSB中的PBCH有相同的
Figure PCTCN2021102262-appb-000013
其中
Figure PCTCN2021102262-appb-000014
的取值可预定义,如下表2所示,对应不同的子载波间隔(subcarrier spacing,SCS):
表2
Figure PCTCN2021102262-appb-000015
或者,M个SSB的
Figure PCTCN2021102262-appb-000016
Figure PCTCN2021102262-appb-000017
满足第二对应关系。该第二对应关系是M个SSB的
Figure PCTCN2021102262-appb-000018
Figure PCTCN2021102262-appb-000019
求余会得到相同值,即该M个SSB的
Figure PCTCN2021102262-appb-000020
通过公式
Figure PCTCN2021102262-appb-000021
可得到相同值。同样的,此时,不允许网络侧设备在一个SSB周期内,发送多个有相同index的SSB;或者,不允许发送的多个SSB中的PBCH有相同的
Figure PCTCN2021102262-appb-000022
Figure PCTCN2021102262-appb-000023
的取值可预定义,如上表2所示。
又或者,根据终端接收到的第一个同步信号块的参考信号接收功率与预设门限的大小确定。例如对于L=4,预设门限包括Q1dB和Q2dB,且Q1<Q2,则如果UE接收到的第一个SSB的RSRP小于Q1,M=2;如果UE接收到的第一个SSB的RSRP大于Q1但小于Q2,M=4。当然,预设门限的个数不限于两个,可以为1,也可以大于两个,在此不再一一列举。
该实施例中,可选地,所述N的值等于所述M的值;
所述N的值由主信息块的指示域指示;或者,
所述N的值与主信息块对应。
这里,对于使用M个SSB来确定驻留小区的终端,可使用和该M个SSB相关联的M个CORESET#0或SS#0来接收DCI,即N=M。
或者,可以根据主信息块MIB的指示域指示确定N的值,例如,如下表3所示,MIB中保留(reserved)的1或2bit(如
Figure PCTCN2021102262-appb-000024
)来指N的值:
表3
Figure PCTCN2021102262-appb-000025
UE则能够在多个SSB关联的CORESET#0或SS#0中,对N个CORESET#0或SS#0进行PDCCH的接收并解码,以得到DCI。
又或者,N的值与MIB对应,该对应关系可以预先定义或配置。例如下表4或5所示,则可基于MIB,确定Reserved Index,从而得到N的值:
表4
Figure PCTCN2021102262-appb-000026
这里,表4是对在频率范围1(FR1)上,当同步信号块和控制资源集复用模式为1时,用于确定Type0-PDCCH公共搜索空间集的PDCCH监测时机的参数的表的修改。表4中N适用于下行覆盖降低的UE。
表5
Figure PCTCN2021102262-appb-000027
这里,表5是对在FR2上,当同步信号块和控制资源集复用模式为1时,用于确定Type0-PDCCH公共搜索空间集的PDCCH监测时机的参数的表的修改。当然,表4和表5中的M并非本申请中合并接收SSB的个数,而是原表中的参数,在此不再赘述。
该实施例中,可选地,所述N个控制资源集上用于广播的物理下行控制信道中,每个物理下行控制信道携带有相同大小和内容的下行控制信息DCI。
而且,可选地,所述N个控制资源集中,相同的DCI映射在每个物理下行控制信道的位置相关联。
其中,相同的DCI映射在每个物理下行控制信道的位置相关联,可以是相同的DCI映射在每个物理下行控制信道相同的位置,例如,DCI映射到第 一个SSB的带有AL8的第一个PDCCH candidate,则DCI也映射到第二个SSB,第三个SSB带有AL8的第一个PDCCH candidate。在相同的DCI映射到给定AL=4或8或16的第n个PDCCH candidate上,下行覆盖降低的UE(RedCap UE)在N个CORESET#0上重复该相同的PDCCH candidate的盲检BD。
当然,该N个控制资源集中,相同的DCI映射在每个物理下行控制信道的位置也可以不同,其关联可以预先定义或配置。
另外,可选地,所述N个控制资源集上用于广播的物理下行控制信道中,对应携带有同一DCI的N个部分。
如,1个DCI可拆分传输在多个SSB的N个CORESET#0上的给定的AL的第n个PDCCH candidates。
该实施例中,可选地,所述物理下行控制信道的时间间隔大于或等于第一时长。
这里,PDCCH是多个用系统信息无线网络临时标识SI-RNTI加扰循环冗余校验码CRC的PDCCH。如此,第一时长将由UE的处理能力,以及传输PDCCH或PDSCH所用的SCS中的至少一者来决定。例如,UE可独立解调多个重复的PDCCH,或者先独立解调第一个PDCCH,若第一个PDCCH解调失败,则联合解调第一个PDCCH和第二个PDCCH,此时,第一时长T≥A1(例如A1=2或3)个符号;UE总是联合解调多个PDCCH,则T≥A2(例如A2=0或1)个符号。
该实施例中,对于对K个SIB1进行接收并解码,可选的,所述K的值等于所述N的值;或者,
所述K的值由所述控制资源集指示。
这里,K的值可以由N的值所决定,也可以由控制资源集指示。当然,控制资源集可通过隐性指示或显性指示该K的值,在此不再一一列举。
综上所述,本申请实施例的方法,能够针对SSB或控制资源集或SIB1,各自进行至少两个的合并接收,提升了终端的接收能力,从而解决下行的覆 盖降低的问题。
需要说明的是,本申请实施例提供的传输处理方法,执行主体可以为传输处理装置,或者该传输处理装置中的用于执行加载传输处理方法的控制模块。本申请实施例中以传输处理装置执行加载传输处理方法为例,说明本申请实施例提供的传输处理方法。
如图3所示,本申请实施例的一种传输处理装置300,包括:
第一处理模块310,用于合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。
可选地,所述第一处理模块包括:
第一处理子模块,用于若所述目标资源为同步信号块,在一个或X个同步信号块传输周期中,合并接收M个同步信号块;
第二处理子模块,用于若所述目标资源为控制资源集,对N个控制资源集上用于广播的物理下行控制信道进行接收并解码;
第三处理子模块,用于若所述目标资源为SIB1,对K个SIB1进行接收并解码;
其中,X、N、M、K均为大于1的正整数。
可选地,所述装置还包括以下至少一个:
第二处理模块,用于根据所述M个同步信号块的参考信号接收功率,确定是否驻留或生成测量报告;
第三处理模块,用于根据所述M个同步信号块的标识,确定传输波束;
第四处理模块,用于对所述M个同步信号块上的主信息块MIB进行联合解调。
可选地,所述M的值是预配置、预定义或网络侧设备配置;或者,
由终端基于预设条件确定。
可选地,所述M的值等于网络侧设备发送的同步信号块的个数,且所述网络侧设备发送的同步信号块具有不同的标识;
所述M个同步信号块的参考信号接收功率总和大于或等于第一阈值,且M小于或等于第二阈值,所述第二阈值与终端接收到的第一个同步信号块的参考信号接收功率对应;
所述M个同步信号块的参考信号接收功率大于接收到的剩余同步信号块的参考信号接收功率;
所述M个同步信号块具有相同的标识;
所述M个同步信号块的标识与准共址参数满足第一对应关系;
所述M个同步信号块的解调参考信号序列索引与准共址参数满足第二对应关系;或者
根据终端接收到的第一个同步信号块的参考信号接收功率与预设门限的大小确定所述M的值。
可选地,所述N的值等于所述M的值;
所述N的值由主信息块的指示域指示;或者,
所述N的值与主信息块对应。
可选地,所述N个控制资源集上用于广播的物理下行控制信道中,每个物理下行控制信道携带有相同大小和内容的下行控制信息DCI。
可选地,所述N个控制资源集中,相同的DCI映射在每个物理下行控制信道的位置相关联。
可选地,所述N个控制资源集上用于广播的物理下行控制信道中,对应携带有同一DCI的N个部分。
可选地,所述物理下行控制信道的时间间隔大于或等于第一时长。
可选地,所述K的值等于所述N的值;或者,
所述K的值由所述控制资源集指示。
该装置能够针对SSB或控制资源集或SIB1,各自进行至少两个的合并接收,提升了终端的接收能力,从而解决下行的覆盖降低的问题。
可选地,传输处理装置300还包括处理器。
需要说明的是,该装置是应用了上述传输处理方法的装置,上述方法实 施例的实现方式适用于该装置,也能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的传输处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的传输处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
可选的,如图4所示,本申请实施例还提供一种终端,包括处理器401,存储器402,存储在存储器402上并可在所述处理器401上运行的程序或指令,例如,该程序或指令被处理器401执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图5为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器 (Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确 定调度SIB1的物理下行控制信道的物理资源。
这样,终端能够针对SSB或控制资源集或SIB1,各自进行至少两个的合并接收,提升了终端的接收能力,从而解决下行的覆盖降低的问题。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储程序或指令,该程序或指令被处理器执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种传输处理方法,应用于终端,包括:
    合并接收至少两个目标资源;其中,所述目标资源为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。
  2. 根据权利要求1所述的方法,其中,所述合并接收至少两个目标资源,包括:
    若所述目标资源为同步信号块,在一个或X个同步信号块传输周期中,合并接收M个同步信号块;
    若所述目标资源为控制资源集,对N个控制资源集上用于广播的物理下行控制信道进行接收并解码;
    若所述目标资源为SIB1,对K个SIB1进行接收并解码;
    其中,X、N、M、K均为大于1的正整数。
  3. 根据权利要求2所述的方法,其中,所述在一个或X个同步信号块传输周期中,合并接收M个同步信号块之后,还包括以下至少一项:
    根据所述M个同步信号块的参考信号接收功率,确定是否驻留或生成测量报告;
    根据所述M个同步信号块的标识,确定传输波束;
    对所述M个同步信号块上的主信息块MIB进行联合解调。
  4. 根据权利要求2所述的方法,其中,所述M的值是预配置、预定义或网络侧设备配置;或者,
    由终端基于预设条件确定。
  5. 根据权利要求2所述的方法,其中:
    所述M的值等于网络侧设备发送的同步信号块的个数,且所述网络侧设备发送的同步信号块具有不同的标识;
    所述M个同步信号块的参考信号接收功率总和大于或等于第一阈值,且 M小于或等于第二阈值,所述第二阈值与终端接收到的第一个同步信号块的参考信号接收功率对应;
    所述M个同步信号块的参考信号接收功率大于接收到的剩余同步信号块的参考信号接收功率;
    所述M个同步信号块具有相同的标识;
    所述M个同步信号块的标识与准共址参数满足第一对应关系;
    所述M个同步信号块的解调参考信号序列索引与准共址参数满足第二对应关系;或者
    根据终端接收到的第一个同步信号块的参考信号接收功率与预设门限的大小确定所述M的值。
  6. 根据权利要求2所述的方法,其中,所述N的值等于所述M的值;
    所述N的值由主信息块的指示域指示;或者,
    所述N的值与主信息块对应。
  7. 根据权利要求2所述的方法,其中,所述N个控制资源集上用于广播的物理下行控制信道中,每个物理下行控制信道携带有相同大小和内容的下行控制信息DCI。
  8. 根据权利要求7所述的方法,其中,所述N个控制资源集中,相同的DCI映射在每个物理下行控制信道的位置相关联。
  9. 根据权利要求2所述的方法,其中,所述N个控制资源集上用于广播的物理下行控制信道中,对应携带有同一DCI的N个部分。
  10. 根据权利要求2所述的方法,其中,所述物理下行控制信道的时间间隔大于或等于第一时长。
  11. 根据权利要求2所述的方法,其中,所述K的值等于所述N的值;或者,
    所述K的值由所述控制资源集指示。
  12. 一种传输处理装置,包括:
    第一处理模块,用于合并接收至少两个目标资源;其中,所述目标资源 为同步信号块或控制资源集或系统信息块SIB1,所述控制资源集是用于确定调度SIB1的物理下行控制信道的物理资源。
  13. 根据权利要求12所述的装置,其中,所述第一处理模块包括:
    第一处理子模块,用于若所述目标资源为同步信号块,在一个或X个同步信号块传输周期中,合并接收M个同步信号块;
    第二处理子模块,用于若所述目标资源为控制资源集,对N个控制资源集上用于广播的物理下行控制信道进行接收并解码;
    第三处理子模块,用于若所述目标资源为SIB1,对K个SIB1进行接收并解码;
    其中,X、N、M、K均为大于1的正整数。
  14. 根据权利要求13所述的装置,其中,还包括以下至少一个:
    第二处理模块,用于根据所述M个同步信号块的参考信号接收功率,确定是否驻留或生成测量报告;
    第三处理模块,用于根据所述M个同步信号块的标识,确定传输波束;
    第四处理模块,用于对所述M个同步信号块上的主信息块MIB进行联合解调。
  15. 根据权利要求13所述的装置,其中,所述M的值是预配置、预定义或网络侧设备配置;或者,
    由终端基于预设条件确定。
  16. 根据权利要求15所述的装置,其中:
    所述M的值等于网络侧设备发送的同步信号块的个数,且所述网络侧设备发送的同步信号块具有不同的标识;
    所述M个同步信号块的参考信号接收功率总和大于或等于第一阈值,且M小于或等于第二阈值,所述第二阈值与终端接收到的第一个同步信号块的参考信号接收功率对应;
    所述M个同步信号块的参考信号接收功率大于接收到的剩余同步信号块的参考信号接收功率;
    所述M个同步信号块具有相同的标识;
    所述M个同步信号块的标识与准共址参数满足第一对应关系;
    所述M个同步信号块的解调参考信号序列索引与准共址参数满足第二对应关系;或者
    根据终端接收到的第一个同步信号块的参考信号接收功率与预设门限的大小确定所述M的值。
  17. 根据权利要求13所述的装置,其中,所述N的值等于所述M的值;
    所述N的值由主信息块的指示域指示;或者,
    所述N的值与主信息块对应。
  18. 根据权利要求13所述的装置,其中,所述N个控制资源集上用于广播的物理下行控制信道中,每个物理下行控制信道携带有相同大小和内容的下行控制信息DCI。
  19. 根据权利要求18所述的装置,其中,所述N个控制资源集中,相同的DCI映射在每个物理下行控制信道的位置相关联。
  20. 根据权利要求13所述的装置,其中,所述N个控制资源集上用于广播的物理下行控制信道中,对应携带有同一DCI的N个部分。
  21. 根据权利要求13所述的装置,其中,所述物理下行控制信道的时间间隔大于或等于第一时长。
  22. 根据权利要求13所述的装置,其中,所述K的值等于所述N的值;或者,
    所述K的值由所述控制资源集指示。
  23. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至11中任一项所述的传输处理方法的步骤。
  24. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11中任一项所述的传输处理的步骤。
  25. 一种芯片,包括:处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至11中任一项所述的传输处理的步骤。
  26. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至11中任一项所述的传输处理的步骤。
  27. 一种传输处理装置,其中,所述传输处理装置被配置为执行如权利要求1至11中任一项所述的传输处理的步骤。
PCT/CN2021/102262 2020-06-30 2021-06-25 一种传输处理方法、装置及终端 WO2022001848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010622143.1 2020-06-30
CN202010622143.1A CN113873568A (zh) 2020-06-30 2020-06-30 一种传输处理方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2022001848A1 true WO2022001848A1 (zh) 2022-01-06

Family

ID=78981933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102262 WO2022001848A1 (zh) 2020-06-30 2021-06-25 一种传输处理方法、装置及终端

Country Status (2)

Country Link
CN (1) CN113873568A (zh)
WO (1) WO2022001848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179540A1 (zh) * 2022-03-24 2023-09-28 维沃移动通信有限公司 信道预测方法、装置及无线通信设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647313A (zh) * 2022-02-14 2023-08-25 维沃移动通信有限公司 数据发送方法、数据接收方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391964A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 小区接入信息配置方法、基站及计算机可读存储介质
US20190313428A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Control information combining techniques in wireless communications
CN111194574A (zh) * 2017-10-06 2020-05-22 株式会社Ntt都科摩 用户终端以及无线通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391964A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 小区接入信息配置方法、基站及计算机可读存储介质
CN111194574A (zh) * 2017-10-06 2020-05-22 株式会社Ntt都科摩 用户终端以及无线通信方法
US20190313428A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Control information combining techniques in wireless communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179540A1 (zh) * 2022-03-24 2023-09-28 维沃移动通信有限公司 信道预测方法、装置及无线通信设备

Also Published As

Publication number Publication date
CN113873568A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022117035A1 (zh) Pusch的调度传输方法、终端和网络侧设备
WO2022068907A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
WO2022068875A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
WO2022001848A1 (zh) 一种传输处理方法、装置及终端
WO2022078445A1 (zh) 定位方法、终端及网络侧设备
US20230239896A1 (en) Transmission mode determining method and apparatus, and communications device
WO2022028455A1 (zh) 小区切换方法和终端
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
CN115118381B (zh) Pdcch盲检测方法、装置及设备
CN114765783A (zh) 波束切换方法、装置、终端及网络侧设备
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022028602A1 (zh) Rs测量方法、装置及通信设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备
WO2022148365A1 (zh) 准共址信息的确定、获取方法及通信设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2022117066A1 (zh) 信号传输方法、装置、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832358

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21832358

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21832358

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.06.23)