WO2022117066A1 - 信号传输方法、装置、终端及网络设备 - Google Patents

信号传输方法、装置、终端及网络设备 Download PDF

Info

Publication number
WO2022117066A1
WO2022117066A1 PCT/CN2021/135270 CN2021135270W WO2022117066A1 WO 2022117066 A1 WO2022117066 A1 WO 2022117066A1 CN 2021135270 W CN2021135270 W CN 2021135270W WO 2022117066 A1 WO2022117066 A1 WO 2022117066A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
ssbs
ssb
signal transmission
processor
Prior art date
Application number
PCT/CN2021/135270
Other languages
English (en)
French (fr)
Inventor
洪琪
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022117066A1 publication Critical patent/WO2022117066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to a signal transmission method, device, terminal and network equipment.
  • PDCCH Physical Downlink Shared Channel
  • the embodiments of the present application provide a signal transmission method, apparatus, terminal, and network equipment, which can solve the problem of poor flexibility of signal transmission in the prior art.
  • an embodiment of the present application provides a signal transmission method, which includes:
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • an embodiment of the present application further provides a signal transmission method, the method comprising:
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • an embodiment of the present application provides a signal transmission device, the device comprising:
  • a receiving module for receiving the first synchronization signal block SSB from the network device
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • an embodiment of the present application further provides a signal transmission device, the device comprising:
  • a sending module configured to send the first synchronization signal block SSB to the terminal device
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • an embodiment of the present application further provides a terminal, the terminal includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being When executed by the processor, the steps of the method according to the first aspect are implemented.
  • an embodiment of the present application further provides a network device, the network device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction The steps of the method of the second aspect are implemented when executed by the processor.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented. steps, or steps for implementing the method according to the second aspect.
  • an embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction to implement the following: The method described in the first aspect above, or the method described in the second aspect above is implemented.
  • an embodiment of the present application further provides a computer program product, the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the first aspect the method, or implement the method according to the second aspect.
  • the first SSB is received from a network device; wherein, the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to a first PDCCH, and the first PDCCH
  • the number of occupied symbols is determined according to the N SSBs, where N is an integer greater than 1. Since the number of symbols occupied by the PDCCH is determined based on the N SSBs, the time domain resources available for the PDCCH can be made more flexible, thereby improving the flexibility of signal transmission.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • FIG. 2 is a schematic diagram of SSB transmission and reception provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an SSB time domain location provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a CORESET and SSB multiplexing mode provided by an embodiment of the present application
  • FIG. 5 is one of schematic diagrams of multiplexing of PDCCH and SSB in multiplexing mode 2 provided by an embodiment of the present application;
  • FIG. 6 is one of schematic diagrams of multiplexing of PDCCH and SSB in multiplexing mode 3 provided by an embodiment of the present application;
  • FIG. 7 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 2 provided by an embodiment of the present application;
  • FIG. 9 is the second schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 3 provided by an embodiment of the present application.
  • FIG. 10a is the third schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 2 provided by an embodiment of the present application;
  • 10b is the fourth schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 2 provided by the embodiment of the present application;
  • FIG. 11a is the fifth schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 2 provided by an embodiment of the present application;
  • FIG. 11b is the sixth schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 3 provided by the embodiment of the present application;
  • FIG. 12a is the third schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 3 provided by an embodiment of the present application;
  • FIG. 12b is the fourth schematic diagram of multiplexing of PDCCH and SSB in multiplexing mode 3 provided by the embodiment of the present application;
  • FIG. 13 is a flowchart of another signal transmission method provided by an embodiment of the present application.
  • FIG. 14 is a structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 15 is a structural diagram of another signal transmission apparatus provided by an embodiment of the present application.
  • 16 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 17 is a structural diagram of a network device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 11 .
  • the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited.
  • Synchronous Signal Block (SSB) transmission mechanism 1. Synchronous Signal Block (SSB) transmission mechanism
  • 5th-Generation New Radio uses high frequency bands such as millimeter waves. Since the propagation loss of high frequency bands is larger than that of low frequency, its coverage distance is compared with that of long-term evolution. (Long Term Evolution, LTE) is worse.
  • LTE Long Term Evolution
  • one solution is to strengthen the signal through multi-antenna beam forming (Beam Forming), and then realize the enhancement of coverage, and the transmission of SSB also adopts the beam method.
  • the same SSB is sent to different directions in the form of beams according to Time Division Duplexing (TDD), so that User Equipment (UE) in all directions can SSB is received, as shown in Figure 2.
  • TDD Time Division Duplexing
  • the base station transmits multiple SSBs corresponding to different SSB indices, and the multiple SSBs cover different directions respectively.
  • the UE receives multiple SSBs with different signal strengths, and selects an SSB with the strongest signal as its own SSB beam.
  • the base station will send multiple SSBs in all directions within 5ms, and this series of SSBs is the SSB burst set (SS burst set).
  • the repetition period of the SS burst set is the SS burst set period, which is 20ms by default in 5G.
  • the value range of the SSB period is ENUMERATED ⁇ ms5, ms10, ms20, ms40, ms80, ms160 ⁇ .
  • the terminal device detects the SSB every 20ms.
  • the maximum supported SSB in an SS burst set is not the same, but can vary according to the frequency.
  • the frequency F>6Ghz the maximum number of SSBs is 64.
  • the different maximum number of SSBs is because the higher the frequency, the greater the loss.
  • the beam for sending SSBs is also narrow. Therefore, to achieve coverage in all directions, more SSBs are required to achieve. Therefore, The number of SSBs also increases.
  • the number of candidate SSBs and the index position of the first symbol are determined according to the subcarrier spacing of the SSB as follows, and the following cases are all for a field.
  • Example A(CaseA)-15KHz interval the index of the first symbol of the candidate SSB is ⁇ 2,8 ⁇ +14*n.
  • Lmax 8 within 4ms).
  • Example B (30KHz interval: the index of the first symbol of the candidate SSB is ⁇ 4,8,16,20 ⁇ +28*n (2 slots in 1ms, 2 SSBs in 1 slot).
  • Lmax 4 within 1ms
  • Lmax 8 within 2ms
  • Example C (30KHz interval: the index of the first symbol of the candidate SSB is ⁇ 2,8 ⁇ +14*n (2 slots in 1ms, 2 SSBs in 1 slot).
  • RMSI Remaining Minimum System Information
  • the UE Because the internal structure of the SSB is standardized by the protocol, when the UE finds a synchronization signal at a specific synchronization frequency, it can try to decode the SSB. Among them, the most important information contained in the SSB is the Master Information Block (MIB).
  • MIB carries the relevant configuration information of the PDCCH used for scheduling the RMSI, which helps the user to confirm the RMSI PDCCH resource configuration and monitor the timing of the PDCCH.
  • SSB have the following three relative relationships:
  • Mode 1 (Pattern1): SSB and its corresponding RMSI CORESET time division multiplexing (Time Division Multiplexing, TDM);
  • Mode 2 and Mode 3 are specially designed for FR2.
  • the specific implementation forms of different multiplexing modes under different combinations have been specified in the protocol, including the position of the frame where the PDCCH is located, the position of the slot, the position of the start symbol, and the number of symbols occupied.
  • Table 1 shows that in the case of multiplexing mode 2 of SS/PBCH block and CORESET and the subcarrier space (Subcarrier Space, SCS) of ⁇ SS/PBCH block, PDCCH ⁇ is ⁇ 120, 60 ⁇ kHz, respectively, Type0 - PDCCH monitoring occasions for PDCCH Common Search Space Set (CSS Set);
  • Table 2 shows multiplexing mode 2 in SS/PBCH block and CORESET and ⁇ SS/PBCH block, PDCCH ⁇ When the SCS is ⁇ 240, 120 ⁇ kHz, respectively, the PDCCH monitoring timing of Type0-PDCCH CSS Set,
  • Table 3 shows the SCS of ⁇ SS/PBCH block, PDCCH ⁇ in the multiplexing mode 3 of SS/PBCH block and CORESET and ⁇ SS/PBCH block, PDCCH
  • Table 4 shows the resource block set and slot symbols (slot symbols) of CORESET of Type0-PDCCH search space set when the SCS of SS/PBCH block and PDCCH are 120kHz and 60kHz respectively;
  • the SCS of the SS/PBCH block and PDCCH is the resource block set and slot symbol of the CORESET of the Type0-PDCCH search space set at 120 kHz and 120 kHz, respectively;
  • Table 6 shows that the SCS of the SS/PBCH block and PDCCH are 240 kHz and 240 kHz, respectively.
  • Table 7 shows the CORESET of Type0-PDCCH search space set when the SCS of SS/PBCH block and PDCCH are 240kHz and 120kHz, respectively Resource block sets and slot symbols.
  • FIG. 5 shows the multiplexing mode in multiplexing mode 2.
  • Figure 6 shows the multiplexing mode under multiplexing mode 3.
  • the different fillings of SSB represent the positions occupied by different SSB beams in the time domain and the number of symbols occupied.
  • the left slash fill represents SSB 0
  • the cross line fills The color represents SSB 1
  • the horizontal line filling represents SSB 2
  • the dot filling represents SSB 3 (the standard stipulates that the number of symbols occupied by SSB is 4).
  • the different paddings of the PDCCH represent the position in the time domain where the PDCCH of the corresponding SSB beam is located and the number of symbols occupied.
  • PBCH Physical Broadcast Channel
  • the MIB may include the following information:
  • systemFrameNumber IE System frame number. The complete frame number needs 10 bits (bit), and the frame number in the MIB payload (Payload) has only the high-order 6 bits, and the low-order 4 bits are transmitted in the non-MIB bits in the PBCH transport block;
  • subCarrierSpacingCommon IE the subcarrier spacing of the downlink signal in the initial access procedure, indicating the subcarrier spacing of the SIB1/OSI/Msg2/Msg4/paging message of the initial access;
  • ssb-SubcarrierOffset IE the number of subcarrier spacing between the lowest subcarrier of the SSB and its nearest PRB;
  • dmrs-Type A-Position IE PDSCH demodulation reference signal (Demodulation Reference Signal, DMRS) configuration
  • pdcch-ConfigSIB1IE Configuration of SIB1_PDCCH, including CORESET (CFI similar to LTE) and search space configuration;
  • cellBarred IE the access control parameter of Radio Resource Control (RRC), which identifies whether the cell is barred;
  • RRC Radio Resource Control
  • intraFreqReselection IE RRC access control parameter, identifying whether the cell allows intra-frequency reselection
  • FIG. 7 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be executed by a terminal. As shown in FIG. 7, the method includes the following steps:
  • Step 701 Receive a first SSB from a network device; wherein, the first SSB includes part or all of the N consecutive SSBs, the first SSB corresponds to a first physical downlink control channel PDCCH, and the first PDCCH occupies The number of symbols of is determined according to the N SSBs, where N is an integer greater than 1.
  • the value of N may be predefined by the protocol or indicated by the network device.
  • the network device may indicate the value of N through a PBCH, a system information block (System Information Block, SIB) or an RRC message.
  • SIB System Information Block
  • the foregoing N consecutive SSBs may be SSBs having a Quasi-Co-Location (QCL) relationship, or the same SSB, or different SSBs.
  • the above-mentioned first SSB may include part or all of the SSBs in the N consecutive SSBs.
  • the above-mentioned first SSB may include all of the above-mentioned N SSBs; if the above-mentioned N SSBs are all different, the above-mentioned first SSB may only include One SSB in the above N SSBs; in the case that some SSBs in the above N SSBs are the same and some SSBs are different, the above first SSB may include the same multiple SSBs in the above N SSBs.
  • the above-mentioned first SSB corresponds to the first PDCCH, which can be understood as the above-mentioned first SSB carrying relevant configuration information of the first PDCCH, for example, information such as resource configuration of the first PDCCH and timing of monitoring the first PDCCH.
  • the number of symbols occupied by the first PDCCH may be determined according to the N SSBs.
  • the number of symbols occupied by the first PDCCH may be determined according to the value of N, or may be occupied according to the N second PDCCHs corresponding to the N SSBs.
  • the number of symbols is determined, and the above N second PDCCHs may be determined according to the predefined correspondence between SSBs and PDCCHs and the above N SSBs.
  • the above-defined correspondence between the SSB and the PDCCH may be as shown in any one of Table 4 to Table 7.
  • the first SSB is received from a network device; wherein, the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first PDCCH, and the first SSB corresponds to the first PDCCH.
  • the number of symbols occupied by the first PDCCH is determined according to the N SSBs, where N is an integer greater than 1. Since the number of symbols occupied by the PDCCH is determined based on the N SSBs, the time domain resources available for the PDCCH can be made more flexible, thereby improving the flexibility of signal transmission.
  • the first SSB includes all SSBs in the N SSBs, and the N SSBs have a QCL relationship.
  • the above N SSBs may be in a QCL relationship with respect to attributes such as QCL-Type A, QCL-Type D, and average gain (average gain).
  • the network device may send N consecutive SSBs having a QCL relationship to the terminal, and the above N SSBs are all mapped to the first PDCCH.
  • the terminal receives the above-mentioned N SSBs, and can determine the relevant configuration information of the first PDCCH based on all the SSBs in the above-mentioned N SSBs, and can also determine the relevant configuration information of the first PDCCH based on some SSBs in the above-mentioned N SSBs, for example, it can be
  • the related configuration information of the first PDCCH is determined based on the SSB with the strongest signal among the above N SSBs.
  • N consecutive SSBs with a QCL relationship are received from a network device, and the above N SSBs all correspond to the first PDCCH, so that the accuracy of PDCCH transmission can be improved.
  • the first SSB is one SSB among the N SSBs.
  • the above N SSBs may be the same or different.
  • the above-mentioned first SSB may be any SSB among the N SSBs, or may be a specific SSB among the N SSBs, for example, may be the first SSB among the N SSBs, or the last SSB among the N SSBs, and the like.
  • the network device may only send one SSB among the N consecutive SSBs to the terminal.
  • the terminal receives the SSB, and can determine related configuration information of the first PDCCH based on the SSB.
  • the transmission of the SSB can be reduced and system overhead can be saved.
  • the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs, where K is a positive value less than or equal to N. Integer.
  • the correspondence between the predefined SSB and the start symbol of the PDCCH may be the correspondence between the SSB and the start symbol of the PDCCH defined in the related art, for example, the predefined correspondence between the SSB and the PDCCH.
  • the correspondence between the start symbols may be the correspondence shown in any one of Tables 1 to 3.
  • the value of the above K may be predefined by the protocol, or may be indicated by the network device. Optionally, the value of K is 1.
  • the position of the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs.
  • the starting symbol of the PDCCH corresponding to the K SSBs is determined as the starting symbol of the first PDCCH. For example, if the Kth SSB of the N SSBs is SSB0, the corresponding relationship between the predefined SSB and the starting symbol of the PDCCH
  • the index of the start symbol of the PDCCH corresponding to SSB0 is 0, and the index of the start symbol of the first PDCCH may be 0.
  • the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs, and the implementation is relatively simple and fast.
  • the number of symbols occupied by the first PDCCH is less than or equal to N.
  • the number of symbols occupied by the first PDCCH may be determined according to the number of N SSBs, and specifically, the number of symbols occupied by the first PDCCH is less than or equal to N. For example, when the value of N is 2, the number of symbols occupied by the first PDCCH may be 1 or 2.
  • the number of symbols occupied by the first PDCCH may be N.
  • two consecutive SSBs sent by the network device to the terminal have a QCL relationship
  • the two SSBs correspond to one type 0 PDCCH
  • the PDCCH occupies two symbols.
  • two SSB0s correspond to one PDCCH0
  • two SSB1s correspond to one PDCCH1
  • both PDCCH0 and PDCCH1 occupy two symbols.
  • the network device only sends one SSB out of two consecutive SSBs to the terminal, and the PDCCH corresponding to the SSB occupies two symbols.
  • the PDCCH can occupy more symbols, the accuracy of signal transmission can be improved.
  • the resources scheduled by the first PDCCH are determined according to the N SSBs.
  • the resources scheduled by the first PDCCH may include resources occupied by the RMSI corresponding to the first PDCCH.
  • the resources scheduled by the first PDCCH are determined according to N SSBs. For example, it may be determined according to resources scheduled by N second PDCCHs corresponding to N SSBs, wherein the above N second PDCCHs are determined according to a predefined correspondence between SSBs and PDCCHs and the N SSBs; Alternatively, it can be determined according to the resources scheduled by the M third PDCCHs corresponding to the M SSBs in the N SSBs, where M is less than N, and the M third PDCCHs can be determined according to the predefined correspondence between the SSBs and the PDCCHs and The above M SSBs are determined.
  • the resources scheduled by the first PDCCH are determined according to the N SSBs, which can improve the flexibility of the resources scheduled by the first PDCCH.
  • the resources scheduled by the first PDCCH are less than or equal to the resources scheduled by N second PDCCHs, and the N second PDCCHs are based on the predefined correspondence between SSBs and PDCCHs and the N second PDCCHs. determined by SSB.
  • the predefined correspondence between SSB and PDCCH may be the correspondence between SSB and PDCCH defined in the related art.
  • the above-defined correspondence between the SSB and the PDCCH may be the correspondence shown in any one of Tables 4 to 7.
  • the resources scheduled by the first PDCCH may be less than or equal to the above-mentioned PDCCH.
  • the sum of the scheduled resources and the above-mentioned PDCCH 1 schedulable resources.
  • the two SSBs correspond to a type 0 PDCCH
  • the data signal scheduled by the PDCCH can occupy less than or equal to 4 symbols, that is, the resources scheduled by the PDCCH are less than or equal to 4 symbols.
  • two consecutive SSBs have a QCL relationship
  • the two SSBs correspond to a type 0 PDCCH
  • the data signals scheduled by the PDCCH can occupy less than or equal to 6 symbols, that is, the resources scheduled by the PDCCH are less than or equal to 6 symbols.
  • the resources scheduled by the first PDCCH are equal to the resources scheduled by N second PDCCHs. Since the first PDCCH can schedule more resources, the accuracy of signal transmission can be improved.
  • FIG. 13 is a flowchart of another signal transmission method provided by an embodiment of the present application. The method is executed by a network device. As shown in FIG. 13, the method includes the following steps:
  • Step 1301 Send the first SSB to the terminal; wherein, the first SSB includes part or all of the SSBs in consecutive N SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the first PDCCH occupies The number of symbols is determined according to the N SSBs, where N is an integer greater than 1.
  • the value of N may be predefined by a protocol or determined by a network device.
  • the network device may indicate the value of N to the terminal through a PBCH, a system information block (System Information Block, SIB) or an RRC message.
  • SIB System Information Block
  • the above-mentioned N consecutive SSBs may be SSBs having a QCL relationship, or the same SSBs, or different SSBs.
  • the above-mentioned first SSB may include part or all of the SSBs in the N consecutive SSBs.
  • the above-mentioned first SSB may include all of the above-mentioned N SSBs; if the above-mentioned N SSBs are all different, the above-mentioned first SSB may only include One SSB in the above N SSBs; in the case that some SSBs in the above N SSBs are the same and some SSBs are different, the above first SSB may include the same multiple SSBs in the above N SSBs.
  • the above-mentioned first SSB corresponds to the first PDCCH, which can be understood as the above-mentioned first SSB carrying relevant configuration information of the first PDCCH, for example, information such as resource configuration of the first PDCCH and timing of monitoring the first PDCCH.
  • the number of symbols occupied by the first PDCCH may be determined according to the N SSBs.
  • the number of symbols occupied by the first PDCCH may be determined according to the value of N, or may be occupied according to the N second PDCCHs corresponding to the N SSBs.
  • the number of symbols is determined, and the above N second PDCCHs may be determined according to the predefined correspondence between SSBs and PDCCHs and the above N SSBs.
  • the above-defined correspondence between the SSB and the PDCCH may be as shown in any one of Table 4 to Table 7.
  • the first SSB is sent to the terminal; wherein, the first SSB includes some or all SSBs in N consecutive SSBs, the first SSB corresponds to the first PDCCH, and the first SSB corresponds to the first PDCCH.
  • the number of symbols occupied by a PDCCH is determined according to the N SSBs, where N is an integer greater than 1. Since the number of symbols occupied by the PDCCH is determined based on the N SSBs, the time domain resources available for the PDCCH can be made more flexible, thereby improving the flexibility of signal transmission.
  • the first SSB includes all SSBs in the N SSBs, and the N SSBs have a QCL relationship.
  • the first SSB is one SSB among the N SSBs.
  • the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs, where K is a positive value less than or equal to N. Integer.
  • the number of symbols occupied by the first PDCCH is less than or equal to N.
  • the resources scheduled by the first PDCCH are determined according to the N SSBs.
  • the resources scheduled by the first PDCCH are less than or equal to the resources scheduled by N second PDCCHs, and the N second PDCCHs are based on the predefined correspondence between SSBs and PDCCHs and the N second PDCCHs. determined by SSB.
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in FIG. 7 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 7 to achieve the same beneficial effects. In order to avoid The description is repeated and will not be repeated here.
  • every N consecutive SSBs have a QCL relationship.
  • the two SSBs correspond to one type 0 PDCCH.
  • the PDCCH may occupy less than or equal to two symbols
  • the data signal scheduled by the PDCCH may occupy less than or equal to 4 symbols, that is, the resources scheduled by the PDCCH are less than or equal to 4 symbols.
  • the PDCCH and the data signal scheduled by the PDCCH can use more symbols, thereby improving the accuracy of signal transmission. sex.
  • N may be predefined by a protocol or indicated by a network device, for example, may be indicated by a PBCH, SIB or RRC message.
  • a reserved field in the PBCH information, or other indication fields that may be saved can be used to indicate the value of N.
  • the number of symbols can be determined according to the number of SSBs of consecutive N QCLs.
  • the Coreset#0 configuration table in the MIB can be modified as shown in Table 8 and Table 9.
  • every two consecutive SSBs have a QCL relationship by default, and the two SSBs correspond to one type 0 PDCCH.
  • the PDCCH may occupy less than or equal to two symbols (if the protocol supports it, it may occupy more symbols), and the data signal scheduled by the PDCCH may occupy less than or equal to 6 symbols.
  • the number of symbols may be determined according to the number of SSBs of consecutive N QCLs.
  • the Coreset#0 configuration table in the MIB can be modified as shown in Table 10.
  • the network device selects and sends one SSB for every two consecutive SSBs.
  • the PDCCH corresponding to the SSB may occupy less than or equal to two symbols (if the protocol supports it, it may occupy more symbols).
  • the start symbol of the PDCCH can also be flexibly configured.
  • the data signal scheduled by the PDCCH may occupy less than or equal to 4 symbols. Compared with the prior art that the PDCCH occupies one symbol, and the data signal scheduled by the PDCCH occupies two symbols, in this embodiment, the PDCCH and the data signal scheduled by the PDCCH can use more symbols, thereby improving the accuracy of signal transmission. sex.
  • the number of symbols can be determined according to the number of SSBs of consecutive N QCLs.
  • the Coreset#0 configuration table in the MIB can be modified as shown in Table 11.
  • the network device selects and transmits one SSB corresponding to every two consecutive SSBs.
  • the PDCCH corresponding to each SSB can occupy less than or equal to two symbols (more symbols can be occupied if the protocol supports it), and the start symbol of the PDCCH can also be flexibly configured; at the same time, the data signal scheduled by the PDCCH can occupy less than or equal to 4 symbols.
  • the number of symbols can be determined according to the number of SSBs of consecutive N QCLs.
  • the Coreset#0 configuration table in the MIB can be modified as shown in Table 12.
  • the network device selects and sends one SSB for every two consecutive SSBs, without changing the existing protocol process and SSB sending rules
  • the PDCCH corresponding to each SSB can occupy less than or equal to two symbols (if the protocol supports it, it can occupy more symbols), and the starting symbol of the PDCCH can be flexibly configured.
  • the data signal scheduled by the PDCCH may occupy less than or equal to 6 symbols.
  • the number of symbols may be determined according to the number of SSBs of consecutive N QCLs.
  • the Coreset#0 configuration table in the MIB can be modified as shown in Table 13.
  • the signal transmission method provided by the embodiments of the present application can solve the problem that the frequency domain resources may exceed the minimum bandwidth caused by the mapping of SSB and TYPE 0 PDCCH in the prior art, and the problem that the number of occupied time domain symbols is too small. , can also solve the problem of SSB beam switching.
  • FIG. 14 is a structural diagram of a signal transmission apparatus provided by an embodiment of the present application. As shown in FIG. 14, the signal transmission apparatus 1400 includes:
  • a receiving module 1401, configured to receive a first synchronization signal block SSB from a network device
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • the first SSB includes all SSBs in the N SSBs, and the N SSBs have a quasi-co-located QCL relationship.
  • the first SSB is one SSB among the N SSBs.
  • the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs, where K is a positive value less than or equal to N. Integer.
  • the value of K is 1.
  • the number of symbols occupied by the first PDCCH is less than or equal to N.
  • the resources scheduled by the first PDCCH are determined according to the N SSBs.
  • the resources scheduled by the first PDCCH are less than or equal to the resources scheduled by N second PDCCHs, and the N second PDCCHs are based on the predefined correspondence between SSBs and PDCCHs and the N second PDCCHs. determined by SSB.
  • the signal transmission apparatus provided in this embodiment of the present application can implement each process in the method embodiment of FIG. 7 , and to avoid repetition, details are not described here.
  • the signal transmission device in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • FIG. 15 is a structural diagram of another signal transmission apparatus provided by an embodiment of the present application. As shown in FIG. 15, the signal transmission apparatus 1500 includes:
  • a sending module 1501 configured to send the first synchronization signal block SSB to the terminal;
  • the first SSB includes part or all of the SSBs in N consecutive SSBs, the first SSB corresponds to the first physical downlink control channel PDCCH, and the number of symbols occupied by the first PDCCH is determined according to the N SSBs, N is an integer greater than 1.
  • the first SSB includes all SSBs in the N SSBs, and the N SSBs have a quasi-co-located QCL relationship.
  • the first SSB is one SSB among the N SSBs.
  • the start symbol of the first PDCCH is determined according to the predefined correspondence between the SSB and the start symbol of the PDCCH and the Kth SSB of the N SSBs, where K is a positive value less than or equal to N. Integer.
  • the value of K is 1.
  • the number of symbols occupied by the first PDCCH is less than or equal to N.
  • the resources scheduled by the first PDCCH are determined according to the N SSBs.
  • the resources scheduled by the first PDCCH are less than or equal to the resources scheduled by N second PDCCHs, and the N second PDCCHs are based on the predefined correspondence between SSBs and PDCCHs and the N second PDCCHs. determined by SSB.
  • the signal transmission apparatus provided in this embodiment of the present application can implement each process in the method embodiment shown in FIG. 13 , which is not repeated here to avoid repetition.
  • the signal transmission device in the embodiment of the present application may be a device, and may also be a component, an integrated circuit, or a chip in a network device.
  • FIG. 16 is a structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609 and The processor 1610 and other components.
  • the terminal 1600 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1604 may include a graphics processor (Graphics Processing Unit, GPU) 16041 and a microphone 16042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1606 may include a display panel 16061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1607 includes a touch panel 16071 and other input devices 16072 . Touch panel 16071, also called touch screen.
  • the touch panel 16071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 16072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1601 receives the downlink data from the network device, and then processes it to the processor 1610; in addition, sends the uplink data to the network device.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1609 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1609 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1610.
  • the radio frequency unit 1601 is configured to receive a first synchronization signal block SSB from a network device; wherein, the first SSB includes part or all of the SSBs in consecutive N SSBs, and the first SSB corresponds to the first physical downlink control channel PDCCH, the number of symbols occupied by the first PDCCH is determined according to the N SSBs, where N is an integer greater than 1.
  • the above-mentioned processor 1610 and radio frequency unit 1601 can implement various processes implemented by the terminal in the method embodiment of FIG. 7 , and can achieve the same technical effect.
  • an embodiment of the present application further provides a terminal, including a processor 1610, a memory 1609, a program or instruction stored in the memory 16089 and executable on the processor 1610, and the program or instruction is executed by the processor 1610.
  • a terminal including a processor 1610, a memory 1609, a program or instruction stored in the memory 16089 and executable on the processor 1610, and the program or instruction is executed by the processor 1610.
  • FIG. 17 is a structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1700 includes: a processor 1701, a transceiver 1702, a memory 1703, and a bus interface, where:
  • the transceiver 1702 is configured to send a first synchronization signal block SSB to the terminal; wherein, the first SSB includes part or all of the SSBs in consecutive N SSBs, and the first SSB corresponds to the first physical downlink control channel PDCCH, so The number of symbols occupied by the first PDCCH is determined according to the N SSBs, where N is an integer greater than 1.
  • processor 1701 and transceiver 1702 can implement each process implemented by the network device in the method embodiment of FIG. 13 , and can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the transceiver 1702 is configured to receive and transmit data under the control of the processor 1701, and the transceiver 1702 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1701 and various circuits of memory represented by memory 1703 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1702 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the user interface 1704 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1703 may store data used by the processor 1701 in performing operations.
  • an embodiment of the present application further provides a network device, including a processor 1701, a memory 1703, a program or instruction stored in the memory 1703 and executable on the processor 1701, the program or instruction being executed by the processor
  • a network device including a processor 1701, a memory 1703, a program or instruction stored in the memory 1703 and executable on the processor 1701, the program or instruction being executed by the processor
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned signal transmission method on the terminal side or signal transmission on the network device side is implemented.
  • a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned signal transmission method on the terminal side or signal transmission on the network device side is implemented.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement the signal on the terminal side.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network device program or instruction to implement the signal on the terminal side.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one process to realize the above-mentioned FIG. 7 and FIG. 13
  • the computer program product is executed by at least one process to realize the above-mentioned FIG. 7 and FIG. 13
  • Each process of the method embodiment can achieve the same technical effect. To avoid repetition, details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、装置、终端及网络设备,属于通信技术领域。该方法包括:从网络设备接收第一SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。

Description

信号传输方法、装置、终端及网络设备
相关申请的交叉引用
本申请主张在2020年12月03日在中国提交的中国专利申请No.202011407292.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种信号传输方法、装置、终端及网络设备。
背景技术
目前,在协议中规定了在同步信号块(Synchronous Signal Block,SSB)与类型0(Type 0)物理下行控制信道(Physical Downlink Shared Channel,PDCCH)复用模式2(Pattern 2)的场景下,PDCCH所占用的符号数为一个,在SSB与Type 0 PDCCH复用模式3(Pattern 3)的场景下,PDCCH所占用的符号数为两个。可见,现有技术中PDCCH占用的符号数较为固定,使得信号传输的灵活性较差。
发明内容
本申请实施例提供一种信号传输方法、装置、终端及网络设备,能够解决现有技术中信号传输灵活性较差的问题。
第一方面,本申请实施例提供了一种信号传输方法,该方法包括:
从网络设备接收第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
第二方面,本申请实施例还提供了一种信号传输方法,该方法包括:
向终端发送第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述 第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
第三方面,本申请实施例提供了一种信号传输装置,该装置包括:
接收模块,用于从网络设备接收第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
第四方面,本申请实施例还提供了一种信号传输装置,该装置包括:
发送模块,用于向终端设备发送第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
第五方面,本申请实施例还提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,本申请实施例还提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,本申请实施例还提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如上述第一方面所述的方法,或者实现如上面第二方面所述的方法。
第九方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,通过从网络设备接收第一SSB;其中,所述第一SSB 包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。由于基于N个SSB确定PDCCH占用的符号数,可以使得PDCCH可使用的时域资源更为灵活,进而可以提高信号传输的灵活性。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例提供的SSB发送与接收的示意图;
图3是本申请实施例提供的SSB时域位置的示意图;
图4是本申请实施例提供的CORESET和SSB复用模式的示意图;
图5是本申请实施例提供的在复用模式2下PDCCH和SSB的复用示意图之一;
图6是本申请实施例提供的在复用模式3下PDCCH和SSB的复用示意图之一;
图7是本申请实施例提供的一种信号传输方法的流程图;
图8是本申请实施例提供的在复用模式2下PDCCH和SSB的复用示意图之二;
图9是本申请实施例提供的在复用模式3下PDCCH和SSB的复用示意图之二;
图10a是本申请实施例提供的在复用模式2下PDCCH和SSB的复用示意图之三;
图10b是本申请实施例提供的在复用模式2下PDCCH和SSB的复用示意图之四;
图11a是本申请实施例提供的在复用模式2下PDCCH和SSB的复用示意图之五;
图11b是本申请实施例提供的在复用模式3下PDCCH和SSB的复用示意图之六;
图12a是本申请实施例提供的在复用模式3下PDCCH和SSB的复用示意图之三;
图12b是本申请实施例提供的在复用模式3下PDCCH和SSB的复用示意图之四;
图13是本申请实施例提供的另一种信号传输方法的流程图;
图14是本申请实施例提供的一种信号传输装置的结构图;
图15是本申请实施例提供的另一种信号传输装置的结构图;
图16是本申请实施例提供的一种终端的结构图;
图17是本申请实施例提供的一种网络设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下 描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、同步信号块(Synchronous Signal Block,SSB)发送机制
由于低频资源的匮乏,第五代新空口(5th-Generation New Radio,5G NR)使用了如毫米波这样的高频段,由于高频段的传播损耗比低频要大,所以其覆盖距离相比长期演进(Long Term Evolution,LTE)要差。为了解决这个问题,一个解决方案是5G通过多天线波束赋形(Beam Forming)方式来实现对信号的加强,进而实现覆盖的增强,而SSB的发送也是采用波束的方式。
由于波束较窄,所以在NR中按照时分复用(Time Division Duplexing,TDD)的方式将相同的SSB通过波束的形式发送到不同方向,以使各个方 向的用户设备(User Equipment,UE)都可以收到SSB,如图2所示。
参见图2,在5ms的范围内,基站发送对应不同SSB索引(index)的多个SSB,该多个SSB分别覆盖不同的方向。UE接收到多个信号强度不一样的SSB,选择一个信号最强的SSB作为自己的SSB波束。
在上面这个例子中,5ms的时间内基站会向各个方向发送多个SSB,这一系列的SSB就是SSB突发集(SS burst set)。而SS burst set的重复周期就是SS burst set周期,在5G中默认为20ms。SSB周期的取值范围是ENUMERATED{ms5,ms10,ms20,ms40,ms80,ms160}。而终端设备默认是20ms检测一次SSB。
一个SS burst set内最大支持的SSB并不相同,而是可以根据所在频率变化。当频率F<=6Ghz,最大SSB个数为8,当频率F>6Ghz时,最大SSB个数为64。不同的最大SSB数是因为频率越高,损耗越大,为了实现较好的覆盖性能,发送SSB的波束也窄,因此,要实现各个方向的覆盖,就需要更多的SSB来实现,因此,SSB的数量也越多。
二、SSB时域位置
对于具有SSB的半帧(5ms),候选SSB的数目和第一个符号索引位置根据SSB的子载波间隔确定如下,下面的例子(case)都是针对半帧而言。
例A(CaseA)-15KHz间隔:候选SSB的第一个符号的索引为{2,8}+14*n。对于F(Frequent)<=3GHz,n=0,1(即占2个时隙(slot),{}中也是两个数,则2ms总共有4个SSB,故Lmax=4)。对于3GHz<F<=6GHz,n=0,1,2,3(即占4个slot,4ms内Lmax=8)。
例B(CaseB)-30KHz间隔:候选SSB的第一个符号的索引为{4,8,16,20}+28*n(1ms内2个slot,1slot内有2个SSB)。对于F<=3GHz,n=0(即占2个slot,1ms内Lmax=4)。对于3GHz<F<=6GHz,n=0,1,2,3(即占4个slot,2ms内Lmax=8)。
例C(CaseC)-30KHz间隔:候选SSB的第一个符号的索引为{2,8}+14*n(1ms内2个slot,1slot内有2个SSB)。对于F(Frequent)<=3GHz,n=0,1(即占2个slot,2ms内Lmax=4)。对于3GHz<F<=6GHz,n=0,1,2,3(即占4个slot,4ms内Lmax=8)。
例D(CaseD)-120KHz间隔:候选SSB的第一个符号的索引为{4,8,16,20}+28*n,对于F>6GHz,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18(1ms内8个slot,1个slot内2个SSB,1ms占16个SSB,共4组,则4ms内Lmax=64),如图3所示。
例E(CaseE)-240KHz间隔:候选SSB的第一个符号的索引为{8,12,16,20,32,36,40,44}+56*n,对于F>6GHz,n=0,1,2,3,5,6,7,8(1ms内16个slot,1个slot内2个SSB,1ms占32个SSB,共2组,则2ms内Lmax=64),如图3所示。
三、剩余最小系统信息(Remaining Minimum System Information,RMSI)物理下行控制信道(Physical Downlink Shared Channel,PDCCH)
因为SSB的内部结构是协议标准化的,因此,当UE在特定的同步频点搜到同步信号后,就可以尝试对SSB进行解码。其中,SSB里面包含的最重要的信息就是主信息块(Master Information Block,MIB)。而MIB中携带了用于调度RMSI的PDCCH的相关配置信息,帮助用户确认RMSI PDCCH资源配置和监控PDCCH的时机,其中,如图4所示,PDCCH所在的RMSI控制资源集(Control Resource Set,CORESET)和SSB之间存在如下三种相对关系:
模式1(Pattern1):SSB和与其对应的RMSI CORESET时分复用(Time Division Multiplexing,TDM);
模式2(Pattern2:SSB和与其对应的RMSI CORESET频分复用(Frequency Division Multiplexing,FDM);
模式3(Pattern3):SSB和与其对应的RMSI CORESET FDM。
其中,模式2和模式3是专为FR2设计的。在协议中已经规定了不同组合下,不同复用方式的具体实现形式,包括PDCCH所在帧的位置,所在slot的位置,起始符号的位置,占用多少个符号等。
参见下表1至表3,分别指示了类型0(Type 0)PDCCH所在的帧,slot以及PDCCH第一个符号(symbol)所在的位置。其中,表1示出了在SS/PBCH block和CORESET的复用模式2且{SS/PBCH block,PDCCH}的子载波间隔(Subcarrier Space,SCS)分别为{120,60}kHz情况下,Type0-PDCCH公共 搜索空间集(Common Search Space Set,CSS Set)的PDCCH监测时机(monitoring occasions);表2示出了在SS/PBCH block和CORESET的复用模式2且{SS/PBCH block,PDCCH}的SCS分别为{240,120}kHz情况下,Type0-PDCCH CSS Set的PDCCH监测时机,表3示出了在SS/PBCH block和CORESET的复用模式3且{SS/PBCH block,PDCCH}的SCS分别为{120,120}kHz情况下,Type0-PDCCH CSS Set的PDCCH监测时机。
表1
Figure PCTCN2021135270-appb-000001
表2
Figure PCTCN2021135270-appb-000002
表3
Figure PCTCN2021135270-appb-000003
参见如下表4至表7,分别指示了不同SSB SCS,PDCCH SCS下PDCCH与SSB的映射方式,以及PDCCH所占用的资源块(Resource Block,RB)个数以及在时域上所占用的符号数。其中,表4示出了在SS/PBCH block和PDCCH的SCS分别为120kHz和60kHz情况下Type0-PDCCH搜索空间集的CORESET的资源块集和时隙符号(slot symbols);表5示出了在SS/PBCH block和PDCCH的SCS分别为120kHz和120kHz情况下Type0-PDCCH搜索空间集的CORESET的资源块集和时隙符号;表6示出了在SS/PBCH block 和PDCCH的SCS分别为240kHz和60kHz情况下Type0-PDCCH搜索空间集的CORESET的资源块集和时隙符号;表7示出了在SS/PBCH block和PDCCH的SCS分别为240kHz和120kHz情况下Type0-PDCCH搜索空间集的CORESET的资源块集和时隙符号。
表4
Figure PCTCN2021135270-appb-000004
表5
Figure PCTCN2021135270-appb-000005
Figure PCTCN2021135270-appb-000006
表6
Figure PCTCN2021135270-appb-000007
Figure PCTCN2021135270-appb-000008
表7
Figure PCTCN2021135270-appb-000009
Figure PCTCN2021135270-appb-000010
可选地,对于不同复用模式下不同的SCS(120k,240k)可以得到如图5和图6所示的复用方式示意图,其中图5示出了在复用模式2下的复用方式,图6示出了在复用模式3下的复用方式。
需要说明的是,在上述图5和图6中,SSB的不同填充代表不同SSB波束在时域上所占的位置以及所占符号个数,例如,左斜杠填充代表SSB 0,交叉线填充色代表SSB 1,横线填充代表SSB 2,点填充代表SSB 3(标准规定SSB所占符号数都是4个)。相应的,PDCCH的不同填充代表所所对应的SSB波束的PDCCH所在时域的位置以及所占的符号个数。
四、物理广播信道(Physical Broadcast Channel,PBCH)
因为SSB的内部结构是协议标准化的,因此,当UE在特定的同步频点搜到同步信号后,就可以尝试对SSB进行解码。其中,SSB里面包含的最重要的信息就是MIB。示例地,MIB可以包括如下信息:
systemFrameNumber IE:系统帧号。完整的帧号需要10比特(bit),而MIB的负载(Payload)中帧号只有高位6bit,低位的4bit在PBCH传输块中的非MIB比特中传送;
subCarrierSpacingCommon IE:初始接入流程中下行信号的子载波间隔,指示SIB1/OSI/初始接入的Msg2/Msg4/寻呼消息的子载波间隔;
ssb-SubcarrierOffset IE:SSB的最低子载波和与其最近的PRB之间的子载波间隔数;
dmrs-Type A-Position IE:PDSCH解调参考信号(Demodulation Reference Signal,DMRS)的配置;
pdcch-ConfigSIB1IE:SIB1_PDCCH的配置,包括CORESET(类似LTE的CFI)和搜索空间配置;
cellBarred IE:无线资源控制(Radio Resource Control,RRC)的接入控制参数,标识该小区是否被禁止;
intraFreqReselection IE:RRC接入控制参数,标识小区是否允许同频重选;
spare:保留bit位。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信号传输方法进行详细地说明。
请参见图7,图7是本申请实施例提供的一种信号传输方法的流程图,该方法可以由终端执行,如图7所示,包括以下步骤:
步骤701、从网络设备接收第一SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
本实施例中,上述N的取值可以是协议预定义或者由网络设备指示,例如,网络设备可以通过PBCH、系统信息块(System Information Block,SIB)或者RRC消息指示N的取值。
上述连续N个SSB可以是具有准共址(Quasi-Co-Location,QCL)关系的SSB或者是相同的SSB,也可以是不同的SSB。上述第一SSB可以包括连续N个SSB中的部分或者全部SSB。例如,在上述N个SSB均相同或者具有QCL关系的情况下,上述第一SSB可以包括上述N个SSB中的全部;在上述N个SSB均不相同的情况下,上述第一SSB可以仅包括上述N个SSB中的一个SSB;在上述N个SSB中部分SSB相同、部分SSB不同的情况下,上述第一SSB可以包括上述N个SSB中相同的多个SSB。
上述第一SSB对应第一PDCCH,可以理解为上述第一SSB携带有第一PDCCH的相关配置信息,例如,第一PDCCH的资源配置和监测第一PDCCH的时机等信息。
上述第一PDCCH占用的符号数可以根据上述N个SSB确定,例如,该第一PDCCH占用的符号数可以根据N的取值确定,或者可以根据上述N个SSB对应的N个第二PDCCH所占用的符号数确定,上述N个第二PDCCH可以是根据预定义的SSB和PDCCH之间的对应关系和上述N个SSB确定的。可选地,上述预定义的SSB和PDCCH之间的对应关系可以如表4至表7中任一所示的对应关系。
本申请实施例提供的信号传输方法,通过从网络设备接收第一SSB;其 中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。由于基于N个SSB确定PDCCH占用的符号数,可以使得PDCCH可使用的时域资源更为灵活,进而可以提高信号传输的灵活性。
可选地,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有QCL关系。
本实施例中,上述N个SSB可以相对于QCL-Type A、QCL-Type D和平均增益(average gain)等属性是QCL关系。
实际应用中,网络设备可以向终端发送连续N个具有QCL关系的SSB,上述N个SSB均映射至第一PDCCH。终端接收上述N个SSB,并可以基于上述N个SSB中的全部SSB确定第一PDCCH的相关配置信息,也可以基于上述N个SSB中的部分SSB确定第一PDCCH的相关配置信息,例如,可以基于上述N个SSB中信号最强的SSB确定第一PDCCH的相关配置信息。
本申请实施例通过从网络设备接收连续N个具有QCL关系的SSB,上述N个SSB均对应第一PDCCH,这样可以提高PDCCH传输的准确性。
可选地,所述第一SSB为所述N个SSB中的一个SSB。
本实施例中,上述N个SSB可以相同,也可以不同。上述第一SSB可以是N个SSB中任一个SSB,也可以是N个SSB中特定的一个SSB,例如,可以是N个SSB中第一个SSB,或者N个SSB中最后一个SSB等。
实际应用中,网络设备可以仅向终端发送连续N个SSB中的一个SSB。终端接收该SSB,并可以基于该SSB确定第一PDCCH的相关配置信息。
本申请实施例通过从网络设备接收N个SSB中的一个SSB,这样可以减少SSB的传输,节省系统开销。
可选地,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
可选地,上述预定义的SSB与PDCCH的起始符号之间的对应关系可以是相关技术中定义的SSB与PDCCH的起始符号之间的对应关系,例如,上述预定义的SSB与PDCCH的起始符号之间的对应关系可以是如表1至表3 中任一所示的对应关系。
上述K的取值可以是协议预定义,也可以是由网络设备指示。可选地,K的取值为1。
上述第一PDCCH的起始符号的位置根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,可选地,可以将N个SSB的第K个SSB对应的PDCCH的起始符号确定为第一PDCCH的起始符号,例如,若N个SSB的第K个SSB为SSB0,在预定义的SSB与PDCCH的起始符号之间的对应关系中SSB0对应的PDCCH的起始符号的索引为0,则第一PDCCH的起始符号的索引可以为0。
本实施例根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定第一PDCCH的起始符号,实现较为简单、快速。
可选地,所述第一PDCCH占用的符号数小于或等于N。
本实施例中,可以根据N个SSB的数量确定第一PDCCH占用的符号数,具体地,所述第一PDCCH占用的符号数小于或等于N。例如,在N的取值为2的情况,第一PDCCH占用的符号数可以为1或者2。
可选地,上述第一PDCCH占用的符号数可以为N。
例如,如图8和图9所示,网络设备向终端发送的两个连续的SSB具有QCL关系,该两个SSB对应一个type 0 PDCCH,且该PDCCH占用两个符号。例如,两个SSB0对应一个PDCCH0,两个SSB1对应一个PDCCH1,PDCCH0和PDCCH1均占用两个符号。
又例如,如图10a至图12b所示,网络设备仅向终端发送两个连续的SSB中的一个SSB,该SSB对应的PDCCH占用两个符号。
本实施例中由于PDCCH可占用更多的符号,进而可以提高信号传输的准确性。
可选地,所述第一PDCCH所调度的资源根据所述N个SSB确定。
本实施例中,上述第一PDCCH所调度的资源可以包括第一PDCCH对应的RMSI所占用的资源。
上述第一PDCCH所调度的资源根据N个SSB确定。例如,可以根据N 个SSB对应的N个第二PDCCH所调度的资源确定,其中,上述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的;或者可以根据N个SSB中M个SSB对应的M个第三PDCCH所调度的资源确定,其中,M小于N,上述M个第三PDCCH可以是根据预定义的SSB和PDCCH之间的对应关系和上述M个SSB确定的。
本实施例根据N个SSB确定第一PDCCH所调度的资源,可以提高第一PDCCH所调度的资源的灵活性。
可选地,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
可选地,上述预定义的SSB与PDCCH之间的对应关系可以是相关技术中定义的SSB与PDCCH之间的对应关系。示例地,上述预定义的SSB与PDCCH之间的对应关系可以是如表4至表7中任一所示的对应关系。例如,若N个SSB包括SSB0和SSB1,在预定义的SSB与PDCCH之间的对应关系中SSB0对应PDCCH 0,SSB1对应PDCCH 1,则第一PDCCH所调度的资源可以小于或等于上述PDCCH 0可调度的资源和上述PDCCH 1可调度的资源之和。
示例地,对于SSB和CORESET的复用模式2的场景,如图8所示,两个连续的SSB具有QCL关系,该两个SSB对应一个type 0 PDCCH,该PDCCH所调度的数据信号可以占用小于或等于4个的符号,也即该PDCCH所调度的资源小于或等于4个符号。对于SSB和CORESET的复用模式3的场景,如图9所示,两个连续的SSB具有QCL关系,该两个SSB对应一个type 0 PDCCH,该PDCCH所调度的数据信号可以占用小于或等于6个的符号,也即该PDCCH所调度的资源小于或等于6个符号。
可选地,所述第一PDCCH所调度的资源等于N个第二PDCCH所调度的资源。由于第一PDCCH可调度的资源更多,进而可以提高信号传输的准确性。
请参见图13,图13是本申请实施例提供的另一种信号传输方法的流程图,该方法由网络设备执行,如图13所示,包括以下步骤:
步骤1301、向终端发送第一SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
本实施例中,上述N的取值可以是协议预定义或者由网络设备确定。
可选地,网络设备可以通过PBCH、系统信息块(System Information Block,SIB)或者RRC消息向终端指示N的取值。
上述连续N个SSB可以是具有QCL关系的SSB或者是相同的SSB,也可以是不同的SSB。上述第一SSB可以包括连续N个SSB中的部分或者全部SSB。例如,在上述N个SSB均相同或者具有QCL关系的情况下,上述第一SSB可以包括上述N个SSB中的全部;在上述N个SSB均不相同的情况下,上述第一SSB可以仅包括上述N个SSB中的一个SSB;在上述N个SSB中部分SSB相同、部分SSB不同的情况下,上述第一SSB可以包括上述N个SSB中相同的多个SSB。
上述第一SSB对应第一PDCCH,可以理解为上述第一SSB携带有第一PDCCH的相关配置信息,例如,第一PDCCH的资源配置和监测第一PDCCH的时机等信息。
上述第一PDCCH占用的符号数可以根据上述N个SSB确定,例如,该第一PDCCH占用的符号数可以根据N的取值确定,或者可以根据上述N个SSB对应的N个第二PDCCH所占用的符号数确定,上述N个第二PDCCH可以是根据预定义的SSB和PDCCH之间的对应关系和上述N个SSB确定的。可选地,上述预定义的SSB和PDCCH之间的对应关系可以如表4至表7中任一所示的对应关系。
本申请实施例提供的信号传输方法,通过向终端发送第一SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。由于基于N个SSB确定PDCCH占用的符号数,可以使得PDCCH可使用的时域资源更为灵活,进而可以提高信号传输的灵活性。
可选地,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB 具有QCL关系。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
可选地,所述第一SSB为所述N个SSB中的一个SSB。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
可选地,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
可选地,所述第一PDCCH占用的符号数小于或等于N。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
可选地,所述第一PDCCH所调度的资源根据所述N个SSB确定。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
可选地,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
该实施方式的实现方式可以参见图7所示的实施例的相关说明,此处不作赘述。
需要说明的是,本实施例作为图7所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图7所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
为了便于理解,以下结合示例对本申请实施例提供的信号传输方法进行说明:
示例一:
对于复用模式2(pattern 2)的场景,可以如图8所示,每N个连续的 SSB具有QCL关系,以N=2为例,该两个SSB对应一个type 0 PDCCH。此时,该PDCCH可占用小于或等于两个符号,且该PDCCH所调度的数据信号可以占用小于或等于4个的符号,也即该PDCCH所调度的资源小于或等于4个的符号。相对于现有技术中PDCCH占用一个符号,以及PDCCH所调度的数据信号占用两个符号,本实施例中PDCCH以及其所调度的数据信号均可以使用更多的符号,进而可以提高信号传输的准确性。
其中,N可以为协议预定义或者网络设备指示,例如,可以通过PBCH、SIB或者RRC消息指示。示例地,可以通过PBCH信息里的预留域,或者其它有可能被节省下来的指示域(如固定公共子载波间隔,或者固定PDSCH DMRS位置)用来指示N的值。
相应地,可以如表8和表9所示,对于复用模式2的场景,符号数量(Number of symbols)可根据连续N个QCL的SSB的数量确定。可选地,可以修改MIB中的Coreset#0配置表格如表8和表9所示。
表8
Figure PCTCN2021135270-appb-000011
Figure PCTCN2021135270-appb-000012
表9
Figure PCTCN2021135270-appb-000013
对于复用模式3(pattern 3)的场景,可以如图9所示,每两个连续的SSB默认具有QCL关系,且该两个SSB对应一个type 0 PDCCH。此时,该PDCCH可占用小于或等于两个符号(如果协议支持,也可以占用更多的符号),且该PDCCH所调度的数据信号可以占用小于或等于6个符号。
相应地,可以如表10所示,对于复用模式3的场景,符号数量(Number of symbols)可根据连续N个QCL的SSB的数量确定。可选地,可以修改MIB中的Coreset#0配置表格如表10所示。
表10
Figure PCTCN2021135270-appb-000014
Figure PCTCN2021135270-appb-000015
示例二:
对于复用模式2的场景,如图10a和图10b所示,网络设备对于每两个连续的SSB选择发送其中的一个SSB,可以在不改变现有协议的流程以及SSB发送规则的前提下,该SSB所对应的PDCCH可占用小于或者等于两个符号(如果协议支持,也可以占用更多的符号)。且对于图10b所示的场景,PDCCH的起始符号也可以灵活配置。此外,该PDCCH所调度的数据信号可以占用小于或等于4个符号。相对于现有技术中PDCCH占用一个符号,以及PDCCH所调度的数据信号占用两个符号,本实施例中PDCCH以及其所调度的数据信号均可以使用更多的符号,进而可以提高信号传输的准确性。
相应地,可以如表11所示,对于复用模式2的场景,符号数量(Number of symbols)可根据连续N个QCL的SSB的数量确定。可选地,可以修改MIB中的Coreset#0配置表格如表11所示。
表11
Figure PCTCN2021135270-appb-000016
Figure PCTCN2021135270-appb-000017
又例如,如图11a和图11b所示,网络设备对应每两个连续的SSB选择发送其中的一个SSB,在不改变现有协议的流程的情况下,每个SSB所对应的PDCCH可占用小于或等于两个符号(如果协议支持,也可以占用更多的符号),且PDCCH的起始符号也可以灵活配置;同时,该PDCCH所调度的数据信号可以占用小于或等于4个符号。
相应地,如表12所示,对于复用模式2的场景,符号数量(Number of symbols)可根据连续N个QCL的SSB的数量确定。可选地,可以修改MIB中的Coreset#0配置表格如表12所示。
表12
Figure PCTCN2021135270-appb-000018
Figure PCTCN2021135270-appb-000019
对于复用模式3(pattern 3)的场景,可以如图12a和图12b所示,网络设备对每两个连续的SSB选择发送其中的一个SSB,在不改变现有协议的流程以及SSB发送规则的前提下,每个SSB所对应的PDCCH可占用小于或等于两个符号(如果协议支持,也可以占用更多的符号),且该PDCCH的起始符号可以灵活配置。此外,该PDCCH所调度的数据信号可以占用小于或等于6个符号。
相应地,可以如表13所示,对于复用模式3的场景,符号数量(Number of symbols)可根据连续N个QCL的SSB的数量确定。可选地,可以修改MIB中的Coreset#0配置表格如表13所示。
表13
Figure PCTCN2021135270-appb-000020
Figure PCTCN2021135270-appb-000021
由上可知,本申请实施例提供的信号传输方法,可以解决现有技术中SSB与TYPE 0 PDCCH映射可能带来的频域资源超过最小带宽的问题,以及所占时域符号数过少的问题,还可以解决SSB波束切换的问题。
请参见图14,图14是本申请实施例提供的一种信号传输装置的结构图,如图14所示,信号传输装置1400包括:
接收模块1401,用于从网络设备接收第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
可选地,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
可选地,所述第一SSB为所述N个SSB中的一个SSB。
可选地,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或 等于N的正整数。
可选地,K的取值为1。
可选地,所述第一PDCCH占用的符号数小于或等于N。
可选地,所述第一PDCCH所调度的资源根据所述N个SSB确定。
可选地,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
本申请实施例提供的信号传输装置能够实现图7的方法实施例中各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的信号传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。
请参见图15,图15是本申请实施例提供的另一种信号传输装置的结构图,如图15所示,信号传输装置1500包括:
发送模块1501,用于向终端发送第一同步信号块SSB;
其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
可选地,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
可选地,所述第一SSB为所述N个SSB中的一个SSB。
可选地,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
可选地,K的取值为1。
可选地,所述第一PDCCH占用的符号数小于或等于N。
可选地,所述第一PDCCH所调度的资源根据所述N个SSB确定。
可选地,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
本申请实施例提供的信号传输装置能够实现图13的方法实施例中各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的信号传输装置可以是装置,也可以是网络设备中的部件、集成电路、或芯片。
请参见图16,图16是本申请实施例提供的一种终端的结构图。如图16所示,该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609以及处理器1610等部件。
本领域技术人员可以理解,终端1600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1604可以包括图形处理器(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1606可包括显示面板16061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板16061。用户输入单元1607包括触控面板16071以及其他输入设备16072。触控面板16071,也称为触摸屏。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1601将来自网络设备的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给网络设备。通常,射频单元1601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1609可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播 放功能等)等。此外,存储器1609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1610可包括一个或多个处理单元;可选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
其中,射频单元1601,用于从网络设备接收第一同步信号块SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
应理解,本实施例中,上述处理器1610和射频单元1601能够实现图7的方法实施例中终端实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选地,本申请实施例还提供一种终端,包括处理器1610,存储器1609,存储在存储器16089上并可在所述处理器1610上运行的程序或指令,该程序或指令被处理器1610执行时实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
请参见图17,图17是本申请实施例提供的一种网络设备的结构图,该网络设备1700包括:处理器1701、收发机1702、存储器1703和总线接口,其中:
收发机1702,用于向终端发送第一同步信号块SSB;其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
应理解,本实施例中,上述处理器1701和收发机1702能够实现图13的 方法实施例中网络设备实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,收发机1702,用于在处理器1701的控制下接收和发送数据,所述收发机1702包括至少两个天线端口。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1701代表的一个或多个处理器和存储器1703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1701负责管理总线架构和通常的处理,存储器1703可以存储处理器1701在执行操作时所使用的数据。
可选地,本申请实施例还提供一种网络设备,包括处理器1701,存储器1703,存储在存储器1703上并可在所述处理器1701上运行的程序或者指令,该程序或者指令被处理器1701执行时实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述终端侧的信号传输方法或者网络设备侧的信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述终端侧的信号传输方法或者网络设备侧的信号传输方法实施例的各 个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理执行以实现上述图7和图13方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助计算机程序加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机程序产品的形式体现出来,该计算机程序产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种信号传输方法,其中,由终端执行,所述方法包括:
    从网络设备接收第一同步信号块SSB;
    其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
  2. 根据权利要求1所述的方法,其中,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
  3. 根据权利要求1所述的方法,其中,所述第一SSB为所述N个SSB中的一个SSB。
  4. 根据权利要求1所述的方法,其中,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
  5. 根据权利要求4所述的方法,其中,K的取值为1。
  6. 根据权利要求1所述的方法,其中,所述第一PDCCH占用的符号数小于或等于N。
  7. 根据权利要求1所述的方法,其中,所述第一PDCCH所调度的资源根据所述N个SSB确定。
  8. 根据权利要求7所述的方法,其中,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
  9. 一种信号传输方法,其中,由网络设备执行,所述方法包括:
    向终端发送第一同步信号块SSB;
    其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
  10. 根据权利要求9所述的方法,其中,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
  11. 根据权利要求9所述的方法,其中,所述第一SSB为所述N个SSB中的一个SSB。
  12. 根据权利要求9所述的方法,其中,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
  13. 根据权利要求12所述的方法,其中,K的取值为1。
  14. 根据权利要求9所述的方法,其中,所述第一PDCCH占用的符号数小于或等于N。
  15. 根据权利要求9所述的方法,其中,所述第一PDCCH所调度的资源根据所述N个SSB确定。
  16. 根据权利要求15所述的方法,其中,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
  17. 一种信号传输装置,其中,所述装置包括:
    接收模块,用于从网络设备接收第一同步信号块SSB;
    其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
  18. 根据权利要求17所述的装置,其中,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
  19. 根据权利要求17所述的装置,其中,所述第一SSB为所述N个SSB中的一个SSB。
  20. 根据权利要求17所述的装置,其中,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
  21. 根据权利要求20所述的装置,其中,K的取值为1。
  22. 根据权利要求17所述的装置,其中,所述第一PDCCH占用的符号数小于或等于N。
  23. 根据权利要求17所述的装置,其中,所述第一PDCCH所调度的资源 根据所述N个SSB确定。
  24. 根据权利要求23所述的装置,其中,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
  25. 一种信号传输装置,其中,所述装置包括:
    发送模块,用于向终端设备发送第一同步信号块SSB;
    其中,所述第一SSB包括连续N个SSB中的部分或者全部SSB,所述第一SSB对应第一物理下行控制信道PDCCH,所述第一PDCCH占用的符号数根据所述N个SSB确定,N为大于1的整数。
  26. 根据权利要求25所述的装置,其中,所述第一SSB包括所述N个SSB中的全部SSB,所述N个SSB具有准共址QCL关系。
  27. 根据权利要求25所述的装置,其中,所述第一SSB为所述N个SSB中的一个SSB。
  28. 根据权利要求25所述的装置,其中,所述第一PDCCH的起始符号根据预定义的SSB与PDCCH的起始符号之间的对应关系和所述N个SSB的第K个SSB确定,K为小于或等于N的正整数。
  29. 根据权利要求28所述的装置,其中,K的取值为1。
  30. 根据权利要求25所述的装置,其中,所述第一PDCCH占用的符号数小于或等于N。
  31. 根据权利要求25所述的装置,其中,所述第一PDCCH所调度的资源根据所述N个SSB确定。
  32. 根据权利要求31所述的装置,其中,所述第一PDCCH所调度的资源小于或等于N个第二PDCCH所调度的资源,所述N个第二PDCCH为根据预定义的SSB和PDCCH之间的对应关系和所述N个SSB确定的。
  33. 一种终端,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的信号传输方法中的步骤。
  34. 一种网络设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行 时实现如权利要求9至16中任一项所述的信号传输方法中的步骤。
  35. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至8中任一项所述的信号传输方法的步骤,或者所述程序或指令被处理器执行时实现如权利要求9至16中任一项所述的信号传输方法的步骤。
  36. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-8中任一项所述的信号传输方法的步骤,或者实现如权利要求9至16中任一项所述的信号传输方法的步骤。
  37. 一种计算机程序产品,其中,所述程序产品被存储在非瞬态的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-8中任一项所述的信号传输方法的步骤,或者实现如权利要求9-16中任一项所述的信号传输方法的步骤。
PCT/CN2021/135270 2020-12-03 2021-12-03 信号传输方法、装置、终端及网络设备 WO2022117066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011407292.2A CN114615731A (zh) 2020-12-03 2020-12-03 信号传输方法、装置、终端及网络设备
CN202011407292.2 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022117066A1 true WO2022117066A1 (zh) 2022-06-09

Family

ID=81853825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135270 WO2022117066A1 (zh) 2020-12-03 2021-12-03 信号传输方法、装置、终端及网络设备

Country Status (2)

Country Link
CN (1) CN114615731A (zh)
WO (1) WO2022117066A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810934A (zh) * 2017-05-05 2018-11-13 展讯通信(上海)有限公司 发送、接收公共控制信息的方法、基站、终端及存储介质
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
CN111149402A (zh) * 2017-09-22 2020-05-12 三星电子株式会社 用于无线通信系统中的控制资源集配置的方法和装置
US20200154341A1 (en) * 2018-11-14 2020-05-14 Qualcomm Incorporated Control search space overlap indication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810934A (zh) * 2017-05-05 2018-11-13 展讯通信(上海)有限公司 发送、接收公共控制信息的方法、基站、终端及存储介质
CN111149402A (zh) * 2017-09-22 2020-05-12 三星电子株式会社 用于无线通信系统中的控制资源集配置的方法和装置
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
US20200154341A1 (en) * 2018-11-14 2020-05-14 Qualcomm Incorporated Control search space overlap indication

Also Published As

Publication number Publication date
CN114615731A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US10856292B2 (en) Communication method and base station
WO2022037664A1 (zh) 非连续接收drx配置方法、装置和设备
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
US11832272B2 (en) Method and device for determining resources and storage medium
WO2022152176A1 (zh) 传输处理方法及相关设备
EP4228335A1 (en) Energy-saving indication method, apparatus and device, and readable storage medium
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022001848A1 (zh) 一种传输处理方法、装置及终端
JP2023533258A (ja) 情報伝送方法、装置、端末及びネットワーク側機器
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2022117066A1 (zh) 信号传输方法、装置、终端及网络设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2015039626A1 (zh) 一种发送和接收数据的方法、系统及设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备
WO2022143659A1 (zh) 信号配置方法、装置、设备及存储介质
WO2023131227A1 (zh) 传输确定方法、装置、设备及介质
WO2022228526A1 (zh) 移动性管理的配置方法、装置、终端、网络侧设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900092

Country of ref document: EP

Kind code of ref document: A1