WO2018137466A1 - 信息指示方法、装置及系统 - Google Patents

信息指示方法、装置及系统 Download PDF

Info

Publication number
WO2018137466A1
WO2018137466A1 PCT/CN2017/119593 CN2017119593W WO2018137466A1 WO 2018137466 A1 WO2018137466 A1 WO 2018137466A1 CN 2017119593 W CN2017119593 W CN 2017119593W WO 2018137466 A1 WO2018137466 A1 WO 2018137466A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
time domain
signal block
broadcast channel
physical broadcast
Prior art date
Application number
PCT/CN2017/119593
Other languages
English (en)
French (fr)
Inventor
刘星
郝鹏
张峻峰
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018137466A1 publication Critical patent/WO2018137466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2671Time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present disclosure relates to a fifth generation of mobile telecommunications (5G) system, for example, to an information indicating method, apparatus, and system in a new radio access technology (new RAT).
  • 5G mobile telecommunications
  • new RAT new radio access technology
  • the transmitting end can concentrate the transmitting energy in one direction, while the other directions have little or no energy, that is, each beam has its own directivity, and each beam can only cover To a terminal in a certain direction, the transmitting end, that is, the base station needs to transmit a beam in dozens or even hundreds of directions to complete the full coverage.
  • An information indicating method, device and system can solve the problem that the time domain related information of the terminal in the related art has large indication overhead and the terminal detection is complicated.
  • An information indicating method includes:
  • the time domain related information of the synchronization signal block includes at least one of: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, and system frame number SFN ;as well as
  • the network side node transmits a corresponding synchronization signal and a physical broadcast channel in one or more synchronization signal blocks according to the synchronization signal sequence and the transmission manner of the physical broadcast channel.
  • the synchronization signal block occupies one or more OFDM symbol resources for carrying information transmission of one or a specific port or beam; and one or more consecutive synchronization signal blocks form a synchronization signal window.
  • One or more sync signal windows form a sync signal window group and transmit information for all ports or beams within the sync signal window group.
  • the time domain position of the synchronization signal block includes at least one of: a relative time domain position of the synchronization signal block in a subframe; a relative time domain of the synchronization signal block in a synchronization signal window group a location; a relative time domain location of the synchronization signal block within the synchronization signal window; and a relative time domain location of the synchronization signal block during a physical broadcast channel update period.
  • the synchronization signal sequence includes any level of synchronization signal sequence, or a combination of multiple levels of synchronization signal sequences.
  • the manner of transmitting the physical broadcast channel includes at least one of: a scrambling code sequence adopted by the physical broadcast channel, a check sequence of the physical broadcast channel, and information carried by the physical broadcast channel.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using a time domain index of different synchronization signal blocks: subframe timing information, field timing information, and radio frame timing information;
  • the system frame number is represented by an X-bit binary number, wherein the network side node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • the network side node indicates, by at least one of a scrambling code sequence and a check sequence of the physical broadcast channel, a log 2 n bit between a high (X-log 2 T) bit and a low M bit of the system frame number.
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • T, n, X, and M are all positive integers.
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information, including:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the network side node indicates a time domain index or number of the synchronization signal block by a synchronization signal sequence; predefining a time domain index of the synchronization signal block or And an association between the number and the time domain offset of the synchronization signal block, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, The time domain offset between the sync signal block and the field boundary and the time domain offset between the sync signal block and the radio frame boundary.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using a combination of a time domain index of different synchronization signal blocks and a synchronization signal window time domain index: subframe timing information, field timing information And radio frame timing information;
  • the system frame number is represented by an X-bit binary number, wherein the network side node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • the network side node indicates, by at least one of a scrambling code sequence and a check sequence of the physical broadcast channel, a log 2 n bit between a high (X-log 2 T) bit and a low M bit of the system frame number. ;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the network side node indicates at least one of the following information of the synchronization signal block by using a combination of different synchronization signal block time domain index and the synchronization signal window time domain index: subframe timing information, half Frame timing information and radio frame timing information, including:
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window, the synchronization signal window is uniformly numbered in the synchronization signal window group, and the synchronization signal block time domain index and the synchronization signal window are indicated by a synchronization signal sequence.
  • the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, a time domain offset between the synchronization signal block and a field boundary, and the synchronization The time domain offset between the signal block and the radio frame boundary.
  • the physical broadcast channels in different sync signal window groups use at least one of different physical broadcast channel scrambling code sequences and check sequences.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the system frame number is represented by an X-bit binary number, wherein the network side node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • T, X, and M are all positive integers.
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information, including:
  • the synchronization signal block is uniformly numbered within a subframe, and a synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; a time domain index or number of the synchronization signal block is predefined and a timing of the synchronization signal block
  • the physical broadcast channels in different radio frames employ at least one of different physical broadcast channel scrambling sequences and check sequences.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in a physical broadcast channel update period, and the synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; and a time domain index or number of the synchronization signal block is predefined
  • the system frame number is represented by an X-bit binary number, wherein the network side node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the network side node indicates the system frame number through explicit information carried in the physical broadcast channel. High (X-log 2 T) bit;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the network side node indicates the system frame through explicit information carried in a physical broadcast channel.
  • the combination of the group time domain index and the synchronization signal block time domain index indicates a low log 2 T bit of the system frame number
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the synchronization signal sequence and the transmission mode of the physical broadcast channel are used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the synchronization signal window is uniformly numbered in the synchronization signal window group, and the system frame number is represented by an X-bit binary number, wherein the network side node passes Explicit information carried in the physical broadcast channel indicates a high (X-log 2 T) bit of the system frame number;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the sending manner of the synchronization signal sequence and the physical broadcast channel is used to indicate time domain related information of the synchronization signal block, including:
  • the network side node indicates subframe timing information of the synchronization signal block by using different synchronization signal block time domain indexes
  • the network side node indicates at least one of a subframe timing information and a radio frame timing information of the synchronization signal block by using different synchronization signal window group time domain indexes;
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the network side node indicates the system frame through explicit information carried in a physical broadcast channel.
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the network side node indicates the subframe timing information of the synchronization signal block by using different synchronization signal block time domain indexes, including:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined and the synchronization signal block is The association of time domain offsets, wherein the time domain offset is a time domain offset between the sync signal block and a subframe boundary.
  • the network side node indicates at least one of the subframe timing information and the radio frame timing information of the synchronization signal block by using different synchronization signal window group time domain indexes, including:
  • An information indicating method includes:
  • the terminal side node receives the synchronization signal and the physical broadcast channel
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, where the time domain related information includes at least the following One: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, and system frame number SFN.
  • the synchronization signal block occupies one or more OFDM symbol resources for carrying information transmission of one or a specific set of ports or beams; the one or more consecutive synchronization signal blocks form a synchronization signal window One or more synchronization signal windows form a synchronization signal window group in which information of all ports or beams is transmitted.
  • the synchronization signal sequence includes any level of synchronization signal sequence, or a combination of multiple levels of synchronization signal sequences.
  • the manner of transmitting the physical broadcast channel includes at least one of: a scrambling code sequence used by the physical broadcast channel, a check sequence of the physical broadcast channel, and explicit information carried in the physical broadcast channel.
  • the time domain position of the synchronization signal block includes at least one of: a relative time domain position of the synchronization signal block in a subframe; a relative time domain of the synchronization signal block in a synchronization signal window group a location; a relative time domain location of the synchronization signal block within the synchronization signal window; and a relative time domain location of the synchronization signal block during a physical broadcast channel update period.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the system frame number is represented by an X-bit binary number, wherein the terminal side node determines a high (X-log 2 T) bit of the system frame number by using explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the terminal side node determines at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the terminal side node determines a time domain index or number of the synchronization signal block by using a synchronization signal sequence; predefining a time domain index of the synchronization signal block or And an association between the number and the time domain offset of the synchronization signal block, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, The time domain offset between the sync signal block and the field boundary and the time domain offset between the sync signal block and the radio frame boundary.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the system frame number is represented by an X-bit binary number, wherein the terminal side node determines a high (X-log 2 T) bit of the system frame number by using explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the terminal side node determines at least one of the following information of the synchronization signal block by using a combination of different synchronization signal block time domain indexes and the synchronization signal window time domain index: subframe timing information, half Frame timing information and radio frame timing information, including:
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window, the synchronization signal window is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the synchronization signal block time domain index or number and the synchronization.
  • Signal window time domain index or combination of numbers predefining a time domain index or number of the synchronization signal block and a combination of a time domain index or number of the synchronization signal window and a time domain offset of the synchronization signal block a relationship, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, and a time domain offset between the synchronization signal block and a field boundary And a time domain offset between the sync signal block and a radio frame boundary.
  • the physical broadcast channels in the different sync signal window groups use at least one of different physical broadcast channel scrambling code sequences and check sequences.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the system frame number is represented by an X-bit binary number, wherein the terminal side node determines a high (X-log 2 T) bit of the system frame number by using explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • T, X, and M are all positive integers.
  • the terminal side node determines at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information, including:
  • the synchronization signal block is uniformly numbered within a subframe, and a synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; a time domain index or number of the synchronization signal block is predefined and a timing of the synchronization signal block
  • the physical broadcast channels in different radio frames employ at least one of different physical broadcast channel scrambling sequences and check sequences.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the synchronization signal block is uniformly numbered in a physical broadcast channel update period, and the synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; and a time domain index or number of the synchronization signal block is predefined
  • the system frame number is represented by an X-bit binary number, wherein the terminal side node determines a high (X-log 2 T) bit of the system frame number by using explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • the physical broadcast channels in different radio frames use at least one of different physical broadcast channel scrambling code sequences and check sequences, and both T and X are positive. Integer.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the terminal side node determines the system frame number by using explicit information carried in the physical broadcast channel. High (X-log 2 T) bit;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the terminal side node determines the system frame by using explicit information carried in a physical broadcast channel.
  • the combination of the group time domain index and the synchronization signal block time domain index determines a low log 2 T bit of the system frame number
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the synchronization signal window is uniformly numbered in the synchronization signal window group, and the system frame number is represented by an X-bit binary number, wherein the terminal side node passes Explicit information carried within the physical broadcast channel determines a high (X-log 2 T) bit of the system frame number;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal side node determines the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located, according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, including:
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, wherein the terminal side node determines the system frame by using explicit information carried in a physical broadcast channel.
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal side node determines subframe timing information of the synchronization signal block by using different synchronization signal block time domain indexes; the synchronization signal blocks are uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate Decoding a time domain index or number of the synchronization signal block; predefining a correlation between a time domain index or number of the synchronization signal block and a time domain offset of the synchronization signal block, wherein the time domain offset is A time domain offset between the sync signal block and the sub-frame boundary.
  • the terminal side node determines at least one of the subframe timing information and the radio frame timing information of the synchronization signal block by using different synchronization signal window group time domain indexes, including:
  • the time domain offset includes at least one of: the synchronization signal block and a field The time domain offset between the boundaries and the time domain offset between the sync block and the radio frame boundary.
  • a base station comprising:
  • a determining module configured to determine a synchronization signal sequence and a physical broadcast channel PBCH transmission manner in the synchronization signal block according to a time domain position of the synchronization signal block, where the synchronization signal sequence and a physical broadcast channel transmission manner are used And indicating the time domain related information of the synchronization signal block, and the time domain related information includes at least one of: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, system frame No. SFN; and
  • the sending module is configured to send the corresponding synchronization signal and the physical broadcast channel in one or more synchronization signal blocks according to the synchronization signal sequence and the transmission mode of the physical broadcast channel.
  • the synchronization signal block occupies one or more OFDM symbol resources for carrying information transmission of one or a specific port or beam; one or more consecutive synchronization signal blocks form a synchronization signal window, one Or a plurality of synchronization signal windows form a synchronization signal window group, and all port or beam information is transmitted in the synchronization signal window group.
  • the time domain position of the synchronization signal block includes at least one of: a relative time domain position of the synchronization signal block in a subframe; a relative time domain of the synchronization signal block in a synchronization signal window group a location; a relative time domain location of the synchronization signal block within the synchronization signal window; and a relative time domain location of the synchronization signal block during a physical broadcast channel update period.
  • the synchronization signal sequence includes any level of synchronization signal sequence, or a combination of multiple levels of synchronization signal sequences.
  • the manner of transmitting the physical broadcast channel includes at least one of: a scrambling code sequence used by the physical broadcast channel, a check sequence of the physical broadcast channel, and information carried by the physical broadcast channel.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by an index of a time domain of different synchronization signal blocks: subframe timing information, field timing information, and radio frame timing information;
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is indicated by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the base station indicates a time domain index or number of the synchronization signal block by a synchronization signal sequence; when the synchronization signal block is predefined An association between a domain index or a number and a time domain offset of the synchronization signal block, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary A quantity, a time domain offset between the synchronization signal block and a field boundary, and a time domain offset between the synchronization signal block and a radio frame boundary.
  • the base station indicates time domain related information of the synchronization signal block by:
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is indicated by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window, the synchronization signal window is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index of the synchronization signal block and a combination of the synchronization signal window time domain index; predefining a time domain index or number of the synchronization signal block and a combination of a time domain index or number of the synchronization signal window and a time domain offset of the synchronization signal block An association relationship, where the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, and a time domain offset between the synchronization signal block and a field boundary And the amount of time domain offset between the sync signal block and the radio frame boundary.
  • the physical broadcast channels in different sync signal window groups use at least one of different physical broadcast channel scrambling code sequences and check sequences.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by a different synchronization signal block time domain index: subframe timing information, field timing information, and radio frame timing information;
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is indicated by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • T, X, and M are all positive integers.
  • the synchronization signal block is uniformly numbered within a subframe, and a synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; a time domain index or number of the synchronization signal block is predefined
  • the physical broadcast channels in different radio frames employ at least one of different physical broadcast channel scrambling sequences and check sequences.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by a different synchronization signal block time domain index: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in a physical broadcast channel update period, and the synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; and a time domain index or number of the synchronization signal block is predefined
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is indicated by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by a different synchronization signal block time domain index: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, and the system frame number is indicated by an explicit information carried in the physical broadcast channel (X-log 2 T) bit;
  • a predefined window of the synchronization signal domain indexes with the system frame number of low relationship between log 2 T bit, indicating that the system via the field index signal during the synchronized window low log 2 T bit frame number;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by a different synchronization signal block time domain index: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, and the system frame number is indicated by an explicit information carried in the physical broadcast channel (X-log 2 T);
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the base station indicates time domain related information of the synchronization signal block by:
  • At least one of the following information of the synchronization signal block is indicated by a different synchronization signal block time domain index: subframe timing information, field timing information, and radio frame timing information;
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the synchronization signal window is uniformly numbered in the synchronization signal window group, and the system frame number is represented by an X-bit binary number, and is carried by a physical broadcast channel.
  • the type information indicates a high (X-log 2 T) bit of the system frame number;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the base station indicates time domain related information of the synchronization signal block by:
  • Subframe timing information of the synchronization signal block is indicated by different synchronization signal block time domain indices
  • At least one of half frame timing information and radio frame timing information of the synchronization signal block is indicated by a different synchronization signal window group time domain index
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, and the system frame number is indicated by an explicit information carried in the physical broadcast channel (X-log 2 T);
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined.
  • the association between the synchronization signal window group time domain index and the time domain offset of the synchronization signal block is predefined, wherein the time domain offset includes at least one of: the synchronization The time domain offset between the signal block and the field boundary, and the time domain offset between the sync block and the radio frame boundary.
  • a terminal comprising:
  • a receiving module configured to receive a synchronization signal and a physical broadcast channel
  • a determining module configured to determine, according to the identified synchronization signal sequence and a physical broadcast channel transmission manner, the synchronization signal and the time domain related information of the synchronization signal block where the physical broadcast channel is located, where the time domain related information includes at least the following One: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, and system frame number SFN.
  • the synchronization signal block occupies one or more OFDM symbol resources, and is configured to transmit information of one or a specific port or beam; the one or more consecutive synchronization signal blocks form a synchronization signal window.
  • One or more synchronization signal windows form a synchronization signal window group in which information of all ports or beams is transmitted.
  • the synchronization signal sequence includes any level of synchronization signal sequence, or a combination of multiple levels of synchronization signal sequences.
  • the manner of transmitting the physical broadcast channel includes at least one of: a scrambling code sequence used by the physical broadcast channel, a check sequence of the physical broadcast channel, and explicit information carried in the physical broadcast channel.
  • the time domain position of the synchronization signal block includes at least one of: a relative time domain position of the synchronization signal block in a subframe; a relative time domain of the synchronization signal block in a synchronization signal window group a location; a relative time domain position of the synchronization signal block within the synchronization signal window SS burst; and a relative time domain position of the synchronization signal block during a physical broadcast channel update period.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the system frame number is represented by an X-bit binary number, wherein the high (X-log 2 T) bit of the system frame number is determined by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the terminal determines a time domain index or number of the synchronization signal block by using a synchronization signal sequence; when the synchronization signal block is predefined An association between a domain index or a number and a time domain offset of the synchronization signal block, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary A quantity, a time domain offset between the synchronization signal block and a field boundary, and a time domain offset between the synchronization signal block and a radio frame boundary.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is determined by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • n is the number of synchronization signal window groups included in the physical broadcast channel update period
  • T/n is the number of radio frames per synchronization signal window group.
  • / is a division operator
  • T, n, X, and M are all positive integers.
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window, the synchronization signal window is uniformly numbered in the synchronization signal window group, and the synchronization signal block is used to indicate the time domain index of the synchronization signal block or And a combination of the number and the synchronization signal window time domain index or number; predefining a time domain index or number of the synchronization signal block and a combination of the synchronization signal window time domain index or number and a time domain of the synchronization signal block An association of offsets, wherein the time domain offset includes at least one of: a time domain offset between the synchronization signal block and a subframe boundary, and between the synchronization signal block and a field boundary The time domain offset, and the time domain offset between the sync block and the radio frame boundary.
  • the physical broadcast channels in different sync signal window groups use at least one of different physical broadcast channel scrambling code sequences and check sequences.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is determined by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • T, X, and M are all positive integers.
  • the synchronization signal block is uniformly numbered within a subframe, and a synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; a time domain index or number of the synchronization signal block is predefined
  • the physical broadcast channels in different radio frames employ at least one of different physical broadcast channel scrambling sequences and check sequences.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the synchronization signal block is uniformly numbered in a physical broadcast channel update period, and the synchronization signal sequence is used to indicate a time domain index or number of the synchronization signal block; and a time domain index or number of the synchronization signal block is predefined
  • the system frame number is represented by an X-bit binary number, and the high (X-log 2 T) bit of the system frame number is determined by explicit information carried in the physical broadcast channel;
  • T is the number of radio frames included in the physical broadcast channel update period
  • the physical broadcast channels in different radio frames use at least one of different physical broadcast channel scrambling code sequences and check sequences, and both T and X are positive. Integer.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronizing signal window Identification Number within a physical broadcast channel update period the system frame number represented by the X-bit binary number, to determine the system frame number is high (X-log 2 explicit information carried within a physical broadcast channel T) bit;
  • a predefined window of the synchronization signal domain indexes with the system frame number of low relationship between log 2 T bits to determine the system frame number of the low log 2 T bit synchronizing signal through the window index domain;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block of the physical broadcast channel by:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, and the system frame number is determined by the explicit information carried in the physical broadcast channel (X-log 2 T);
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the synchronization signal block is uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block; the time domain index or number of the synchronization signal block is predefined to be synchronized with the synchronization signal block.
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the synchronization signal window is uniformly numbered in the synchronization signal window group, and the system frame number is represented by an X-bit binary number, and is carried by a physical broadcast channel.
  • the information determines a high (X-log 2 T) bit of the system frame number;
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal determines time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located by:
  • the synchronization signal window group is uniformly numbered in a physical broadcast channel update period, and the system frame number is represented by an X-bit binary number, and the system frame number is determined by the explicit information carried in the physical broadcast channel (X-log 2 T);
  • T is the number of radio frames included in the physical broadcast channel update period, and both T and X are positive integers.
  • the terminal determines subframe timing information of the synchronization signal block by using different synchronization signal block time domain indexes; the synchronization signal blocks are uniformly numbered in the synchronization signal window group, and the synchronization signal sequence is used to indicate the synchronization.
  • a time domain index or number of the signal block a relationship between a time domain index or number of the synchronization signal block and a time domain offset of the synchronization signal block is predefined, wherein the time domain offset is The time domain offset between the sync block and the sub-frame boundary.
  • the association between the synchronization signal window group time domain index and the time domain offset of the synchronization signal block is predefined, wherein the time domain offset includes at least one of: the synchronization The time domain offset between the signal block and the field boundary, and the time domain offset between the sync block and the radio frame boundary.
  • a computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • a base station comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method performed by the network side node described above.
  • a terminal comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method performed by the terminal side node described above.
  • FIG. 1 is a schematic structural diagram of a synchronization signal window group according to the related art
  • FIG. 2 is a schematic structural diagram of a synchronization signal window group according to an embodiment
  • FIG. 3 is a schematic structural diagram of a synchronization signal window group according to another embodiment
  • FIG. 4 is a schematic structural diagram of a synchronization signal window group according to another embodiment
  • FIG. 5 is a schematic structural diagram of a synchronization signal window group according to another embodiment
  • FIG. 6 is a schematic structural diagram of a synchronization signal window group according to another embodiment
  • FIG. 7 is a schematic structural diagram of a synchronization signal window group according to another embodiment.
  • FIG. 8 is a schematic structural diagram of a synchronization signal window group according to another embodiment.
  • FIG. 9 is a schematic structural diagram of a synchronization signal window group according to another embodiment.
  • FIG. 10 is a schematic structural diagram of a base station module according to another embodiment.
  • FIG. 11 is a schematic structural diagram of a terminal module according to another embodiment
  • FIG. 12 is a schematic diagram showing the hardware structure of a base station according to an embodiment
  • FIG. 13 is a schematic diagram of a hardware structure of a terminal according to an embodiment.
  • FIG. 1 is a structure of a synchronization signal (SS) burst set, which is a sweeping resource for transmitting a synchronization signal, wherein the synchronization signal window group includes one or more synchronization signal windows.
  • SS burst a synchronization signal window includes one or more synchronization signal blocks (SS blocks)
  • each synchronization signal block carries a synchronization signal of a specific beam or port (group)
  • the synchronization signal window group performs one beam scanning, that is, Complete the transmission of all beams or ports.
  • the synchronization signal block may further include a Physical Broadcasting Channel (PBCH), a demodulation reference signal corresponding to the PBCH, other control channels, and other signals such as a data channel.
  • PBCH Physical Broadcasting Channel
  • the offsets of different synchronization signal blocks with respect to the subframe boundary are different, and terminals at different positions may successfully detect the synchronization signal in any one of the synchronization signal blocks, in order to After the subframe timing is completed, the terminal needs to know the time index information of the current synchronization to the synchronization signal block.
  • the terminal completes downlink synchronization, acquires cell identifier (Identifier, ID) and other information through correlation detection of the synchronization signal, and receives PBCH, and the PBCH carries part or all of the system frame number information.
  • ID cell identifier
  • the PBCH carries part or all of the system frame number information.
  • the upper 8 bits of the SFN are indicated by the PBCH, and the lower two bits are implicitly indicated by 4 different scrambling codes. Therefore, it is ensured that the four transmissions in the 40 ms update period maintain a consistent information bit, allowing the terminal to merge and receive.
  • the NR-PBCH is transmitted in the structure of the synchronization signal window group, and the NR-PBCHs of different beam directions are transmitted in different synchronization signal blocks in the synchronization signal window group, when considering continuing in the NR-
  • SFN Single Frequency Network
  • the synchronization signal block time domain index For the above two time-domain related information that need to be indicated to the terminal: the synchronization signal block time domain index, and the low N-bit information of the SFN.
  • the internal association between the two is not considered, but the independent indication method is studied, which brings greater indication overhead to the system and increases the terminal to detect two information. The complexity.
  • the first communication node may be a macro-side base station, a relay node, or a network-side device such as a transmitting and receiving node TRP, and the first communication node may be configured to send a page.
  • the second communication node may be a terminal device or a relay node, and the second communication node is configured to receive a page sent by the network side device.
  • the synchronization signal sequence can include any level of synchronization signal sequence, or a combination of multiple levels of synchronization signal sequences.
  • the LTE system includes two levels of synchronization signals, which are a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a synchronization signal sequence for indicating time domain related information of the synchronization signal block which may be any one of the first synchronization signal sequences (eg, using the secondary synchronization signal SSS to indicate the time domain related information, or using a newly added synchronization signal) The time domain related information is indicated), or a sequence combination of multi-level synchronization signals (for example, a sequence combination of a primary and secondary synchronization signals, etc.).
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain position of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; Relative time domain position within the synchronization signal window; relative time domain position of the synchronization signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 2, wherein the synchronization signal block occupies one or more orthogonal Orthogonal Frequency Division Multiplexing (OFDM) symbol resources, which are used to carry information transmission of one or a specific set of ports or beams.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the one or more consecutive sync signal blocks form a sync signal window
  • one or more sync signal windows form a sync signal window group.
  • Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the sync signal blocks are uniformly numbered within the sync signal window group to obtain a corresponding time domain index, such as sync signal block 0 - sync signal block 13 in FIG.
  • These 14 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the synchronization signal window may not be numbered, that is, the time domain index of the synchronization signal window is not defined, or may be uniformly numbered in the synchronization signal window group to obtain a corresponding time domain index, such as the synchronization signal window 0 and the synchronization signal window 1 in FIG. 2 .
  • T pbch-u is an update period of the PBCH
  • the T SS burst set is a transmission period of the synchronization signal window group, and may also be a transmission period of the synchronization signal.
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number (SFN).
  • time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number (SFN).
  • the first communication node may indicate at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information.
  • a time domain index of the synchronization signal block is predefined, and an association relationship between the synchronization signal block and the subframe boundary, a field boundary, and a frame boundary.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the first communication node indicates a lower 1 bit of the system frame number by the synchronization signal block time domain index.
  • the system pre-defines two scrambling code sequences P1, P2.
  • the middle 1 bit is defined as 0, and when the information bit of the PBCH is scrambled by the scrambling code sequence P2, the middle 1 bit is defined as 1.
  • a check sequence (such as Cyclic Redundancy Check (CRC)) can also be used to distinguish the value of the middle 1 bit.
  • CRC Cyclic Redundancy Check
  • the terminal determines the offset between the current synchronization signal block and the radio frame as two synchronization signals according to the time domain index synchronization signal block 3.
  • the time domain length of the block for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the subframe timing and the half frame timing may also be based on the association between the time domain index and the offset of the subframe boundary and the field boundary to obtain the corresponding subframe boundary and the field boundary, thereby completing the subframe, the field, and the wireless. The timing of the frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the lower 1 bit value of the SFN is obtained according to the mapping relationship between the predefined sync signal block time domain index set and the lower 1 bit of the SFN, that is, the sync signal block 0-6 corresponds to the lower 1 bit being 0.
  • the information bits of the PBCH are scrambled by using the scrambling code sequence P1, and when the terminal receives the PBCH, the PBCH is attempted to descramble with P1 and P2, respectively, to determine the currently used interference.
  • the code sequence is P1
  • the value of the middle 1 bit of the SFN is determined according to the relationship between the scrambling code sequence and the middle 1 bit of the SFN, that is, 0.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 3, wherein the synchronization signal block occupies one or more OFDM symbols.
  • a resource, a synchronization signal block is used to carry information for one or a specific set of ports or beams.
  • the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group.
  • Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the sync signal blocks are uniformly numbered within the sync signal window to obtain a corresponding time domain index, such as sync signal block 0 - sync signal block 6 in FIG.
  • the seven sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the synchronization signal window is uniformly numbered in the synchronization signal window group to obtain a corresponding time domain index, such as the synchronization signal window 0 and the synchronization signal window 1 in FIG.
  • T pbch-u is the update period of the PBCH
  • the T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number SFN.
  • the first communication node may indicate at least one of the following information of the synchronization signal block by using a combination of different synchronization signal block time domain indexes and the synchronization signal window time domain index: subframe timing information, field timing information, and wireless Frame timing information.
  • a time domain index or number of the synchronization signal block and a combination of the synchronization signal window time domain index or number are predefined, and the synchronization signal block and the subframe boundary, a field boundary, and The association of offsets between frame boundaries.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the system pre-defines two scrambling code sequences P1, P2.
  • the middle 1 bit is defined as 0, and when the information bit of the PBCH is scrambled by the scrambling code sequence P2, the middle 1 bit is defined as 1.
  • a check sequence (such as CRC) can also be used to distinguish the value of the middle 1 bit.
  • the terminal determines the offset of the current synchronization signal block from the radio frame as two synchronization signal blocks according to the time domain index synchronization signal block 3.
  • the time domain length for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe, the field, and the subframe. The timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • Obtaining a lower one bit value of the SFN according to a mapping relationship between a combination of a predefined synchronization signal block time domain index and the synchronization signal window time domain index and a lower one bit of the SFN, that is, ⁇ synchronization signal block 0-6, synchronization signal Window 0 ⁇ corresponds to the lower 1 bit being 0, ie SFN mod 2 0.
  • the information bits of the PBCH are scrambled by using the scrambling code sequence P1, and when the terminal receives the PBCH, the PBCH is attempted to descramble with P1 and P2, respectively, to determine the currently used interference.
  • the code sequence is P1
  • the value of the middle 1 bit of the SFN is determined according to the relationship between the scrambling code sequence and the middle 1 bit of the SFN, that is, 0.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 4, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information used to carry one or a specific set of ports or beams.
  • the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync blocks, the maximum duration of the sync window is fixed; therefore, a sync signal window contains a fixed number (N*L) of potential sync blocks, transmitting SS bursts
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the synchronization signal blocks are uniformly numbered within the radio frame to obtain a corresponding time domain index, such as the synchronization signal block 0-synchronization signal block 6 in FIG.
  • the seven sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the sync signal window can be unnumbered, that is, the sync signal window time domain index is not defined.
  • T pbch-u is the update period of the PBCH
  • the T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T pbch - u 40 ms is 4 radio frame lengths .
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number SFN.
  • the first communication node may indicate at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information.
  • a time domain index of the synchronization signal block is predefined, and an association relationship between the synchronization signal block and the subframe boundary, a field boundary, and an offset between frame boundaries.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the system pre-defines two scrambling code sequences P1, P2, P3, and P4.
  • the lower 2 bits are defined as 00; when the information bit of the PBCH is scrambled by the scrambling code sequence P2, the lower 2 bits are defined as 01; when scrambled by the scrambling code sequence P3 When the information bits of the PBCH are defined, the lower 2 bits are defined as 10; when the information bits of the PBCH are scrambled by the scrambling code sequence P4, the lower 2 bits are defined as 11.
  • a check sequence (such as CRC) can also be used to distinguish the last 2 bits.
  • the terminal determines the offset between the current synchronization signal block and the radio frame according to the time domain index synchronization signal block 3
  • the time domain length of two sync signal blocks for example, each sync signal block occupies 1 symbol
  • the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the subframe timing and the half frame timing may also be based on the association between the time domain index and the offset of the subframe boundary and the field boundary to obtain the corresponding subframe boundary and the field boundary, thereby completing the subframe, the field, and the wireless. The timing of the frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the first radio frame in the PBCH update period uses the scrambling code sequence P1 to scramble the information bits of the PBCH.
  • the terminal receives the PBCH, it attempts to descramble the PBCH with P1, P2, P3, and P4, respectively.
  • the scrambling code sequence is P1, and the value of the last 2 bits of the SFN, that is, 00, is determined according to the association relationship between the scrambling code sequence and the middle 1 bit of the SFN.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 5, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information for carrying one or a specific set of ports or beams; the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the synchronization signal blocks are numbered uniformly during the physical broadcast channel update period to obtain a corresponding time domain index, such as sync signal block 0-synchronization signal block 27 in FIG.
  • These 28 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the sync signal window can be unnumbered, that is, the sync signal window time domain index is not defined.
  • T pbch-u is the update period of the PBCH
  • the T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number SFN.
  • the first communication node indicates at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information.
  • the association between the time domain index of the synchronization signal block and the offset is predefined, wherein the offset is at least one of: a deviation between the synchronization signal block and the subframe boundary a shift amount, an offset between the sync signal block and a field boundary, and an offset between the sync signal block and a frame boundary.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the terminal determines the offset between the current synchronization signal block and the radio frame according to the time domain index synchronization signal block 3
  • the time domain length of two sync signal blocks for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe, the field, and the subframe. The timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the lower 2 bits of the SFN are obtained, that is, the synchronization signal block 0-6 corresponds to the lower 2 bits being 00.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 6, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information for carrying one or a specific set of ports or beams; the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the synchronization signal blocks are uniformly numbered in the synchronization signal window group or the synchronization signal window.
  • the synchronization signal blocks are numbered in the synchronization signal window group to obtain a corresponding time domain index, such as the synchronization signal in FIG. Block 0 - Synchronization Signal Block 13.
  • These 28 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the synchronization signal window is numbered in the update period of the physical broadcast channel, and a corresponding time domain index is obtained, such as the synchronization signal window 0, the synchronization signal window 1, the synchronization signal window 2, and the synchronization signal window 3 in FIG.
  • T pbch-u is the update period of the PBCH
  • T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T pbch - u T SS burst set > 10 ms
  • T pbch - u 40 ms
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number SFN.
  • the first communication node indicates at least one of the following information of the synchronization signal block by using a combination of different synchronization signal block time domain index and synchronization signal window time domain index: subframe timing information, field timing information, and radio frame timing information. ;
  • the combination of the time domain index of the synchronization signal block and the synchronization signal window time domain index and the offset relationship are predefined, wherein the offset is at least one of the following: a synchronization signal block and a The offset between the sub-frame boundaries, the offset between the sync block and the field boundary, and the offset between the sync block and the frame boundary.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the first communication node indicating the same by the synchronization signal window time domain index
  • the terminal determines the offset between the current synchronization signal block and the radio frame according to the time domain index synchronization signal block 3
  • the time domain length of two sync signal blocks for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe and the subframe. And the timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the lower 2 bits of the SFN are obtained, that is, SS burst0 corresponds to the lower 2 bits being 00.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 7, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information for carrying one or a specific set of ports or beams; the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of sync signal blocks in different sync signal windows may be different; the transmit sync signal window is a subset of the potential SS burst; the transmit sync signal block is a subset of the potential sync signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the sync signal blocks are uniformly numbered within the sync signal window group to obtain a corresponding time domain index, such as sync signal block 0 - sync signal block 13 in FIG.
  • These 14 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the SS burst can be unnumbered, that is, the SS burst time domain index is not defined.
  • the synchronization signal window group is numbered in the physical broadcast channel update period, and the corresponding time domain index is obtained, such as the synchronization signal window group 0 and the synchronization signal window group 1 in FIG.
  • T pbch-u is the update period of the PBCH
  • T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T pbch - u T SS burst set > 10 ms
  • T pbch - u 40 ms
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, and system frame number SFN.
  • the first communication node may indicate at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information;
  • the association between the time domain index of the synchronization signal block and the offset is predefined, wherein the offset is at least one of: a deviation between the synchronization signal block and the subframe boundary a shift amount, an offset between the sync signal block and a field boundary, and an offset between the sync signal block and a frame boundary.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates the high (X-log 2 T) bit of the system frame number through explicit information carried in the physical broadcast channel;
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the terminal determines the offset between the current synchronization signal block and the radio frame according to the time domain index synchronization signal block 3
  • the time domain length of two sync signal blocks for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe, the field, and the subframe. The timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the mapping relationship between the lower 2 bits of the SFN and the lower 2 bits of the SFN is obtained, that is, the synchronization signal block 0-6, the synchronization signal Window group 0 ⁇ corresponds to the lower 2 bits being 00.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 8, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information transmission for carrying one or a specific set of ports or beams; the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the potential synchronization signal window position is fixed (for example, one every 5 ms); a synchronization signal window includes A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L the number of consecutive potential sync signal blocks
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the synchronization signal blocks may be uniformly numbered within the synchronization signal window or uniformly numbered within the synchronization signal window group to obtain a corresponding time domain index.
  • the sync signal blocks are numbered uniformly within the sync signal window group, such as sync signal block 0 - sync signal block 13 in FIG. These 14 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the sync signal window can be uniformly numbered in the sync signal window group, as shown in FIG. 8 for the sync signal window 0 and the sync signal window 1.
  • the synchronization signal window group is numbered in the physical broadcast channel update period, and the corresponding time domain index is obtained, such as the synchronization signal window group 0 and the synchronization signal window group 1 in FIG.
  • T pbch-u is the update period of the PBCH
  • T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T pbch - u > T SS burst set > 10 ms, for example, T pbch - u 40 ms, is 4 radio frame lengths .
  • T SS burst set 20ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, system frame number SFN.
  • the first communication node may indicate at least one of the following information of the synchronization signal block by using different synchronization signal block time domain indexes: subframe timing information, field timing information, and radio frame timing information.
  • the association between the time domain index and the offset of the synchronization signal block is predefined, wherein the offset is at least one of: an offset between the synchronization signal block and the subframe boundary The offset between the sync block and the field boundary, and the offset between the sync block and the frame boundary.
  • the system frame number may be represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 8 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 10000100.
  • the terminal determines the offset between the current synchronization signal block and the radio frame according to the time domain index synchronization signal block 3
  • the time domain length of two sync signal blocks for example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe, the field, and the subframe. The timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 8 bits of the system frame number SFN are: 10000100.
  • the mapping relationship between the lower 2 bits of the SFN and the lower 2 bits of the SFN is obtained, that is, the ⁇ SS burst0, the synchronization signal window group 0 ⁇ corresponds to The lower 2 digits are 00.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the first communication node determines, according to the time domain position of the at least one synchronization signal block, a synchronization signal sequence in the at least one synchronization signal block and a transmission mode of the physical broadcast channel PBCH;
  • the time domain location of the synchronization signal block includes: a relative time domain position of the synchronization signal block in a subframe; a relative time domain position of the synchronization signal block in a synchronization signal window group; the synchronization signal block Relative time domain position within the sync signal window; relative time domain position of the sync signal block during the physical broadcast channel update period.
  • the first communication node transmits a corresponding synchronization signal and a physical broadcast channel within one or more synchronization signal blocks.
  • the scanning structure (synchronization signal window group, synchronization signal window, synchronization signal block) carrying the synchronization signal and the broadcast channel is as shown in FIG. 9, wherein the synchronization signal block occupies one or more OFDM symbol resources, and the synchronization signal block Information used to carry one or a specific set of ports or beams.
  • the one or more consecutive sync signal blocks form a sync signal window, and one or more sync signal windows form a sync signal window group. Information of all ports or beams is transmitted within the synchronization signal window group.
  • a synchronization signal window group contains a fixed number (for example, N) of potential synchronization signal windows, and the sub-synchronization signal window position is fixed (for example, one every 5 ms); A fixed number (for example, L) of consecutive potential sync signal blocks, the maximum duration of the sync signal window is fixed; therefore, a sync signal window group contains a fixed number (N*L) of potential sync signal blocks; a transmission sync signal
  • N for example, N
  • L fixed number of consecutive potential sync signal blocks
  • N*L the maximum duration of the sync signal window
  • the number of synchronization signal blocks in different synchronization signal windows may be different; the transmission synchronization signal window is a subset of the potential synchronization signal window; the transmission synchronization signal block is a subset of the potential synchronization signal block. All potential sync signal blocks are numbered uniformly, regardless of which sync signal block is transmitted. Since the number of potential sync signal blocks in the sync signal window group is fixed, the time domain position of the sync signal block (ie, the sync signal block and the subframe boundary, the field boundary, the offset of the radio frame boundary) and the sync signal block The index corresponds one by one.
  • the sync signal blocks are uniformly numbered within the sync signal window group to obtain a corresponding time domain index, such as sync signal block 0 - sync signal block 13 in FIG.
  • These 14 sync signal blocks are potential sync block time domain locations, and the base station can decide which sync signal blocks to transmit as true sync signal blocks.
  • the synchronization signal window may not be numbered, that is, the time domain index of the synchronization signal window is not defined, or may be uniformly numbered in the synchronization signal window group to obtain a corresponding time domain index, such as the synchronization signal window 0 and the synchronization signal window 1 in FIG.
  • the synchronization signal window group is numbered in the physical broadcast channel update period, and the corresponding time domain index is obtained, such as the synchronization signal window group 0, the synchronization signal window group 1, the synchronization signal window group 2, and the synchronization signal window group 3 in FIG.
  • T pbch-u is the update period of the PBCH
  • the T SS burst set is the transmission period of the synchronization signal window group, and can also be used as the transmission period of the synchronization signal.
  • T pbch - u 10 ms > T SS burst set
  • T pbch - u 20 ms
  • T SS burst set 5ms.
  • the first communication node indicates time domain related location information of the synchronization signal block to the terminal, where the time domain related information includes: synchronization signal block time domain index information, subframe timing information, Half frame timing information, radio frame timing information, system frame number SFN.
  • the first communication node may indicate subframe timing information of the synchronization signal block by using different synchronization signal block time domain indices.
  • the synchronization signal blocks are uniformly numbered within the synchronization signal window group, and the synchronization signal sequence is used to indicate the time domain index or number of the synchronization signal block.
  • a time domain index or number of the synchronization signal block is predefined, and an association relationship with an offset, wherein the offset is at least one of: a synchronization signal block and the subframe boundary Offset.
  • the first communication node may indicate at least one of the half frame timing information and the radio frame timing information of the synchronization signal block through different synchronization signal window group time domain indices. Predefining a correlation between the synchronization signal window group time domain index and a first offset, wherein the first offset is at least one of: an offset between the synchronization signal block and a field boundary A quantity, and an offset between the sync signal block and a radio frame boundary.
  • the system frame number is represented by an X-bit binary number, wherein the first communication node indicates a high (X-log 2 T) bit of the system frame number through explicit information carried within the physical broadcast channel.
  • the upper 9 bits of the explicit bearer system frame number SFN in the physical broadcast channel are: 100001000.
  • the first communication node indicating the system frame by using the synchronization signal window group time domain index
  • the offset of the radio frame is the time domain length of two sync signal blocks. For example, each sync signal block occupies 1 symbol, and the offset of the sync signal block 3 from the radio frame boundary is 2 symbols.
  • the associated subframe boundary and the field boundary may be obtained according to the association relationship between the time domain index and the offset of the subframe boundary and the field boundary, thereby completing the subframe, the field, and the subframe. The timing of the radio frame.
  • the terminal obtains the SFN in the explicit information carried by the physical broadcast channel, and the upper 9 bits of the system frame number SFN are: 100001000.
  • the mapping relationship between the lower 2 bits of the SFN and the lower 2 bits of the SFN is obtained, that is, the synchronization signal window group 0 corresponds to the lower 1 bit being 0.
  • the terminal acquires all time domain related information of the current synchronization signal block.
  • the joint indication of the time domain related information of the synchronization signal block is designed, and the internal association between the time domain related information is comprehensively considered, and compared with the independent indication manner in the related art, under the premise of ensuring the related information indication, Saving the indication overhead of the system, correspondingly reduces the complexity of the terminal detecting related information.
  • the method of the foregoing embodiment may be implemented by means of software plus a general hardware platform, or may be implemented by hardware.
  • the above technical solution can be embodied in the form of a software product stored in a storage medium (such as Read-Only Memory (ROM), (Read-Only Memory, RAM), disk, CD).
  • the method includes one or more instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of the various embodiments described above.
  • a base station and a terminal are provided, and the base station and the terminal can implement the above embodiment.
  • the term “module” can implement at least one of software and hardware for a predetermined function.
  • FIG. 10 is a block diagram showing the structure of a base station according to an embodiment. As shown in FIG. 10, the base station includes a determining module 10 and a transmitting module 20.
  • the first determining module 10 is configured to determine, according to a time domain position of the synchronization signal block, a synchronization signal sequence in the synchronization signal block and a transmission mode of a physical broadcast channel PBCH, where the synchronization signal sequence and the physical broadcast channel are sent
  • the method is used to indicate time domain related information of the synchronization signal block, where the time domain related information includes at least one of: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, and System frame number SFN.
  • the transmitting module 20 is configured to transmit the corresponding synchronization signal and the physical broadcast channel in one or more synchronization signal blocks according to the synchronization signal sequence and the transmission mode of the physical broadcast channel.
  • FIG. 11 is a block diagram of a terminal structure according to an embodiment. As shown in FIG. 11, the terminal includes a receiving module 30 and a determining module 40.
  • the receiving module 30 is configured to receive the synchronization signal and the physical broadcast channel.
  • the second determining module 40 is configured to determine the time domain related information of the synchronization signal and the synchronization signal block where the physical broadcast channel is located according to the identified synchronization signal sequence and the physical broadcast channel transmission manner, where the time domain related information includes the following At least one of: synchronization signal block time domain index information, subframe timing information, field timing information, radio frame timing information, and system frame number SFN.
  • the plurality of modules may be implemented by software or hardware.
  • the multiple modules may all be located in the same processor; or, the multiple modules may be located in multiple processors.
  • An embodiment provides a system for indicating information, including the base station and terminal described above.
  • An embodiment provides a storage medium that performs the steps of the various embodiments previously described in accordance with stored program code in a storage medium.
  • the storage medium may include a plurality of media that can store program codes, such as a USB flash drive, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk.
  • the base station includes:
  • At least one processor 120 is exemplified by a processor 120 in FIG. 12; a memory 121; and a communication interface 122 and a bus 123.
  • the processor 120, the memory 121, and the communication interface 122 can complete communication with each other through the bus 123.
  • the processor 120 can call the logic instructions in the memory 121 to perform the method performed by the base station in the above embodiments.
  • logic instructions in the memory 121 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 121 is a computer readable storage medium and can be used to store a software program, a computer executable program, such as a program instruction or a module corresponding to a method executed by a base station in the above embodiment.
  • the processor 120 performs the function application and the data processing by executing a software program, an instruction or a module stored in the memory 121, that is, the method performed by the base station in the above embodiment.
  • the memory 121 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 121 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the terminal includes:
  • At least one processor 130 is exemplified by a processor 130 in FIG. 13; a memory 131; and a communication interface 132 and a bus 133.
  • the processor 130, the memory 131, and the communication interface 132 can complete communication with each other through the bus 133.
  • the processor 130 can call the logic instructions in the memory 131 to perform the method performed by the terminal in the above embodiment.
  • logic instructions in the memory 131 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 131 is a computer readable storage medium and can be used to store a software program, a computer executable program, such as a program instruction or a module corresponding to the method executed by the terminal in the above embodiment.
  • the processor 130 executes the function application and the data processing by executing a software program, an instruction or a module stored in the memory 131, that is, the method executed by the terminal in the above embodiment.
  • the memory 131 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 131 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the plurality of modules or steps described above may be implemented by a general purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • a plurality of modules or steps may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different
  • the steps shown or described herein are performed sequentially, or they are separately fabricated into a plurality of integrated circuit modules, or a plurality of the modules or steps are fabricated into a single integrated circuit module.
  • the information indication method method, device and system can save the indication overhead of the system and reduce the complexity of the terminal detecting related information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种信息指示方法包括:网络侧节点根据同步信号块的时域位置,确定同步信号块内的同步信号序列和物理广播信道PBCH的发送方式,其中,同步信号序列和物理广播信道的发送方式用于指示同步信号块的时域相关信息,时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息,系统帧号SFN;以及网络侧节点根据同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。

Description

信息指示方法、装置及系统 技术领域
本公开涉及第五代移动通信(fifth generation of mobile telecommunications,5G)系统,例如,涉及一种新一代无线接入技术(new Radio Access Technology,new RAT)中信息指示方法、装置及系统。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,商业通信主要使用的300MHz~3GHz之间频谱资源表现出极为紧张的局面,频谱资源已经无法满足未来无线通信的需求。
在未来无线通信中,将会采用比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等特点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在一个方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要在几十个甚至上百个方向上发射波束才能完成全方位覆盖。
发明内容
一种信息指示方法、装置及系统,能够解决相关技术中终端的时域相关的信息指示开销大,终端检测较复杂的问题。
一种信息指示方法,包括:
网络侧节点根据同步信号块的时域位置,确定所述同步信号块内的同步信 号序列和物理广播信道PBCH的发送方式,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,以及所述时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN;以及
所述网络侧节点根据所述同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
一实施例中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;以及一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,以及在同步信号窗组内发送所有端口或波束的信息。
一实施例中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
一实施例中,所述同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
一实施例中,所述物理广播信道的发送方式包括以下至少之一:所述物理广播信道采用的扰码序列、所述物理广播信道的校验序列、以及所述物理广播信道承载的信息。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块的时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述网络侧节点通过所述同步信号块时域索引指示所述系统帧号的低M位;
所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,T、n、X和M均为正整数。
一实施例中,所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
所述同步信号块在所述同步信号窗组内统一编号,所述网络侧节点通过同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同的同步信号块的时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引与所述系统帧号低M=log 2(T/n)位间的关联关系,所述网络侧节点通过所述同步信号窗时域索引指示所述系统帧号的低M位;
所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个 数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述网络侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息、无线帧定时信息,包括:
所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引与所述同步信号窗时域索引的组合;预定义所述同步信号块的时域索引或编号以及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的低M=log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
一实施例中,所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号 块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量;
所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号块时域索引指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号 与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;以及
预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗时域索引指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述 同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息;
所述网络侧节点通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引指示所述系统帧号的低 log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息,包括:
所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
一实施例中,所述网络侧节点通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一,包括:
预定义所述同步信号窗组时域索引与第一偏移量的关联关系,其中,所述第一偏移量为以下至少之一:所述同步信号块与半帧边界之间的偏移量,和,所述同步信号块与无线帧边界之间的偏移量。
一种信息指示方法,包括:
终端侧节点接收同步信号及物理广播信道;以及
所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,其中,所述时域相关信息包括以下至少之一:同步信号块时域索引信息、子帧定时信息、半帧定时信息,无线帧定时信息以及系统帧号SFN。
一实施例中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
一实施例中,所述物理广播信道的发送方式包括以下至少之一:物理广播信道所采用的扰码序列、物理广播信道的校验序列以及物理广播信道内承载的 显式信息。
一实施例中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号块时域索引确定所述系统帧号的低M位;
所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;包括:
所述同步信号块在所述同步信号窗组内统一编号,所述终端侧节点通过同步信号序列确定所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的 时域偏移量。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引的组合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低M位;
所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述终端侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引或编号与所述同步信号窗时域索引或编号的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同同步信号窗组内的物理广 播信道采用不同的物理广播信道扰码序列和校验序列中至少之一。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一确定所述系统帧号的低M=log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
一实施例中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号 序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、所述同步信号块与无线帧边界间的时域偏移量;
所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号块时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一,T和X均为正整数。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下 至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;
所述终端侧节点通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;所述同步信号块在同步信号窗组内统一编号,用同步 信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与所述子帧边界间的时域偏移量。
一实施例中,所述终端侧节点通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一,包括:
预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一种基站,包括:
确定模块,设置为根据同步信号块的时域位置,确定所述同步信号块内的同步信号序列和物理广播信道PBCH的发送方式,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,以及所述时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息,系统帧号SFN;以及
发送模块,设置为根据所述同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
一实施例中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在同步信号窗组内发送所有端口或波束的信息。
一实施例中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
一实施例中,所述同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
一实施例中,所述物理广播信道的发送方式包括以下至少之一:所述物理广播信道采用的扰码序列、所述物理广播信道的校验序列、所述物理广播信道 承载的信息。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域的索引指示所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号块时域索引指示所述系统帧号的低M位;
通过所述物理广播信道的扰码序列和校验序列中的至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述同步信号块在所述同步信号窗组内统一编号,所述基站通过同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号窗时域索引指示所述系统帧号的低M位;
通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引与所述同步信号窗时域索引的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
通过所述物理广播信道的扰码序列和校验序列中的至少一个指示所述系统帧号的低M=log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
一实施例中,所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,通过所述同步信号块时域索引指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗时域索引指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息;
通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引指示所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
一实施例中,预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一种终端,包括:
接收模块,设置为接收同步信号及物理广播信道;以及
确定模块,设置为根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,其中,所述时域相关信息包括以下至少之一:同步信号块时域索引信息、子帧定时信息、半帧定时信息,无线帧定时信息以及系统帧号SFN。
一实施例中,所述同步信号块占用一个或多个OFDM符号资源,设置为承载一个或一组特定端口或波束的信息发送;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
一实施例中,所述物理广播信道的发送方式包括以下至少之一:物理广播信道所采用的扰码序列、物理广播信道的校验序列以及物理广播信道内承载的显式信息。
一实施例中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗SS burst内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,其中,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号块时域索引确定所述系统帧号的低M位;
通过所述物理广播信道的扰码序列和校验序列中的至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述同步信号块在所述同步信号窗组内统一编号,所述终端通过同步信号序列确定所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引的组合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低M位;
通过所述物理广播信道的扰码序列和校验序列中的至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
一实施例中,所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引或编号与所述同步信号窗时域索引或编号的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号 块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中至少之一。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
通过所述物理广播信道的扰码序列和校验序列中的至少之一确定所述系统帧号的低M=log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
一实施例中,所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一实施例中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索 引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,通过所述同步信号块时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一,T和X均为正整数。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所 在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;
通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引确定所述系统帧号的低log 2T位;
其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
一实施例中,所述终端通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
一实施例中,预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
一种信息指示系统,任一项所述的基站,以及任一项所述的终端。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行 指令设置为执行上述方法。
一种基站,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述网络侧节点执行的方法。
一种终端,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述终端侧节点执行的方法。
附图说明
图1是根据相关技术的同步信号窗组结构示意图;
图2是根据一实施例的同步信号窗组结构示意图;
图3是根据另一实施例的同步信号窗组结构示意图;
图4是根据另一实施例的同步信号窗组结构示意图;
图5是根据另一实施例的同步信号窗组结构示意图;
图6是根据另一实施例的同步信号窗组结构示意图;
图7是根据另一实施例的同步信号窗组结构示意图;
图8是根据另一实施例的同步信号窗组结构示意图;
图9是根据另一实施例的同步信号窗组结构示意图。
图10是根据另一实施例的基站模块结构示意图;
图11是根据另一实施例的终端模块结构示意图;
图12是根据一实施例的基站的硬件结构示意图;以及
图13是根据一实施例的终端的硬件结构示意图。
具体实施方式
相关技术中,在终端初始接入网络的过程中进行初步波束方向的测量与识别,并集中在一个时间间隔内将基站侧发射波束轮询一遍,供终端测量识别波束或端口。例如,图1为同步信号窗组(synchronization signal(SS)burst set)的结构,这种结构是用于传输同步信号的扫描(sweeping)资源,其中同步信号窗组包含一个或多个同步信号窗(SS burst),一个同步信号窗包含一个或多个同步信号块(SS block),每个同步信号块内承载特定波束或端口(组)的同步信号,同步信号窗组完成一次波束扫描,即完成所有波束或端口的发送。
其中,同步信号块内还可以包含物理广播信道(Physical Broadcasting Channel,PBCH),PBCH对应的解调参考信号,其他控制信道,数据信道等其他信号。其中,由于多个同步信号块映射到同一个子帧内,不同同步信号块相对于子帧边界的偏移是不同的,不同位置的终端可能在任意一个同步信号块内成功检测到同步信号,为了完成子帧定时,终端需要获知当前同步到同步信号块的时域索引(time index)信息。
另一方面,与LTE系统类似的,终端通过对同步信号的相关检测,完成下行同步,获取小区标识(Identifier,ID)等信息,并且接收PBCH,PBCH内会承载部分或全部系统帧号信息。例如,在LTE系统中,SFN的高8位由PBCH指示,低两位由4段不同扰码来隐含指示。从而保证在40ms更新周期内的4次发射保持一致的信息bit,允许终端合并接收。在新无线技术(New Radio,NR)中,NR-PBCH以同步信号窗组的结构进行发射,同步信号窗组中以不同同步信号块发送不同波束方向的NR-PBCH,当考虑继续在NR-PBCH内承载单频网(Single Frequency Network,SFN)信息时,为了实现潜在的NR-PBCH合并接收(包括同步信号窗组内不同波束的合并,及跨同步信号窗组的同波束合并),需要保证NR-PBCH更新周期内的每一个块包含相同的SFN。需要考虑类似的或增强的指示SFN低N位的方法。
针对上述两个需要指示给终端的时域相关的信息:同步信号块时域索引,及SFN的低N位信息。在当前的新无线接入系统研究中,并没有考虑两者内部的关联,而是进行独立指示方式研究,这样为系统带来了更大的指示开销的同 时,也增加了终端检测两个信息的复杂度。
以下实施例中,涉及到两种类型的通信节点:第一通信节点和第二通信节点。第一通信节点可以是宏微基站、中继节点或者发送接收节点TRP等网络侧设备,第一通信节点可以设置为发送寻呼。第二通信节点可以是终端设备或中继节点,第二通信节点设置为接收网络侧设备发送的寻呼。可以通过第一通信节点为基站,第二通信节点为终端为例说明以下技术方案。
同步信号序列可以包括任一级同步信号序列,或多级同步信号序列组合。例如,LTE系统中包含两级同步信号,分别为主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)。另外,还有可能新增其他级别的同步信号。用于指示所述同步信号块的时域相关信息的同步信号序列,可以是其中的任意一级同步信号序列(如利用辅同步信号SSS指示所述时域相关信息,或者利用新增的同步信号指示所述时域相关信息),或者是多级同步信号的序列组合(例如,主辅同步信号的序列组合等)。
图2所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
一实施例中,所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图2所示,其中,所述同步信号块占用一个或多个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号资源,同步信号块用于承载一个或一组特定端口或波束的信息发送。所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号 窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在同步信号窗组内统一编号,获得对应的时域索引,如图2中的同步信号块0-同步信号块13。这14个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗可以不编号,即不定义同步信号窗时域索引,也可以在同步信号窗组内统一编号,获得对应的时域索引,如图2中的同步信号窗0、同步信号窗1。另外,T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以为同步信号的发送周期。一实施例中,假定满足:T pbch-u>T SS burst  set>10ms,例如,T pbch-u=40ms,为4个无线帧长。T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号(System Frame Number,SFN)。
所述第一通信节点可以通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息。
一实施例中,预定义所述同步信号块的时域索引,与所述同步信号块与所述子帧边界、半帧边界以及帧边界间偏移量的关联关系。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
一实施例中,预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)=log 2(4/2)=1位间的关联关系,/为除法运算符,所述第一通信节点通过所述同步信号块时域索引指示所述系统帧号的低1位。如同步信号块时域索引集合:同步信号块0-6对应于低1位为0,即SFN mod 2=0,同步信号块7-13对应于低1位为1,即SFN mod 2=1。
所述第一通信节点通过所述物理广播信道的扰码序列和校验序列中的至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n=log 22=1位。例如:系统预定义两条扰码序列P1,P2。当以扰码序列P1加扰PBCH的信息比特时,定义中间1位为0,当以扰码序列P2加扰PBCH的信息比特时,定义中间1位为1。
也可以用校验序列(如循环冗余校验(Cyclic Redundancy Check,CRC)),来区分中间1位的取值。
图2的结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的同步信号块时域索引集合与SFN的低1位的映射关系得到SFN的低1位取值,即同步信号块0-6对应于低1位为0。
对于PBCH更新周期内的前一个同步信号窗组,采用扰码序列P1对PBCH的信息比特进行加扰处理,终端接收PBCH时,分别以P1、P2尝试对PBCH进行解扰,确定当前采用的扰码序列为P1,进而根据扰码序列与SFN中间1位的关联关系确定SFN中间1位的取值,即0。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图3所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信 道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
一实施例中,所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图3所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息发送。所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在同步信号窗内统一编号,获得对应的时域索引,如图3中的同步信号块0-同步信号块6。这7个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗在同步信号窗组内统一编号,获得对应的时域索引,如图3中的同步信号窗0、同步信号窗1。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足: T pbch-u>T SS burst set>10ms,例如,T pbch-u=40ms,为4个无线帧长。T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
所述第一通信节点可以通过不同同步信号块时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息。
一实施例中,预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合,与所述同步信号块与所述子帧边界,半帧边界,以及帧边界间偏移量的关联关系。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
一实施例中,预定义所述同步信号块时域索引及所述同步信号窗时域索引的组合与所述系统帧号低M=log 2(T/n)=log 2(4/2)=1位间的关联关系,所述第一通信节点通过所述同步信号块时域索引及所述同步信号窗时域索引的组合指示所述系统帧号的低1位;如同步信号块时域索引集合:{同步信号块0-6,同步信号窗0}对应于低1位为0,即SFN mod 2=0;{同步信号块7-13,同步信号窗1}对应于低1位为1,即SFN mod 2=1。
所述第一通信节点通过所述物理广播信道的扰码序列和校验序列中的至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n=log 22=1位。例如:系统预定义两条扰码序列P1,P2。当以扰码序列P1加扰PBCH的信息比特时,定义中间1位为0,当以扰码序列P2加扰PBCH的信息比特时,定义中间1位为1。
也可以用校验序列(如CRC),来区分中间1位的取值。
图3的结构中,对于第一个无线帧frame内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线 帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的同步信号块时域索引及所述同步信号窗时域索引的组合与SFN的低1位的映射关系得到SFN的低1位取值,即{同步信号块0-6,同步信号窗0}对应于低1位为0,即SFN mod 2=0。
对于PBCH更新周期内的前一个同步信号窗组,采用扰码序列P1对PBCH的信息比特进行加扰处理,终端接收PBCH时,分别以P1、P2尝试对PBCH进行解扰,确定当前采用的扰码序列为P1,进而根据扰码序列与SFN中间1位的关联关系确定SFN中间1位的取值,即0。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图4所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图4所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息。所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号 窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块,传输SS burst的数量及一个SS burst内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在无线帧内统一编号,获得对应的时域索引,如图4中的同步信号块0-同步信号块6。这7个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗可以不编号,即不定义同步信号窗时域索引。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,T pbch-u=40ms,为4个无线帧长。T SS burst set=20ms。当T pbch-u小于T SS  burst set时,本实施例所对应的指示方法也适用。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
所述第一通信节点可以通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息。
一实施例中,预定义所述同步信号块的时域索引,与所述同步信号块与所述子帧边界,半帧边界,以及帧边界间偏移量的关联关系。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
所述第一通信节点通过所述物理广播信道的扰码序列和校验序列中的至少之一,指示所述系统帧号的低M=log 2T=2位,即最后两位。例如:系统预定 义两条扰码序列P1,P2,P3,P4。当以扰码序列P1加扰PBCH的信息比特时,定义低2位为00;当以扰码序列P2加扰PBCH的信息比特时,定义低2位为01;当以扰码序列P3加扰PBCH的信息比特时,定义低2位为10;当以扰码序列P4加扰PBCH的信息比特时,定义低2位为11。
也可以用校验序列(如CRC),来区分最后2位的取值。
图4的同步信号窗组结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
PBCH更新周期内的第一个无线帧,采用扰码序列P1对PBCH的信息比特进行加扰处理,终端接收PBCH时,分别以P1、P2、P3、P4尝试对PBCH进行解扰,确定当前采用的扰码序列为P1,进而根据扰码序列与SFN中间1位的关联关系确定SFN最后2位的取值,即00。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图5所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图5所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息;所述一个或多 个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在物理广播信道更新周期内统一编号,获得对应的时域索引,如图5中的同步信号块0-同步信号块27。这28个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗可以不编号,即不定义同步信号窗时域索引。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足:T pbch-u>T SS burst set>10ms,例如,T pbch-u=40ms,为4个无线帧长。例如,T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
所述第一通信节点通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息。
一实施例中,预定义所述同步信号块的时域索引与偏移量的关联关系,其中,偏移量为以下至少之一:所述同步信号块与所述子帧边界之间的偏移量、所述同步信号块与半帧边界之间的偏移量、以及所述同步信号块与帧边界之间的偏移量。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T=log 24=2位间的关联关系,所述第一通信节点通过所述同步信号块时域索引指示所述系统帧号的低2位。所述第一通信节点通过所述同步信号块时域索引指示所述系统帧号的低2位;如同步信号块时域索引集合:同步信号块0-6对应于低2位为00,即SFN mod 4=0;同步信号块7-13对应于低2位为01,即SFN mod 4=1;同步信号块14-20对应于低2位为10,即SFN mod 4=2;同步信号块21-28对应于低2位为11,即SFN mod 4=3。
图5的同步信号窗组结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的同步信号块时域索引集合与SFN的低2位的映射关系得到SFN的低2位取值,即同步信号块0-6对应于低2位为00。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图6所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图6所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在同步信号窗组或者同步信号窗内统一编号,本实施例中同步信号块在同步信号窗组内编号,获得对应的时域索引,如图6中的同步信号块0-同步信号块13。这28个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗在物理广播信道的更新周期内编号,获得对应的时域索引,如图6中的同步信号窗0、同步信号窗1、同步信号窗2以及同步信号窗3。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足:T pbch-u>T SS burst set>10ms,例如,T pbch-u=40ms,为4个无线帧长。例如,T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息, 子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
所述第一通信节点通过不同同步信号块时域索引及同步信号窗时域索引的组合指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
一实施例中,预定义所述同步信号块的时域索引及同步信号窗时域索引的组合,与偏移量的关联关系,其中,偏移量为以下至少之一:同步信号块与所述子帧边界之间的偏移量、同步信号块与半帧边界之间的偏移量、以及同步信号块与帧边界之间的偏移量。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
预定义所述同步信号窗时域索引与所述系统帧号低log 2T=log 24=2位间的关联关系,所述第一通信节点通过所述同步信号窗时域索引指示所述系统帧号的低2位。所述第一通信节点通过所述同步信号窗时域索引指示所述系统帧号的低2位;如同步信号窗时域索引:同步信号窗0对应于低2位为00,即SFN mod 4=0;同步信号窗1对应于低2位为01,即SFN mod 4=1;同步信号窗2对应于低2位为10,即SFN mod 4=2;以及同步信号窗3对应于低2位为11,即SFN mod 4=3。
图6的同步信号窗组结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界,及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的同步信号窗时域索引与SFN的低2位的映射关系得到SFN的低2位取值,即SS burst0对应于低2位为00。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图7所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图7所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在SS burst的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在同步信号窗组内统一编号,获得对应的时域索引,如图7中的同步信号块0-同步信号块13。这14个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。SS burst可以不编号,即不定义SS burst时域索引。同步信号窗组在物理 广播信道更新周期内编号,获得对应的时域索引,如图7中的同步信号窗组0、同步信号窗组1。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足:T pbch-u>T SS burst  set>10ms,例如,T pbch-u=40ms,为4个无线帧长。例如,T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
所述第一通信节点可以通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息,无线帧定时信息;
一实施例中,预定义所述同步信号块的时域索引与偏移量的关联关系,其中,偏移量为以下至少之一:所述同步信号块与所述子帧边界之间的偏移量、所述同步信号块与半帧边界之间的偏移量、以及所述同步信号块与帧边界之间的偏移量。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;具体本实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
预定义所述同步信号块时域索引及同步信号窗组时域索引的组合,与所述系统帧号低低log 2T=2位位间的关联关系,所述第一通信节点通过所述同步信号块时域索引及同步信号窗组时域索引的组合向所述第二通信节点指示所述系统帧号的低2位;如{同步信号块0-6,同步信号窗组0}对应于低2位为00,即SFN mod 4=0;{同步信号块7-13,同步信号窗组0}对应于低2位为01,即SFN mod 4=1;{同步信号块0-6,同步信号窗组1}对应于低2位为10,即SFN mod 4=2;{同步信号块7-13,同步信号窗组1}对应于低2位为11,即SFN mod 4=3。
图7的同步信号窗组结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边 界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的同步信号块时域索引及同步信号窗组时域索引的组合,与SFN的低2位的映射关系得到SFN的低2位取值,即{同步信号块0-6,同步信号窗组0}对应于低2位为00。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图8所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图8所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息发送;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N个)的潜在同步信号窗,潜在同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗 组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块可以在同步信号窗内统一编号,或者在同步信号窗组内统一编号,获得对应的时域索引。一实施例中,同步信号块在同步信号窗组内统一编号,如图8中的同步信号块0-同步信号块13。这14个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗可以在同步信号窗组内统一编号,如图8所示同步信号窗0和同步信号窗1。同步信号窗组在物理广播信道更新周期内编号,获得对应的时域索引,如图8中的同步信号窗组0、同步信号窗组1。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足:T pbch-u>T SS burst set>10ms,例如,T pbch-u=40ms,为4个无线帧长。例如,T SS burst set=20ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息,系统帧号SFN。
所述第一通信节点可以通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息。
一实施例中,预定义所述同步信号块的时域索引与偏移量的关联关系,其中,偏移量为以下至少之一:同步信号块与所述子帧边界之间的偏移量、同步信号块与半帧边界之间的偏移量、以及同步信号块与帧边界之间的偏移量。
所述系统帧号可以由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 24=8位。例如,物理广播信道中显式承载系统帧号SFN的高8位为:10000100。
预定义所述同步信号窗时域索引及同步信号窗组时域索引的组合,与所述系统帧号低低log 2T=2位位间的关联关系,所述第一通信节点通过所述同步信号窗时域索引及同步信号窗组时域索引的组合向所述第二通信节点指示所述系统帧号的低2位;如{同步信号窗0,同步信号窗组0}对应于低2位为00,即SFN  mod 4=0;{同步信号窗1,同步信号窗组0}对应于低2位为01,即SFN mod 4=1;{同步信号窗0,同步信号窗组1}对应于低2位为10,即SFN mod 4=2;{同步信号窗1,同步信号窗组1}对应于低2位为11,即SFN mod 4=3。
图8的同步信号窗组结构中,对于第一个无线帧(frame)内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高8位为:10000100。
根据预定义的SS burst时域索引及同步信号窗组时域索引的组合,与SFN的低2位的映射关系得到SFN的低2位取值,即{SS burst0,同步信号窗组0}对应于低2位为00。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
在图9所示的同步信号窗组结构中,第一通信节点根据至少一个同步信号块的时域位置,确定所述至少一个同步信号块内的同步信号序列及物理广播信道PBCH的发送方式;其中,所述同步信号块的时域位置包括:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;所述同步信号块在物理广播信道更新周期内的相对时域位置。
所述第一通信节点在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
所述承载同步信号与广播信道的扫描结构(同步信号窗组,同步信号窗,同步信号块)如图9所示,其中,所述同步信号块占用一个或多个OFDM符号资源,同步信号块用于承载一个或一组特定端口或波束的信息。所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组。在所述同步信号窗组内发送所有端口或波束的信息。
一实施例中,针对特定频段,一个同步信号窗组内包含固定数量(例如N 个)的潜在同步信号窗,潜同步信号窗位置是固定的(例如每5ms一个);一个同步信号窗内包含固定数量(例如L个)连续的潜在同步信号块,同步信号窗的最大持续时间是固定的;因此,一个同步信号窗组内包含固定数量(N*L)的潜在同步信号块;传输同步信号窗的数量及一个同步信号窗内传输同步信号块的数量是可配置的,基站可根据部署场景及能力灵活配置。
一实施例中,不同同步信号窗内同步信号块数量可以不同;传输同步信号窗是潜在同步信号窗的子集;传输同步信号块是潜在同步信号块的子集。所有潜在同步信号块统一编号,无论哪个同步信号块是否被传输。由于同步信号窗组内潜在同步信号块数量是固定的,因此,同步信号块的时域位置(即同步信号块与子帧边界,半帧边界,无线帧边界的偏移量)与同步信号块索引一一对应。
一实施例中,同步信号块在同步信号窗组内统一编号,获得对应的时域索引,如图9中的同步信号块0-同步信号块13。这14个同步信号块是潜在的同步信号块时域位置,基站可以决定在哪些同步信号块内作为真实的同步信号块来发送。同步信号窗可以不编号,即不定义同步信号窗时域索引,也可以在同步信号窗组内统一编号,获得对应的时域索引,如图9中的同步信号窗0和同步信号窗1。同步信号窗组在物理广播信道更新周期内编号,获得对应的时域索引,如图9中的同步信号窗组0、同步信号窗组1、同步信号窗组2以及同步信号窗组3。T pbch-u为PBCH的更新周期,T SS burst set为同步信号窗组的发送周期,也可以作为同步信号的发送周期。一实施例中,假定满足:T pbch-u>10ms>T SS burst set,例如,T pbch-u=20ms,为2个无线帧长。例如,T SS burst set=5ms。
一实施例中,所述第一通信节点通过如下方式向终端指示同步信号块的时域相关位置信息,其中,所述时域相关信息包括:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息,系统帧号SFN。
一实施例中,所述第一通信节点可以通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息。所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号。一实施例中,预定义所述同步信号块的时域索引或编号,与偏移量的关联关系,其中,偏移量为以下至少之一:同步信号块与所述子帧边界之间的偏移量。
所述第一通信节点可以通过不同同步信号窗组时域索引指示所述同步信号 块的半帧定时信息和无线帧定时信息中的至少之一。预定义所述同步信号窗组时域索引与第一偏移量的关联关系,其中,所述第一偏移量为以下至少之一:所述同步信号块与半帧边界之间的偏移量、以及所述同步信号块与无线帧边界之间的偏移量。
所述系统帧号由X位二进制数表示,其中,所述第一通信节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位。一实施例中,系统帧号假定为10位,则通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)=10-log 22=9位。例如,物理广播信道中显式承载系统帧号SFN的高9位为:100001000。
预定义所述同步信号窗组时域索引与所述系统帧号低log 2T=1位间的关联关系,所述第一通信节点通过所述同步信号窗组时域索引指示所述系统帧号的低1位。如{同步信号窗组0或同步信号窗组1}对应于低1位为0,即SFN mod 2=0;{同步信号窗组2或同步信号窗组3}对应于低1位为1,即SFN mod 2=1。
图9的同步信号窗组结构中,对于第一个无线帧(frame)内同步信号窗组0内的同步信号块3,其中,终端根据时域索引同步信号块3,确定当前同步信号块与无线帧的偏移为两个同步信号块的时域长度,例如每个同步信号块占用1个符号,则同步信号块3与无线帧边界的偏移为2个符号。对于子帧定时及半帧定时,也可以依据时域索引与子帧边界、半帧边界的偏移量的关联关系,得到对应的子帧边界及半帧边界,从而完成子帧、半帧以及无线帧的定时。
终端在物理广播信道承载的显式信息中获得SFN,系统帧号SFN的高9位为:100001000。
根据预定义的同步信号窗组时域索引,与SFN的低2位的映射关系得到SFN的低1位取值,即同步信号窗组0对应于低1位为0。
则SFN确定为:1000010000。
终端获取到当前同步信号块的所有时域相关信息。
上述实施例中,设计同步信号块的时域相关信息的联合指示,综合考虑了时域相关信息间的内部关联,与相关技术中独立指示方式相比,在保证相关信息指示的前提下,可以节省系统的指示开销,相应的也降低了了终端检测相关信息的复杂度。
上述实施例的方法可借助软件加通用硬件平台的方式来实现,也可以通过 硬件方式实现。上述技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)、(Read-Only Memory,RAM)、磁碟、光盘)中,包括一个或多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行上述多个实施例中的方法。
一实施例中提供了一种基站和终端,该基站和终端可实现上述实施例。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一。
图10是根据一实施例的基站结构框图,如图10所示,该基站包括确定模块10和发送模块20。
第一确定模块10,设置为根据同步信号块的时域位置,确定所述同步信号块内的同步信号序列和物理广播信道PBCH的发送方式,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,所述时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN。
发送模块20设置为根据所述同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
图11是根据一实施例的终端结构框图,如图11所示,该终端包括接收模块30和确定模块40。
接收模块30设置为接收同步信号及物理广播信道。
第二确定模块40设置为根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,其中,所述时域相关信息包括以下至少之一:同步信号块时域索引信息、子帧定时信息、半帧定时信息,无线帧定时信息以及系统帧号SFN。
上述多个模块是可以通过软件或硬件来实现的,在硬件实现方式中,上述多个模块可以均位于同一处理器中;或者,上述多个模块分别位于多个处理器中。
一实施例提供了一种指示信息的系统,该系统包括前文中所述的基站和终端。
一实施例提供了一种存储介质,处理器根据存储介质中已存储的程序代码执行前文中多个实施例中的步骤。
在一实施例中,上述存储介质可以包括U盘、ROM,、RAM、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
一实施例提供了一种基站的硬件结构示意图。参见图12,该基站包括:
至少一个处理器(processor)120,图12中以一个处理器120为例;存储器(memory)121;还可以包括通信接口(Communications Interface)122和总线123。其中,处理器120、存储器121以及通信接口122可以通过总线123完成相互间的通信。处理器120可以调用存储器121中的逻辑指令,以执行上述实施例中基站执行的方法。
此外,上述的存储器121中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器121作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如上述实施例中基站执行的方法对应的程序指令或模块。处理器120通过运行存储在存储器121中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中基站执行的方法。
存储器121可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器。
一实施例提供了一种终端的硬件结构示意图。参见图13,该终端包括:
至少一个处理器(processor)130,图13中以一个处理器130为例;存储器(memory)131;还可以包括通信接口(Communications Interface)132和总线133。其中,处理器130、存储器131以及通信接口132可以通过总线133完成相互间的通信。处理器130可以调用存储器131中的逻辑指令,以执行上述实施例中终端执行的方法。
此外,上述的存储器131中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器131作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如上述实施例中终端执行的方法对应的程序指令或模块。处理器130通过运行存储在存储器131中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中终端执行的方法。
存储器131可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器131可以包括高速随机存取存储器,还可以包括非易失性存储器。
上述多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。一实施例中,多个模块或多个步骤可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
工业实用性
信息指示方法方法、装置及系统,能够节省系统的指示开销,降低了终端检测相关信息的复杂度。

Claims (82)

  1. 一种信息指示方法,包括:
    网络侧节点根据同步信号块的时域位置,确定所述同步信号块内的同步信号序列和物理广播信道PBCH的发送方式,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,以及所述时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息以及系统帧号SFN;以及
    所述网络侧节点根据所述同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
  2. 根据权利要求1所述的方法,其中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;以及一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,以及在同步信号窗组内发送所有端口或波束的信息。
  3. 根据权利要求2所述的方法,其中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
  4. 根据权利要求1所述的方法,其中,所述同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
  5. 根据权利要求1所述的方法,其中,所述物理广播信道的发送方式包括以下至少之一:所述物理广播信道采用的扰码序列、所述物理广播信道的校验序列、以及所述物理广播信道承载的信息。
  6. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道 的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块的时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述网络侧节点通过所述同步信号块时域索引指示所述系统帧号的低M位;
    所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,T、n、X和M均为正整数。
  7. 根据权利要求6所述的方法,其中,所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
    所述同步信号块在所述同步信号窗组内统一编号,所述网络侧节点通过同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  8. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同的同步信号块的时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引与所述系统帧号低M=log 2(T/n)位间的关联关系,所述网络侧节点通过所述同步信号窗时域索引指示所述系统帧号的低M位;
    所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  9. 根据权利要求8所述的方法,其中,所述网络侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息、无线帧定时信息,包括:
    所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引与所述同步信号窗时域索引的组合;预定义所述同步信号块的时域索引或编号以及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关 系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  10. 根据权利要求6或8所述的方法,其中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  11. 根据权利要求1所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    所述网络侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的低M=log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
  12. 根据权利要求11所述的方法,其中,所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
    所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述 同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  13. 根据权利要求11所述的方法,其中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  14. 根据权利要求1所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号块时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  15. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;以及
    预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  16. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号 与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  17. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,其中,所述 网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  18. 根据权利要求2所述的方法,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,包括:
    所述网络侧节点通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息;
    所述网络侧节点通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述网络侧节点通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,所述网络侧节点通过所述同步信号窗组时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  19. 根据权利要求18所述的方法,其中,所述网络侧节点通过不同同步 信号块时域索引指示所述同步信号块的子帧定时信息,包括:
    所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
  20. 根据权利要求18所述的方法,其中,所述网络侧节点通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一,包括:
    预定义所述同步信号窗组时域索引与第一偏移量的关联关系,其中,所述第一偏移量为以下至少之一:所述同步信号块与半帧边界之间的偏移量,和,所述同步信号块与无线帧边界之间的偏移量。
  21. 一种信息指示方法,包括:
    终端侧节点接收同步信号及物理广播信道;以及
    所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,其中,所述时域相关信息包括以下至少之一:同步信号块时域索引信息、子帧定时信息、半帧定时信息,无线帧定时信息以及系统帧号SFN。
  22. 根据权利要求21所述的方法,其中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在所述同步信号窗组内发送所有端口或波束的信息。
  23. 根据权利要求21所述的方法,其中,同步信号序列包括任一级同步 信号序列,或多级同步信号序列的组合。
  24. 根据权利要求21所述的方法,其中,所述物理广播信道的发送方式包括以下至少之一:物理广播信道所采用的扰码序列、物理广播信道的校验序列以及物理广播信道内承载的显式信息。
  25. 根据权利要求22所述的方法,其中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
  26. 根据权利要求22所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号块时域索引确定所述系统帧号的低M位;
    所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个 数,/为除法运算符,T、n、X和M均为正整数。
  27. 根据权利要求26所述的方法,其中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;包括:
    所述同步信号块在所述同步信号窗组内统一编号,所述终端侧节点通过同步信号序列确定所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  28. 根据权利要求22所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引的组合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低M位;
    所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中至少之一, 确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  29. 根据权利要求28所述的方法,其中,所述终端侧节点通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
    所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引或编号与所述同步信号窗时域索引或编号的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  30. 根据权利要求26或28所述的方法,其中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中至少之一。
  31. 根据权利要求21所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    所述终端侧节点通过所述物理广播信道的扰码序列和校验序列中的至少之一确定所述系统帧号的低M=log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
  32. 根据权利要求29所述的方法,其中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息,包括:
    所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量以及所述同步信号块与无线帧边界间的时域偏移量。
  33. 根据权利要求29所述的方法,其中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  34. 根据权利要求21所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号块时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一,T和X均为正整数。
  35. 根据权利要求21所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下 至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  36. 根据权利要求22所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  37. 根据权利要求22所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  38. 根据权利要求22所述的方法,其中,所述终端侧节点根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,包括:
    所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;
    所述终端侧节点通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,其中,所述终端侧节点通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,所述终端侧节点通过所述同步信号窗组时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  39. 根据权利要求38所述的方法,其中,所述终端侧节点通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与所述子帧边界间的时域偏 移量。
  40. 根据权利要求38所述的方法,其中,所述终端侧节点通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一,包括:
    预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  41. 一种基站,包括:
    确定模块,设置为根据同步信号块的时域位置,确定所述同步信号块内的同步信号序列和物理广播信道PBCH的发送方式,其中,所述同步信号序列和物理广播信道的发送方式用于指示所述同步信号块的时域相关信息,以及所述时域相关信息包括以下至少之一:同步信号块时域索引信息,子帧定时信息,半帧定时信息,无线帧定时信息,系统帧号SFN;以及
    发送模块,设置为根据所述同步信号序列和物理广播信道的发送方式,在一个或多个同步信号块内发送对应的同步信号及物理广播信道。
  42. 根据权利要求41所述的基站,其中,所述同步信号块占用一个或多个OFDM符号资源,用于承载一个或一组特定端口或波束的信息发送;一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在同步信号窗组内发送所有端口或波束的信息。
  43. 根据权利要求42所述的基站,其中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗内的相对时 域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
  44. 根据权利要求41所述的基站,其中,所述同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
  45. 根据权利要求41所述的基站,其中,所述物理广播信道的发送方式包括以下至少之一:所述物理广播信道采用的扰码序列、所述物理广播信道的校验序列、所述物理广播信道承载的信息。
  46. 根据权利要求42所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域的索引指示所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号块时域索引指示所述系统帧号的低M位;
    通过所述物理广播信道的扰码序列和校验序列中的至少之一,指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  47. 根据权利要求46所述的基站,其中,所述同步信号块在所述同步信号窗组内统一编号,所述基站通过同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域 偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  48. 根据权利要求42所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引及所述同步信号窗时域索引的组合指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号窗时域索引指示所述系统帧号的低M位;
    通过所述物理广播信道的扰码序列和校验序列中的至少之一指示所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  49. 根据权利要求48所述的基站,其中,所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引与所述同步信号窗时域索引的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下 至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  50. 根据权利要求46或48所述的基站,其中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  51. 根据权利要求41所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    通过所述物理广播信道的扰码序列和校验序列中的至少一个指示所述系统帧号的低M=log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
  52. 根据权利要求41所述的基站,其中,所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  53. 根据权利要求41所述的基站,其中,在物理广播信道更新周期内, 不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  54. 根据权利要求41所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,通过所述同步信号块时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  55. 根据权利要求42所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  56. 根据权利要求42所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X 位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  57. 根据权利要求41所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的以下信息至少之一:子帧定时信息,半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  58. 根据权利要求42所述的基站,其中,所述基站通过以下方式指示所述同步信号块的时域相关信息:
    通过不同同步信号块时域索引指示所述同步信号块的子帧定时信息;
    通过不同同步信号窗组时域索引指示所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息指示所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引指示所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  59. 根据权利要求48所述的基站,其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
  60. 根据权利要求48所述的基站,其中,预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  61. 一种终端,包括:
    接收模块,设置为接收同步信号及物理广播信道;以及
    确定模块,设置为根据识别出的同步信号序列及物理广播信道发送方式,确定所述同步信号及物理广播信道所在同步信号块的时域相关信息,其中,所述时域相关信息包括以下至少之一:同步信号块时域索引信息、子帧定时信息、半帧定时信息,无线帧定时信息以及系统帧号SFN。
  62. 根据权利要求61所述的终端,其中,所述同步信号块占用一个或多个OFDM符号资源,设置为承载一个或一组特定端口或波束的信息发送;所述一个或多个连续的同步信号块构成一个同步信号窗,一个或多个同步信号窗构成一个同步信号窗组,在所述同步信号窗组内发送所有端口或波束的信息。
  63. 根据权利要求61所述的终端,其中,同步信号序列包括任一级同步信号序列,或多级同步信号序列的组合。
  64. 根据权利要求61所述的终端,其中,所述物理广播信道的发送方式包括以下至少之一:物理广播信道所采用的扰码序列、物理广播信道的校验序列以及物理广播信道内承载的显式信息。
  65. 根据权利要求62所述的终端,其中,所述同步信号块的时域位置包括以下至少之一:所述同步信号块在子帧内的相对时域位置;所述同步信号块在同步信号窗组内的相对时域位置;所述同步信号块在同步信号窗SS burst内的相对时域位置;以及所述同步信号块在物理广播信道更新周期内的相对时域位置。
  66. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,其中,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低M=log 2(T/n)位间的关联关系,通过所述同步信号块时域索引确定所述系统帧号的低M位;
    通过所述物理广播信道的扰码序列和校验序列中的至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  67. 根据权利要求66所述的终端,其中,所述同步信号块在所述同步信号窗组内统一编号,所述终端通过同步信号序列确定所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  68. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引及所述同步信号窗时域索引的组合确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引的组合与所述系统帧号低M=log 2(T/n)位间的关联关系,所述终端侧节点通过所述同步信号窗时域索引确定所述系统帧号的低M位;
    通过所述物理广播信道的扰码序列和校验序列中的至少之一,确定所述系统帧号的高(X-log 2T)位与低M位中间的log 2n位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,n为物理广播信道更新周期内包含同步信号窗组的个数,T/n为每个同步信号窗组包含无线帧的个数,/为除法运算符,T、n、X和M均为正整数。
  69. 根据权利要求68所述的终端,其中,所述同步信号块在所述同步信号窗内统一编号,所述同步信号窗在所述同步信号窗组内统一编号,用同步信号序列指示所述同步信号块时域索引或编号与所述同步信号窗时域索引或编号的组合;预定义所述同步信号块的时域索引或编号及所述同步信号窗时域索引或编号的组合与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  70. 根据权利要求66或68所述的终端,其中,在物理广播信道更新周期内,不同同步信号窗组内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中至少之一。
  71. 根据权利要求61所述的终端,其中,所述终端通过如下方式确定所 述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    通过所述物理广播信道的扰码序列和校验序列中的至少之一确定所述系统帧号的低M=log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T、X和M均为正整数。
  72. 根据权利要求69所述的终端,其中,所述同步信号块在子帧内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  73. 根据权利要求69所述的终端,其中,在物理广播信道更新周期内,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一。
  74. 根据权利要求61所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在物理广播信道更新周期内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号块时域索引的集合与所述系统帧号低log 2T位间的关联关系,通过所述同步信号块时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,不同无线帧内的物理广播信道采用不同的物理广播信道扰码序列和校验序列中的至少之一,T和X均为正整数。
  75. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  76. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号块时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号块时域索引的组合确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  77. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的以下信息中的至少之一:子帧定时信息、半帧定时信息以及无线帧定时信息;
    其中,所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与子帧边界间的时域偏移量、所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述同步信号窗在同步信号窗组内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引及所述同步信号窗时域索引的组合,确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  78. 根据权利要求62所述的终端,其中,所述终端通过如下方式确定所述同步信号及物理广播信道所在同步信号块的时域相关信息:
    通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;
    通过不同同步信号窗组时域索引确定所述同步信号块的半帧定时信息和无线帧定时信息中的至少之一;
    所述同步信号窗组在物理广播信道更新周期内统一编号,所述系统帧号由X位二进制数表示,通过物理广播信道内承载的显式信息确定所述系统帧号的高(X-log 2T)位;
    预定义所述同步信号窗组时域索引与所述系统帧号低log 2T位间的关联关系,通过所述同步信号窗组时域索引确定所述系统帧号的低log 2T位;
    其中,T为物理广播信道更新周期内包含无线帧的个数,T和X均为正整数。
  79. 根据权利要求78所述的终端,其中,所述终端通过不同同步信号块时域索引确定所述同步信号块的子帧定时信息;所述同步信号块在同步信号窗组内统一编号,用同步信号序列指示所述同步信号块的时域索引或编号;预定义所述同步信号块的时域索引或编号与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量为所述同步信号块与子帧边界间的时域偏移量。
  80. 根据权利要求78所述的终端,其中,预定义所述同步信号窗组时域索引与所述同步信号块的时域偏移量的关联关系,其中,所述时域偏移量包括以下至少之一:所述同步信号块与半帧边界间的时域偏移量、以及所述同步信号块与无线帧边界间的时域偏移量。
  81. 一种信息指示系统,包括权利要求41-60任一项所述的基站,以及权利要求61-80任一项所述的终端。
  82. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-40中任一项的方法。
PCT/CN2017/119593 2017-01-26 2017-12-28 信息指示方法、装置及系统 WO2018137466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710057570.8 2017-01-26
CN201710057570.8A CN108366029A (zh) 2017-01-26 2017-01-26 一种信息指示方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018137466A1 true WO2018137466A1 (zh) 2018-08-02

Family

ID=62979139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119593 WO2018137466A1 (zh) 2017-01-26 2017-12-28 信息指示方法、装置及系统

Country Status (2)

Country Link
CN (1) CN108366029A (zh)
WO (1) WO2018137466A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061929A1 (zh) * 2018-09-27 2020-04-02 北京小米移动软件有限公司 传输同步指示信息的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109375B2 (en) 2018-12-17 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for configuration of common search space for discovery signal and channel
CN111726821B (zh) * 2019-03-21 2022-04-26 华为技术有限公司 一种通信方法及设备
CN112788731B (zh) * 2019-11-08 2022-07-08 大唐移动通信设备有限公司 一种信息的发送、接收方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统
CN105530685A (zh) * 2014-10-24 2016-04-27 中兴通讯股份有限公司 消息发送接收方法、发送接收装置、基站及终端
CN106304346A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 一种同步信号的发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统
CN105530685A (zh) * 2014-10-24 2016-04-27 中兴通讯股份有限公司 消息发送接收方法、发送接收装置、基站及终端
CN106304346A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 一种同步信号的发送、接收方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061929A1 (zh) * 2018-09-27 2020-04-02 北京小米移动软件有限公司 传输同步指示信息的方法及装置
US11910334B2 (en) 2018-09-27 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for transmitting synchronization indication information

Also Published As

Publication number Publication date
CN108366029A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
US11677607B2 (en) Method for transmitting information in communication system, base station and user equipment
US20220150743A1 (en) Method and apparatus for transmitting a measurement report on a wireless network
US11444714B2 (en) Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
CN107888238B (zh) 一种用于随机接入的ue、基站中的方法和装置
RU2734100C1 (ru) Способ передачи сигнала, оконечное устройство и сетевое устройство
WO2018137466A1 (zh) 信息指示方法、装置及系统
US10420110B2 (en) PBCH transmission method and apparatus
US11653320B2 (en) Information indication apparatus and method and communication system
CN103916812A (zh) 用于扩展lte网络中的控制信令的方法和装置
US11924829B2 (en) Signal reception apparatus and method and communications system
US11917525B2 (en) Wireless communication method, apparatus, and computer-readable storage medium
WO2022027335A1 (zh) 用于终端的切换方法、装置、设备及介质
WO2020118717A1 (en) Methods, devices and computer readable media for ssb transmission and reception
US20190394706A1 (en) Configurable discovery reference signal periodicity for narrowband internet-of-things in unlicensed spectrum
CN114902582A (zh) 用于通信的方法、设备和计算机存储介质
CN111756509B (zh) 一种传输公共信号块的方法和装置
RU2808794C1 (ru) Способ связи, пользовательское устройство, устройство базовой станции и машиночитаемый носитель данных
JP7306568B2 (ja) 通信方法
KR101600450B1 (ko) 시스템 정보 갱신 방법 및 그를 수행하는 통신 시스템
WO2018121186A1 (zh) Ofdm符号的发送、接收方法及装置
CN108432303B (zh) 一种波束同步的方法及装置
CN117279097A (zh) 同步信号块传输方法及装置、存储介质、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893953

Country of ref document: EP

Kind code of ref document: A1