WO2022083336A1 - 旋转多面镜、线阵光源扫描显示系统以及投影仪 - Google Patents

旋转多面镜、线阵光源扫描显示系统以及投影仪 Download PDF

Info

Publication number
WO2022083336A1
WO2022083336A1 PCT/CN2021/117163 CN2021117163W WO2022083336A1 WO 2022083336 A1 WO2022083336 A1 WO 2022083336A1 CN 2021117163 W CN2021117163 W CN 2021117163W WO 2022083336 A1 WO2022083336 A1 WO 2022083336A1
Authority
WO
WIPO (PCT)
Prior art keywords
polygon mirror
rotating polygon
transparent medium
rotation axis
light source
Prior art date
Application number
PCT/CN2021/117163
Other languages
English (en)
French (fr)
Inventor
赵鹏
陈孟浩
吴超
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022083336A1 publication Critical patent/WO2022083336A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present application relates to the technical field of laser projection, and in particular, to a rotating polygon mirror, a scanning display system with a line array light source, and a projector.
  • Scanning display is a type of projection display technology.
  • scanning display technology uses lasers to generate collimated beams, and then project them through one or more scanning devices to generate fast-moving light spots on the screen.
  • the precise control of the laser can realize the brightness modulation of the light spot at different positions.
  • the laser scanning display technology can directly project the light generated by the light source onto the screen without going through a spatial light modulator, so the projection efficiency is very high, and a high-brightness picture can be produced.
  • the brightness of the picture is directly controlled by the light source of the laser, the brightness of the laser can be directly reduced in the dark area, thus avoiding the problem of brightness leakage in the dark field of the projector, and having a very good dynamic contrast ratio.
  • FIG. 1 shows a schematic structural diagram of a laser scanning system based on rotating polygon mirror in the related art.
  • the laser scanning system 100 includes a laser light source 110, a reflector 120, and a screen 130.
  • the laser light source 110 generates a laser beam incident on the reflector 120, and the reflector 120 rotates along the rotation axis 121 to change the angle between the reflector 120 and the laser beam, so as to transmit the laser beam. Scan to screen 130 to get a line.
  • Each surface of the reflector 120 can scan the light beam for one stroke, and the array of laser light sources 110 is arranged in the direction of the rotation axis 121, so that multiple lines of light spots can be scanned, and a complete picture can be obtained by splicing.
  • the laser scanning technology based on the rotating polygon mirror has many advantages, such as the simple structure of the mirror, the stable and easy control of the rotating working mode, and there is no energy loss and braking effect caused by acceleration and deceleration.
  • the resolution of the laser scanning technology depends on the closely spaced array of laser light sources. In order to improve the display resolution, the number of laser light sources needs to be greatly increased, which is technically difficult and costly to implement.
  • the purpose of the present application is to provide a rotating polygon mirror, a linear array light source scanning display system and a projector to solve the above problems.
  • the embodiments of the present application achieve the above objects through the following technical solutions.
  • the embodiments of the present application provide a rotating polygon mirror, which is used in a linear array light source scanning display system to receive and reflect a collimated light beam emitted by the linear array light source to form a display image.
  • the rotating polygon mirror includes n Reflecting surfaces, where n ⁇ 2, and each reflecting surface is parallel to the rotation axis, the rotating polygon mirror can be rotated along the rotating axis so that the n reflecting surfaces are sequentially moved to the optical path of the collimated beam with the rotation of the rotating polygon mirror.
  • the collimated beam is reflected successively, and the collimated beam is reflected by n reflecting surfaces to form n scanning line arrays on the display surface in turn.
  • On the display surface at least two scanning line arrays in the n scanning line arrays are parallel to the rotation axis. direction is displaced.
  • At least two of the n reflective surfaces are spaced apart from the rotation axis at different distances from each other.
  • the displacement is proportional to the difference in the distance between each reflective surface and the axis of rotation, and the displacement is proportional to the incident angle of the collimated beam.
  • the rotating polygon mirror further includes a transparent medium plate, the number of the transparent medium plate is less than or equal to n, the transparent medium plate is attached to the reflective surface, the collimated light beam is incident on the reflective surface through the transparent medium plate, and is reflected by After reflection from the surface, it emerges from the transparent medium plate.
  • the displacement is proportional to the incident angle of the collimated light beam, the displacement is proportional to the thickness of the transparent medium plate, and the displacement is inversely proportional to the refractive index of the transparent medium plate.
  • the distance between each reflective surface and the rotation axis is equal, and the number of transparent medium plates is less than n.
  • the distance between each reflective surface and the rotation axis is equal, and the number of transparent medium plates is equal to n; among the n transparent medium plates, at least two transparent medium plates have unequal thicknesses, or n The refractive indices of at least two transparent medium plates in the transparent medium plates are not equal to each other, or the thicknesses and the refractive indices of at least two transparent medium plates of the n transparent medium plates are not equal to each other.
  • the transparent medium plate is made of glass or resin.
  • the incident angle of the collimated light beam relative to the reflective surface is an acute angle.
  • an embodiment of the present application provides a linear array light source scanning display system, including a linear array light source, a rotating polygon mirror, and a screen, where the linear array light source is used to generate a collimated light beam, the screen includes a display surface, and the rotating polygon mirror includes n Reflecting surfaces, where n ⁇ 2, and each reflecting surface is parallel to the rotation axis, the rotating polygon mirror can be rotated along the rotating axis so that the n reflecting surfaces are sequentially moved to the optical path of the collimated beam with the rotation of the rotating polygon mirror.
  • the collimated beam is reflected successively, and the collimated beam is reflected by n reflecting surfaces to form n scanning line arrays on the display surface in turn.
  • On the display surface at least two scanning line arrays in the n scanning line arrays are parallel to the rotation axis. direction is displaced.
  • an embodiment of the present application provides a projector, which includes a housing and the rotating polygon mirror described in the first aspect, wherein the rotating polygon mirror is disposed in the housing.
  • the rotating polygon mirror, the linear array light source scanning display system, and the projector provided by the embodiment of the present application form n scan line arrays by reflecting the collimated light beams from the rotating polygon mirror, and at least two of the n scan line arrays are formed.
  • the scanning line array is displaced in the direction parallel to the rotation axis, so that the final projection image has at least two scanning line arrays at different positions in the direction parallel to the rotation axis, which can increase the display resolution of the projection image when the number of laser light sources is limited. rate, easy to process and manufacture.
  • FIG. 1 is a schematic structural diagram of a laser scanning system based on a rotating polygon mirror in the related art.
  • FIG. 2 is a schematic structural diagram of a linear array light source scanning display system provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a rotating polygon mirror provided by an embodiment of the present application.
  • FIG. 4 is an optical path diagram of the rotating polygon mirror provided by the embodiment shown in FIG. 3 .
  • FIG. 5 is a schematic cross-sectional view of a rotating polygon mirror provided by another embodiment of the present application.
  • FIG. 6 is an optical path diagram of the rotating polygon mirror provided by the embodiment shown in FIG. 5 .
  • the resolution of the laser scanning technology based on the rotating polygon mirror depends on the densely assembled laser light source array.
  • the number of laser light sources needs to be greatly increased, which is technically difficult and costly to implement.
  • each reflective surface of the mirror is set to be inclined relative to the rotation axis.
  • the reflected light has different inclination angles in the direction of the rotation axis, so that the reflection formed by each reflective surface
  • the sweep lines are in different line positions in the picture.
  • the inclination angle of the reflective surface has very high requirements on the precision of the processing technology, and is often difficult to precisely control, and the cost is high.
  • the inventors have researched and proposed the rotating polygon mirror, the linear array light source scanning display system and the projector in the embodiments of the present application.
  • the rotating polygon mirror 220 provided in the embodiment of the present application can be applied to the linear array light source scanning display system 200 .
  • the linear array light source scanning display system 200 may include a linear array light source 210 and a screen 250 .
  • the screen 250 includes a display surface 251 , and the rotating polygon mirror 220 is used for receiving and reflecting the collimated light beam 211 emitted by the linear array light source 210 to form a display image.
  • the rotating polygon mirror 220 may include n reflecting surfaces 230, wherein n ⁇ 2, and each reflecting surface 230 is parallel to the rotation axis 240, and the rotating polygon mirror 220 may rotate along the rotating axis 240 so that the n reflecting surfaces 230 follow the rotation axis 240.
  • the rotation of the rotating polygon mirror 220 moves to the optical path of the collimated beam 211 to reflect the collimated beam 211 successively.
  • On the surface 251 at least two of the n scan line arrays 280 are displaced in the direction parallel to the rotation axis 240 .
  • the n scan line arrays 280 include a first position scan line array 281 and a second position scan line array 282, the second position scan line array 282 is displaced relative to the first position scan line array 281 in a direction parallel to the rotation axis 240,
  • the final projection image has at least two scanning line arrays at different positions in the direction parallel to the rotation axis 240, that is, the longitudinal resolution is at least doubled, so that the display of the projection image can be greatly increased when the number of laser light sources is limited. resolution to improve the display effect.
  • the n scanning line arrays 280 formed by the line array light source scanning display system 200 can be directly transmitted to the screen without going through a spatial light modulator, so the projection efficiency is high and a high-brightness projection image can be generated.
  • the linear array light source 210 includes m lasers arranged in a linear array, wherein m ⁇ 1, the m lasers generate m collimated beams, and the m collimated beams are scanned by a reflective surface to form m lines, That is, each scan line array 280 includes m lines.
  • each scan line array 280 includes m lines.
  • the displacement of the scan line array 280 in the direction parallel to the rotation axis 240 is very small, for example, the size of one pixel (approximately equal to 0.35mm).
  • the rotating polygon mirror 220 rotates rapidly, the visual persistence effect of the human eye causes the human eye to observe the projection image formed by the superposition of the n scanning line arrays 280 on the screen 250 .
  • the linear array light source 210 may be a laser arranged in a linear array, or an optical fiber may be used as a beam shaping device, and the beams generated by multiple lasers may be shaped into a linear array light source through optical fiber coupling. This is not particularly limited.
  • the reflective surface 230 is a plane, and the number n of the reflective surfaces 230 may be equal to or greater than 2.
  • the rotating polygon mirror 220 includes two reflective surfaces 230, and also includes a non-reflective surface and a non-reflective surface.
  • the outer peripheral surface of the rotating polygon mirror 220 is formed by surrounding with the two reflecting surfaces 230 .
  • n is equal to or greater than 3
  • the outer peripheral surface of the rotating polygon mirror 220 may be directly enclosed by the reflective surface 220 .
  • the line array light source scanning display system 200 further includes a cylindrical lens 260, the cylindrical lens 260 is located in the reflected light path of the collimated light beam 211, and is located between the screen 250 and the rotating polygon mirror 220, and the collimated light beam 211 passes through the cylindrical lens 260 is refracted and incident on the screen 250.
  • the cylindrical lens 260 is disposed between the rotating polygon mirror 220 and the screen 250, and is used to control the traveling direction of the light through transmission and refraction, so that the light beam can be incident on the screen 250 at a correct angle.
  • the cylindrical lens 260 may include an incident surface 261 and an exit surface 262 arranged oppositely, the incident surface 261 is a plane, and the exit surface 262 is a curved surface.
  • the structure of the lenticular lens 260 is not specifically limited in the embodiment of the present application, as long as the traveling direction of the light can be controlled so that the light can be incident on the screen 250 at a correct angle.
  • FIG. 3 is a schematic cross-sectional view of a rotating polygon mirror provided by an embodiment of the present application. Please refer to FIG. 3 .
  • the n reflective surfaces 230 are located between the reflective surfaces and the rotation axis 240 .
  • the distances are not equal to each other.
  • the n reflection surfaces 230 include a first reflection surface 231 and a second reflection surface 232, and the distances between the first reflection surface 231 and the second reflection surface 232 and the rotation axis 240 are not equal to each other.
  • the n reflective surfaces 230 may also include other reflective surfaces with equal or unequal distances from the rotation axis 240 .
  • FIG. 4 is an optical path diagram of the rotating polygon mirror provided by the embodiment shown in FIG. 3.
  • the collimated beam 211 passes through the A reflective surface 231 reflects to form the first reflected light beam 212 .
  • the second reflecting surface 232 rotates to the optical path of the collimated beam 211
  • the collimated beam 211 is reflected by the second reflecting surface 232 to form the second reflected beam 213.
  • the second reflected beam 213 is at The displacement ⁇ occurs in the direction parallel to the rotation axis 240 (see FIG. 2 for details).
  • is the incident angle of the collimated light beam 211 relative to the reflecting surface 230 , that is, the included angle between the collimated light beam 211 and the normal line of the reflecting surface 230 .
  • the incident angle ⁇ is an acute angle, that is, the collimated beam 211 is neither perpendicular to the reflecting surface 230 nor parallel to the reflecting surface 230, so that the collimated beam 211 reflected by the reflecting surface 230 can be parallel to the rotation axis
  • the direction of 240 is displaced.
  • the displacement ⁇ is proportional to the incident angle ⁇
  • the displacement ⁇ is proportional to the difference d.
  • the magnitude of the displacement ⁇ can be controlled by controlling the incident angle ⁇ and the difference d.
  • the incident angle ⁇ is small (eg, less than 0.01°)
  • the change of the difference d in the order of millimeters can achieve the change in the order of displacement ⁇ m, and the rotation of the polygon mirror 220 can realize the difference d in the order of millimeters.
  • first reflection surface 231 and the second reflection surface 232 may be two adjacent outer peripheral surfaces of the rotating polygon mirror 220, or may be any two non-adjacent outer peripheral surfaces, as long as the first reflection surface 231 and the second reflection surface 232 are adjacent to each other.
  • the distance between the second reflecting surface 232 and the rotating shaft 240 may be different from each other.
  • n is equal to or greater than 3
  • only two of the n reflective surfaces 230 may have unequal distances from the rotation axis, or the distances between each reflective surface 230 and the rotation axis 240 may be unequal.
  • the distance between the surface 230 and the rotation axis 240 may decrease clockwise to form a regular change, or it may be an irregular change, so that each scan line array formed by the scanning of the rotating polygon mirror 220 is displaced in the direction parallel to the rotation axis 240, which can be
  • the display resolution of the projection screen is increased by n times, the display effect is improved, the structure design is simple, and the processing and manufacturing are very convenient.
  • n is equal to 6, that is, the number of reflection surfaces 230 is 6, the distances between the six reflection surfaces 230 and the rotation axis 240 are not equal to each other, and the distance between the six reflection surfaces 230 and the rotation axis 240 may be in a clockwise direction Decrease.
  • the rotating polygon mirror 220 provided by an embodiment of the present application uses at least two reflective surfaces 230 with unequal distances from the rotating axis 240, so that at least two of the scanning line arrays formed by the rotating polygon mirror 220 are parallel to the rotating axis 240.
  • the direction of the projection screen is displaced, thereby increasing the display resolution of the projection screen and improving the display effect, and the structure design is simple, which greatly reduces the difficulty of processing and manufacturing, and can reduce manufacturing errors at the same time.
  • FIG. 5 is a schematic cross-sectional view of a rotating polygon mirror provided by another embodiment of the present application.
  • the rotating polygon mirror 220 further includes a transparent medium plate 270. If the number is less than or equal to n, the transparent medium plate 270 is attached to the reflection surface 230 , the collimated light beam 211 enters the reflection surface 230 through the transparent medium plate 270 , and is reflected by the reflection surface 230 and then exits the transparent medium plate 270 .
  • the transparent medium plate 270 may be made of some materials with high light transmittance (eg, light transmittance greater than 90%) such as glass or resin.
  • the transparent medium plate 270 may include a first surface 271 and a second surface 272 opposite to each other, the first surface 271 and the second surface 272 are both parallel to the rotation axis 240 , the second surface 272 is attached to the reflective surface 230 , and the beam 211 is collimated
  • the incident light enters the reflection surface 230 through the first surface 271 , and is reflected by the reflection surface 230 and then exits the first surface 271 .
  • the n reflecting surfaces 230 include a first reflecting surface 233 and a second reflecting surface 234, the first reflecting surface 233 is not provided with the transparent medium plate 270, and the second reflecting surface 234 is provided with the transparent medium plate 270, that is, the first reflecting surface 234 is provided with the transparent medium plate 270.
  • the reflection surface 233 is the outer surface of the rotating polygon mirror 220 .
  • FIG. 6 is an optical path diagram of the rotating polygon mirror provided by the embodiment shown in FIG. 5.
  • the collimated beam 211 passes through the A reflection surface 231 reflects to form the first reflected light beam 214 .
  • the collimated beam 211 enters the second reflecting surface 234 through the transparent medium plate 270, and is reflected by the second reflecting surface 234 to form the second reflecting beam 215. Due to the refraction effect of the transparent medium plate 270 , the second reflected light beam 215 is displaced by ⁇ in a direction parallel to the rotation axis 240 compared to the first reflected light beam 214 .
  • the calculation formula for obtaining the displacement ⁇ according to the geometric relationship is:
  • is the incident angle of the collimated light beam 211 with respect to the reflecting surface 230 . It should be noted that the incident angle ⁇ is an acute angle, so that the collimated light beam 211 reflected by the reflection surface 230 can be displaced in the direction parallel to the rotation axis 240 .
  • the displacement ⁇ is proportional to the incident angle ⁇
  • the displacement ⁇ is proportional to the thickness d of the transparent medium plate 270
  • the displacement ⁇ is inversely proportional to the refractive index n of the transparent medium plate 270, which can be controlled by controlling One or more of the incident angle ⁇ , the thickness d of the transparent medium plate, and the refractive index n of the transparent medium plate can control the magnitude of the displacement ⁇ .
  • the incident angle ⁇ is small (for example, less than 0.01°)
  • the change of the thickness d in the order of millimeters can realize the change in the order of displacement ⁇ m. Accordingly, a transparent medium plate with a thickness of the order of millimeters is required.
  • the distance between each reflective surface 230 and the rotation axis 240 is the same.
  • the number of transparent medium plates 270 is less than n, that is, the rotating polygon mirror 220 includes a reflective surface provided with a transparent medium plate and a non-reflective surface provided with a transparent medium plate.
  • the reflective surface provided with the transparent medium plate can cause at least two scan line arrays in the n scan line arrays to be displaced in the direction parallel to the rotation axis 240.
  • the thickness of the transparent medium plate 270 and the refractive index of the transparent medium plate 270 can be adjusted. The same or different, those skilled in the art can set according to actual needs.
  • each reflection surface 230 and the rotation axis 240 is equal, and the number of transparent medium plates 270 is equal to n, that is, each reflection surface 230 is provided with one transparent medium plate 270 .
  • the thicknesses d of at least two transparent medium plates among the n transparent medium plates 270 are not equal to each other, or the refractive indices n of at least two transparent medium plates among the n transparent medium plates 270 are not equal to each other, Or the thickness d and the refractive index n of at least two of the n transparent medium plates are not equal to each other, so that at least two scan line arrays in the n scan line arrays formed by scanning are parallel to the rotation axis 240 . direction is displaced.
  • n is equal to 6, that is, the number of reflective surfaces 230 is 6, and the distances between the 6 reflective surfaces and the rotation axis 240 are all equal.
  • the number of the transparent medium plates 270 is five, and the five transparent medium plates 270 are arranged on the five adjacent reflecting surfaces 230 in sequence, and the five transparent medium plates 270 have the same refractive index and the thickness decreases in the clockwise direction, so that the projection can be
  • the display resolution of the picture is increased by 6 times, and the transparent medium plate 270 is made of the same material, which can be easily processed and manufactured.
  • the distances between the n reflective surfaces 230 and the rotation axis 240 may not be equal, and the n reflective surfaces 230 are attached to one or more transparent medium plates 270.
  • the scanning line array is controlled in the direction parallel to the rotation axis 240.
  • the rotating polygon mirror 220 provided by another embodiment of the present application includes a rotating polygon mirror 220 and a transparent medium plate 270.
  • the transparent medium plate 270 is attached to at least one reflective surface 230, and through the refraction of the transparent medium plate 270, the rotating polygon mirror can be made At least two of the n scanning line arrays formed by 220 scanning are displaced in the direction parallel to the rotation axis 240, which increases the display resolution of the projection screen and improves the display effect.
  • the structure design is simple, which greatly reduces the difficulty of processing and manufacturing. The manufacturing error is reduced, and the precise control of the light beam reflected by the rotating polygon mirror 220 is realized.
  • an embodiment of the present application further provides a line array light source scanning display system 200 , including a line array light source 210 , a rotating polygon mirror 220 and a screen 250 .
  • the linear light source 210 is used to generate the collimated light beam 211
  • the screen 250 includes a display surface 251
  • the rotating polygon mirror 220 may include n reflecting surfaces 230, where n ⁇ 2, and each reflecting surface 230 is parallel to the rotation axis 240
  • the rotating polygon mirror 220 can be rotated along the rotation axis 240 so that the n reflecting surfaces 230 are sequentially moved to the optical path of the collimated beam 211 with the rotation of the rotating polygon mirror 220 to reflect the collimated beam 211 successively, and the collimated beam 211 is reflected by n reflections.
  • n scan line arrays 280 are sequentially formed on the display surface 251 .
  • the line array light source scanning display system 200 formed n scanning line arrays 280 by reflecting the collimated light beams from the rotating polygon mirror 220 .
  • the direction is displaced, so that the final projection image has at least two scanning line arrays at different positions in the direction parallel to the rotation axis 240, which can increase the display resolution of the projection image when the number of laser light sources is limited, and is easy to manufacture.
  • an embodiment of the present application further provides a projector, which includes a casing (not shown) and a rotating polygon mirror 220 , and the rotating polygon mirror 220 is disposed in the casing.
  • n scanning line arrays 280 are formed by reflecting the collimated light beam from the rotating polygon mirror 220, and at least two scanning line arrays in the n scanning line arrays 280 are displaced in the direction parallel to the rotation axis 240, so that the The final projection image has at least two scanning line arrays at different positions in the direction parallel to the rotation axis 240 , which can increase the display resolution of the projection image when the number of laser light sources is limited, and is easy to manufacture.
  • the above-mentioned projector may further include a line array light source 210 for generating a collimated light beam 211 .
  • a line array light source 210 for generating a collimated light beam 211 .
  • the projector includes the rotating polygonal mirror 220 in the above-mentioned embodiment, it has all the beneficial effects of the rotating polygonal mirror 220, which will not be repeated here.
  • the structural features of other parts of the projector are within the understanding of those skilled in the art, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种旋转多面镜(220)、线阵光源扫描显示系统(200)以及投影仪。旋转多面镜(220)运用于线阵光源扫描显示系统(200),来接收并反射线阵光源(210)发出的准直光束(211),以形成显示图像;旋转多面镜(220)包括n个反射面(230),其中,n≥2,且每个反射面(230)均与旋转轴(240)平行,旋转多面镜(220)可沿旋转轴(240)旋转以使n个反射面(230)随着旋转多面镜(220)的旋转依次移动至准直光束(211)的光路以逐次反射准直光束(211),准直光束(211)经n个反射面(230)反射后依次在显示面(251)形成n个扫描线阵列(280),在显示面(251)上,n个扫描线阵列(280)中至少有两个扫描线阵列(281,282)在平行于旋转轴(240)的方向发生位移。旋转多面镜(220)可以在激光光源数量有限的情况下增加投影画面的显示分辨率,提升显示效果,加工制造方便。

Description

旋转多面镜、线阵光源扫描显示系统以及投影仪 技术领域
本申请涉及激光投影技术领域,具体涉及一种旋转多面镜、线阵光源扫描显示系统以及投影仪。
背景技术
扫描显示是投影显示技术中的一种,在相关技术中,扫描显示技术使用激光器产生准直光束,再通过一个或多个扫描器件将其投射出去,在屏幕上产生快速移动的光点,通过对激光器地精确控制,可以实现光点在不同位置处的亮度调制,当扫描器件旋转足够快速,人眼的视觉暂留效应会使得人眼观察到稳定的画面。激光扫描显示技术可以将光源产生的光直接投射到屏幕上,不用经过空间光调制器,因此投影的效率非常高,能够产生高亮度的画面。此外,由于画面的亮暗是由激光器的光源直接控制,在暗部区域可以将激光器的亮度直接减弱,因此也避免了投影机出现的暗场有亮度泄露的问题,具有非常好的动态对比度。
基于旋转多面镜的激光扫描技术是扫描显示技术中的重要一种,图1示出了相关技术中的一种基于旋转多面镜的激光扫描系统的结构示意图,如图1所示,激光扫描系统100包括激光光源110、反射镜120和屏幕130,激光光源110产生激光束入射向反射镜120,反射镜120沿着旋转轴121进行旋转,改变反射镜120与激光束的夹角,将激光束扫描到屏幕130得到一条线。反射镜120的每个面都能将光束实现一个行程的扫描,在旋转轴121的方向设置阵列的激光 光源110,就能扫描出多行光点,拼接得到一个完整的画面。基于旋转多面镜的激光扫描技术具有诸多的优点,如反射镜结构简单,旋转式的工作方式稳定、易控制,并且没有加减速产生的能量损耗和刹车效应。然而,在相关技术中,激光扫描技术的分辨率依赖于密拼的激光光源阵列,为了提升显示分辨率,需要大量增加激光光源的数量,实现起来存在技术困难,且成本较高。
发明内容
本申请的目的在于提供一种旋转多面镜、线阵光源扫描显示系统以及投影仪,以解决上述问题。本申请实施例通过以下技术方案来实现上述目的。
第一方面,本申请实施例提供了一种旋转多面镜,其运用于线阵光源扫描显示系统,来接收并反射线阵光源发出的准直光束,以形成显示图像,旋转多面镜包括n个反射面,其中,n≥2,且每个反射面均与旋转轴平行,旋转多面镜可沿旋转轴旋转以使n个反射面随着旋转多面镜的旋转依次移动至准直光束的光路以逐次反射准直光束,准直光束经n个反射面反射后依次在显示面形成n个扫描线阵列,在显示面上,n个扫描线阵列中至少有两个扫描线阵列在平行于旋转轴的方向发生位移。
在一种实施方式中,n个反射面中至少有两个反射面与旋转轴的间距互不相等。
在一种实施方式中,位移与每个反射面和旋转轴的间距的差值成正比例关系,位移与准直光束的入射角度成正比例关系。
在一种实施方式中,旋转多面镜还包括透明介质板,透明介质板的数量小于或等于n,透明介质板贴合于反射面,准直光束经透明介质板入射至反射面,并经反射面反射后从透明介质板出射。
在一种实施方式中,位移与准直光束的入射角度成正比例关系,位移与透明介质板的厚度成正比例关系,位移与透明介质板的折射率成反比例关系。
在一种实施方式中,每个反射面与旋转轴的间距均相等,透明介质板的数量小于n。
在一种实施方式中,每个反射面与旋转轴的间距均相等,且透明介质板的数量等于n;n个透明介质板中至少有两个透明介质板的厚度互不相等,或者n个透明介质板中有至少两个透明介质板的折射率互不相等,或者n个透明介质板中至少有两个透明介质板的厚度和折射率均互不相等。
在一种实施方式中,透明介质板采用玻璃或树脂制成。
在一种实施方式中,准直光束相对反射面的入射角为锐角。
第二方面,本申请实施例提供一种线阵光源扫描显示系统,包括线阵光源、旋转多面镜和屏幕,线阵光源用于产生准直光束,屏幕包括显示面,旋转多面镜包括n个反射面,其中,n≥2,且每个反射面均与旋转轴平行,旋转多面镜可沿旋转轴旋转以使n个反射面随着旋转多面镜的旋转依次移动至准直光束的光路以逐次反射准直光束,准直光束经n个反射面反射后依次在显示面形成n个扫描线阵列,在显示面上,n个扫描线阵列中至少有两个扫描线阵列在平行于旋转轴的方向发生位移。
第三方面,本申请实施例提供一种投影仪,包括壳体以及第一方面所述的旋转多面镜,旋转多面镜设置于壳体内。
相对于现有技术,本申请实施例提供的旋转多面镜、线阵光源扫描显示系统以及投影仪通过旋转多面镜反射准直光束形成n个扫描线阵列,n个扫描线阵列中至少有两个扫描线阵列在平行旋转轴的方向发生位移,使得最终的投影画面在平行旋转轴的方向至少存在两个不同位置的扫描线阵列,可以在激光光源 的数量有限的情况下增加投影画面的显示分辨率,加工制造方便。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中一种基于旋转多面镜的激光扫描系统的结构示意图。
图2是本申请实施例提供的线阵光源扫描显示系统的结构示意图。
图3是本申请一个实施例提供的旋转多面镜的截面示意图。
图4是图3所示的实施例提供的旋转多面镜的光路图。
图5是本申请另一个实施例提供的旋转多面镜的截面示意图。
图6是图5所示的实施例提供的旋转多面镜的光路图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
目前,基于旋转多面镜的激光扫描技术的分辨率依赖于密拼的激光光源阵列,为了提升显示分辨率,需要大量增加激光光源的数量,实现起来存在技术困难,且成本较高。
在一些相关技术中,曾将反射镜的各个反射面设置为相对旋转轴倾斜,当 激光光源入射向各个反射面后,反射光线在旋转轴方向上具有不同的倾角,使得各个反射面反射形成的扫面线在画面中处于不同的行位置。然而,反射面的倾斜角度对加工工艺的精度要求非常高,往往难以精确控制,成本较高。
为了解决上述的问题,发明人经过研究,提出了本申请实施例中的旋转多面镜、线阵光源扫描显示系统以及投影仪。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图2所示,本申请实施例提供的旋转多面镜220可以应用于线阵光源扫描显示系统200,线阵光源扫描显示系统200可以包括线阵光源210和屏幕250,线阵光源210用于产生准直光束211,屏幕250包括显示面251,旋转多面镜220用于接收并反射线阵光源210发出的准直光束211,以形成显示图像。
旋转多面镜220可以包括n个反射面230,其中,n≥2,且每个反射面230均与旋转轴240平行,旋转多面镜220可沿旋转轴240旋转以使n个反射面230随着旋转多面镜220的旋转依次移动至准直光束211的光路以逐次反射准直光束211,准直光束211经n个反射面230反射后依次在显示面251形成n个扫描线阵列280,在显示面251上,n个扫描线阵列280中至少有两个扫描线阵列在平行旋转轴240的方向发生位移。
例如,n个扫描线阵列280包括第一位置扫描线阵列281和第二位置扫描线阵列282,第二位置扫描线阵列282相对第一位置扫描线阵列281在平行旋转轴240的方向发生位移,使得最终的投影画面在平行旋转轴240的方向至少存在两 个不同位置的扫描线阵列,也就是纵向分辨率至少增加了一倍,从而可以在激光光源数量有限的情况下大大增加投影画面的显示分辨率,提升显示效果。另外,线阵光源扫描显示系统200反射形成的n个扫描线阵列280可以直接透射到屏幕上,不用经过空间光调制器,因此投影效率高,能够产生高亮度的投影画面。
作为一种示例,线阵光源210包括m个线阵排列的激光器,其中,m≥1,m个激光器产生m个准直光束,m个准直光束经一个反射面扫描后形成m条线,即每个扫描线阵列280包括m条线。当n个扫描线阵列280均在平行旋转轴240的方向发生位移,就会使得最终的投影画面存在m*n条线,也就是纵向分辨率为m*n,此时纵向分辨率相比扫描线阵列不发生位移的情况增加了n倍,大大增加了投影画面的显示分辨率。
需要说明的是,扫描线阵列280在平行旋转轴240的方向发生的位移非常微小,例如一个像素大小(大约等于0.35mm)。当旋转多面镜220快速旋转时,人眼的视觉暂留效应就会使得人眼在屏幕250观察到n个扫描线阵列280叠加形成的投影画面。
在本实施例中,线阵光源210可以是呈线阵排列的激光器,也可以是采用光纤作为光束整形器件,通过光纤耦合将多个激光器产生的光束整形为一个线阵光源,本实施例对此并不具体限定。
在本实施例中,反射面230为平面,反射面230的数量n可以等于或者大于2,当n等于2时,旋转多面镜220包括2个反射面230,还包括非反射面,非反射面和2个反射面230围合形成旋转多面镜220的外周面。当n等于或者大于3时,旋转多面镜220的外周面可以直接由反射面220围合形成。
在本实施例中,线阵光源扫描显示系统200还包括柱状透镜260,柱状透镜 260位于准直光束211的反射光路,并位于屏幕250和旋转多面镜220之间,准直光束211经柱状透镜260折射后入射到屏幕250。
柱状透镜260设置于旋转多面镜220和屏幕250之间,用于通过透射和折射来控制光线的行进方向,以使光束能够以正确的角度入射至屏幕250。柱状透镜260可以包括相对设置的入射面261和出射面262,入射面261为平面,出射面262为曲面,准直光束211经入射面261入射后在出射面262发生折射。关于柱状透镜260的结构本申请实施例并不具体限定,只要能够控制光线的行进方向,以使光束能够以正确的角度入射至屏幕250即可。
图3是本申请一个实施例提供的旋转多面镜的截面示意图,请参阅图3所示,在本申请的一个实施例中,n个反射面230中至少有两个反射面与旋转轴240的间距互不相等。例如,n个反射面230包括第一反射面231和第二反射面232,第一反射面231和第二反射面232与旋转轴240的间距互不相等。当然,n个反射面230中也可以还包括其他与旋转轴240间距相等或不相等的反射面。
图4是图3所示的实施例提供的旋转多面镜的光路图,结合图3和图4所示,当第一反射面231旋转至准直光束211的光路后,准直光束211经第一反射面231反射形成第一反射光束212。当第二反射面232旋转至准直光束211的光路后,准直光束211经第二反射面232反射形成第二反射光束213,此时,第二反射光束213相比第一反射光束212在平行于旋转轴240(详见图2)的方向发生位移Δ。
假定第一反射面231和第二反射面232与旋转轴240间距的差值为d,根据几何关系可以获取位移Δ的计算公式为:
Δ=2θd       (1)
公式(1)中,θ为准直光束211相对反射面230的入射角度,即准直光束 211与反射面230法线的夹角。需要说明的是,入射角度θ为锐角,即准直光束211既不垂直于反射面230,也不平行于反射面230,以使经反射面230反射后的准直光束211可以在平行旋转轴240的方向发生位移。
由公式(1)可知,位移Δ与入射角度θ成正比例关系,且位移Δ与差值d成正比例关系,可以通过控制入射角度θ和差值d来控制位移Δ的大小。当入射角度θ为小角度时(例如小于0.01°),差值d毫米量级的变化可以实现位移Δ微米量级的变化,而旋转多面镜220可以实现制备毫米量级的差值d。相比于相关技术在旋转多面镜制备出具有不同倾斜角度的反射面而言,在旋转多面镜220制备出与旋转轴240间距不同的反射面230显然更加容易操作,使得器件的制备更加简单,同时能够减少制造误差,实现反射光束的精确控制。另外,通过调整入射角度θ可以产生不同的位移Δ,使得一个旋转多面镜220适配多种使用场景。
需要说明的是,第一反射面231和第二反射面232可以是旋转多面镜220相邻的两个外周面,也可以是任意不相邻的两个外周面,只要第一反射面231和第二反射面232与旋转轴240的间距互不相等即可。
当n等于或者大于3时,n个反射面230中可以只有两个反射面与旋转轴的间距互不相等,也可以是每个反射面230与旋转轴240的间距互不相等,每个反射面230与旋转轴240的间距可以沿顺时针递减以形成规律性变化,也可以是不规则变化,使得旋转多面镜220扫描形成的每个扫描线阵列在平行旋转轴240的方向发生位移,可以将投影画面的显示分辨率增加n倍,提升显示效果,且结构设计简单,加工制造非常方便。
作为一种示例,n等于6,即反射面230的数量为6个,6个反射面230与旋转轴240的间距互不相等,6个反射面230与旋转轴240的间距可以沿顺时针 方向递减。
本申请一个实施例提供的旋转多面镜220通过至少两个与旋转轴240间距互不相等的反射面230,可以使得旋转多面镜220扫描形成的扫描线阵列中至少有两个在平行旋转轴240的方向发生位移,从而增加投影画面的显示分辨率,提升显示效果,且结构设计简单,大大降低了加工制造难度,同时能够减少制造误差,实现对旋转多面镜220反射光束的精确控制。
图5是本申请另一个实施例提供的旋转多面镜的截面示意图,如图5所示,在本申请的另一个实施例中,旋转多面镜220还包括透明介质板270,透明介质板270的数量小于或等于n,透明介质板270贴合于反射面230,准直光束211经透明介质板270入射至反射面230,并经反射面230反射后从透明介质板270出射。
透明介质板270可以采用玻璃或树脂等一些高透光率(例如透光率大于90%)材料制成。透明介质板270可以包括相背的第一表面271和第二表面272,第一表面271和第二表面272均与旋转轴240平行,第二表面272贴合于反射面230,准直光束211经第一表面271入射至反射面230,并经反射面230反射后从第一表面271出射。
作为一种示例,n个反射面230包括第一反射面233和第二反射面234,第一反射面233未设置透明介质板270,第二反射面234设置有透明介质板270,即第一反射面233为旋转多面镜220的外表面。
图6是图5所示的实施例提供的旋转多面镜的光路图,结合图5和图6所示,当第一反射面233旋转至准直光束211的光路后,准直光束211经第一反射面231反射形成第一反射光束214。当第二反射面234旋转至准直光束211的光路后,准直光束211经透明介质板270入射至第二反射面234,并经第二反射 面234反射形成形成第二反射光束215,由于透明介质板270的折射作用,第二反射光束215相比第一反射光束214在平行于旋转轴240的方向发生位移Δ。
假定透明介质板270的厚度为d(即第一表面271和第二表面272之间的间距为d),折射率为n,根据几何关系可以获取位移Δ的计算公式为:
Figure PCTCN2021117163-appb-000001
公式(2)中,θ为准直光束211相对反射面230的入射角度。需要说明的是,入射角度θ为锐角,以使经反射面230反射后的准直光束211可以在平行旋转轴240的方向发生位移。
由公式(2)可知,位移Δ与入射角度θ成正比例关系,位移Δ与透明介质板270的厚度d成正比例关系,且位移Δ与透明介质板270的折射率n成反比例关系,可以通过控制入射角度θ、透明介质板的厚度d和透明介质板的折射率n中的一种或多种可以控制位移Δ的大小。当入射角度θ为小角度时(例如小于0.01°),厚度d毫米量级的变化即可实现位移Δ微米量级的变化,相应地,需要厚度为毫米量级的透明介质板。相比于相关技术在旋转多面镜制备出具有不同倾斜角度的反射面而言,在旋转多面镜设置厚度或者折射率不同的透明介质板更加容易操作,制备过程更加简单,同时能够减少制造误差,实现对旋转多面镜220反射光束的精确控制。另外,可以通过调整入射角度θ来产生不同大小的位移Δ,使得一个旋转多面镜可以适配多种使用场景。
作为一种示例,每个反射面230与旋转轴240的间距均相等,在这种情况下,透明介质板270的数量小于n,即旋转多面镜220包括设置有透明介质板的反射面和未设置有透明介质板的反射面,可使得n个扫描线阵列中至少有两个扫描线阵列在平行于旋转轴240的方向发生位移,透明介质板270的厚度和透明介质板270的折射率可以相同或者不同,本领域技术人员可以根据实际需要 进行设定。
作为一种示例,每个反射面230与旋转轴240的间距均相等,且透明介质板270的数量等于n,即每个反射面230均设置有一个透明介质板270。在这种情况下,n个透明介质板270中至少有两个透明介质板的厚度d互不相等,或者n个透明介质板270中至少有两个透明介质板的折射率n互不相等,或者n个透明介质板中至少有两个透明介质板的厚度d和折射率n均互不相等,可以使得扫描形成的n个扫描线阵列中至少有两个扫描线阵列在平行于旋转轴240的方向发生位移。
作为一种示例,n等于6,即反射面230的数量为6个,且6个反射面与旋转轴240的间距均相等。透明介质板270的数量为5个,5个透明介质板270依次设置于相邻的5个反射面230,且5个透明介质板270的折射率相等,厚度沿顺时针方向递减,可以将投影画面的显示分辨率增加6倍,且透明介质板270采用相同的材料制成,可以方便加工制造。
当然,在其他的一些实施方式中,n个反射面230可以与旋转轴240的间距不相等,且n个反射面230贴合有一个或多个透明介质板270,在这种情况下,可以通过控制反射面230与旋转轴240的间距、准直光束211的入射角度以及透明介质板270的厚度和折射率中的一种或多种来控制扫描线阵列在平行旋转轴240的方向发生的位移,这些方案都具有可行性,本领域技术人员可以根据实际需求进行设计。
本申请另一个实施例提供的旋转多面镜220包括旋转多面镜220和透明介质板270,透明介质板270贴合于至少一个反射面230,通过透明介质板270的折射作用,可以使得旋转多面镜220扫描形成的n个扫描线阵列中至少有两个在平行旋转轴240的方向发生位移,增加投影画面的显示分辨率,提升显示效 果,且结构设计简单,大大降低了加工制造难度,同时能够减少制造误差,实现对旋转多面镜220反射光束的精确控制。
仍请参阅图2所示,本申请实施例还提供了一种线阵光源扫描显示系统200,包括线阵光源210、旋转多面镜220和屏幕250。
线阵光源210用于产生准直光束211,屏幕250包括显示面251,旋转多面镜220可以包括n个反射面230,其中,n≥2,且每个反射面230均与旋转轴240平行,旋转多面镜220可沿旋转轴240旋转以使n个反射面230随着旋转多面镜220的旋转依次移动至准直光束211的光路以逐次反射准直光束211,准直光束211经n个反射面230反射后依次在显示面251形成n个扫描线阵列280,在显示面251上,n个扫描线阵列280中至少有两个扫描线阵列在平行旋转轴240的方向发生位移。
本申请实施例提供的线阵光源扫描显示系统200通过旋转多面镜220反射准直光束形成n个扫描线阵列280,n个扫描线阵列280中至少有两个扫描线阵列在平行旋转轴240的方向发生位移,使得最终的投影画面在平行旋转轴240的方向至少存在两个不同位置的扫描线阵列,可以在激光光源的数量有限的情况下增加投影画面的显示分辨率,加工制造方便。
仍请结合图2所示,本申请实施例还提供了一种投影仪,包括壳体(未示出)以及旋转多面镜220,旋转多面镜220设置于壳体内。
本申请实施例提供的投影仪通过旋转多面镜220反射准直光束形成n个扫描线阵列280,n个扫描线阵列280中至少有两个扫描线阵列在平行旋转轴240的方向发生位移,使得最终的投影画面在平行旋转轴240的方向至少存在两个不同位置的扫描线阵列,可以在激光光源的数量有限的情况下增加投影画面的显示分辨率,加工制造方便。
上述投影仪还可以包括线阵光源210,线阵光源210用于产生准直光束211。关于旋转多面镜220的详细结构特征请参阅上述实施例的相关描述。由于该投影仪包括上述实施例中的旋转多面镜220,因而具有旋转多面镜220所具有的一切有益效果,在此不再赘述。关于投影仪其他部分的结构特征则在本领域技术人员的理解范围内,此处亦不再赘述。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种旋转多面镜,其运用于线阵光源扫描显示系统,来接收并反射线阵光源发出的准直光束,以形成显示图像,其特征在于,
    所述旋转多面镜包括n个反射面,其中,n≥2,且每个所述反射面均与旋转轴平行,所述旋转多面镜可沿所述旋转轴旋转以使所述n个反射面随着所述旋转多面镜的旋转依次移动至所述准直光束的光路以逐次反射所述准直光束,所述准直光束经n个所述反射面反射后依次在显示面形成n个扫描线阵列,在所述显示面上,所述n个扫描线阵列中至少有两个扫描线阵列在平行于所述旋转轴的方向发生位移。
  2. 根据权利要求1所述的旋转多面镜,其特征在于,n个所述反射面中至少有两个所述反射面与所述旋转轴的间距互不相等。
  3. 根据权利要求2所述的旋转多面镜,其特征在于,所述位移与每个所述反射面和所述旋转轴的间距的差值成正比例关系,所述位移与所述准直光束的入射角度成正比例关系。
  4. 根据权利要求1所述的旋转多面镜,其特征在于,所述旋转多面镜还包括透明介质板,所述透明介质板的数量小于或等于n,所述透明介质板贴合于所述反射面,所述准直光束经所述透明介质板入射至所述反射面,并经所述反射面反射后从所述透明介质板出射。
  5. 根据权利要求4所述的旋转多面镜,其特征在于,所述位移与所述准直光束的入射角度成正比例关系,所述位移与所述透明介质板的厚度成正比例关系,所述位移与所述透明介质板的折射率成反比例关系。
  6. 根据权利要求4所述的旋转多面镜,其特征在于,每个所述反射面与所述旋转轴的间距均相等,所述透明介质板的数量小于n。
  7. 根据权利要求4所述的旋转多面镜,其特征在于,每个所述反射面与所述旋转轴的间距均相等,且所述透明介质板的数量等于n;n个所述透明介质板中至少有两个所述透明介质板的厚度互不相等,或者n个所述透明介质板中有至少两个所述透明介质板的折射率互不相等,或者n个所述透明介质板中至少有两个所述透明介质板的厚度和折射率均互不相等。
  8. 根据权利要求4所述的旋转多面镜,其特征在于,所述透明介质板采用玻璃或树脂制成。
  9. 一种线阵光源扫描显示系统,其特征在于,包括:
    线阵光源,所述线阵光源用于产生准直光束;
    旋转多面镜和屏幕,所述屏幕包括显示面,所述旋转多面镜包括n个反射面,其中,n≥2,且每个所述反射面均与旋转轴平行,所述旋转多面镜可沿所述旋转轴旋转以使所述n个反射面随着所述旋转多面镜的旋转依次移动至所述准直光束的光路以逐次反射所述准直光束,所述准直光束经n个所述反射面反射后依次在所述显示面形成n个扫描线阵列,在所述显示面上,所述n个扫描线阵列中至少有两个扫描线阵列在平行于所述旋转轴的方向发生位移。
  10. 一种投影仪,其特征在于,包括壳体以及如权利要求1-8任一项所述的旋转多面镜,所述旋转多面镜设置于所述壳体。
PCT/CN2021/117163 2020-10-20 2021-09-08 旋转多面镜、线阵光源扫描显示系统以及投影仪 WO2022083336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011126358.0A CN114384616A (zh) 2020-10-20 2020-10-20 旋转多面镜、线阵光源扫描显示系统以及投影仪
CN202011126358.0 2020-10-20

Publications (1)

Publication Number Publication Date
WO2022083336A1 true WO2022083336A1 (zh) 2022-04-28

Family

ID=81193881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117163 WO2022083336A1 (zh) 2020-10-20 2021-09-08 旋转多面镜、线阵光源扫描显示系统以及投影仪

Country Status (2)

Country Link
CN (1) CN114384616A (zh)
WO (1) WO2022083336A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829175A (en) * 1985-12-05 1989-05-09 Fuji Photo Film Co., Ltd. Light beam scanning apparatus, method of correcting unevenness in scanning lines in light beam scanning apparatus, method of detecting deflection of rotational axis of light beam deflector and rotational axis deflection detecting device
JPH01321582A (ja) * 1988-06-23 1989-12-27 Sumitomo Electric Ind Ltd バーコード読取装置
EP1207489A2 (en) * 2000-10-26 2002-05-22 Datalogic S.P.A. Laser module for reading optical codes
CN1379263A (zh) * 2001-04-03 2002-11-13 精工爱普生株式会社 光偏转光学系统
US20050024699A1 (en) * 2002-12-03 2005-02-03 Weiqi Liu Method of generating area light source by scanning, scanning area light source and laser projection television using the same
CN101060636A (zh) * 2006-04-21 2007-10-24 Hb电子株式会社 激光显示装置
CN108885389A (zh) * 2016-03-25 2018-11-23 松下知识产权经营株式会社 反射镜面板、反射镜膜以及显示系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829175A (en) * 1985-12-05 1989-05-09 Fuji Photo Film Co., Ltd. Light beam scanning apparatus, method of correcting unevenness in scanning lines in light beam scanning apparatus, method of detecting deflection of rotational axis of light beam deflector and rotational axis deflection detecting device
JPH01321582A (ja) * 1988-06-23 1989-12-27 Sumitomo Electric Ind Ltd バーコード読取装置
EP1207489A2 (en) * 2000-10-26 2002-05-22 Datalogic S.P.A. Laser module for reading optical codes
CN1379263A (zh) * 2001-04-03 2002-11-13 精工爱普生株式会社 光偏转光学系统
US20050024699A1 (en) * 2002-12-03 2005-02-03 Weiqi Liu Method of generating area light source by scanning, scanning area light source and laser projection television using the same
CN101060636A (zh) * 2006-04-21 2007-10-24 Hb电子株式会社 激光显示装置
CN108885389A (zh) * 2016-03-25 2018-11-23 松下知识产权经营株式会社 反射镜面板、反射镜膜以及显示系统

Also Published As

Publication number Publication date
CN114384616A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
JP4900618B2 (ja) 結像素子、ディスプレイ装置
US11630250B2 (en) System for use in imaging in air
US9247221B2 (en) Scanning type projector
US4277128A (en) Anamorphic Fθ lens system
JP2012008301A (ja) 体積走査型3次元映像表示装置
US20190334321A1 (en) Light source module
US20130222875A1 (en) Projection display apparatus
TWI782314B (zh) 雷射光學投影模組及包含其之穿戴裝置
KR20050036288A (ko) 2차원 광주사 장치 및 이를 이용하는 영상 표시 장치
WO2022083336A1 (zh) 旋转多面镜、线阵光源扫描显示系统以及投影仪
JP3271995B2 (ja) 光学装置
JPH05346554A (ja) 光屈折装置
JPH0563777B2 (zh)
JP2008191435A5 (zh)
JPWO2019028215A5 (zh)
WO2018103670A1 (zh) 用于在空中成像的系统
KR100563917B1 (ko) 2차원 광주사 장치 및 이를 이용하는 영상 표시 장치
WO2022012652A1 (zh) 光束偏移装置以及投影系统
JP3088153B2 (ja) 走査式描画装置
JPH063616A (ja) ポリゴンスキャナ
US11067883B1 (en) Projection device
CN217113029U (zh) 一种激光投影显示设备
JP2005241941A (ja) 光ビーム走査装置
JP2009098562A (ja) 光偏向レンズ及び光書込ユニット
JP2001281455A (ja) 光学素子及び光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881755

Country of ref document: EP

Kind code of ref document: A1