WO2022012652A1 - 光束偏移装置以及投影系统 - Google Patents

光束偏移装置以及投影系统 Download PDF

Info

Publication number
WO2022012652A1
WO2022012652A1 PCT/CN2021/106671 CN2021106671W WO2022012652A1 WO 2022012652 A1 WO2022012652 A1 WO 2022012652A1 CN 2021106671 W CN2021106671 W CN 2021106671W WO 2022012652 A1 WO2022012652 A1 WO 2022012652A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
regions
scanning beam
shifting device
driver
Prior art date
Application number
PCT/CN2021/106671
Other languages
English (en)
French (fr)
Inventor
胡飞
陈晨
张翠萍
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022012652A1 publication Critical patent/WO2022012652A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators

Definitions

  • the present application relates to the technical field of projection, and in particular, to a beam shifting device and a projection system.
  • a digital movie can be transmitted in the following ways: through the Internet or a dedicated satellite network, or by physical mailing of hard drives or optical discs such as Blu-ray discs.
  • Digital cinema uses digital image projectors rather than traditional cinema projection systems. In digital cinema, resolution is usually expressed in horizontal resolution, such as 2K (2048*1080 pixels or 2.2 million pixels) or 4K (4096*2160 pixels or 8.8 million pixels).
  • Digital Light Processing (DLP) technology is a light control technology that can be applied to various projection systems.
  • DLP projection systems usually use a beam of convergent light to irradiate a controllable multi-micromirror surface, and an integrated lens converges the light reflected from the micromirror surface, and projects the reflected light onto the projection plane for imaging.
  • DMD Micromirror Device
  • DMD is a crucial optical element, which directly determines the resolution of the image.
  • 4K resolution display systems have gradually become the mainstream display technology, and 8K products have also been proposed.
  • the price of DMD chips with 4K resolution is high, which is not applicable in many scenarios.
  • the purpose of the present application is to provide a beam shifting device and a projection system, which can achieve a higher resolution effect at a lower cost and have higher structural stability.
  • An embodiment of the present application provides a beam shifting device, including a disk and a driver, the disk includes a plurality of disk regions, and the disk regions are configured to have a certain inclination angle relative to a scanning beam; the driver connected to the disc, the driver is used to drive the disc to rotate, the refractive index or thickness or the inclination of the plurality of disc regions increases/decreases along the rotation direction, the plurality of disc regions
  • the scanning beams are sequentially shifted by a preset shift amount within a rotation period.
  • the scanning beam is refracted in the disk and then exits, and when the scanning beam is incident on different disk regions, the refraction angles in different disk regions are not equal.
  • the index of refraction of the plurality of disk regions increases/decreases along the rotational direction.
  • each disc region has an equal thickness.
  • the thicknesses of the plurality of disc regions increase/decrease along the rotational direction.
  • each disk region has the same index of refraction.
  • the disk area reflects the scanning beam, and when the scanning beam is incident on different disk areas, the reflection angles in different disk areas are not equal.
  • the disc regions are inclined relative to the axial direction of the driver, and the inclination angles of the incident surfaces of different disc regions relative to the axial direction of the driver increase/decrease along the rotation direction.
  • the thickness of each of the disc regions gradually increases radially of the driver.
  • an embodiment of the present application further provides a projection system, including a light-emitting component and the above-mentioned beam shifting device, where the light-emitting component is used to generate a scanning beam, and the disk area is configured to have a certain inclination angle relative to the scanning beam, And it is used to guide the scanning beam to the subsequent optical path.
  • a projection system including a light-emitting component and the above-mentioned beam shifting device, where the light-emitting component is used to generate a scanning beam, and the disk area is configured to have a certain inclination angle relative to the scanning beam, And it is used to guide the scanning beam to the subsequent optical path.
  • the beam shifting device provided in the present application drives the disc to rotate through the driver, so that different disc regions are located on the optical path of the scanning beam.
  • the shift angles are not the same, and they will exit along different light paths, so they can be used in projection systems to achieve pixel expansion and improve display resolution.
  • the pixel expansion can be realized by the beam shifting device, it does not need to use a high-resolution DMD chip, but only needs to use a relatively low-resolution DMD chip, which can achieve high resolution. Therefore, the manufacturing cost of high-resolution projection systems can be reduced.
  • FIG. 1 is a schematic structural diagram of a beam shifting device provided in a first embodiment of the present application
  • FIG. 2 is a state diagram of a use state of a beam shifting device provided by the first embodiment of the present application
  • Fig. 3 is another use state diagram of a beam shifting device provided by the first embodiment of the present application.
  • FIG. 4 is a use state diagram of a beam shifting device provided by the second embodiment of the present application.
  • Fig. 5 is another use state diagram of a beam shifting device provided by the second embodiment of the present application.
  • FIG. 6 is a use state diagram of a beam shifting device provided by the third embodiment of the present application.
  • Fig. 7 is another use state diagram of a beam shifting device provided by the third embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a projection system provided by a fourth embodiment of the present application.
  • a DMD chip with a higher resolution needs to be used, and the cost of the high-resolution DMD chip is high, which is not conducive to popularization.
  • the pixel offset resolution technology adopts the displacement of the pixels (such as directional movement of a distance of half a pixel) to achieve a display image with a higher resolution than the original DMD chip, which can improve the display resolution. Therefore, the inventor proposes the beam shifting device and the projection system in the embodiments of the present application. The embodiments of the present application will be described in detail below with reference to the accompanying drawings.
  • the beam shifting device 100 includes a disk 110 and a driver 120 , wherein the driver 120 is connected to the disk 110 and used to drive the disk 110 to rotate.
  • the disk 110 is a roughly planar plate-like structure, and the disk 110 may include a plurality of disk regions 111 , wherein the number of the disk regions 111 may be two, three or three Any number of the above, and the area of each disk area 111 can be completely equal. At least two disc regions 111 can be arranged adjacent to each other, and can also be arranged spaced apart from each other. As an embodiment, each disk area 111 may be substantially fan-shaped, and at least two disk areas 111 may be spliced into a circular structure. For example, in this embodiment, there are two disk regions 111 , and the two disk regions 111 are roughly semicircular.
  • Each disk area 111 has an incident surface 114 for receiving the scanning beam and guiding the scanning beam to a subsequent optical path.
  • the scanning beam refers to the light reflected by the light generated and emitted by the light-emitting component after it is incident on the DMD chip.
  • the disk area 111 is configured to have a certain inclination angle relative to the scanning beam, that is, the disk area 111 is inclined relative to the scanning beam, that is, the incident surface 114 and the scanning beam form an angle greater than 0° and less than 90° , that is, the scanning beam is incident on the incident surface 114 in a non-perpendicular manner, and is guided by the incident surface 114 and then propagates to the subsequent optical path.
  • the driver 120 is used to drive the disk 110 to rotate, and when the disk 110 rotates, selectively make one of the plurality of disk regions 111 located on the optical path of the scanning beam, and at this time the disk region located on the optical path of the scanning beam
  • the incident surface 114 of 111 receives the scanning beam and guides the scanning beam to the subsequent optical path.
  • the driver 120 is connected to the disk 110 and is arranged along the thickness direction of the disk 110, wherein the thickness direction of the disk 110 refers to the direction perpendicular to the plane where the disk 110 is located, that is, the axis of the driver 120 is perpendicular to the direction where the disk 110 is located. flat.
  • the advantage of this arrangement is that when the disc 110 rotates, the inclination angle between the disc 110 and the scanning beam does not change, so it can be set at a fixed inclination angle, thereby improving the stability of the device, wherein the inclination angle refers to the incident surface 114 The angle formed by the scanning beam.
  • the refractive index or thickness of the plurality of disk regions 111 increases/decreases along the rotational direction. In this way, when the scanning light beams are incident on different disk regions 111 , the formed outgoing rays are emitted to subsequent optical paths along different optical paths. That is, when the scanning beams are incident on the incident surfaces 114 of different disk regions 111 , the optical paths of the incident surfaces 114 to guide the scanning beams to exit do not overlap.
  • the disk 110 is a transparent disk, and the disk 110 can transmit the scanning beam. After the scanning beam is incident on the incident surface 114, It enters the disc 110 and is refracted, and finally exits through the disc 110 . The scanning beam is refracted in the disk 110 and then exits to form an exit light, and the scanning beam and the exit light are parallel to each other, and when the scanning beam is incident on different disk areas 111, the refraction angles in different disk areas 111 are different. equal. The size of the refraction angle depends on factors such as the refractive index of the disk region 111 and the thickness of the disk 110 .
  • the disk 110 includes two disk areas 111 , which are a first disk area 112 and a second disk area 113 , and the first disk area 112 and the second disk area respectively.
  • the refractive indices of 113 are different and decrease/increase along the direction of rotation of the disk 110 .
  • the incident surface 114 of the first disk area 112 and the incident surface 114 of the second disk area 113 are coplanar.
  • the refractive indices of the first disk region 112 and the second disk region 113 are n 1 and n 2 respectively , and n 1 ⁇ n 2 , and both n 1 and n 2 are greater than n 0 (n 0 is the scanning beam in the air
  • the first disk region 112 and the second disk region 113 may be made of different materials.
  • the thicknesses of the first disk region 112 and the second disk region 113 are both t, that is, the disk 110 is a disk 110 of equal thickness, which is convenient for preparing the disk 110 .
  • FIG. 2 shows the state when the scanning beam is incident on the incident surface 114 of the first disk area 112 .
  • the scanning beam is incident on the incident surface 114 of the first disk area 112 :
  • ⁇ y 1 refers to the preset offset between the scanning beam L and the outgoing ray
  • S1 is the outgoing ray when the scanning beam is not refracted (the same below)
  • S2 is the actual outgoing ray after refraction (below). same).
  • ⁇ 1 is the angle between the incident surface 114 of the first disk region 112 with respect to the plane P perpendicular to the scanning beam
  • t is the thickness of the first disk region 112 .
  • FIG. 3 shows the state when the scanning beam is incident on the incident surface 114 of the second disk area 113 , referring to FIG. 3 , when the scanning beam is incident on the incident surface 114 of the second disk area 113 :
  • ⁇ y 2 refers to the preset offset between the scanning beam and the outgoing light
  • ⁇ 2 is the angle between the incident surface 114 of the second disk region 113 and the plane P perpendicular to the scanning beam
  • t is The thickness of the second disc region 113 .
  • the scanning beam is periodically incident on the first disk area 112 and the second disk area 113, and the scanning beam will be repeatedly deflected to two positions such as ⁇ y 1 and ⁇ y 2 , the difference between ⁇ y 1 and ⁇ y 2 at this time:
  • the thickness t and the angles ⁇ 1 and ⁇ 2 is achieved. That is: by controlling the thickness t and the angles ⁇ 1 and ⁇ 2 , the preset offset amount of the scanning beam offset can be realized.
  • the scanning beam is periodically incident on the first disk area 112 and the second disk area 113.
  • the images formed on the projection surface will be superimposed on the two images, and there is an offset difference between the two images. What is obtained is like the superposition of two image lights with predetermined pixel offsets, forming a pixel offset effect, thereby improving pixel resolution.
  • the beam shifting device 100 in this embodiment can realize precise quantitative shifting of the scanning beam, thereby improving the resolution, thus achieving a higher resolution effect under the premise of using a low-resolution DMD chip.
  • the beam shifting device 100 in this embodiment can be applied to various types of projection systems.
  • the disc 110 only needs to rotate in one direction (that is, the axis direction of the driver 120), that is, accurate pixel shift can be realized, so it is easier to install and control accurately.
  • the driving mechanism for driving the beam shifting device 100 has lower power consumption and lower noise.
  • the thicknesses of the first disk region 112 and the second disk region 113 may not be equal, and the precise quantification of the scanning beam can also be achieved at this time. offset.
  • the disc 110 may also have three or more than three disc regions 111 .
  • the refractive indices of the disc regions 111 may not be equal, and the thickness of each disc region 111 may be equal or unequal.
  • this embodiment provides another beam shifting device 100 , which is different from the beam shifting device 100 provided in the first embodiment in that: in this embodiment, the thicknesses of the plurality of disc regions are Increasing/decreasing along the rotation direction, the refractive index of the first disk region 112 and the refractive index of the second disk region 113 are equal, and the thickness of the first disk region 112 and the thickness of the second disk region 113 are not equal , the same part can be referred to the content of the first embodiment, which will not be repeated here.
  • the disk 110 includes a first disk area 112 and a second disk area 113 , wherein the thickness of the first disk area 112 is t 1 , and the thickness of the second disk area 113 is t 1 .
  • the thickness is t 2 , and t 1 ⁇ t 2 , and specifically, t 1 >t 2 .
  • the first disk region 112 and the second disk region 113 may be made of the same material, so that the refractive index of the first disk region 112 and the refractive index of the second disk region 113 are both n, n>n 0 .
  • FIG. 4 shows the state when the scanning beam is incident on the incident surface 114 of the first disk area 112 .
  • the scanning beam is incident on the incident surface 114 of the first disk area 112 :
  • ⁇ y 1 refers to the preset offset between the scanning beam and the outgoing light
  • ⁇ 1 is the angle between the incident surface 114 of the first disk region 112 and the plane P perpendicular to the scanning beam
  • t 1 is the thickness of the first disc region 112 .
  • FIG. 5 shows the state when the scanning beam is incident on the incident surface 114 of the second disk area 113 , referring to FIG. 5 , when the scanning beam is incident on the incident surface 114 of the second disk area 113 :
  • ⁇ y 2 refers to the preset offset between the scanning beam and the outgoing light
  • ⁇ 1 is the angle between the incident surface 114 of the second disk region 113 and the plane P perpendicular to the scanning beam
  • t 2 is the thickness of the second disc region 113 .
  • the scanning beam is periodically incident on the first disk area 112 and the second disk area 113, and the scanning beam will be repeatedly deflected to two positions such as ⁇ y 1 and ⁇ y 2 , the difference between ⁇ y 1 and ⁇ y 2 at this time:
  • the disk 110 Since the disk 110 is tilted relative to the scanning beam at a fixed inclination angle, ⁇ 1 remains unchanged, and the total amount of pixel offset can be adjusted as required by the refractive index difference t 1 -t 2 (the value can be any value ⁇ 0 value), the refractive index n and the angle ⁇ 1 to achieve.
  • the scanning beam is periodically incident on the first disk area 112 and the second disk area 113.
  • the images formed on the projection surface will be superimposed on the two images, and there is an offset difference between the two images. What is obtained is like the superposition of two image lights with predetermined pixel offsets, forming a pixel offset effect, thereby improving pixel resolution.
  • the beam shifting device 100 in this embodiment can realize precise quantitative shifting of the scanning beam, thereby improving the resolution, thus achieving a higher resolution effect under the premise of using a low-resolution DMD chip.
  • the beam shifting device 100 in this embodiment can be applied to various types of projection systems.
  • the disk 110 only needs to rotate in one direction (ie, the axis direction of the driver 120 ) to achieve precise pixel shift, so it is easier to install and control accurately.
  • the driving mechanism for driving the beam shifting device 100 has lower power consumption and lower noise.
  • the refractive index of the first disk region 112 and the refractive index of the second disk region 113 may also be different.
  • the refractive index of the two disk regions 113 is adjusted simultaneously, and the thickness t1 of the first disk region 112 and the thickness t2 of the second disk region 113 can also be adjusted according to the determined ⁇ y value to achieve quantitative shift.
  • this embodiment provides yet another beam shifting device 100 , which is different from the beam shifting device 100 in the first embodiment in that in this embodiment, the regions of the plurality of disk regions 111 are The tilt angle increases/decreases along the rotation direction.
  • the incident surface 114 also serves as a reflective surface for reflecting the scanning beam, and when the scanning beam is incident on different disk regions 111 , since the plurality of disk regions 111 have regional inclination angles in the rotation direction, the regional inclination angle is on the disk region 111 .
  • the angle between the incident surface 114 and the axial direction of the driver, the regional inclination angles of the multiple disk regions 111 are unequal (increasing/decreasing) in the rotation direction, so the reflection angles in different disk regions 111 are not equal .
  • the incident surface 114 guides the scanning beam in a reflective manner to form outgoing rays.
  • the reflection angles in the different disc regions 111 are different. are equal to each other, so that when different disc regions 111 are located on the optical path of the outgoing light rays, the plurality of disc regions 111 sequentially shift the scanning beam by a preset offset within the rotation period.
  • the disk 110 includes a first disk area 112 and a second disk area 113 , wherein the incident surface 114 of the first disk area 112 is perpendicular to the scanning beam.
  • the angle between the planes P is ⁇ 1 (complementary to the inclination angle of the first disk area 111 ), and the angle between the incident surface 114 of the second disk area 113 and the plane P perpendicular to the scanning beam is ⁇ 2 (complementary to the inclination angle of the second disk region 112), wherein ⁇ 1 and ⁇ 2 are not equal.
  • FIG. 6 shows the state when the scanning beam is incident on the incident surface 114 of the first disk area 112 .
  • the reflection angle of the outgoing light is 2 ⁇ 1 .
  • FIG. 7 shows the state when the scanning beam is incident on the incident surface 114 of the second disk area 113 .
  • the reflection angle of the outgoing light is 2 ⁇ 2 .
  • the incident surface 114 is inclined with respect to the axial direction of the driver 120 , and since the regional inclination angles of the plurality of disk regions increase/decrease along the rotation direction, the incidence surfaces 114 of different disk regions 111 are relatively The inclination angles in the axial direction of the driver 120 are not equal, so the incident surfaces 114 of the different disk regions 111 are not coplanar.
  • the scanning beam is incident on the incident surface 114 in a direction parallel to the axial direction of the driver 120 .
  • This embodiment can make the entire pixel shifting device 100 more convenient to arrange in application.
  • each disk region 111 gradually increases along the radial direction of the driver 120 , and the formed incident surface 114 is inclined toward the driver 120 , so that when the scanning beam is incident on the incident surface 114 , the outgoing light beam faces toward the driver 120 .
  • the middle of the beam shifting device 100 exits.
  • the thickness of the disk region 111 can also be gradually reduced along the radial direction of the driver 120. In this case, the outgoing light rays exit toward the outside of the beam shifting device 100.
  • the scanning beam is periodically incident on the first disk area 112 and the second disk area 113.
  • the images formed on the projection surface will be superimposed on the two images, and there is an offset difference between the two images. What is obtained is like the superposition of two image lights with predetermined pixel offsets, forming a pixel offset effect, thereby improving pixel resolution.
  • the pixel offset between the first disk area 112 and the second disk area 113 can be realized, and the pixel offset value between each other can be realized.
  • it can be half a pixel.
  • the disk 110 only needs to rotate in one direction (ie, the axis direction of the driver 120 ) to achieve precise pixel shift, so it is easier to install and control accurately.
  • the driving mechanism for driving the beam shifting device 100 since there is only one degree of freedom of movement, the driving mechanism for driving the beam shifting device 100 has lower power consumption and lower noise.
  • the present embodiment provides a projection system 10.
  • the projection system 10 includes a light-emitting component 20, a beam shifting device 100 and a chip 30, wherein the light-emitting component 20 is used to generate a scanning beam, and the light-emitting component may be a laser light-emitting component, visible light Lighting components, LED lighting components.
  • the scanning beam is incident on the chip 30 and is reflected to form a scanning beam, wherein the chip 30 may be a DMD chip.
  • the structure of the beam shifting device 100 can refer to the first embodiment, it is located on the optical path of the scanning beam, the incident surface 114 is used to receive the scanning beam, and each disk area 111 has a certain inclination angle with respect to the scanning beam, The scanning beam is directed into the subsequent optical path via the disk area 111 on the disk 110 .
  • the projection system 10 may include more components than those shown in FIG. 8 , such as a body, a communication module, an interface, and the like.
  • the beam shifting device 100 may also be replaced by the beam shifting device 100 in the second or third embodiment.
  • the scanning beam is periodically incident on many of the disks 110 .
  • the image formed on the projection surface will appear superimposed on the two images, and there is a deviation between the two images. If the shift amount is poor, due to the user's "visual stay effect", what the user sees is like the superposition of two image lights with predetermined pixel shifts, forming a pixel shift effect, which can improve pixel resolution.
  • the entire projection system 10 can achieve the pixel expansion effect, improve the resolution, and reduce the manufacturing cost.
  • the beam shifting device 100 since the beam shifting device 100 has only one degree of freedom of movement, the increase in noise and power consumption caused by the provision of the driving mechanism 40 is relatively low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请实施例提供了一种光束偏移装置,包括圆盘和驱动器,圆盘包括多个圆盘区域,多个圆盘区域被配置为相对于扫描光束具有一定的倾斜角;驱动器用于驱动圆盘转动,所述多个圆盘区域的折射率或厚度或区域倾角沿所述旋转方向递增/递减,所述多个圆盘区域在旋转周期内依次将所述扫描光束偏移预设偏移量。当扫描光束入射于相对其倾斜的入射面时,受到不同入射面的偏移作用,进而沿不同的光路出射,因此可以根据不同的对扫描光束的偏移需求,使不同的圆盘区域转动至扫描光束的光路上,实现精确的像素扩展,提高显示分辨率。同时,本申请还提供一种投影系统。

Description

光束偏移装置以及投影系统 技术领域
本申请涉及投影技术领域,具体涉及一种光束偏移装置以及投影系统。
背景技术
当今许多电影院已不在使用传统的电影技术,如全画幅胶片,而采用了数字处理技术。一部数字电影可以通过以下几种途径传输:通过网络或者专用卫星网络,或者实体邮寄硬盘或者光盘如蓝光光盘。数字电影使用数字影像投影仪,而非传统电影投影系统。在数字影院,分辨率通常用水平分辨率表示,例如2K(2048*1080像素或者220万像素)或4K(4096*2160像素或者880万像素)。
数字光处理(Digital Light Processing,DLP)技术是一种可应用于多种投影系统中的光线调控技术。DLP投影系统通常采用一束汇聚光线照射到一个可控多微镜表面,并集成透镜汇聚从微镜表面反射出来的光线,并且将反射光线投影到投影平面上,以进行成像。
微镜器件(Micromirror Device,DMD)芯片使DLP投影技术得到了重大的进步。除了高清电视的商业成功以外,DLP投影技术也广泛应用于高清显示、影院投影、商务以及个人投影系统。同时,DLP技术也应用于医学影像、照片洗印技术、生物技术、光刻、光谱仪、科研仪器等领域。
在DLP投影显示技术中,DMD是至关重要的光学元件,直接决定了图像的分辨率高低。而现今市场上,4K分辨率的显示系统已经逐步成为主流显示技术,更有8K产品的提出。但是4K分辨率的DMD芯片价格偏高,在许多场景下并不 适用。
现有技术中,出现了通过像素拓展技术(Extended Pixel Resolution,XPR)可以提高像素分辨率的偏转装置,而这类装置主要通过机械式的翻转改变扫描光束的入射角度的方式实现,但这种方式需要精确的控制翻转角度,偏转装置的稳态需要一定功率,器件功耗较大。此外,偏转装置在多种状态下来回翻转,并且频率较高,会造成一定噪音。并且由于片状装置在两种状态下翻转的力比较大,并且有两个峰值,会对整个系统导致一定的振动。偏转装置的来回多次翻转,每次冲击力比较大,导致结构稳定性较大。
发明内容
本申请的目的在于提供一种光束偏移装置以及投影系统,可以以较低的成本实现更高的分辨率效果,并且具有更高的结构稳定性。
本申请实施例提供了一种光束偏移装置,包括圆盘和驱动器,圆盘包括多个圆盘区域,所述圆盘区域被配置为以相对于扫描光束具有一定的倾斜角;所述驱动器连接于所述圆盘,所述驱动器用于驱动所述圆盘旋转,所述多个圆盘区域的折射率或厚度或区域倾角沿所述旋转方向递增/递减,所述多个圆盘区域在旋转周期内依次将所述扫描光束偏移预设偏移量。
在一些实施方式中,扫描光束在圆盘内折射后出射,且扫描光束入射至不同的圆盘区域时,在不同的圆盘区域内的折射角不相等。
在一些实施方式中,所述多个圆盘区域的折射率沿所述旋转方向递增/递减。
在一些实施方式中,每个圆盘区域具有相等的厚度。
在一些实施方式中,所述多个圆盘区域的厚度沿所述旋转方向递增/递减。
在一些实施方式中,每个圆盘区域具有相同的折射率。
在一些实施方式中,圆盘区域反射扫描光束,且扫描光束入射至不同的圆盘 区域时,在不同的圆盘区域内的反射角不相等。
在一些实施方式中,圆盘区域相对于驱动器的轴线方向倾斜设置,且不同的圆盘区域的入射面相对于驱动器的轴线方向的区域倾角沿所述旋转方向递增/递减。
在一些实施方式中,每个所述圆盘区域的厚度沿所述驱动器的径向逐渐增大。
第二方面,本申请实施例还提供一种投影系统,包括发光组件以及上述的光束偏移装置,发光组件用于产生扫描光束,圆盘区域被配置为相对于扫描光束具有一定的倾斜角,且用于将扫描光束引导至后续光路。
本申请提供的光束偏移装置,通过驱动器带动圆盘转动,使得不同的圆盘区域位于扫描光束的光路上,当扫描光束入射于相对其倾斜的圆盘区域时,受到不同圆盘区域的偏移角度不相同,会沿不同的光路出射,因此可以应用于投影系统中,实现像素扩展,提高显示分辨率。应用上述的光束偏移装置的投影系统,由于通过光束偏移装置就可以实现像素扩展,因此不需要使用高分辨率的DMD芯片,只需要使用相对低分辨率的DMD芯片,就能实现较高的分辨率效果,因此可以降低高分辨率投影系统的制造成本。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的一种光束偏移装置的结构示意图;
图2是本申请第一实施例提供的一种光束偏移装置的一种使用状态图;
图3是本申请第一实施例提供的一种光束偏移装置的另一种使用状态图;
图4是本申请第二实施例提供的一种光束偏移装置的一种使用状态图;
图5是本申请第二实施例提供的一种光束偏移装置的另一种使用状态图;
图6是本申请第三实施例提供的一种光束偏移装置的一种使用状态图;
图7是本申请第三实施例提供的一种光束偏移装置的另一种使用状态图;
图8是本申请第四实施例提供的一种投影系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
现有技术中,为了实现更高的像素分辨率,需要使用具有更高分辨率的DMD芯片,而高分辨率的DMD芯片的成本高企,不利于推广。而像素偏移分辨率技术采用对像素的位移(如定向移动半个像素的距离),实现比原本所采用的DMD芯片分辨率更高的显示图像,可以提高显示分辨率。因此,发明人提出了本申请实施例中的光束偏移装置和投影系统。下面将结合附图具体描述本申请的各实施例。
第一实施例
参阅图1,本实施例提供一种光束偏移装置100,光束偏移装置100包括圆盘110和驱动器120,其中驱动器120连接于圆盘110并用于驱动圆盘110转动。
具体的,本实施例中,圆盘110为大致的平面板状结构,圆盘110上可以包 括多个圆盘区域111,其中圆盘区域111的个数可以是两个、三个或者三个以上的任意数量,且每个圆盘区域111的区域面积可以完全相等。至少两个圆盘区域111可以相邻设置,也可以彼此间隔设置。作为一种实施方式,每个圆盘区域111可以为大致的扇形,至少两个圆盘区域111可以拼接成圆形结构。例如:本实施例中,圆盘区域111为两个,两个圆盘区域111均为大致的半圆形。
每个圆盘区域111具有入射面114,入射面114用于接收扫描光束,并将扫描光束引导至后续光路。其中扫描光束是指由发光组件产生并出射的光线入射至DMD芯片后反射的光线。参阅图2,圆盘区域111被配置为相对于扫描光束具有一定的倾斜角,即圆盘区域111相对于扫描光束倾斜设置,即入射面114与扫描光束之间形成大于0°,小于90°的夹角,即扫描光束以非垂直的方式入射于入射面114,并经过入射面114的引导后传播至后续光路。
驱动器120用于驱动圆盘110转动,当圆盘110转动时,选择性地使得多个圆盘区域111中的一者位于扫描光束的光路上,此时位于扫描光束的光路上的圆盘区域111的入射面114接收扫描光束,并将扫描光束引导至后续光路。
驱动器120连接于圆盘110并沿圆盘110的厚度方向设置,其中圆盘110的厚度方向是指垂直于圆盘110所在平面的方向,也即是驱动器120的轴线垂直于圆盘110所在的平面。这种设置方式的好处在于:圆盘110在转动时,其与扫描光束的倾斜角不会发生变化,因此可以以固定的倾角设置,进而提高装置的稳定性,其中倾斜角是指入射面114与扫描光束之间形成的夹角。
在一些实施方式中,多个圆盘区域111的折射率或厚度沿所述旋转方向递增/递减。这样当扫描光束入射至不同的圆盘区域111时,形成的出射光线沿不同的光路出射至后续光路。即:当扫描光束入射至不同的圆盘区域111的入射面114时,入射面114引导扫描光束出射时的光路不重合。
具体的,作为一种实施方式,请一并参阅图2和图3,本实施例中,圆盘110为透明圆盘,圆盘110可以透过扫描光束,扫描光束入射至入射面114后,进入圆盘110并发生折射,并最终透过圆盘110出射。扫描光束在圆盘110内折射后出射形成出射光线,并且扫描光束与出射光线是相互平行的,且扫描光束入射至不同的圆盘区域111时,在不同的圆盘区域111内的折射角不相等。其中折射角的大小取决于圆盘区域111的折射率、圆盘110的厚度等因素。
本实施例中,请继续参阅图1,圆盘110包括两个圆盘区域111,分别为第一圆盘区域112和第二圆盘区域113,第一圆盘区域112和第二圆盘区域113的折射率不相同,且沿圆盘110的旋转方向递减/递增。且第一圆盘区域112的入射面114与第二圆盘区域113的入射面114共面。其中第一圆盘区域112和第二圆盘区域113的折射率分别为n 1和n 2,且n 1≠n 2,并且n 1和n 2均大于n 0(n 0为扫描光束在空气中的折射率),此时第一圆盘区域112和第二圆盘区域113可以由不同材质制成。并且,本实施例中,第一圆盘区域112和第二圆盘区域113的厚度均为t,即圆盘110为等厚度圆盘110,这种方式利于制备圆盘110。
图2示出了当扫描光束入射于第一圆盘区域112的入射面114的状态,参阅图2,扫描光束入射于第一圆盘区域112的入射面114时:
Figure PCTCN2021106671-appb-000001
其中,Δy 1是指扫描光束L与出射光线之间的预设偏移量,S1为当扫描光束不发生折射时的出射光线(下同),S2为发生折射后的实际的出射光线(下同)。θ 1是第一圆盘区域112的入射面114相对于垂直于扫描光束的平面P之间的夹角,t是第一圆盘区域112的厚度。
图3示出了当扫描光束入射于第二圆盘区域113的入射面114的状态,参阅图3,当扫描光束入射于第二圆盘区域113的入射面114时:
Figure PCTCN2021106671-appb-000002
其中,Δy 2是指扫描光束与出射光线之间的预设偏移量,θ 2是第二圆盘区域113的入射面114相对于垂直于扫描光束的平面P之间的夹角,t是第二圆盘区域113的厚度。
当驱动器120带动圆盘110转动时,扫描光束周期性的入射于第一圆盘区域112和第二圆盘区域113,此时扫描光束会被反复偏折到Δy 1和Δy 2等两个位置,此时Δy 1和Δy 2的差值:
Figure PCTCN2021106671-appb-000003
由于圆盘110以固定的倾角相对于扫描光束倾斜设置,因此θ 1与θ 2相等,像素偏移的总量可以根据需要调整折射率差值n 1-n 2(取值可以是≥0的任意数值),厚度t以及角度θ 1和θ 2来实现。即:通过控制厚度t以及角度θ 1和θ 2来可以实现扫描光束偏移预设偏移量。
在应用于投影系统时,由于扫描光束在第一圆盘区域112和第二圆盘区域113后的出射光线的偏移量不同,当圆盘110转动时,扫描光束周期性的入射于第一圆盘区域112和第二圆盘区域113上,在投影面形成的图像会出现两个图像的叠加,且两个图像之间具有偏移量差,由于用户的“视觉停留效应”,用户观看到的像是由两个具有预定像素偏移的图像光的叠加,形成像素偏移效果,进而可以提高像素分辨率。
因此,本实施例中的光束偏移装置100可以实现扫描光束的精确定量偏移,进而提高分辨率,因而可以实现在使用低分辨率DMD芯片的前提下,仍然达到较高的分辨率效果。本实施例中的光束偏移装置100可以应用于各类型的投影系统中。由于本实施例中的光束偏移装置100在应用时,圆盘110只需沿一个 方向(即驱动器120的轴线方向)转动,即可以实现精确的像素偏移,因此更易精确的安装、控制。同时由于只有一个运动自由度,因此驱动光束偏移装置100的驱动机构的功耗更低、噪音更小。
需要说明的是,在其他的一些实施方式中,当n1≠n2时,第一圆盘区域112与第二圆盘区域113的厚度也可以不想等,此时也可以实现对扫描光束的精确定量偏移。此外,尽管本实施例中示出的是圆盘110具有两个圆盘区域111的情形,但是应当理解,圆盘110也可以具有三个或三个以上的圆盘区域111,此时每个圆盘区域111的折射率均可以不相等,每个圆盘区域111的厚度可以相等也可以不相等。
第二实施例
参阅图4和图5,本实施例提供另一种光束偏移装置100,其与第一实施例中提供的光束偏移装置100的区别在于:本实施例中,多个圆盘区域的厚度沿所述旋转方向递增/递减,第一圆盘区域112的折射率和第二圆盘区域113的折射率相等,且第一圆盘区域112的厚度与第二圆盘区域113的厚度不想等,相同部分可以参阅第一实施例的内容,在此不再赘述。
具体的,参阅图4,本实施例中,圆盘110包括第一圆盘区域112和第二圆盘区域113,其中第一圆盘区域112的厚度为t 1,第二圆盘区域113的厚度为t 2,且t 1≠t 2,且具体的,t 1>t 2。第一圆盘区域112和第二圆盘区域113可以由相同材质制成,以使得第一圆盘区域112的折射率和第二圆盘区域113的折射率均为n,n>n 0
图4示出了当扫描光束入射于第一圆盘区域112的入射面114的状态,参阅图4,当扫描光束入射于第一圆盘区域112的入射面114时:
Figure PCTCN2021106671-appb-000004
其中,Δy 1是指扫描光束与出射光线之间的预设偏移量,θ 1是第一圆盘区域112的入射面114相对于垂直于扫描光束的平面P之间的夹角,t 1是第一圆盘区域112的厚度。
图5示出了当扫描光束入射于第二圆盘区域113的入射面114的状态,参阅图5,当扫描光束入射于第二圆盘区域113的入射面114时:
Figure PCTCN2021106671-appb-000005
其中,Δy 2是指扫描光束与出射光线之间的预设偏移量,θ 1是第二圆盘区域113的入射面114相对于垂直于扫描光束的平面P之间的夹角,t 2是第二圆盘区域113的厚度。
当驱动器120带动圆盘110转动时,扫描光束周期性的入射于第一圆盘区域112和第二圆盘区域113,此时扫描光束会被反复偏折到Δy 1和Δy 2等两个位置,此时Δy 1和Δy 2的差值:
Figure PCTCN2021106671-appb-000006
由于圆盘110以固定的倾角相对于扫描光束倾斜设置,因此θ 1保持不变,像素偏移的总量可以根据需要调整折射率差值t 1-t 2(取值可以是≥0的任意数值),折射率n以及角度θ 1来实现。
在应用于投影系统时,由于扫描光束在第一圆盘区域112和第二圆盘区域113后的出射光线的偏移量不同,当圆盘110转动时,扫描光束周期性的入射于第一圆盘区域112和第二圆盘区域113上,在投影面形成的图像会出现两个图像的叠加,且两个图像之间具有偏移量差,由于用户的“视觉停留效应”,用户观看到的像是由两个具有预定像素偏移的图像光的叠加,形成像素偏移效果,进 而可以提高像素分辨率。
因此,本实施例中的光束偏移装置100可以实现扫描光束的精确定量偏移,进而提高分辨率,因而可以实现在使用低分辨率DMD芯片的前提下,仍然达到较高的分辨率效果。本实施例中的光束偏移装置100可以应用于各类型的投影系统中。由于本实施例中的光束偏移装置100在应用时,圆盘110只需沿一个方向(即驱动器120的轴线方向)转动,即可以实现精确的像素偏移,因此更易精确的安装、控制。同时由于只有一个运动自由度,因此驱动光束偏移装置100的驱动机构的功耗更低、噪音更小。
需要说明的是,本实施例中,第一圆盘区域112的折射率和第二圆盘区域113的折射率也可以不相同,此时根据确定的第一圆盘区域112的折射率和第二圆盘区域113的折射率,同时调节第一圆盘区域112的厚度t1以及第二圆盘区域113的厚度t2,同样可以根据确定的Δy值,实现定量偏移。
第三实施例
参阅图6和图7,本实施例提供又一种光束偏移装置100,其与第一实施例中的光束偏移装置100的区别在于:本实施例中,多个圆盘区域111的区域倾角沿所述旋转方向递增/递减。入射面114同时作为反射面,用于反射扫描光束,且扫描光束入射至不同的圆盘区域111时,由于多个圆盘区域111在旋转方向上具有区域倾角,区域倾角为圆盘区域111上的入射面114与驱动器的轴线方向的夹角,多个圆盘区域111的区域倾角在旋转方向上是不相等(递增/递减)的,因此在不同的圆盘区域111内的反射角不相等。相同部分可以参阅第一实施例的相关内容,在此不再赘述。
具体的,本实施例中,入射面114将扫描光束以反射的方式引导出射形成出射光线,当扫描光束入射至不同的圆盘区域111时,由于在不同的圆盘区域 111内的反射角不相等,以使得当不同的圆盘区域111位于出射光线的光路上时,多个圆盘区域111在旋转周期内依次将扫描光束偏移预设偏移量。
作为一种实施方式,参阅图6,本实施例中,圆盘110包括第一圆盘区域112和第二圆盘区域113,其中第一圆盘区域112的入射面114与垂直于扫描光束的平面P之间的夹角为θ 1(与第一圆盘区域111的区域倾角互余),第二圆盘区域113的入射面114与垂直于扫描光束的平面P之间的夹角为θ 2(与第二圆盘区域112的区域倾角互余),其中θ 1与θ 2不相等。
图6示出了当扫描光束入射于第一圆盘区域112的入射面114的状态,参阅图6,当扫描光束入射至第一圆盘区域112的入射面114时,出射光线的反射角为2θ 1。图7示出了当扫描光束入射于第二圆盘区域113的入射面114的状态,参阅图7,当扫描光束入射至第一圆盘区域112的入射面114时,出射光线的反射角为2θ 2。通过改变θ 1和θ 2的大小,并且选择合适的成像距离,使得两个成像点距离为特定距离,如半个像素的距离、一个像素的距离等。
本实施例中,入射面114相对于驱动器120的轴线方向倾斜设置,且由于多个圆盘区域的区域倾角沿所述旋转方向递增/递减,因此不同的圆盘区域111的入射面114相对于驱动器120的轴线方向的倾角不相等,因此不同的圆盘区域111的入射面114不共面。使用时,扫描光束沿与驱动器120的轴线方向平行的方向入射至入射面114,这种实施方式,可以使得整个像素偏移装置100在应用时,更方便布置。
具体的,本实施例中,每个圆盘区域111的厚度沿驱动器120的径向逐渐增大,形成的入射面114朝向驱动器120倾斜,这样当扫描光束入射至入射面114时,出射光线朝向光束偏移装置100的中部出射。当然,可以理解的是,在其他的一些实施方式中,圆盘区域111的厚度也可以沿驱动器120的径向逐渐 减小,此时,出射光线朝向光束偏移装置100的外侧出射。
在应用于投影系统时,由于扫描光束在第一圆盘区域112和第二圆盘区域113后的出射光线的偏移量不同,当圆盘110转动时,扫描光束周期性的入射于第一圆盘区域112和第二圆盘区域113上,在投影面形成的图像会出现两个图像的叠加,且两个图像之间具有偏移量差,由于用户的“视觉停留效应”,用户观看到的像是由两个具有预定像素偏移的图像光的叠加,形成像素偏移效果,进而可以提高像素分辨率。
本实施例中,通过对θ 1和θ 2的大小进行合理设置,即可以实现第一圆盘区域112和第二圆盘区域113之间的像素偏移,且彼此之间的像素偏移值例如可以是半个像素。由于本实施例中的光束偏移装置100在应用时,圆盘110只需沿一个方向(即驱动器120的轴线方向)转动,即可以实现精确的像素偏移,因此更易精确的安装、控制。同时由于只有一个运动自由度,因此驱动光束偏移装置100的驱动机构的功耗更低、噪音更小。
第四实施例
参阅图8,本实施例提供一种投影系统10,投影系统10包括发光组件20、光束偏移装置100以及芯片30,其中发光组件20用于产生扫描光束,发光组件可以是激光发光组件、可见光发光组件、LED发光组件灯。扫描光束入射于芯片30并被反射形成扫描光束,其中芯片30可以是DMD芯片。光束偏移装置100的结构可以参阅第一实施例,其位于扫描光束的光路上,且入射面114用于接收扫描光束,且每个圆盘区域111均相对于扫描光束具有一定的倾斜角,扫描光束经圆盘110上的圆盘区域111引导至后续光路中。
可以理解的是,投影系统10可以包含比图8中更多的零部件,例如机身、通信模块、接口等。同时,光束偏移装置100还可以由第二实施例或第三实施例 中的光束偏移装置100替换。
在应用时,由于扫描光束在第一圆盘区域112和第二圆盘区域113后的出射光线的偏移量不同,当圆盘110转动时,扫描光束周期性的入射于圆盘110的多个圆盘区域111上,例如周期性的入射于第一圆盘区域112和第二圆盘区域113上,在投影面形成的图像会出现两个图像的叠加,且两个图像之间具有偏移量差,由于用户的“视觉停留效应”,用户观看到的像是由两个具有预定像素偏移的图像光的叠加,形成像素偏移效果,进而可以提高像素分辨率。
本实施例提供的投影系统10,由于使用了光束偏移装置100,使得整个投影系统10可以实现像素扩展效果,提高分辨率的同时,制造成本降低。同时由于光束偏移装置100只有一个运动自由度,因此因设置驱动机构40带来的噪音、功耗的增加量均较低。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种光束偏移装置,其特征在于,包括:
    圆盘,所述圆盘包括多个圆盘区域,所述圆盘区域被配置为以相对于扫描光束具有一定的倾斜角;
    驱动器,所述驱动器连接于所述圆盘,所述驱动器用于驱动所述圆盘旋转,所述多个圆盘区域的折射率或厚度或区域倾角沿所述旋转方向递增/递减,所述多个圆盘区域在旋转周期内依次将所述扫描光束偏移预设偏移量。
  2. 根据权利要求1所述的光束偏移装置,其特征在于,所述扫描光束在所述圆盘内折射后出射,且所述扫描光束入射至不同的所述圆盘区域时,在不同的圆盘区域内的折射角不相等。
  3. 根据权利要求2所述的光束偏移装置,其特征在于,所述多个圆盘区域的折射率沿所述旋转方向递增/递减。
  4. 根据权利要求3所述的光束偏移装置,其特征在于,每个所述圆盘区域具有相等的厚度。
  5. 根据权利要求2所述的光束偏移装置,其特征在于,所述多个圆盘区域的厚度沿所述旋转方向递增/递减。
  6. 根据权利要求5所述的光束偏移装置,其特征在于,每个所述圆盘区域具有相同的折射率。
  7. 根据权利要求1所述的光束偏移装置,其特征在于,所述圆盘区域反射所述扫描光束,且所述扫描光束入射至区域倾角不同的所述圆盘区域时,在不同的圆盘区域内的反射角不相等。
  8. 根据权利要求7所述的光束偏移装置,其特征在于,每个所述圆盘区域 相对于所述驱动器的轴线方向倾斜设置,且多个所述圆盘区域的所述入射面相对于所述驱动器的轴线方向的区域倾角沿所述旋转方向递增/递减。
  9. 根据权利要求8所述的反射式光束偏移装置,其特征在于,每个所述圆盘区域的厚度沿所述驱动器的径向逐渐增大。
  10. 一种投影系统,其特征在于,包括:
    发光组件,所述发光组件用于产生扫描光束;以及
    如权利要求1-9任一项所述的光束偏移装置,所述圆盘区域被配置为相对于所述扫描光束具有一定的倾斜角,且用于将所述扫描光束引导至后续光路。
PCT/CN2021/106671 2020-07-17 2021-07-16 光束偏移装置以及投影系统 WO2022012652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010694614.X 2020-07-17
CN202010694614.XA CN113946046A (zh) 2020-07-17 2020-07-17 光束偏移装置以及投影系统

Publications (1)

Publication Number Publication Date
WO2022012652A1 true WO2022012652A1 (zh) 2022-01-20

Family

ID=79326873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106671 WO2022012652A1 (zh) 2020-07-17 2021-07-16 光束偏移装置以及投影系统

Country Status (2)

Country Link
CN (1) CN113946046A (zh)
WO (1) WO2022012652A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144750A (ja) * 1997-05-30 1999-02-16 Aisin Seiki Co Ltd 光レ−ダ
CN1828361A (zh) * 2005-03-04 2006-09-06 日本电产三协株式会社 光束扫描装置
CN1896793A (zh) * 2005-07-12 2007-01-17 日本电产三协株式会社 光束射出装置及图像成像装置
CN1969218A (zh) * 2004-06-21 2007-05-23 日本电产三协株式会社 光束扫描装置
CN107803590A (zh) * 2016-09-09 2018-03-16 发那科株式会社 检电扫描器
CN110441960A (zh) * 2019-03-05 2019-11-12 友达光电股份有限公司 背光模块
CN212181159U (zh) * 2020-04-02 2020-12-18 深圳光峰科技股份有限公司 一种光束偏移装置、扫描装置及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144750A (ja) * 1997-05-30 1999-02-16 Aisin Seiki Co Ltd 光レ−ダ
CN1969218A (zh) * 2004-06-21 2007-05-23 日本电产三协株式会社 光束扫描装置
CN1828361A (zh) * 2005-03-04 2006-09-06 日本电产三协株式会社 光束扫描装置
CN1896793A (zh) * 2005-07-12 2007-01-17 日本电产三协株式会社 光束射出装置及图像成像装置
CN107803590A (zh) * 2016-09-09 2018-03-16 发那科株式会社 检电扫描器
CN110441960A (zh) * 2019-03-05 2019-11-12 友达光电股份有限公司 背光模块
CN212181159U (zh) * 2020-04-02 2020-12-18 深圳光峰科技股份有限公司 一种光束偏移装置、扫描装置及显示装置

Also Published As

Publication number Publication date
CN113946046A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
KR100381262B1 (ko) 디지털 미세 미러소자를 이용한 전반사 프리즘계
JP4274766B2 (ja) 照明装置及びその照明装置を使用した画像投影装置
JP4122594B2 (ja) 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置
JP2004258666A (ja) 投射型ディスプレイ光学系
CN1940639A (zh) 投射式图像显示装置
TW200949292A (en) Projection system
US7008060B2 (en) Projector optical system and projector apparatus using the same
CN110543075B (zh) 一种消散斑装置及投影系统
US20130222875A1 (en) Projection display apparatus
JP6494259B2 (ja) 照明光学装置、およびデバイス製造方法
JP2002040360A (ja) 照明装置およびこれを用いた投写型表示装置
TW508474B (en) System and method for improvement of asymmetric projection illumination
US9638992B2 (en) Illumination optical system and image projection apparatus
WO2022012652A1 (zh) 光束偏移装置以及投影系统
CN112034620A (zh) 标靶反射式扩散片抬头显示设备
US20040125600A1 (en) Projection display device
JP2020003784A (ja) 投影装置及びその結像モジュール
WO2020238803A1 (zh) 增强现实设备及曝光设备
TWI323789B (en) Rear projection apparatus
JPH08106065A (ja) 投影装置及び投影装置のピント調整方法
TWI239428B (en) Projection display apparatus
JP2005031280A (ja) 露光装置
TWI663423B (zh) 成像位移裝置及其製造方法
TWI675224B (zh) 成像位移模組及其製造方法
TW200419184A (en) Multiple reflection mirror module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843274

Country of ref document: EP

Kind code of ref document: A1