WO2022083170A1 - 栅格 - Google Patents

栅格 Download PDF

Info

Publication number
WO2022083170A1
WO2022083170A1 PCT/CN2021/103875 CN2021103875W WO2022083170A1 WO 2022083170 A1 WO2022083170 A1 WO 2022083170A1 CN 2021103875 W CN2021103875 W CN 2021103875W WO 2022083170 A1 WO2022083170 A1 WO 2022083170A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
support column
top surface
sample
grid
Prior art date
Application number
PCT/CN2021/103875
Other languages
English (en)
French (fr)
Inventor
杨威
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/441,225 priority Critical patent/US11830702B2/en
Publication of WO2022083170A1 publication Critical patent/WO2022083170A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/201Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated for mounting multiple objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/262Non-scanning techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes

Definitions

  • the present disclosure relates to, but is not limited to, a grid.
  • lens electron microscopes are increasingly used to observe the structure of materials. Before observation, samples need to be taken from the material to be observed and processed.
  • FIB Focused Ion beam
  • the ion source eg Ga, He or Ne ion source
  • the atoms on the surface of the sample can be exfoliated by using a strong current ion beam to complete the micro- and nano-scale surface topography processing.
  • FIB can also be combined with chemical gas reaction by physical sputtering, so as to selectively strip metal, silicon oxide layer or deposit metal layer on the sample.
  • a grid is required to hold the sample.
  • Commonly used grids are copper mesh carbon film support grids and metal (copper/molybdenum, etc.) columnar grids.
  • the embodiment of the present disclosure provides a grid, which improves the imaging effect of the subsequent transmission electron microscope.
  • An embodiment of the present disclosure provides a grid, comprising: a bearing body; at least one supporting column, the supporting column is located on the bearing body; the supporting column has a top surface for supporting a sample; At least one groove extends from the top surface toward the carrying body, and the groove wall of the groove is connected with the top surface.
  • the support column has a top surface for supporting the sample, and the support column has at least one groove therein. Compared with the side wall of the support column, the sample is placed on the top surface of the support column, the stability of the sample is better, and the groove can play the role of diversion, reducing the pollution of the sample by the secondary ions, and improving the subsequent transmission electron microscope. imaging effect.
  • the grooves on different support columns have different volumes.
  • the grid can carry samples of different sizes, improving the utilization rate of the grid.
  • each support column has a plurality of the grooves arranged at intervals, and the distance between the adjacent grooves is 5um-10um. In this way, the number of samples carried by the grid can be increased.
  • Figure 1 is a partial front view of a grid carrying a sample
  • Figure 2 is a partial front view of another grid carrying a sample
  • FIG. 3 is a partial front view of the grid carrying the sample provided by the present embodiment
  • FIG. 5 is a schematic diagram of a first support column of the grid provided in this embodiment.
  • FIG. 6 is a schematic diagram of a second type of support column of the grid provided in this embodiment.
  • FIG. 7 is a schematic diagram of a third type of support column of the grid provided in this embodiment.
  • FIG. 8 is a front view of the fourth support column of the grid provided in the present embodiment.
  • FIG. 9 is a front view of the second grid provided in this embodiment.
  • FIG. 10 is a front view of a third grid provided in this embodiment.
  • FIG. 11 is a front view of the fourth grid provided in this embodiment.
  • the main reasons include: when using FIB to prepare samples, the ion beam bombards the grid, and secondary ions are generated on the surface of the grid.
  • the contact area between the sample and the grid is large, and secondary ions are sputtered from the grid surface to the sample surface, thereby causing sample contamination.
  • the quality and purity of the sample itself have a decisive impact on the imaging effect and analysis accuracy of the subsequent transmission electron microscope.
  • FIG. 1 is a partial front view of a grid carrying a sample 141 .
  • the black dots in the figure are secondary ions
  • the straight arrows around the sample 141 are the ion beams
  • the curved arrows on the left side of the sample 141 are the sputtering directions of the secondary ions.
  • the sample 141 is attached to the sidewall of the support column 111 of the grid by focused ion beam induced deposition.
  • secondary ions are sputtered from the sidewall of the support column 111 to the surface of the sample 141, resulting in sample contamination.
  • the sample attached to the side wall of the support column 111 is easily tilted or detached due to the influence of its own gravity, thereby affecting the imaging effect of the subsequent transmission electron microscope.
  • FIG. 2 is a partial front view of another grid carrying sample 141.
  • FIG. The black dots in the figure are secondary ions, the straight arrows above the sample 141 are the ion beams, and the curved arrows below the sample 141 are the sputtering directions of the secondary ions.
  • the sample 141 is placed on the top of the support column 111, the contact area between the sample 141 and the top of the support column 111 is large, the secondary ion sputtering pollution is serious, and the imaging effect of the subsequent transmission electron microscope is poor.
  • An implementation of the present disclosure provides a grid, wherein a support column of the grid has a top surface for supporting a sample, and the support column has at least one groove therein.
  • the support column can support the sample more stably, and the groove can play the role of guiding flow, reducing the contamination of the sample by the secondary ions, and improving the imaging effect of the subsequent transmission electron microscope.
  • FIG. 3 is a partial front view of the grid carrying the sample provided by the present embodiment
  • FIG. 4 is a front view of the first grid provided by the present embodiment.
  • the grid includes a carrier body 100; at least one support column 110 is located on the carrier body 100; the support column 110 has a top surface 130 for supporting the sample 140; the support column 110 has at least one The groove 120 extends from the top surface 130 toward the carrying body 100 , and the groove wall of the groove 120 is connected to the top surface 130 .
  • the top surface 130 of the support post 110 supports the sample 140 with better stability than if the sample 140 is attached to the side wall of the support post 110 .
  • the grooves 120 can not only reduce the contact area between the support column 110 and the sample 140, but also guide secondary ions (black dots in FIG. 3), thereby improving the quality of the sample 140 and the imaging effect of the transmission electron microscope.
  • the volume of the carrying body 100 is larger than that of the support column 110 to facilitate clamping.
  • the carrying body 100 has three supporting columns 110 . In other embodiments, the number of support columns may be increased or decreased accordingly.
  • the support column 110 is used to support the sample 140 .
  • the shape of the support column 110 may be a cylinder, a cube, or a combined shape of the cylinder and the cube.
  • the groove 120 is located at the top of the support column 110 for reducing the contact area with the sample 140 and guiding secondary ions.
  • the top surface 130 is located at least on both sides of the groove 120 .
  • the top surface 130 cannot only be located on one side of the groove 120, otherwise the groove 120 cannot be formed.
  • the part of the top surface 130 connected with the groove 120 supports the sample 140, therefore, only the edge of the sample 140 is in contact with the top surface 130, and the sample 140 is less polluted by secondary ions.
  • FIG. 5 is a schematic diagram of the first type of support column of the grid
  • FIG. 5A is a front view
  • FIG. 5B is a side view
  • FIG. 5C is a top view
  • FIG. 7 is a schematic diagram of a third type of support column of the grid
  • FIG. 7A is a front view
  • FIG. 7B is a side view
  • FIG. 7C is a top view.
  • the top surface 130 is located on both sides of the groove 120 , that is, the groove 120 penetrates the top of the support column 110 . When arranging the groove 120, fewer parameters are considered, and the manufacturing process is simpler.
  • FIG. 6 is a schematic diagram of a second type of support column of the grid
  • FIG. 6A is a front view
  • FIG. 6B is a side view
  • FIG. 6C is a top view.
  • the top surface 130 surrounds the groove 120 .
  • the sample 140 can be directly placed on the top surface 130 .
  • the sample may also be attached to the top surface by focused ion beam induced deposition to improve adhesion between the sample and the top surface.
  • each support column 110 has at least one groove 120 .
  • each support column 110 has a groove 120 , and the central axis of the groove 120 coincides with the central axis of the support column 110 . As such, during placement of the sample 140, positioning is easier.
  • each support column 110 has a plurality of grooves 120 spaced apart, thereby increasing the number of samples 140 (refer to FIG. 3 ) carried by the grid.
  • the distance between adjacent grooves 120 is 5um-10um, for example, 7um, 8um or 9um. If the distance of the grooves 120 is too large, the top surface 130 cannot be fully utilized; if the distance of the grooves 120 is too small, the sample 140 cannot be easily placed.
  • the distance of the groove 120 is in the range of 5um-10um, which can make full use of the top surface 130 and easily place the sample 140.
  • the top surface 130 of the support column 110 includes a flat surface or an arc surface. In an embodiment of the present disclosure, the top surface of the support column 110 is flat, which is beneficial to improve the stability of the placement of the sample 140 .
  • the top surface 130 (refer to FIG. 4 ) of the support column 110 may also be a stepped surface.
  • the top surface 130 of the support column 110 includes a plurality of first top surfaces 131 , and the plurality of first top surfaces 131 form a stepped surface;
  • the groove 120 (refer to FIG. 4 ) includes: a plurality of first grooves 121 , each of which is a step surface.
  • the grooves 121 correspond to each first top surface 131 , and the groove wall of each groove 120 is connected to the corresponding first top surface 131 .
  • the configuration of the stepped surface can accommodate more samples 140 (refer to FIG. 3 ), and it is also easier to locate in the process of placing multiple samples 140 .
  • the top opening of the groove 120 is greater than or equal to the bottom opening of the groove 120 . In this way, the contact area between the top surface 130 and the sample 140 can be reduced, the contamination of the sample 140 by secondary ions can be reduced, and the imaging effect of the subsequent transmission electron microscope can be improved.
  • the top opening of the groove 120 is equal to the bottom opening of the groove 120 . Therefore, when the top openings of the plurality of grooves 120 are the same, the volume of the grooves 120 having the same top opening and bottom opening is larger, and the drainage effect of secondary ions is better.
  • the shape of the top opening and the bottom opening of the groove 120 may be rectangular or circular.
  • the width b of the top opening of the groove 120 is 1 um-20 um in the direction perpendicular to the extending direction of the support column 110 .
  • 1um, 5um, 10um it adopts 1um width design, which is suitable for observation of fine-scale structures, and the smaller groove 120 width ensures the stability of sample 140 and the success rate of observation; 5um width design is suitable for observation of common sample preparation;
  • the larger width of the groove 120 ensures that the sample 140 has a higher quality in a large area, and avoids secondary ion sputtering pollution.
  • the width of the sample 140 is 20-40um, the width of the sample 140 needs to be larger than the width of the top opening of the groove 120, and the difference in width is 10-20um. If the width difference is too large, the diversion effect of the groove 120 is small, and if the width difference is too small, the sample 140 cannot be placed stably.
  • the width difference is in the range of 10-20um, so that the groove has a better guiding effect and is conducive to the stable placement of the sample 140 .
  • the depth a of the groove 120 is 10um-100um. If the depth a of the groove 120 is small, the diversion effect of the groove 120 is small. If the depth a of the groove 120 is too large, the difficulty of forming the groove 120 will increase.
  • the depth a of the groove is in the range of 10um-100um, so that the groove 120 has a better guiding effect and reduces the difficulty of forming the groove 120 .
  • the grooves 120 on different support columns 110 have different volumes.
  • the plurality of grooves 120 can carry samples 140 of different sizes.
  • the grids with different combinations of grooves 120 are designed, which can be applied to different scenarios, improve grid usage efficiency, and reduce usage costs.
  • grooves 120 on different support columns 110 have different volumes.
  • Example 1 referring to FIG. 9 , the widths of the grooves 120 on different supporting columns 110 in the direction perpendicular to the extending direction of the supporting columns 110 are different.
  • three support columns 110 are provided on the grid, and the three support columns 110 respectively have a groove 120 with a width of 1 um, 5 um, and 10 um.
  • the widths of the plurality of grooves 120 on the same support column 110 in a direction perpendicular to the extension direction of the support column 110 may be different. In this way, the observation of small-sized fine structures, common sizes and large-sized samples can be satisfied at the same time, so as to ensure sample quality and avoid secondary ion sputtering contamination.
  • Example 2 referring to FIG. 10 , the depths of the grooves 120 located on different support columns 110 in the direction from the top surface 130 to the carrying body 100 are different.
  • three support columns 110 are provided on the grid, and the three support columns 110 respectively have a groove 120 with a depth of 20um, 30um, and 40um. It can be understood that when each support column 110 has a plurality of grooves 120, the depths of the plurality of grooves 120 on the same support column 110 in the direction from the top surface 130 to the carrying body 100 may be different.
  • Example 3 referring to FIG. 11 , the shapes of the grooves 120 on different support columns 110 are different.
  • three support columns 110 are provided on the grid, and the three support columns 110 respectively have an inverted triangular, inverted trapezoidal, and rectangular groove 120 .
  • the shapes of the plurality of grooves 120 on the same support column 110 may be different.
  • the grooves 120 with different shapes can also be used as identification marks for the support column 110 .
  • the identification marks can be used to quickly locate.
  • the grid provided by the embodiments of the present disclosure has a top surface for supporting the sample, and grooves in the support columns.
  • the groove can play the role of secondary ion conduction and reduce the contamination of the sample; in addition, the sample placed on the top of the support column is more stable than the side wall of the support column; thus, the imaging effect of the subsequent transmission electron microscope can be improved.
  • different types of support columns and grooves can be provided according to experimental requirements, thus increasing the number and type of samples to be carried, thereby reducing costs.
  • the support column has a top surface for supporting the sample, and the support column has at least one groove therein.
  • the sample is placed on the top surface of the support column, the stability of the sample is better, and the groove can play the role of diversion, reducing the pollution of the sample by the secondary ions, and improving the subsequent transmission electron microscope. imaging effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本公开实施例提供一种栅格,包括:承载主体;至少一个支撑柱,所述支撑柱位于所述承载主体上;所述支撑柱具有用于支撑样品的顶面;所述支撑柱内具有至少一个凹槽,所述凹槽自所述顶面指向所述承载主体方向延伸,且所述凹槽的槽壁与所述顶面连接。

Description

栅格
本公开要求在2020年10月21日提交中国专利局、申请号为202011131978.3、发明名称为“栅格”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及但不限于一种栅格。
背景技术
在物理实验领域越来越多地使用透镜电子显微镜对材料结构进行观察。在观察之前,需要从待观察的材料上提取样品,并对样品进行处理。
目前,通常使用聚焦离子束(FIB,Focused Ion beam)进行样品处理。FIB是将离子源(例如Ga、He或Ne离子源)产生的离子束经过离子枪加速,聚焦后作用于样品。利用强电流离子束能够对样品表面原子进行剥离,以完成微、纳米级表面形貌加工。另外,FIB还能以物理溅射的方式搭配化学气体反应,从而对样品进行有选择性的剥除金属、氧化硅层或沉积金属层。
在样品处理过程中,需要利用栅格承载样品。常用的栅格为铜网碳膜支撑网和金属(铜/钼等)柱状栅格两种。
然而,利用目前的栅格承载样品,后续透射电子显微镜的成像效果不佳。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种栅格,提高了后续透射电子显微镜的成像效果。
本公开实施例提供一种栅格,包括:承载主体;至少一个支撑柱,所述支撑柱位于所述承载主体上;所述支撑柱具有用于支撑样品的顶面;所述支撑柱内具有至少一个凹槽,所述凹槽自所述顶面指向所述承载主体方向延 伸,且所述凹槽的槽壁与所述顶面连接。
本公开实施例提供的技术方案具有以下优点:
支撑柱具有用于支撑样品的顶面,所述支撑柱内具有至少一个凹槽。相比于支撑柱的侧壁,在支撑柱顶面放置样品,样品的稳定性更好,且凹槽能起到导流的作用,减小二次离子对样品的污染,提高后续透射电子显微镜的成像效果。
另外,位于不同支撑柱上的凹槽具有不同的容积。如此,栅格可以承载不同尺寸的样品,提高栅格的利用率。
另外,每一支撑柱具有多个间隔排列的所述凹槽,且相邻所述凹槽之间的距离为5um-10um。如此,可以增加栅格承载的样品的数量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本申请的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为一种承载有样品的栅格的局部正视图;
图2为另一种承载有样品的栅格的局部正视图;
图3为本实施例提供的承载有样品的栅格的局部正视图;
图4为本实施例提供的第一种栅格的正视图;
图5为本实施例提供的栅格的第一种支撑柱的示意图;
图6为本实施例提供的栅格的第二种支撑柱的示意图;
图7为本实施例提供的栅格的第三种支撑柱的示意图;
图8为本实施例提供的栅格的第四种支撑柱的正视图;
图9为本实施例提供的第二种栅格的正视图;
图10为本实施例提供的第三种栅格的正视图;
图11为本实施例提供的第四种栅格的正视图。
附图标记:
100、承载主体;110、支撑柱;120、凹槽;121、第一凹槽;130、顶面;131、第一顶面;140、样品;141、样品;111、支撑柱。
具体实施方式
由背景技术可知,利用一般的栅格承载样品,后续透射电子显微镜的成像效果不佳。
经分析发现,主要原因包括:利用FIB制备样品时,离子束轰击栅格,栅格表面会产生二次离子。一般的栅格在承载样品时,样品与栅格的接触面积较大,二次离子从栅格表面溅射到样品表面,从而导致样品污染。而样品本身的质量和纯净程度,对于后续透射电子显微镜的成像效果及分析准确度有决定性的影响。
参考图1,图1为一种承载有样品141的栅格的局部正视图。图中的黑点为二次离子,样品141四周的直线箭头为离子束,样品141左侧的曲线箭头为二次离子的溅射方向。样品141通过聚焦离子束诱导沉积而附连在栅格的支撑柱111侧壁,在样品141制备过程中,二次离子从支撑柱111侧壁溅射到样品141表面,从而导致样品污染。另外,附连在支撑柱111侧壁的样品由于受到自身重力的影响,容易发生倾斜或脱离,从而影响后续透射电子显微镜的成像效果。
参考图2,图2为另一种承载有样品141的栅格的局部正视图。图中的黑点为二次离子,样品141上方的直线箭头为离子束,样品141下方的曲线箭头为二次离子的溅射方向。样品141放置在支撑柱111的顶部,样品141与支撑柱111的顶部的接触面积大,二次离子溅射污染较为严重,后续透射电子显微镜的成像效果较差。
本公开实施提供一种栅格,栅格的支撑柱具有用于支撑样品的顶面,支撑柱内具有至少一个凹槽。如此,在支撑柱顶面放置样品,支撑柱可以更加稳定地支撑样品,且凹槽能起到导流的作用,减小二次离子对样品的污染,提高后续透射电子显微镜的成像效果。
下面将结合附图对本公开的各实施例进行详细的阐述。然而,本领域的技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图3为本实施例提供的承载有样品的栅格的局部正视图,图4为本实施例提供的第一种栅格的正视图。参考图3及图4,栅格包括承载主体100;至少一个支撑柱110,支撑柱110位于承载主体100上;支撑柱110具有用于支撑样品140的顶面130;支撑柱110内具有至少一个凹槽120,凹槽120自顶面130指向承载主体100方向延伸,且凹槽120的槽壁与顶面130连接。
支撑柱110的顶面130支撑样品140,比样品140附连在支撑柱110的侧壁的稳定性更好。另外,凹槽120既可以减小支撑柱110与样品140的接触面积,又可以导流二次离子(图3中的黑点),从而提高样品140的质量,提高透射电子显微镜的成像效果。
以下将结合附图进行具体说明。
承载主体100的体积比支撑柱110的体积大,以方便夹取。本实施例中,承载主体100具有三个支撑柱110。在其他实施例中,可以相应的增加或减少支撑柱的数量。
支撑柱110用于支撑样品140。支撑柱110的形状可以为圆柱、立方以及圆柱和立方的组合形状。
凹槽120位于支撑柱110的顶部,用于减小与样品140的接触面积以及导流二次离子。
结合参考图3-图11,顶面130至少位于凹槽120的两侧。顶面130不能只位于凹槽120的一侧,否则无法形成凹槽120。与凹槽120连接的部分顶面130承载样品140,因此,仅样品140的边缘与顶面130接触,样品140受到二次离子的污染小。
在一个例子中,参考图3-图5及图7-图11,图5为栅格的第一种支撑柱的示意图,图5A为正视图,图5B为侧视图,图5C为俯视图。图7为栅格的第三种支撑柱的示意图,图7A为正视图,图7B为侧视图,图7C为俯视图。顶面130位于凹槽120的两侧,即凹槽120贯穿支撑柱110的顶部。在设置凹槽120时,考虑的参数更少,制作工艺更为简洁。
在另一个例子中,参考图6,图6为栅格的第二种支撑柱的示意图,图6A为正视图,图6B为侧视图,图6C为俯视图。顶面130环绕凹槽120。
本实施例中,样品140可以直接放置在顶面130上。在其他实施例中,样品也可通过聚焦离子束诱导沉积而附连顶面上,以提高样品与顶面之间的附着力。
继续参考图3-图11,每一支撑柱110上至少具有一个凹槽120。
在一个例子中,参考图3-图6及图9-图11,每一支撑柱110上具有一个凹槽120,且凹槽120的中心轴线与支撑柱110的中心轴线重合。如此,在放置样品140的过程中,更容易定位。
在另一个例子中,参考图7,每一支撑柱110具有多个间隔排列的凹槽120,因此,可以增加栅格承载的样品140(参考图3)数量。且相邻凹槽120之间的距离为5um-10um,例如,7um、8um或9um。如果凹槽120的距离过大,不能使顶面130得到充分利用;如果凹槽120的距离过小,样品140不易放置。凹槽120的距离在5um-10um范围内可以充分利用顶面130,并易于放置样品140。
支撑柱110的顶面130包括平面或弧面。在本公开的一个实施例中,支撑柱110的顶面为平面,有利于提升样品140放置的稳定性。
参考图8,支撑柱110(参考图4)的顶面130(参考图4)还可以为阶梯面。支撑柱110的顶面130包括多个第一顶面131,且多个第一顶面131构成阶梯面;凹槽120(参考图4)包括:多个第一凹槽121,每一第一凹槽121与每一第一顶面131相对应,且每一凹槽120的槽壁与对应第一顶面131连接。阶梯面的设置可以容纳更多样品140(参考图3),在放置多个样品140的过程中,也更容易定位。
继续参考图3-图11,凹槽120的顶部开口大于或等于凹槽120的底部开口。如此,可以减小顶面130与样品140的接触面积,减小样品140受到二次离子的污染,提高后续透射电子显微镜的成像效果。
本实施例中,凹槽120的顶部开口等于凹槽120底部开口。因此,在多个凹槽120顶部开口相同时,顶部开口与底部开口相等的凹槽120的容积更大,二次离子的引流效果更好。
凹槽120的顶部开口及底部开口的形状可以为矩形或圆形。
在垂直于支撑柱110的延伸方向上,凹槽120的顶部开口的宽度b为1um-20um。例如,1um、5um、10um。采用1um宽度设计,适用于尺寸精细结构观察,更小的凹槽120宽度,保证样品140的稳定性以及观察的成功率;采用5um宽度设计,适用于常用样品制备观察;采用10um宽度设计,适用于大尺寸结构观察,更大的凹槽120宽度,保证样品140大区域范围内,都有较高的质量,避免二次离子溅射污染。
样品140的宽度为20-40um,样品140的宽度需大于凹槽120的顶部开口的宽度,且宽度差为10-20um。若宽度差过大,凹槽120的导流作用较小,若宽度差过小,样品140不易稳定放置。宽度差在10-20um范围内使凹槽具有较好的导流作用并有利于样品140的稳定放置。
在自顶面130指向承载主体100方向,凹槽120的深度a为10um-100um。如凹槽120的深度a较小,凹槽120的导流作用较小,若凹槽120的深度a过大,形成凹槽120的难度会提高。凹槽的深度a在10um-100um范围内,使凹槽120具有较好的导流作用并且降低形成凹槽120的难度。
参考图9-图11,位于不同支撑柱110上的凹槽120具有不同的容积。因此,多个凹槽120可以承载不同尺寸的样品140。设计不同凹槽120组合的栅格,能够应用于不同场景,提高栅格使用效率,从而降低使用成本。
有关不同支撑柱110上的凹槽120具有不同的容积的技术方案,包括如下几种具体示例:
示例一,参考图9,位于不同支撑柱110上的凹槽120在垂直于支撑柱110的延伸方向上的宽度不同。例如,栅格上设置三个支撑柱110,三个支撑柱110上分别具有一个宽度为1um、5um、10um的凹槽120。可以理解的是,当每一支撑柱110上具有多个凹槽120时,位于同一支撑柱110上的多个凹槽120在垂直于支撑柱110的延伸方向上的宽度可以不同。如此,可以同时满足小寸尺精细结构,常用尺寸及大尺寸样品观察,保证样品质量,避免二次离子溅射污染。
示例二,参考图10,位于不同支撑柱110上的凹槽120在自顶面130指向承载主体100方向上的深度不同。例如,栅格上设置三个支撑柱110,三个支撑柱110上分别具有一个深度为20um、30um、40um的凹槽120。可以 理解的是,当每一支撑柱110上具有多个凹槽120时,位于同一支撑柱110上的多个凹槽120在自顶面130指向承载主体100方向上的深度可以不同。
示例三,参考图11,位于不同支撑柱110上的凹槽120的形状不同。例如,栅格上设置三个支撑柱110,三个支撑柱110上分别具有一个倒三角形、倒梯形、矩形的凹槽120。当每一支撑柱110上具有多个凹槽120时,位于同一支撑柱110上的多个凹槽120的形状可以不同。不同的形状凹槽120还可以作为支撑柱110的辨识标记,当支撑柱110承载多个样品140时,通过辨识标记能够迅速定位。
本公开实施例提供的栅格具有支撑样品的顶面,以及位于支撑柱内的凹槽。凹槽可以起到二次离子导流的作用,减小样品污染;另外,样品放置于支撑柱的顶部比放置在支撑柱的侧壁更加稳定;从而能够提高后续透射电子显微镜的成像效果。另外,可以依据实验需求,设置不同类型的支撑柱及凹槽,如此,提高承载的样品的数量及类型,从而降低成本。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的 部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的栅格,支撑柱具有用于支撑样品的顶面,所述支撑柱内具有至少一个凹槽。相比于支撑柱的侧壁,在支撑柱顶面放置样品,样品的稳定性更好,且凹槽能起到导流的作用,减小二次离子对样品的污染,提高后续透射电子显微镜的成像效果。

Claims (14)

  1. 一种栅格,所述栅格包括:
    承载主体(100);
    至少一个支撑柱(110),所述支撑柱(110)位于所述承载主体(100)上;
    所述支撑柱(110)具有支撑样品(140)的顶面(130);
    所述支撑柱(110)内具有至少一个凹槽(120),所述凹槽(120)自所述顶面(130)指向所述承载主体(100)方向延伸,且所述凹槽(120)的槽壁与所述顶面(130)连接。
  2. 根据权利要求1所述的栅格,其中,所述顶面(130)至少位于所述凹槽(120)的两侧。
  3. 根据权利要求1所述的栅格,其中,所述顶面(130)环绕所述凹槽(120)。
  4. 根据权利要求2所述的栅格,其中,所述顶面(130)环绕所述凹槽(120)。
  5. 根据权利要求1所述的栅格,其中,所述凹槽(120)的顶部开口大于或等于所述凹槽(120)的底部开口。
  6. 根据权利要求1所述的栅格,其中,在垂直于所述支撑柱(110)的延伸方向上,所述凹槽(120)的顶部开口的宽度为1um-20um。
  7. 根据权利要求1所述的栅格,其中,在自所述顶面(130)指向所述承载主体(100)方向,所述凹槽(120)的深度为10um-100um。
  8. 根据权利要求1所述的栅格,其中,位于不同所述支撑柱(110)上的所述凹槽(120)具有不同的容积。
  9. 根据权利要求8所述的栅格,其中,位于不同所述支撑柱(110)上的所述凹槽(120)在垂直于所述支撑柱(110)的延伸方向上的宽度不同。
  10. 根据权利要求8所述的栅格,其中,位于不同所述支撑柱(110)上的所述凹槽(120)在自所述顶面(130)指向所述承载主体(100)方向上的深度不同。
  11. 根据权利要求1所述的栅格,其中,每一所述支撑柱(110)具有多 个间隔排列的所述凹槽(120),且相邻所述凹槽(120)之间的距离为5um-10um。
  12. 根据权利要求1所述的栅格,其中,每一所述支撑柱(110)上具有一个凹槽(120),且所述凹槽(120)的中心轴线与所述支撑柱(110)的中心轴线重合。
  13. 根据权利要求1所述的栅格,其中,所述支撑柱(110)的顶面(130)包括平面或弧面。
  14. 根据权利要求1所述栅格,其中,所述支撑柱(110)的顶面(130)包括多个第一顶面(131),且多个所述第一顶面(131)构成阶梯面;所述凹槽(120)包括:多个第一凹槽(121),每一所述第一凹槽(121)与每一所述第一顶面(131)相对应,且每一所述凹槽(120)的槽壁与对应所述第一顶面(131)连接。
PCT/CN2021/103875 2020-10-21 2021-06-30 栅格 WO2022083170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/441,225 US11830702B2 (en) 2020-10-21 2021-06-30 Grid structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011131978.3A CN114464516A (zh) 2020-10-21 2020-10-21 栅格
CN202011131978.3 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022083170A1 true WO2022083170A1 (zh) 2022-04-28

Family

ID=81289652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103875 WO2022083170A1 (zh) 2020-10-21 2021-06-30 栅格

Country Status (3)

Country Link
US (1) US11830702B2 (zh)
CN (1) CN114464516A (zh)
WO (1) WO2022083170A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464516A (zh) * 2020-10-21 2022-05-10 长鑫存储技术有限公司 栅格
CN116642915B (zh) * 2023-06-16 2023-11-03 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种承载装置、样品制备设备及样品制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259556A (ja) * 2008-04-16 2009-11-05 Nec Tokin Corp 電子顕微鏡観察用試料支持部材
CN103646839A (zh) * 2013-11-08 2014-03-19 上海华力微电子有限公司 承载和固定tem样品的金属网
CN104979151A (zh) * 2014-04-14 2015-10-14 Fei公司 高容量tem栅格
CN111474197A (zh) * 2020-04-16 2020-07-31 宸鸿科技(厦门)有限公司 透射电子显微镜样品制备所产生的污染的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570980B2 (ja) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 試料台及び試料加工方法
EP1953789A1 (en) * 2007-02-05 2008-08-06 FEI Company Method for thinning a sample and sample carrier for performing said method
CN102737935B (zh) * 2011-04-14 2015-08-26 清华大学 透射电镜微栅
US8740209B2 (en) * 2012-02-22 2014-06-03 Expresslo Llc Method and apparatus for ex-situ lift-out specimen preparation
EP2755226B1 (en) * 2013-01-15 2016-06-29 Fei Company Sample carrier for an electron microscope
US8729469B1 (en) * 2013-03-15 2014-05-20 Fei Company Multiple sample attachment to nano manipulator for high throughput sample preparation
CN105185679B (zh) * 2014-06-17 2017-04-12 清华大学 透射电镜微栅
CN105185674B (zh) * 2014-06-17 2017-05-17 清华大学 透射电镜微栅的制备方法
US9837246B1 (en) * 2016-07-22 2017-12-05 Fei Company Reinforced sample for transmission electron microscope
CN205911282U (zh) * 2016-08-08 2017-01-25 中芯国际集成电路制造(北京)有限公司 Tem样品格栅及tem样品放置装置
JP6928943B2 (ja) * 2017-03-28 2021-09-01 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
CN114464516A (zh) * 2020-10-21 2022-05-10 长鑫存储技术有限公司 栅格
US11476079B1 (en) * 2021-03-31 2022-10-18 Fei Company Method and system for imaging a multi-pillar sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259556A (ja) * 2008-04-16 2009-11-05 Nec Tokin Corp 電子顕微鏡観察用試料支持部材
CN103646839A (zh) * 2013-11-08 2014-03-19 上海华力微电子有限公司 承载和固定tem样品的金属网
CN104979151A (zh) * 2014-04-14 2015-10-14 Fei公司 高容量tem栅格
CN111474197A (zh) * 2020-04-16 2020-07-31 宸鸿科技(厦门)有限公司 透射电子显微镜样品制备所产生的污染的控制方法

Also Published As

Publication number Publication date
US11830702B2 (en) 2023-11-28
US20230059669A1 (en) 2023-02-23
CN114464516A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2022083170A1 (zh) 栅格
US8927180B2 (en) Method of manufacturing a mask
US8395130B2 (en) Holder for an electron microscopy sample carrier
US6281508B1 (en) Precision alignment and assembly of microlenses and microcolumns
US9281163B2 (en) High capacity TEM grid
EP2750160A2 (en) Phase plate and method of fabricating same
US20030122085A1 (en) Field ionization ion source
Klykov et al. In situ cryo-FIB/SEM specimen preparation using the waffle method
US10539489B2 (en) Methods for acquiring planar view STEM images of device structures
CN114964968A (zh) 一种纳米级针尖状透射电镜样品的制备方法
EP1557867B1 (en) Focussing lens for charged particle beams
JP4728089B2 (ja) シート状プラズマ発生装置および成膜装置
US20180298487A1 (en) Crucible, evaporation device and evaporation apparatus
JP2018518005A (ja) モノクロメーターを備えた電子線装置
CN111033117A (zh) 制造用于衍射光栅导光板的模具基板的方法和制造衍射光栅导光板的方法
US20190198284A1 (en) Electron source and electron beam irradiation device
JP2000182511A (ja) 電界放射型素子の製造方法
JPH06208837A (ja) イオンビ―ムプロセス装置のプラズマ引出し用グリッド
JP5489295B2 (ja) 荷電粒子線装置及び荷電粒子線照射方法
CN112534605B (zh) 用于oled像素蒸镀的金属板材料的蒸镀用掩模
JP2569011B2 (ja) 走査電子顕微鏡
KR20010040399A (ko) 실리콘 마이크로렌즈 세정 시스템
US20020125440A1 (en) Method for fabrication of silicon octopole deflectors and electron column employing same
CN111621743A (zh) 掩膜板
KR20050031848A (ko) 마그네트론 스퍼터링 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881590

Country of ref document: EP

Kind code of ref document: A1