WO2022083092A1 - 薄膜型功率电感器 - Google Patents

薄膜型功率电感器 Download PDF

Info

Publication number
WO2022083092A1
WO2022083092A1 PCT/CN2021/090466 CN2021090466W WO2022083092A1 WO 2022083092 A1 WO2022083092 A1 WO 2022083092A1 CN 2021090466 W CN2021090466 W CN 2021090466W WO 2022083092 A1 WO2022083092 A1 WO 2022083092A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power inductor
magnet
thin
film power
Prior art date
Application number
PCT/CN2021/090466
Other languages
English (en)
French (fr)
Inventor
於扬栋
朱权
王雷杰
王菲
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP21761960.0A priority Critical patent/EP4009337A4/en
Priority to US17/611,468 priority patent/US20230360839A1/en
Publication of WO2022083092A1 publication Critical patent/WO2022083092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/303Clamping coils, windings or parts thereof together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the embodiments of the present application relate to the field of electronic devices, for example, to a thin-film power inductor.
  • Inductor also known as choke, reactor, dynamic reactor
  • Inductor is a component that can convert electrical energy into magnetic energy and store it.
  • Power inductors are usually used in power circuits or smart electronic devices. Power inductors can be divided into three types: laminated power inductors, film power inductors, and wound power inductors.
  • Laminated power inductors have poor anti-saturation performance, and it is difficult to reduce the thickness of wire-wound power inductors. Therefore, thin film type has low DC resistance, high self-resonance frequency, can withstand large currents, and is easy to miniaturize and thin. Power inductors have become the current development trend of power inductors.
  • the coils of the thin-film power inductor need to be connected by punching or dislocated, resulting in a complex structure of the thin-film power inductor, which is difficult to manufacture.
  • the present application provides a thin-film power inductor, which has the advantages of simple structure, large inductance, small DC resistance, and easy miniaturization.
  • an embodiment of the present application provides a thin-film power inductor, comprising: a magnet, a first port electrode and a second port electrode, wherein the first port electrode and the second port electrode are respectively disposed on the outer surface of the magnet;
  • the magnet includes at least one first substructure, and the first substructure includes a first upper functional layer, a first upper coil, a first glue layer, a first insulating layer, a first lower glue layer, and a first lower coil that are stacked in sequence. and the first lower functional layer;
  • the first upper coil and the first lower coil have a first end portion and a second end portion, respectively; the first end portion of the first upper coil and the first end portion of the first lower coil are exposed to the same surface of the magnet, the first upper coil The first end of the coil and the first end of the first lower coil are both electrically connected to the first port electrode; the second end of the first upper coil and the second end of the first lower coil are exposed to the same surface of the magnet , the second end of the first upper coil and the second end of the first lower coil are both electrically connected to the second port electrode.
  • FIG. 1 is a schematic three-dimensional structure diagram of a thin-film power inductor provided by an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structural diagram of a first substructure provided by an embodiment of the present application
  • FIG. 3 is a schematic cross-sectional structural diagram of a second substructure provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a third substructure provided by an embodiment of the present application.
  • FIG. 5 is a perspective view of a three-dimensional structure of a magnet with two coils provided by an embodiment of the present application
  • FIG. 6 is a perspective view of a three-dimensional structure of a thin-film power inductor with two coils provided by an embodiment of the present application;
  • FIG. 7 is a schematic cross-sectional structure diagram of a magnet with four coils provided by an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structure diagram of a magnet with three coils provided by an embodiment of the present application.
  • FIG. 9 is a perspective view of a three-dimensional structure of a thin-film power inductor with three coils provided by an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional structural diagram of a magnet with five coils provided by an embodiment of the present application
  • FIG. 11 is a perspective view of a three-dimensional structure of a thin-film power inductor with one coil number provided by an embodiment of the present application.
  • sequence of processes may be performed differently than described.
  • two processes described in succession may be performed substantially at the same time or in the reverse order of that described.
  • FIG. 1 shows a schematic three-dimensional structure diagram of a thin-film power inductor provided by an embodiment of the present application.
  • the thin film type power inductor includes a magnet 10 , a first port electrode 20 and a second port electrode 30 , and the first port electrode 20 and the second port electrode 30 are respectively disposed on the outer surface of the magnet 10 .
  • the first port electrode 20 is the input electrode IN of the thin film power inductor
  • the second port electrode 30 is the output electrode OUT of the thin film power inductor; or, the first port electrode 20 is the thin film power inductor The output electrode OUT of the inductor, and the second port electrode 30 is the input electrode IN of the thin film power inductor.
  • the first port electrode 20 and the second port electrode 30 may be formed by applying silver paste at designated port positions of the magnet 10, and then solidifying at a low temperature and then electroplating.
  • the number of coils (also called inductor coils) included in the magnet 10 can be designed according to the inductance of the thin-film power inductor. Specifically, the number of coils can be any positive integer.
  • the first sub-structure, the second sub-structure and the third sub-structure are respectively introduced here.
  • FIG. 2 shows a schematic cross-sectional structure diagram of a first substructure provided by an embodiment of the present application.
  • the first substructure includes a first upper functional layer A1, a first upper coil A2, a first glue layer A3, a first insulating layer A4, a first lower glue layer A5, a first upper The lower coil A6 and the first lower functional layer A7.
  • FIG. 3 shows a schematic cross-sectional structure diagram of a second substructure provided by an embodiment of the present application.
  • the second substructure includes a second functional layer B1 , a second coil B2 , a second adhesive layer B3 and a second insulating layer B4 which are stacked in sequence.
  • FIG. 4 shows a schematic cross-sectional structure diagram of a third substructure provided by an embodiment of the present application.
  • the third substructure includes a third upper functional layer C1 , a third coil C2 , a third adhesive layer C3 , a third insulating layer C4 and a third lower functional layer C5 , which are sequentially stacked.
  • the functional layers may be: a first upper functional layer A1, a first lower functional layer A7, a second functional layer B1, a third upper functional layer C1 and a third lower functional layer C5.
  • the functional layer can be made of the same material and the same manufacturing process, and this is only used to distinguish different positions of the functional layer.
  • the coils can be: the first upper coil A2, the first lower coil A6, the second coil B2 and the third coil C2;
  • the adhesive layer can be: the first upper adhesive layer A3, the first lower adhesive layer A5, the second adhesive layer
  • the insulating layers may be: a first insulating layer A4, a second insulating layer B4 and a third insulating layer C4.
  • the functional layer is used to cover the coil and increase the inductance of the thin-film power inductor.
  • the coil self-inductance produces inductance.
  • the adhesive layer bonds the film layers on both sides of the adhesive layer together.
  • the insulating layer is used to ensure insulation between the coils.
  • the magnet 10 when the number of coils of the thin-film power inductor is 2n (n is a positive integer), the magnet 10 includes n first substructures arranged in layers.
  • FIG. 5 shows a perspective view of a three-dimensional structure of a magnet provided by an embodiment of the present application with the number of coils being 2;
  • FIG. 6 A perspective view of a three-dimensional structure of a thin-film power inductor with two coils provided by an embodiment of the present application is shown. As shown in FIG. 5 and FIG.
  • the first upper coil A2 and the first lower coil A6 have a first end and a second end, respectively; the first end 111 of the first upper coil A2 and the first end 111 of the first lower coil A6
  • the first end portion 121 is exposed to the same surface of the magnet, and both the first end portion 111 and the first end portion 121 are electrically connected to the first port electrode 20; the second end portion 112 of the first upper coil A2 and the first lower coil
  • the second end portion 122 of A6 is exposed to the same surface of the magnet, and both the second end portion 112 and the second end portion 122 are electrically connected to the second port electrode 30 .
  • FIG. 7 shows a schematic cross-sectional structure diagram of a magnet with 4 coils provided by an embodiment of the present application.
  • two first substructures are arranged in layers.
  • the adjacent first upper functional layer A1 and the first lower functional layer A7 may be one film layer and formed in the same process.
  • the magnet 10 when the number of coils of the thin-film power inductor is 2n+1 (n is a positive integer), the magnet 10 includes a second substructure and n first substructures that are arranged in layers.
  • FIG. 8 shows a schematic cross-sectional structure diagram of a magnet provided by an embodiment of the present application with the number of coils 3
  • FIG. 9 shows A perspective view of a three-dimensional structure of a thin-film power inductor with three coils provided by an embodiment of the present application is shown.
  • the magnet includes a second substructure and a first substructure arranged in layers
  • the first upper coil A2, the first lower coil A6 and the second coil B2 respectively have a first end and a second end; the first end 111 of the first upper coil A2 and the first end of the first lower coil A6 121 and the first end 131 of the second coil B2 are exposed to the same surface of the magnet, the first end 111 of the first upper coil A2, the first end 121 of the first lower coil A6 and the first end 111 of the second coil B2
  • the ends 131 are all electrically connected to the first port electrode 20; the second end 112 of the first upper coil A2, the second end 122 of the first lower coil A6 and the second end 132 of the second coil B2 are exposed to the magnet
  • the second end portion 112 of the first upper coil A2, the second end portion 122 of the first lower coil A6 and the second end portion 132 of the second coil B2 are all electrically connected to the second port electrode 30 .
  • FIG. 10 shows a schematic cross-sectional structure diagram of a magnet provided by an embodiment of the present application with the number of coils 5.
  • n 2 (that is, the number of coils of the thin-film power inductor is 5)
  • FIG. 10 shows a schematic cross-sectional structure diagram of a magnet provided by an embodiment of the present application with the number of coils 5.
  • one second substructure and two first substructures are stacked.
  • the adjacent first upper functional layer A1 and the first lower functional layer A7 may be one film layer and formed in the same process.
  • FIG. 11 is a perspective view of a three-dimensional structure of a thin-film power inductor with one coil provided by an embodiment of the present application.
  • the third coil C2 has a first end 111 and a second end 121; the first end 111 of the third coil C2 is exposed to the surface of the magnet, and the first end 111 of the third coil C2 It is electrically connected to the first port electrode 20 ; the second end 121 of the third coil C2 is exposed to the surface of the magnet, and the second end 121 of the third coil C2 is electrically connected to the second port electrode 30 .
  • the coils of the thin-film power inductor are coupled to each other and have the same shape. In this way, the inductance of the thin-film power inductor can be improved.
  • the thin film power inductor is a common mode power inductor or a differential mode power inductor.
  • the thin-film power inductor is a common-mode power inductor, and the coils are designed in the same direction, so that the DC resistance is reduced and the inductance is increased;
  • Thin-film power inductors are differential mode power inductors, and the coils are designed in reverse, so that the DC resistance increases and the inductance decreases.
  • the functional layer of the thin film power inductor is made of magnetic material.
  • the magnetic material for making the functional layer can be treated with insulation.
  • the magnetic material is a soft magnetic alloy.
  • Soft magnetic alloys are magnetic materials with high saturation magnetic flux density, low coercivity and high permeability.
  • the coil of the thin film power inductor is made of metal or metal alloy. Specifically, it can be made of metal or metal alloy with low resistivity.
  • the size of the thin-film power inductor provided in the embodiment of the present application may be set according to actual requirements.
  • the size of the thin-film power inductor may be 1.2 mm ⁇ 1.0 mm ⁇ 0.3 mm, the line width is 100 ⁇ m, and the line Thickness is 30 ⁇ m.
  • the present application provides a thin film power inductor, comprising: a magnet, a first port electrode and a second port electrode, the first port electrode and the second port electrode are respectively disposed on the outer surface of the magnet;
  • the magnet includes at least one first substructure, and the first substructure includes a first upper functional layer, a first upper coil, a first glue layer, a first insulating layer, a first lower
  • the adhesive layer, the first lower coil and the first lower functional layer; the first upper coil and the first lower coil respectively have a first end and a second end; the first end of the first upper coil and the first end of the first lower coil are The first end is exposed to the same surface of the magnet, the first end of the first upper coil and the first end of the first lower coil are both electrically connected to the first port electrode; the second end of the first upper coil and the first end of the first upper coil are electrically connected to the first port electrode; The second end of the lower coil is exposed to the same surface of the magnet, and both the second end
  • the two ends of the coil of the film type power inductor are directly exposed to the surface of the magnet and are electrically connected to the first port electrode and the second port electrode respectively, the electrodes can be quickly drawn out; in addition, no holes need to be drilled between the coils Connections, no through-hole layers, and no electrical connections through any, facilitate further miniaturization.
  • the thin-film power inductor provided by the present application makes full use of the three-dimensional multi-layer space, reduces the required volume of the element, and has the advantages of simple structure, large inductance and low DC resistance. , easy to miniaturize and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请公开了一种薄膜型功率电感器。该薄膜型功率电感器包括:磁体、第一端口电极和第二端口电极;磁体包括至少一个第一子结构,第一子结构包括依次层叠设置的第一上功能层、第一上线圈、第一上胶层、第一绝缘层、第一下胶层、第一下线圈和第一下功能层;第一上线圈的第一端部和第一下线圈的第一端部暴露到磁体的同一表面,第一上线圈的第一端部和第一下线圈的第一端部均与第一端口电极电连接;第一上线圈的第二端部和第一下线圈的第二端部暴露到磁体的同一表面,第一上线圈的第二端部和第一下线圈的第二端部均与第二端口电极电连接。

Description

薄膜型功率电感器
本公开要求在2020年10月20日提交中国专利局、申请号为202011125941.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及电子设备领域,例如涉及一种薄膜型功率电感器。
背景技术
电感器(又称扼流器、电抗器、动态电抗器)是一种能够把电能转化为磁能存储起来的元件。功率电感器通常用在电源电路或者智能电子设备中,功率电感器可以分为叠层型功率电感器、薄膜型功率电感器和绕线型功率电感器三类。
按照智能设备高频化、小型化以及大电流的发展趋势,功率电感器的尺寸要求越来越小,额定电流要求越来越高。叠层型功率电感器抗饱和性能差、绕线型功率电感器的厚度难以减小,因此,具有较低的直流电阻、自谐频率高、可以承受大电流、便于小型化薄片化的薄膜型功率电感器成为当前功率电感器的发展趋势。
相关技术中,薄膜型功率电感器的线圈之间需要打孔连接或者错位设置,导致薄膜型功率电感器的结构复杂,不易制作。
发明内容
本申请提供一种薄膜型功率电感器,具有结构简单、电感量大、直流电阻小、便于小型化等优点。
第一方面,本申请实施例提供了一种薄膜型功率电感器,包括:磁体、第一端口电极和第二端口电极,第一端口电极和第二端口电极分别设置在磁体的外表面上;
磁体包括至少一个第一子结构,第一子结构包括依次层叠设置的第一上功能层、第一上线圈、第一上胶层、第一绝缘层、第一下胶层、第一下线圈和第一下功能层;
第一上线圈和第一下线圈分别具有第一端部和第二端部;第一上线圈的第一端部和第一下线圈的第一端部暴露到磁体的同一表面,第一上线圈的第一端部和第一下线圈的第一端部均与第一端口电极电连接;第一上线圈的第二端部 和第一下线圈的第二端部暴露到磁体的同一表面,第一上线圈的第二端部和第一下线圈的第二端部均与第二端口电极电连接。
附图说明
图1是本申请实施例提供的一种薄膜型功率电感器的立体结构示意图;
图2是本申请实施例提供的一种第一子结构的剖面结构示意图;
图3是本申请实施例提供的一种第二子结构的剖面结构示意图;
图4是本申请实施例提供的一种第三子结构的剖面结构示意图;
图5是本申请实施例提供的一种线圈数为2的磁体的立体结构透视图;
图6是本申请实施例提供的一种线圈数为2的薄膜型功率电感器的立体结构透视图;
图7是本申请实施例提供的一种线圈数为4的磁体的剖面结构示意图;
图8是本申请实施例提供的一种线圈数为3的磁体的剖面结构示意图;
图9是本申请实施例提供的一种线圈数为3的薄膜型功率电感器的立体结构透视图;
图10是本申请实施例提供的一种线圈数为5的磁体的剖面结构示意图
图11是本申请实施例提供的一种线圈数为1的薄膜型功率电感器的立体结构透视图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
附图和实施例的描述是说明性的。贯穿说明书的同样的附图标记表示同样的元件。另外,出于理解和易于描述,附图中可能夸大了一些结构、区域等的大小。另外,除非明确地描述为相反,否则词语“包括”和诸如“包含”或“具有”的变形将被理解为暗示包含该元件,但不排除任意其它元件。
本申请实施例中用“第一”、“第二”等来描述各种组件。这些术语仅用来将一个组件与另一组件区分开。并且,除非上下文另有明确指示,否则单数形式“一个”、“一种”和“该()”也意图包括复数形式。
当可以不同地实施某个实施例时,工艺顺序可以与所描述的顺序不同地执 行。例如,两个连续描述的工艺可以基本上在同一时间执行或者按与所描述顺序相反的顺序来执行。
下面,对薄膜型功率电感器及其技术效果进行描述。
图1示出了本申请实施例提供的一种薄膜型功率电感器的立体结构示意图。如图1所示,薄膜型功率电感器包括:磁体10、第一端口电极20和第二端口电极30,第一端口电极20和第二端口电极30分别设置在磁体10的外表面上。
在一实施例中,第一端口电极20为薄膜型功率电感器的输入电极IN,第二端口电极30为薄膜型功率电感器的输出电极OUT;或者,第一端口电极20为薄膜型功率电感器的输出电极OUT,第二端口电极30为薄膜型功率电感器的输入电极IN。
第一端口电极20和第二端口电极30可以通过在磁体10的指定端口位置处涂抹银浆,低温固化之后电镀形成。
磁体10中包括的线圈(又称电感线圈)数量可以根据薄膜型功率电感器的电感大小进行设计。具体的,线圈数量可以为任意正整数。
为了详细描述不同线圈数量时磁体10的结构,此处先分别介绍第一子结构、第二子结构和第三子结构。
图2示出了本申请实施例提供的一种第一子结构的剖面结构示意图。如图2所示,第一子结构包括依次层叠设置的第一上功能层A1、第一上线圈A2、第一上胶层A3、第一绝缘层A4、第一下胶层A5、第一下线圈A6和第一下功能层A7。
图3示出了本申请实施例提供的一种第二子结构的剖面结构示意图。如图3所示,第二子结构包括依次层叠设置的第二功能层B1,第二线圈B2、第二胶层B3和第二绝缘层B4。
图4示出了本申请实施例提供的一种第三子结构的剖面结构示意图。如图4所示,第三子结构包括依次层叠设置的第三上功能层C1、第三线圈C2、第三胶层C3、第三绝缘层C4和第三下功能层C5。
结合上述图2-图4可知,功能层可以为:第一上功能层A1、第一下功能层A7、第二功能层B1、第三上功能层C1和第三下功能层C5。功能层可以采用同一种材料、同一种制作工艺制作,此处仅为了用来区分功能层的不同位置。同理,线圈可以为:第一上线圈A2、第一下线圈A6、第二线圈B2和第三线圈C2;胶层可以为:第一上胶层A3、第一下胶层A5、第二胶层B3和第三胶层 C3;绝缘层可以为:第一绝缘层A4、第二绝缘层B4和第三绝缘层C4。
功能层用来覆盖线圈,提升薄膜型功率电感器的电感量。线圈自感产生电感量。胶层将位于胶层两侧的膜层粘结在一起。绝缘层用于保证线圈之间绝缘。
在第一种可能的实现方式中,当薄膜型功率电感器的线圈数量为2n(n为正整数)时,磁体10包括n个层叠设置的第一子结构。
示例性的,当n=1(即薄膜型功率电感器的线圈数量为2)时,图5示出了本申请实施例提供的一种线圈数为2的磁体的立体结构透视图;图6示出了本申请实施例提供的一种线圈数为2的薄膜型功率电感器的立体结构透视图。如图5和图6所示,第一上线圈A2和第一下线圈A6分别具有第一端部和第二端部;第一上线圈A2的第一端部111和第一下线圈A6的第一端部121暴露到磁体的同一表面、且第一端部111和第一端部121均与第一端口电极20电连接;第一上线圈A2的第二端部112和第一下线圈A6的第二端部122暴露到磁体的同一表面、且第二端部112和第二端部122均与第二端口电极30电连接。
又示例性的,当n=2(即薄膜型功率电感器的线圈数量为4)时,图7示出了本申请实施例提供的一种线圈数为4的磁体的剖面结构示意图。如图7所示,2个第一子结构层叠设置。在一实施例中,相邻的第一上功能层A1和第一下功能层A7可以为一个膜层,在同一工艺中形成。
在第二种可能的实现方式中,当薄膜型功率电感器的线圈数量为2n+1(n为正整数)时,磁体10包括层叠设置的一个第二子结构和n个第一子结构。
示例性的,当n=1(即薄膜型功率电感器的线圈数量为3)时,图8示出了本申请实施例提供的一种线圈数为3的磁体的剖面结构示意图;图9示出了本申请实施例提供的一种线圈数为3的薄膜型功率电感器的立体结构透视图。如图8和图9所示,磁体包括层叠设置的一个第二子结构和一个第一子结构
第一上线圈A2、第一下线圈A6和第二线圈B2分别具有第一端部和第二端部;第一上线圈A2的第一端部111、第一下线圈A6的第一端部121和第二线圈B2的第一端部131暴露到磁体的同一表面,第一上线圈A2的第一端部111、第一下线圈A6的第一端部121和第二线圈B2的第一端部131均与第一端口电极20电连接;第一上线圈A2的第二端部112、第一下线圈A6的第二端部122和第二线圈B2的第二端部132暴露到磁体的同一表面,第一上线圈A2的第二端部112、第一下线圈A6的第二端部122和第二线圈B2的第二端部132均与第二端口电极30电连接。
又示例性的,当n=2(即薄膜型功率电感器的线圈数量为5)时,图10示 出了本申请实施例提供的一种线圈数为5的磁体的剖面结构示意图。如图10所示,1个第二子结构和2个第一子结构层叠设置。在一实施例中,相邻的第一上功能层A1和第一下功能层A7可以为一个膜层,在同一工艺中形成。
在第三种可能的实现方式中,当薄膜型功率电感器的线圈数量为1时,磁体10包括一个第三子结构。图11示出了本申请实施例提供的一种线圈数为1的薄膜型功率电感器的立体结构透视图。如图11所示,第三线圈C2具有第一端部111和第二端部121;第三线圈C2的第一端部111暴露到磁体的表面,且第三线圈C2的第一端部111与第一端口电极20电连接;第三线圈C2的第二端部121暴露到磁体的表面,且第三线圈C2的第二端部121与第二端口电极30电连接。
可选的,当薄膜型功率电感器的线圈数量不小于2时,线圈两两之间互相耦合、且形状一致。如此,可以提升薄膜型功率电感器的电感量。
可选的,当薄膜型功率电感器的线圈数量不小于2时,薄膜型功率电感器为共模功率电感器或者差模功率电感器。
可选的,薄膜型功率电感器为共模功率电感器,线圈两两之间采用同向设计,如此直流电阻减小,电感量增加;
薄膜型功率电感器为差模功率电感器,线圈两两之间采用反向设计,如此直流电阻增大,电感量减小。
可选的,薄膜型功率电感器的功能层采用磁性材料制作。制作功能层的磁性材料可以经过绝缘处理。
可选的,磁性材料为软磁合金。软磁合金(soft magnetic material)是具有高饱和磁通密度、低矫顽力和高磁导率的磁性材料。
可选的,薄膜型功率电感器的线圈采用金属或者金属合金制作。具体的,可以是电阻率小的金属或者金属合金制作。
可选的,本申请实施例提供的薄膜型功率电感器的尺寸可以根据实际需求设定,例如,薄膜型功率电感器的尺寸可以为1.2mm×1.0mm×0.3mm,线宽为100μm,线厚为30μm。
本申请提供一种薄膜型功率电感器,包括:磁体、第一端口电极和第二端口电极,第一端口电极和第二端口电极分别设置在磁体的外表面上;当薄膜型功率电感器的线圈数量不小于2时,磁体包括至少一个第一子结构,第一子结构包括依次层叠设置的第一上功能层、第一上线圈、第一上胶层、第一绝缘层、第一下胶层、第一下线圈和第一下功能层;第一上线圈和第一下线圈分别具有 第一端部和第二端部;第一上线圈的第一端部和第一下线圈的第一端部暴露到磁体的同一表面,第一上线圈的第一端部和第一下线圈的第一端部均与第一端口电极电连接;第一上线圈的第二端部和第一下线圈的第二端部暴露到磁体的同一表面,第一上线圈的第二端部和第一下线圈的第二端部均与第二端口电极电连接。由于薄膜型功率电感器的线圈的两个端部直接暴露到磁体表面、并分别与第一端口电极和第二端口电极电连接,实现了电极的快速引出;另外,线圈之间不需要打孔连接,没有通孔层,不通过任何的电气连接,方便进一步小型化。与相关技术中的薄膜型功率电感器相比,本申请提供的的薄膜型功率电感器充分利用了三维多层空间,减小了元件所需体积,具有结构简单、电感量大、直流电阻小、便于小型化等优点。

Claims (11)

  1. 一种薄膜型功率电感器,包括:磁体、第一端口电极和第二端口电极,所述第一端口电极和所述第二端口电极分别设置在所述磁体的外表面上;
    所述磁体包括至少一个第一子结构,所述第一子结构包括依次层叠设置的第一上功能层、第一上线圈、第一上胶层、第一绝缘层、第一下胶层、第一下线圈和第一下功能层;
    所述第一上线圈和所述第一下线圈分别具有第一端部和第二端部;所述第一上线圈的第一端部和所述第一下线圈的第一端部暴露到所述磁体的同一表面,所述第一上线圈的第一端部和所述第一下线圈的第一端部均与所述第一端口电极电连接;所述第一上线圈的第二端部和所述第一下线圈的第二端部暴露到所述磁体的同一表面,所述第一上线圈的第二端部和所述第一下线圈的第二端部均与所述第二端口电极电连接。
  2. 根据权利要求1所述的薄膜型功率电感器,其中,所述磁体包括n个层叠设置的所述第一子结构,n为正整数。
  3. 根据权利要求1所述的薄膜型功率电感器,其中,所述磁体包括层叠设置的一个第二子结构和n个所述第一子结构,n为正整数;
    所述第二子结构包括依次层叠设置的第二功能层、第二线圈、第二胶层和第二绝缘层;
    所述第二线圈具有第一端部和第二端部;所述第二线圈的第一端部、所述第一上线圈的第一端部和所述第一下线圈的第一端部暴露到所述磁体的同一表面,所述第二线圈的第一端部、所述第一上线圈的第一端部和所述第一下线圈的第一端部均与所述第一端口电极电连接;所述第二线圈的第二端部、所述第一上线圈的第二端部和所述第一下线圈的第二端部暴露到所述磁体的同一表面,所述第二线圈的第二端部、所述第一上线圈的第二端部和所述第一下线圈的第二端部均与所述第二端口电极电连接。
  4. 根据权利要求1所述的薄膜型功率电感器,其中,所述磁体包括一个第三子结构;
    所述第三子结构包括依次层叠设置的第三上功能层、第三线圈、第三胶层、第三绝缘层和第三下功能层;
    所述第三线圈具有第一端部和第二端部;所述第三线圈的第一端部暴露到所述磁体的表面,所述第三线圈的第一端部与所述第一端口电极电连接;所述第三线圈的第二端部暴露到所述磁体的表面,所述第三线圈的第二端部与所述第二端口电极电连接。
  5. 根据权利要求1所述的薄膜型功率电感器,其中,所述线圈两两之间互相耦合、且形状一致。
  6. 根据权利要求1所述的薄膜型功率电感器,其中,所述薄膜型功率电感器为共模功率电感器或者差模功率电感器。
  7. 根据权利要求6所述的薄膜型功率电感器,其中,
    所述薄膜型功率电感器为共模功率电感器,所述线圈两两之间采用同向设计。
  8. 根据权利要求6所述的薄膜型功率电感器,其中,
    所述薄膜型功率电感器为差模功率电感器,所述线圈两两之间采用反向设计。
  9. 根据权利要求1所述的薄膜型功率电感器,其中,所述薄膜型功率电感器的功能层采用磁性材料制作。
  10. 根据权利要求9所述的薄膜型功率电感器,其中,所述磁性材料为软磁合金。
  11. 根据权利要求1所述的薄膜型功率电感器,其中,所述薄膜型功率电感器的线圈采用金属或者金属合金制作。
PCT/CN2021/090466 2020-10-20 2021-04-28 薄膜型功率电感器 WO2022083092A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21761960.0A EP4009337A4 (en) 2020-10-20 2021-04-28 THIN FILM TYPE POWER INDUCTOR
US17/611,468 US20230360839A1 (en) 2020-10-20 2021-04-28 Thin-film power inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011125941.X 2020-10-20
CN202011125941.XA CN112151246A (zh) 2020-10-20 2020-10-20 一种薄膜型功率电感器

Publications (1)

Publication Number Publication Date
WO2022083092A1 true WO2022083092A1 (zh) 2022-04-28

Family

ID=73954101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090466 WO2022083092A1 (zh) 2020-10-20 2021-04-28 薄膜型功率电感器

Country Status (4)

Country Link
US (1) US20230360839A1 (zh)
EP (1) EP4009337A4 (zh)
CN (1) CN112151246A (zh)
WO (1) WO2022083092A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151246A (zh) * 2020-10-20 2020-12-29 横店集团东磁股份有限公司 一种薄膜型功率电感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575936A (zh) * 2013-10-11 2015-04-29 三星电机株式会社 叠层电感器及其制造方法
CN110739137A (zh) * 2018-07-19 2020-01-31 三星电机株式会社 片式电感器及制造该片式电感器的方法
CN112151246A (zh) * 2020-10-20 2020-12-29 横店集团东磁股份有限公司 一种薄膜型功率电感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016499B1 (ko) * 2018-04-10 2019-09-02 삼성전기주식회사 코일 부품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575936A (zh) * 2013-10-11 2015-04-29 三星电机株式会社 叠层电感器及其制造方法
CN110739137A (zh) * 2018-07-19 2020-01-31 三星电机株式会社 片式电感器及制造该片式电感器的方法
CN112151246A (zh) * 2020-10-20 2020-12-29 横店集团东磁股份有限公司 一种薄膜型功率电感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009337A4

Also Published As

Publication number Publication date
US20230360839A1 (en) 2023-11-09
EP4009337A4 (en) 2023-11-29
EP4009337A1 (en) 2022-06-08
CN112151246A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
KR101792281B1 (ko) 파워 인덕터 및 그 제조 방법
JP3351738B2 (ja) 積層インダクタ及びその製造方法
CN104078221B (zh) 电感器及用于制造该电感器的方法
TWI242782B (en) Chip type power inductor and fabrication method thereof
JP5874199B2 (ja) コイル部品及びその製造方法
US7375609B2 (en) Multilayer laminated circuit board
TWI427649B (zh) 多層電感器
US20070057755A1 (en) Solid electrolytic capacitor and manufacturing method thereof
TW201125003A (en) Multilayered chip power inductor using the magnetic sheet and the method for manufacturing the same
US20140190003A1 (en) Inductor with laminated yoke
CN104766691A (zh) 芯片电子组件及其制造方法
WO2022083092A1 (zh) 薄膜型功率电感器
JP2015198244A (ja) 積層アレイ電子部品及びその製造方法
KR101338139B1 (ko) 파워 인덕터
CN213070861U (zh) 一种薄膜型功率电感器
KR102118489B1 (ko) 칩 전자부품의 제조방법
KR102122925B1 (ko) 코일 전자부품
JPH04242911A (ja) 電子部品の製造方法
JP2005093547A (ja) 高周波コイル及びその製造方法
KR20200062145A (ko) 칩 전자부품 및 그 제조방법
JP6562158B2 (ja) 積層トロイダルコイルおよびその製造方法
JP2003282328A (ja) 薄型磁性素子及びその製造方法並びにそれを用いた電源モジュール
WO2022020984A1 (zh) 电感器件及电子设备
US20230008016A1 (en) Coil component
JPH04101403A (ja) 電子部品及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021761960

Country of ref document: EP

Effective date: 20210906

NENP Non-entry into the national phase

Ref country code: DE