WO2022020984A1 - 电感器件及电子设备 - Google Patents

电感器件及电子设备 Download PDF

Info

Publication number
WO2022020984A1
WO2022020984A1 PCT/CN2020/104751 CN2020104751W WO2022020984A1 WO 2022020984 A1 WO2022020984 A1 WO 2022020984A1 CN 2020104751 W CN2020104751 W CN 2020104751W WO 2022020984 A1 WO2022020984 A1 WO 2022020984A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
core film
winding
winding segment
segment
Prior art date
Application number
PCT/CN2020/104751
Other languages
English (en)
French (fr)
Inventor
刘宁
漆珂
姚骋
路鹏
朱靖华
胡章荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080102237.4A priority Critical patent/CN115803832A/zh
Priority to PCT/CN2020/104751 priority patent/WO2022020984A1/zh
Publication of WO2022020984A1 publication Critical patent/WO2022020984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores

Definitions

  • the present application relates to the field of inductance technology, and in particular, to an inductance device and an electronic device.
  • Inductive devices are electronic components that can convert electrical energy into magnetic energy and store them, and are widely used in various electronic devices (such as consumer electronics, wearable devices, etc.); take mobile phones as an example , the mobile phone is provided with a step-down switch circuit (also called a buck circuit) that supplies power to the chip, and an inductance is set in the buck circuit, which converts the voltage provided by the battery into The working voltage of the chip to ensure the power demand of the chip.
  • a step-down switch circuit also called a buck circuit
  • the internal electronic components must also be miniaturized and thinned, so the requirements for electronic components are also increasing. Strict; taking the inductance device as an example, the height of the inductance device has been reduced from the original 1.2mm to 1.0mm, and the current requirement needs to be less than 0.8mm, especially in the system in package (SIP), the inductance device is required height is smaller.
  • SIP system in package
  • the embodiments of the present application provide an inductance device and an electronic device, which can increase the magnetic flux and reduce the thickness DC resistance on the basis of satisfying the thickness requirement of the inductance device.
  • the present application provides an inductance device, comprising: a first dielectric layer and a second dielectric layer oppositely disposed and a first magnetic core film located between the first dielectric layer and the second dielectric layer; the inductance device further includes: a first The winding segment, the second winding segment, the third winding segment, the second magnetic core film, and the third magnetic core film; the first winding segment and the second winding segment are arranged side by side in the same layer on the first dielectric layer away from the first magnetic core film.
  • the third winding segment is arranged on the side of the second dielectric layer away from the first magnetic core film; the end of the third winding segment on the first side and the end of the first winding segment on the first side pass through the first metal
  • the end of the third winding segment on the second side is connected with the end of the second winding segment on the second side through a second metal via hole;
  • the second magnetic core film is located on the first winding segment and the second winding segment is away from One side of the first dielectric layer covers the first winding segment and the second winding segment;
  • the third magnetic core film is located on the side of the third winding segment away from the second dielectric layer and covers the third winding segment.
  • parallel arrangement does not mean parallel arrangement.
  • first winding segment and the second winding segment are regarded as two metal wires, the two may be parallel to each other, or there may be certain angle.
  • a plurality of winding segments distributed on two layers are sequentially connected in series through metal vias to form a coil with a vertical magnetic core (ie, the first magnetic core film) winding direction, that is, the number of coils wound in the horizontal direction.
  • a vertical magnetic core ie, the first magnetic core film
  • the second magnetic core film and the third magnetic core film are respectively arranged on the outside of the winding segments on both sides.
  • the magnetic flux of the inductive device is increased, and the DC resistance of the inductive device is reduced.
  • the first metal via penetrates the third winding segment and the end of the first winding segment is located on the first side; the second metal via penetrates the third winding segment and the second winding segment is located on the second side end of .
  • a drilling process can be used to complete the fabrication of metal vias.
  • the thickness of the first magnetic core film is 0.2 mm ⁇ 0.4 mm, which effectively meets the requirement of light and thin inductance devices.
  • the magnetic permeability of the first magnetic core film is 100 ⁇ 300.
  • the inductance of the inductance device is greatly increased, the number of coil turns of the inductance device is reduced, and the DC resistance of the entire inductance device is effectively reduced.
  • the magnetic permeability of the second magnetic core film and the third magnetic core film is 10-50; by adopting the second magnetic core film and the third magnetic core with conventional magnetic permeability (10-50) The film can constrain the secondary magnetic flux, increase the magnetic flux of the inductance device, reduce the DC resistance, and at the same time avoid the electromagnetic interference (EMI) problem caused by the leakage of the main magnetic flux to the external space.
  • EMI electromagnetic interference
  • the thickness of the second magnetic core film is 0.05mm ⁇ 0.15mm.
  • the thickness of the third magnetic core film is 0.05mm ⁇ 0.15mm.
  • the thicknesses of the first winding segment, the second winding segment, and the third winding segment are 0.03 mm ⁇ 0.06 mm.
  • the first winding segment and the second winding segment are arranged in parallel; so as to reduce the plane size of the inductance device.
  • Embodiments of the present application also provide an electronic device, including the inductive device in any of the foregoing possible implementation manners.
  • FIG. 1 is a schematic structural diagram of an inductance device provided by an embodiment of the present application.
  • Fig. 2 is the sectional schematic diagram of Fig. 1 at OO' position
  • FIG. 3 is a top view of the inductance device of FIG. 1;
  • FIG. 4 is a side view of the inductive device of FIG. 1;
  • FIG. 5 is a schematic structural diagram of an inductance device provided by an embodiment of the present application.
  • An embodiment of the present application provides an electronic device, in which an inductive device is provided; for example, a buck circuit in the electronic device has an inductive device; for another example, a system-in-package in the electronic device has an inductive device.
  • the above electronic devices can be wearable devices, such as smart bracelets, smart watches, smart glasses, headphones, etc.; can also be consumer electronic devices, such as mobile phones, tablets, notebooks, smart speakers, etc.; can also be servers, Processing, etc., this application does not limit the specific form of the electronic device.
  • the embodiments of the present application provide an inductance device, which has the characteristics of miniaturization and thinness, and is especially suitable for thin and light electronic devices (such as wearable devices and consumer electronic devices).
  • an embodiment of the present application provides an inductance device, as shown in FIG. 1 and FIG. 2 (a schematic cross-sectional view of FIG. 1 along the OO' position), the inductance device includes: a first dielectric layer D1 and a second dielectric layer D2 disposed opposite to each other, and the first magnetic core film M1 located between the first dielectric layer D1 and the second dielectric layer D2.
  • the inductance device further includes a first winding segment a1 and a first winding segment a1 and a first winding segment a1 and a first winding segment a1 and a first winding segment a1 and a second winding segment a1 and a second winding segment a1 and a second winding segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a first winding wire segment a1 and a first winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second wireline winding segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and a second winding wire segment a1 and
  • FIG. 1 only shows that the right end of the third winding segment a3 is connected to the right end of the first winding segment a1 through the first metal via b1, and the left end of the third winding segment a3
  • the connection between the left end of the third winding segment a2 and the left end of the second winding segment a2 through the second metal via b2 is illustrated as an example; in some possible implementations, the right end of the third winding segment a3 and the first The right end of the second winding segment a2 is connected through a metal via, and the left end of the third winding segment a3 is connected to the left end of the first winding segment a1 through a metal via.
  • the end of the above-mentioned winding segment connected by metal vias should not be understood as the edge or boundary position of the winding segment, but refers to the area on the side where the metal via connection is performed.
  • the first winding segment a1 and the second winding segment a2 arranged in parallel on the same layer and the third winding segment a3 located in another layer are connected in series through metal vias (b1, b2) in sequence to form a vertical A coil wound in the direction of the magnetic core film M1 (ie, the winding direction of the coil of the inductance device is perpendicular to the magnetic core), in this case, the direction of the main magnetic flux located in the first magnetic core film M1 is parallel to.
  • the setting of the first magnetic core film M1 is to improve the inductance.
  • the first magnetic core film M1 with high magnetic permeability can be used to greatly improve the inductance of the inductance device.
  • the number of turns of the coil is reduced to effectively reduce the direct current resistance (Rdc) of the entire inductance device; for illustration, the magnetic permeability of the first magnetic core film M1 may be 100 ⁇ 300.
  • the permeability of the first magnetic core film M1 may be 100, 200, 300, or the like.
  • the application does not impose specific limitations on the high magnetic permeability material for forming the first magnetic core film M1.
  • the first magnetic core film M1 can be formed of a soft magnetic composite material with high magnetic permeability, such as FeSiCr alloy material, carbonyl iron powder One or more of magnetic materials with high magnetic permeability and high magnetic saturation strength, such as iron-based amorphous or nanocrystalline materials.
  • the inductance device further includes a second magnetic core film M2 and a third magnetic core film M3; wherein, the second magnetic core film M2 is located in the first magnetic core film M2
  • the upper surfaces of the winding segment a1 and the second winding segment a2 that is, the surface on the side away from the first dielectric layer D1
  • the second magnetic core film M2 covers the first winding segment a1 and the second winding segment a2
  • the third magnetic core The film M3 is located on the lower surface of the third winding segment a3 (ie, the surface on the side facing away from the second dielectric layer D2 ), and the third magnetic core film 2 covers the third winding segment a3 .
  • a coil formed by a plurality of winding segments (including a1, a2, a3) produces a coil located in the first magnetic core film
  • the main magnetic flux T in M1 and parallel to the first magnetic core film M1 (only the region of the main magnetic flux T is shown in FIG. 3 and FIG.
  • the secondary magnetic flux S1 located on the upper side of the main magnetic flux T and passing through the first magnetic core film M1 and the second magnetic core film M2 in the direction perpendicular to the first magnetic core film M1 can be confined in the second magnetic core film M2
  • the secondary magnetic flux S2 located on the lower side of the main magnetic flux T and passing through the first magnetic core film M1 and the third magnetic core film M3 in the direction perpendicular to the first magnetic core film M1 is confined in the third magnetic core film M3, thereby further
  • the magnetic flux of the inductance device is improved, the DC resistance is reduced, and the electromagnetic interference (EMI) problem caused by the leakage of the main magnetic flux to the external space is avoided; that is, through the second magnetic core film M2 and the third
  • the arrangement of the magnetic core film M3 can not only reduce the leakage of the magnetic flux of the inductance, but also assist in improving the inductance and saturation current parameters.
  • the above-mentioned second magnetic core film M2 and third magnetic core film M3 may adopt soft magnetic composite materials with conventional magnetic permeability.
  • the magnetic permeability of the second magnetic core film M2 and the third magnetic core film M3 is 10 ⁇ 50.
  • the application does not limit the soft magnetic composite material for forming the second magnetic core film M2 and the third magnetic core film M3, for example, it can be FeSiCr alloy material, carbonyl iron powder material, iron-based amorphous or nanocrystalline material, NiZn ferrite , MnZn ferrite, or one or more of other constituent ferrite magnetic materials.
  • the particle shape (such as flake, spherical, etc.) of the soft magnetic composite material itself is directly related to the size of the magnetic permeability, and the same soft magnetic composite material can have different particle shapes.
  • the magnetic permeability of the soft magnetic composite material of particles is higher than that of the soft magnetic composite material of spherical particles.
  • the first magnetic core film M1 can be made of a soft magnetic composite material of flake-like particles
  • the second magnetic core film M2 and the third magnetic core film M1 can be made of a soft magnetic composite material of spherical particles.
  • a plurality of winding segments distributed on two layers are connected in series through metal vias in sequence to form a coil with a vertical magnetic core (ie, the first magnetic core film) winding direction, that is, along the
  • the number of coils wound in the horizontal direction is not restricted by the size in the thickness direction (that is, the magnetic flux requirement of the inductance device can be met without increasing the thickness); at the same time, the second magnetic core film and The third magnetic core film increases the magnetic flux of the inductive device and reduces the DC resistance of the inductive device, thereby increasing the magnetic flux of the inductive device on the basis of meeting the thickness requirement of the inductive device.
  • each component such as metal vias, magnetic core film layers, winding segments, and dielectric layers.
  • the first dielectric layer D1 and the second dielectric layer D2 can be made of insulating materials, for example, the first dielectric layer D1 and the second dielectric layer D2 can be made of polyimide (polyimide, PI), but not limited thereto.
  • polyimide polyimide, PI
  • the thicknesses of the first dielectric layer D1 and the second dielectric layer D2 may be the same or different, which are not specifically limited in this application, provided that the production of the winding segments located on the surface (for example, an etching process can be used) is satisfied. , the thicknesses of the first dielectric layer D1 and the second dielectric layer D2 can be reduced as much as possible, so as to meet the requirements for light and thin inductance devices.
  • the thicknesses of the first dielectric layer D1 and the second dielectric layer D2 may be less than 0.05 mm.
  • the specific arrangement form of the involved metal vias (eg, b1 and b2 ) is not limited in this application.
  • the metal vias (eg, b1, b2) involved in the present application may be hollow cylindrical structures formed only by plating metal layers on the inner sidewalls of the vias.
  • the metal via can also be a solid cylindrical structure filled with metal material.
  • a drilling process can be used after the first winding segment a1, the second winding segment a2, and the third winding segment a2 are fabricated (similar fabrication and printing can be used). Drilling process in the circuit board), forming a first metal via b1 penetrating the connection end of the first winding segment a1 and the third winding segment a3, and penetrating the connection end of the second winding segment a2 and the third winding segment a3 part of the second metal via b2.
  • first metal via b1 penetrates the connecting ends of the first winding segment a1 and the third winding segment a3, it will inevitably penetrate the connecting ends located at the first winding segment a1 and the third winding segment a3. Also, the second metal via b2 must penetrate the interlayer structure located between the connecting ends of the second winding segment a2 and the third winding segment a3.
  • the thicknesses of the first winding segment a1 , the second winding segment a2 , and the second winding segment a3 are 0.03 mm ⁇ 0.06 mm.
  • the thicknesses of the first winding segment a1, the second winding segment a2, and the third winding segment a3 may be 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, and the like.
  • the winding segments including the first winding segment a1, the second winding segment a2, and the third winding segment a3, may be metal sheets or metal wires. Its shape and size can be freely set according to needs, such as linear, square, oval, or even circular.
  • each winding segment may also be formed by splicing multiple segments of metal sheets or metal wires in series or in parallel. Further, in an optional embodiment, the winding segment may also be a line path provided with various circuit devices.
  • the vertical winding method is not limited by the size in the thickness direction, so in actual production, referring to Figure 1, a metal sheet with a larger width can be used as the winding segment; schematically, the winding segment (a1, a2, a3 ) may have a width of 100 ⁇ m to 500 ⁇ m.
  • winding segments such as a1, a2, a3) and metal vias (such as b1, b2) in this application can be made of copper, but not limited to this, and other metal materials such as aluminum and silver can also be used. You can choose the settings according to your needs.
  • the first winding segment a1 and the second winding segment a2 arranged in parallel may be arranged in parallel.
  • the extension direction of the third winding segment 3 is the same as the right end of the first winding segment a1 and the second winding segment.
  • the extension directions of the connecting lines at the left end of the line segment a2 are basically the same.
  • first magnetic core film M1 For the first magnetic core film M1, the second magnetic core film M2, and the third magnetic core film M2:
  • the thickness of the above-mentioned first magnetic core film M1 may be 0.2 mm ⁇ 0.4 mm.
  • the first magnetic core film M1 may be 0.2 mm; for another example, the first magnetic core film M1 may be 0.3 mm; for another example, the first magnetic core film M1 may be 0.4 mm.
  • the first magnetic core film M1 may be formed by applying a high-temperature vacuum hot pressing method to a multilayer film with high magnetic permeability (100-300).
  • the thicknesses of the second magnetic core film M2 and the third magnetic core film M3 are 0.05 mm ⁇ 0.15 mm; of course, the thicknesses of the second magnetic core film M2 and the third magnetic core film M3 may be the same, It can also be different, which is not limited in this application; for illustration, taking the second magnetic core film M2 and the third magnetic core film M3 having the same thickness as an example, in some embodiments, the second magnetic core film M2 and the third magnetic core film M2 and the third magnetic core film M2 have the same thickness.
  • the thickness of the core film M3 may be 0.05mm, 0.1mm, 0.15mm, or the like.
  • the second magnetic core film M2 and the third magnetic core film M3 may be formed by applying a high temperature vacuum hot pressing method to a plurality of thin films of conventional magnetic permeability (10-50).
  • the inductor device including only the first winding segment a1, the second winding segment a2, and the third winding segment a3 as an example, but the present application is not limited to this, in some possible implementations
  • the inductance device in order to increase the inductance of the inductance device, as shown in Figure 5, can add other winding segments arranged in parallel on the same layer as the first winding segment a1 and the second winding segment a2, and in the third winding segment Other winding segments arranged in parallel are added on the same layer of a3; in this case, the winding segment on the upper layer and the winding segment on the lower layer are connected in series through metal vias to form multiple vertical windings.
  • 4 winding segments are arranged on the upper layer, and 3 winding segments are arranged on the lower layer (not all shown in FIG. 5 ).
  • the first terminal electrode E1 and the second terminal electrode E2 may be arranged below the third magnetic core film M3, and the left end of the first winding segment a1 The part is connected to the first terminal electrode E1 through the third metal via hole b3, and the right end of the second winding segment a2 is connected to the second terminal electrode E2 through the fourth metal via hole b4.
  • the inductive device includes more than three winding segments (the inductive device as shown in FIG. 5 )
  • the two end electrodes (E1, E2) respectively form two ends of the coil of the inductive device through the winding segments. It is enough to connect, and it can be set according to the specific structure in practice.
  • an inductor master including a plurality of inductance devices can be formed by a single process, and then a plurality of inductance devices can be obtained by cutting. independent inductive device.
  • the inductive device when the inductive device is applied to a power supply system (such as a buck circuit) of an electronic device, the conversion efficiency of the power supply system can be improved, and the continuous standby capability of the electronic device can be improved.
  • a power supply system such as a buck circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请提供了一种电感器件及电子设备,涉及电感技术领域,能够在满足电感器件的厚度需求的基础上,增加磁通量,减小厚度直流电阻。该电感器件包括:相对设置的第一介质层和第二介质层以及位于第一介质层和第二介质层之间的第一磁芯膜;该电感器件还包括:第一绕线段、第二绕线段、第三绕线段、第二磁芯膜、第三磁芯膜;第一绕线段和第二绕线段同层并列设置在第一介质层背离第一磁芯膜一侧,第三绕线段设置在第二介质层背离第一磁芯膜的一侧;第三绕线段的两端分别通过金属过孔与第一绕线段和第二绕线段的相对侧的两个端部连接;第二磁芯膜位于第一绕线段和第二绕线段的上侧,且覆盖第一绕线段和第二绕线段;第三磁芯膜位于第三绕线段的下侧,且覆盖第三绕线段。

Description

电感器件及电子设备 技术领域
本申请涉及电感技术领域,尤其涉及一种电感器件及电子设备。
背景技术
电感器件(也可以简称为电感)是能够把电能转化为磁能而存储起来的电子元器件,广泛的应用在各类电子设备(例如消费类电子产品、可穿戴设备等)中;以手机为例,手机内部设置有向芯片供电的降压开关电路(也可以称为buck电路),buck电路中设置有电感,其在工作过程通过对电感进行充电以及电感的放电,将电池提供的电压转换成芯片的工作电压,以保证芯片的用电需求。
随着电子设备(尤其是消费类电子设备、可穿戴设备)逐渐往轻薄化方向发展,其内部的电子元器件也必然向小型化和轻薄化方向,从而对电子元器件的要求也越来越严格;以电感器件为例,电感器件的高度已经从原来的1.2mm降低到了1.0mm,现在提出的要求需要小于0.8mm,尤其是在系统级封装(system in package,SIP)中,要求电感器件的高度更小。
现有的小型电感器件大多采用水平缠绕的方式(磁通量的方向垂直磁芯层),在保证电感器件的电感量满足需求的前提下降低高度,则必然需要增加绕线的圈数,绕线的厚度(或者粗度)减小,从而导致电感的直流电阻(Rdc)急剧增加,进而造成供电系统效率下降,设备待机时间缩短等弊端。
发明内容
本申请实施例提供一种电感器件及电子设备,能够在满足电感器件的厚度需求的基础上,增加磁通量,减小厚度直流电阻。
本申请提供一种电感器件,包括:相对设置的第一介质层和第二介质层以及位于第一介质层和第二介质层之间的第一磁芯膜;该电感器件还包括:第一绕线段、第二绕线段、第三绕线段、第二磁芯膜、第三磁芯膜;第一绕线段和第二绕线段同层并列设置在第一介质层背离第一磁芯膜一侧,第三绕线段设置在第二介质层背离第一磁芯膜的一侧;第三绕线段位于第一侧的端部与第一绕线段位于第一侧的端部通过第一金属过孔连接,第三绕线段位于第二侧的端部与第二绕线段位于第二侧的端部通过第二金属过孔连接;第二磁芯膜位于第一绕线段和第二绕线段背离第一介质层的一侧,且覆盖第一绕线段和第二绕线段;第三磁芯膜位于第三绕线段背离第二介质层的一侧,且覆盖第三绕线段。
在本发明实施例中,“并列设置”并不等于平行设置,换句话说,如果把第一绕线段和第二绕线段看做两条金属线的话,二者可以互相平行,也可以存在一定角度。
本申请实施例提供的电感器件,将分布在两层的多个绕线段通过金属过孔依次串联形成垂直磁芯(即第一磁芯膜)绕向的线圈,也即沿水平方向绕线圈数,不受厚度方向上尺寸约束(也即在不增加厚度的基础上即可满足电感器件的磁通量需求);同时通过在两侧 绕线段的外侧分别设置第二磁芯膜和第三磁芯膜,以进一步提高电感器件的磁通量,降低电感器件的直流电阻;也即在满足电感器件的厚度需求的基础上,提高了电感器件的磁通量,降低了电感器件的直流电阻。
在一些可能实现的方式中,第一金属过孔贯穿第三绕线段和第一绕线段位于第一侧的端部;第二金属过孔贯穿第三绕线段和第二绕线段位于第二侧的端部。在此情况下,可以采用钻孔工艺,来完成金属过孔的制作。
在一些可能实现的方式中,第一磁芯膜的厚度为0.2mm~0.4mm,有效的保证了电感器件对轻薄化的需求。
在一些可能实现的方式中,第一磁芯膜的磁导率为100~300。通过设置高磁导率(100~300)的第一磁芯膜,大幅提高电感器件的电感量,减小电感器件的线圈圈数,从而有效降低整个电感器件的直流电阻。
在一些可能实现的方式中,第二磁芯膜和第三磁芯膜的磁导率为10~50;通过采用常规磁导率(10~50)的第二磁芯膜和第三磁芯膜,能够对副磁通量进行约束,提高电感器件的磁通量,降低直流电阻,同时避免了因主磁通量向外部空间泄露而造成的电磁干扰(electromagnetic interference,EMI)问题。
在一些可能实现的方式中,第二磁芯膜的厚度为0.05mm~0.15mm。
在一些可能实现的方式中,第三磁芯膜的厚度为0.05mm~0.15mm。
在一些可能实现的方式中,第一绕线段、第二绕线段、第三绕线段的厚度为0.03mm~0.06mm。
在一些可能实现的方式中,第一绕线段和第二绕线段平行设置;以减小的电感器件平面尺寸。
本申请实施例还提供一种电子设备,包括前述任一种可能实现的方式中的电感器件。
附图说明
图1为本申请实施例提供的一种电感器件的结构示意图;
图2为图1在OO’位置的剖面示意图;
图3为图1的电感器件的俯视图;
图4为图1的电感器件的侧视图;
图5为本申请实施例提供的一种电感器件的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单 元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。“上”、“下”、“左”、“右”等仅用于相对于附图中的部件的方位而言的,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中的部件所放置的方位的变化而相应地发生变化。
本申请实施例提供一种电子设备,该电子设备中设置有电感器件;例如,电子设备中的buck电路具有电感器件;又例如,电子设备中的系统级封装具有电感器件。
上述电子设备可以为可穿戴设备,如智能手环、智能手表、智能眼镜、头戴式耳机等;还可以为消费电子类设备,如手机、平板、笔记本、智能音箱等;还可以为服务器、处理等,本申请对于该电子设备的具体形式不做限制。
本申请实施例提供一种电感器件,该电感器件具有小型化和轻薄化的特点,尤其适用于轻薄化的电子设备(如可穿戴设备、消费电子类设备)。
以下对本申请实施例提供的电感器件做进一步的说明。
本申请实施例提供一种电感器件,如图1和图2(图1沿OO’位置的剖面示意图)所示,该电感器件包括:相对设置的第一介质层D1和第二介质层D2,以及位于第一介质层D1和第二介质层D2之间的第一磁芯膜M1。
参考图1和图2所示,该电感器件还包括同层、并列设置在第一介质层D1的上表面(即背离第一磁芯膜M1一侧的表面)的第一绕线段a1和第二绕线段a2;以及设置在第二介质层D2的下表面(即背离第一磁芯膜M1一侧的表面)的第三绕线段a3;其中,参考图1和图3(图1的俯视图)所示,第三绕线段a3的右侧端部与第一绕线段a1的右侧端部通过第一金属过孔b1连接,第三绕线段a3的左侧端部与第二绕线段a2的左侧端部通过第二金属过孔b2连接。
需要说明的是,图1仅是示意的第三绕线段a3的右侧端部与第一绕线段a1的右侧端部通过第一金属过孔b1连接,第三绕线段a3的左侧端部与第二绕线段a2的左侧端部通过第二金属过孔b2连接为例进行示意说明的;在一些可能实现的方式中,也可以设置第三绕线段a3的右侧端部与第二绕线段a2的右侧端部通过金属过孔连接,第三绕线段a3的左侧端部与第一绕线段a1的左侧端部通过金属过孔连接。
另外,前述绕线段通过金属过孔连接的端部,不应该理解为该绕线段的边缘或者边界位置,而是指在进行金属过孔连接的一侧的区域。
在该电感器件中,分布在同层并列设置的第一绕线段a1和第二绕线段a2与位于另一层的第三绕线段a3通过金属过孔(b1、b2)依次串联形成沿垂直第一磁芯膜M1方向上绕向的线圈(即电感器件的线圈绕向与磁芯垂直),在此情况下,位于第一磁芯膜M1主磁通量的方向与平行。
可以理解的是,第一磁芯膜M1的设置是为了提高电感量,在一些可能实现的方式中,可以采用高磁导率的第一磁芯膜M1,来大幅提高电感器件的电感量,减小线圈的圈数,以有效降低整个电感器件的直流电阻(Rdc);示意的,第一磁芯膜M1的磁导率可以为100~300。例如,在一些实施例中,第一磁芯膜M1的磁导率可以为100、200、300等。
本申请对形成第一磁芯膜M1的高磁导率材料不作具体限制,第一磁芯膜M1可以采用具有高磁导率的软磁复合材料形成,例如可以为FeSiCr合金材料、羰基铁粉材料、铁基非晶或者纳米晶材料等具有高磁导率、高磁饱和强度特点的磁性材料中的一种或多种。
在此基础上,为了进一步的增加电感器件的磁通量,如图2所示,该电感器件还包括第二磁芯膜M2和第三磁芯膜M3;其中,第二磁芯膜M2位于第一绕线段a1和第二绕线段a2的上表面(即背离第一介质层D1一侧的表面),且第二磁芯膜M2覆盖第一绕线段a1和第二绕线段a2;第三磁芯膜M3位于第三绕线段a3的下表面(即背离第二介质层D2一侧的表面),且第三磁芯膜2覆盖第三绕线段a3。
在此情况下,如图3(俯视图)和图4(侧视图)所示,在该电感器件中,多个绕线段(包括a1、a2、a3)形成的线圈,产生位于第一磁芯膜M1中、且与第一磁芯膜M1平行的主磁通量T(图3和图4中仅示出了主磁通量T的区域),同时通过设置第二磁芯膜M2和第三磁芯膜M3,能够将位于主磁通量T上侧、且沿垂直第一磁芯膜M1方向上穿过第一磁芯膜M1和第二磁芯膜M2的副磁通量S1约束在第二磁芯膜M2中,将位于主磁通量T下侧、且沿垂直第一磁芯膜M1方向上穿过第一磁芯膜M1和第三磁芯膜M3的副磁通量S2约束在第三磁芯膜M3中,从而进一步的提高了电感器件的磁通量,降低了直流电阻,同时避免了因主磁通量向外部空间泄露而造成的电磁干扰(electromagnetic interference,EMI)问题;也就是说,通过第二磁芯膜M2和第三磁芯膜M3的设置,能够在减小电感磁通量泄漏的同时,还可以辅助提升电感量及饱和电流参数等。
实际中通过对设置第二磁芯膜M2和第三磁芯膜M3的电感器件外围空间的磁场强度,以及未设置第二磁芯膜M2和第三磁芯膜M3的电感器件外围空间的磁场强度,进行模拟仿真对比,进一步的证实了采用第二磁芯膜M2和第三磁芯膜M3的电感器件对外围空间近场的干扰明显降低。
上述第二磁芯膜M2和第三磁芯膜M3可以采用常规磁导率的软磁复合材料。在一些可能实现的方式中,第二磁芯膜M2和第三磁芯膜M3的磁导率为10~50。
本申请对于形成第二磁芯膜M2和第三磁芯膜M3的软磁复合材料不作限制,例如可以为FeSiCr合金材料、羰基铁粉材料、铁基非晶或者纳米晶材料、NiZn铁氧体、MnZn铁氧体、或其它成分铁氧体磁性材料中的一种或多种。
本领域的技术人员可以理解的是,软磁复合材料本身的微粒形态(如片状、球状等)与磁导率的大小直接相关,相同的软磁复合材料可以具有不同的微粒形态,片状微粒的软磁复合材料的磁导率相对于球状微粒的软磁复合材料的磁导率要高。例如,第一磁芯膜M1可以采用薄片状微粒的软磁复合材料,第二磁芯膜M2和第三磁芯膜M1可以采用球形微粒的软磁复合材料。
综上所述,本申请实施例提供的电感器件,将分布在两层的多个绕线段通过金属过孔依次串联形成垂直磁芯(即第一磁芯膜)绕向的线圈,也即沿水平方向绕线圈数,不受厚度方向上尺寸约束(也即在不增加厚度的基础上即可满足电感器件的磁通量需求);同时通过在两侧绕线段的外侧分别设置第二磁芯膜和第三磁芯膜,以提高电感器件的磁通量,降低电感器件的直流电阻,从而在满足电感器件的厚度需求的基础上,提高了电感器件的磁通量。
以下对本申请的电感器件中的各部件(如金属过孔、磁芯膜层、绕线段、介质层)的相关设置做进一步的说明。
第一介质层D1和第二介质层D2可以采用绝缘材质,例如第一介质层D1和第二介质层D2可以均采用聚酰亚胺(polyimide,PI),但并不限制于此。
第一介质层D1和第二介质层D2的厚度可以相同,也可以不同,本申请对此不作具体限制,在满足位于其表面的绕线段的制作(例如可以采用刻蚀工艺制作)的前提下,可以尽可能的减小第一介质层D1和第二介质层D2的厚度,以满足电感器件对轻薄化的需求。
示意的,在一些可能实现的方式中,第一介质层D1和第二介质层D2的厚度可以为0.05mm以下。
本申请中对于所涉及的金属过孔(如b1、b2)的具体设置形式不做限制。
在具体实现上,本申请中所涉及的金属过孔(如b1、b2)可以是仅在过孔的内侧壁镀金属层形成的空心柱形结构。在可选择的实施方式中,该金属过孔也可以是内部填满金属材料的实心柱形结构。
示意的,金属过孔(b1、b2)在实际制作时,可以在完成第一绕线段a1、第二绕线段a2、第三绕线段a2的制作后,采用钻孔工艺(可以采用类似制作印刷线路板中的钻孔工艺),形成贯通第一绕线段a1和第三绕线段a3的连接端部的第一金属过孔b1,以及贯通第二绕线段a2和第三绕线段a3的连接端部的第二金属过孔b2。可以理解的是,第一金属过孔b1在贯通第一绕线段a1和第三绕线段a3的连接端部的同时,必然会贯穿位于第一绕线段a1和第三绕线段a3的连接端部之间的层间结构,同样第二金属过孔b2必然会贯穿位于二绕线段a2和第三绕线段a3的连接端部之间的层间结构。
在一些可能实现的方式中,第一绕线段a1、第二绕线段a2、第二绕线段a3的厚度为0.03mm~0.06mm。例如,在一些实施例中,第一绕线段a1、第二绕线段a2、第三绕线段a3的厚度可以为0.03mm、0.04mm、0.05mm、0.06mm等。
在本发明的实施例中,所述绕线段,包括第一绕线段a1、第二绕线段a2、第三绕线段a3,可以是金属片或者金属线。其形状、尺寸都可以根据需要自由设定,比如可以为线性、方形、椭圆形、甚至是圆形。
在可选择的实施例中,每一个绕线段也可以是多段金属片或者金属线通过串联或者并联的方式拼接而成。更进一步的,在可以选择的实施例中,所述绕线段也可以是由设置了各种电路器件的线路路径。
相比于相关技术中电感器件受厚度方向上的尺寸限制,必须采用较细的绕线(直径约50μm~100μm)来增加绕线圈数,以满足磁通量的需求而言,本申请的绕线段采用垂直绕向的方式,不受厚度方向上的尺寸限制,因此实际在制作时,参考图1所示,可以采用宽度较大的金属片作为绕线段;示意的,绕线段(a1、a2、a3)的宽度可以为100μm~500μm。
另外,本申请中的绕线段(如a1、a2、a3)以及金属过孔(如b1、b2)可以采用铜材质,但并不限制于此,也可以采用铝、银等其他金属材质,实际中可以根据需要选择设置即可。
在一些可能实现的方式中,如图3所示,为了减小的电感器件平面尺寸,可以将并列设置的第一绕线段a1和第二绕线段a2平行设置。
可以理解的是,参考图3,在第一绕线段a1和第二绕线段a2平行设置的情况下,第三绕线段3的延伸方向与第一绕线段a1的右侧端部和第二绕线段a2的左侧端部连接线的延伸方向基本一致。
对于第一磁芯膜M1、第二磁芯膜M2、第三磁芯膜M2而言:
在一些可能实现的方式中,上述第一磁芯膜M1的厚度可以为0.2mm~0.4mm。例如,第一磁芯膜M1可以为0.2mm;又例如,第一磁芯膜M1可以为0.3mm;再例如,第一磁芯膜M1可以为0.4mm。
在一些可能实现的方式中,第一磁芯膜M1可以是通过将多层高磁导率(100~300)的薄膜采用高温真空热压的方式形成。
在一些可能实现的方式中,第二磁芯膜M2和第三磁芯膜M3的厚度为0.05mm~0.15mm;当然,第二磁芯膜M2和第三磁芯膜M3的厚度可以相同,也可以不同,本申请对此不作限制;示意的,以第二磁芯膜M2和第三磁芯膜M3的厚度相同为例,在一些实施例中,第二磁芯膜M2和第三磁芯膜M3的厚度可以为0.05mm、0.1mm、0.15mm等。
在一些可能实现的方式中,第二磁芯膜M2和第三磁芯膜M3可以是通过将多层常规磁导率(10~50)的薄膜采用高温真空热压的方式形成。
此外,前述实施例均以该电感器件中仅包括第一绕线段a1、第二绕线段a2、第三绕线段a3为例进行示意说明的,但本申请并不限制于此,在一些可能实现的方式中,为了增加电感器件的电感量,如图5所示,该电感器件可以在与第一绕线段a1、第二绕线段a2同层增设并列设置的其他绕线段,在第三绕线段a3的同层增设并列设置的其他绕线段;在此情况下,位于上层的绕线段与位于下层的绕线段通过金属过孔依次串联形成垂直绕向的多个线圈。示意的,如图5所示,上层设置4个绕线段,下层设置3个绕线段(图5中未全部示出)。
当然,对于电感器件而言,为了尽可能的减小平面尺寸,在与第一绕线段a1、第二绕线段a2同层并列设置有其他绕线段的情况下,可以将该层所有的绕线段均平行设置;在与第三绕线段a3同层并列设置有其他的绕线段的情况下,可以将该层所有的绕线段均平行设置。
另外,作为电感器件,需要在位于线圈的两端一般分别连接端电极,以通过端电极向该电感器件的线圈输入电信号。
参考图1和图2所示,在一些可能实现的方式中,可以将第一端电极E1和第二端电极E2设置在第三磁芯膜M3的下方,第一绕线段a1的左侧端部通过第三金属过孔b3与第一端电极E1连接,第二绕线段a2的右侧端部通过第四金属过孔b4与第二端电极E2连接。
当然,对于电感器件中包括三个以上的绕线段的情况下(如图5中示意的电感器件),两个端电极(E1、E2)分别通过绕线段形成电感器件的线圈的两个端部连接即可,实际中可以具体的结构进行设置即可。
另外,根据前述实施例的描述,可以理解的是,对于本申请的电感器件而言,其在制作时,可以采用一次制程形成包括多个电感器件的电感器母版,然后通过切割得到多个独立的电感器件。
参考下表,以采用图5中示出的电感器件为例,将其与相关技术中提供的一体成型电感、薄膜电感、层叠电感进行实际的对比。
电感量(μH) 尺寸(长*宽*高)/mm 电感类型 直流电阻(mohm)
0.47 2.0*1.25*0.80 一体成型电感 25
0.47 2.0*1.25*0.55 薄膜电感 52
0.47 2.0*1.60*0.65 层叠电感 40
0.47 2.0*1.25*0.65 本申请(图5) 15
如上表所示,可以看出,在具有相同电感量(0.47μH)的基础上,采用本申请实施例图5提供的电感器件,其尺寸(2.0mm*1.25mm*0.65mm)在满足小型化和轻薄化的同时,具有较小的直流电阻(Rdc=15mohm)。
可以理解的是,基于该电感器件的低直流电阻的特性,在该电感器件应用于电子设备的电源系统(如buck电路)时,能够提升电源系统的转换效率,提高电子设备的持续待机能力。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种电感器件,其特征在于,包括第一介质层和第二介质层,以及处于所述第一介质层和第二介质层之间的第一磁芯膜;
    所述电感器件还包括:
    第一绕线段和第二绕线段,并列设置在所述第一介质层背离所述第一磁芯膜的一侧;
    第三绕线段,设置在所述第二介质层背离所述第一磁芯膜的一侧;其中,所述第三绕线段位于第一侧的端部与所述第一绕线段位于所述第一侧的端部通过第一金属过孔连接,所述第三绕线段位于第二侧的端部与所述第二绕线段位于所述第二侧的端部通过第二金属过孔连接;
    第二磁芯膜,位于所述第一绕线段和所述第二绕线段背离所述第一介质层的一侧,且覆盖所述第一绕线段和所述第二绕线段;
    第三磁芯膜,位于所述第三绕线段背离所述第二介质层的一侧,且覆盖所述第三绕线段。
  2. 根据权利要求1所述的电感器件,其特征在于,
    所述第一金属过孔贯穿所述第三绕线段和所述第一绕线段位于所述第一侧的端部;
    所述第二金属过孔贯穿所述第三绕线段和所述第二绕线段位于所述第二侧的端部。
  3. 根据权利要求1或2所述的电感器件,其特征在于,所述第一磁芯膜的厚度为0.2mm~0.4mm。
  4. 根据权利要求1-3任一项所述的电感器件,其特征在于,所述第一磁芯膜的磁导率为100~300。
  5. 根据权利要求1-4任一项所述的电感器件,其特征在于,
    所述第二磁芯膜和所述第三磁芯膜的磁导率为10~50。
  6. 根据权利要求5所述的电感器件,其特征在于,
    所述第二磁芯膜和所述第三磁芯膜的厚度为0.05mm~0.15mm。
  7. 根据权利要求1-6任一项所述的电感器件,其特征在于,
    所述第一绕线段、所述第二绕线段、所述第三绕线段的厚度为0.03mm~0.06mm。
  8. 根据权利要求1-7任一项所述的电感器件,其特征在于,
    所述第一绕线段和所述第二绕线段平行设置。
  9. 一种电子设备,其特征在于,包括如权利要求1-8任一项所述的电感器件。
PCT/CN2020/104751 2020-07-27 2020-07-27 电感器件及电子设备 WO2022020984A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102237.4A CN115803832A (zh) 2020-07-27 2020-07-27 电感器件及电子设备
PCT/CN2020/104751 WO2022020984A1 (zh) 2020-07-27 2020-07-27 电感器件及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104751 WO2022020984A1 (zh) 2020-07-27 2020-07-27 电感器件及电子设备

Publications (1)

Publication Number Publication Date
WO2022020984A1 true WO2022020984A1 (zh) 2022-02-03

Family

ID=80037240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104751 WO2022020984A1 (zh) 2020-07-27 2020-07-27 电感器件及电子设备

Country Status (2)

Country Link
CN (1) CN115803832A (zh)
WO (1) WO2022020984A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009577A1 (en) * 2000-05-31 2002-01-24 Tdk Corporation Electronic parts
CN1856846A (zh) * 2003-08-26 2006-11-01 皇家飞利浦电子股份有限公司 超薄挠性电感器
US20080198560A1 (en) * 2007-02-20 2008-08-21 Tdk Corporation Thin-film magnetic device, and electronic component module having same
US20090175014A1 (en) * 2008-01-03 2009-07-09 Jian-Hong Zeng Assembled circuit and electronic component
CN103081325A (zh) * 2010-05-24 2013-05-01 沃特拉半导体公司 利于改进的印刷电路板布局的两相耦合电感器
CN105185554A (zh) * 2014-04-16 2015-12-23 美国博通公司 磁芯三维(3d)电感器及封装集成
CN107154301A (zh) * 2016-03-03 2017-09-12 台达电子企业管理(上海)有限公司 磁性组件及其适用的功率模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009577A1 (en) * 2000-05-31 2002-01-24 Tdk Corporation Electronic parts
CN1856846A (zh) * 2003-08-26 2006-11-01 皇家飞利浦电子股份有限公司 超薄挠性电感器
US20080198560A1 (en) * 2007-02-20 2008-08-21 Tdk Corporation Thin-film magnetic device, and electronic component module having same
US20090175014A1 (en) * 2008-01-03 2009-07-09 Jian-Hong Zeng Assembled circuit and electronic component
CN103081325A (zh) * 2010-05-24 2013-05-01 沃特拉半导体公司 利于改进的印刷电路板布局的两相耦合电感器
CN105185554A (zh) * 2014-04-16 2015-12-23 美国博通公司 磁芯三维(3d)电感器及封装集成
CN107154301A (zh) * 2016-03-03 2017-09-12 台达电子企业管理(上海)有限公司 磁性组件及其适用的功率模块

Also Published As

Publication number Publication date
CN115803832A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
KR100479625B1 (ko) 칩타입 파워인덕터 및 그 제조방법
JP6548198B2 (ja) チップ電子部品
US8618902B2 (en) Laminated inductor
US8102236B1 (en) Thin film inductor with integrated gaps
WO2012053439A1 (ja) コイル部品及びその製造方法
JP4971432B2 (ja) 誘導素子及び誘導素子を製造するための方法
KR101532171B1 (ko) 인덕터 및 그 제조 방법
KR20140077346A (ko) 파워 인덕터 및 그 제조 방법
KR20050084853A (ko) 적층코일부품 및 그 제조방법
JP2008288370A (ja) 面実装インダクタおよびその製造方法
US20170194088A1 (en) Isolation Transformer Topology
US20150287515A1 (en) Multilayer array electronic component and method of manufacturing the same
KR100653429B1 (ko) 적층형 칩 타입 파워 인덕터 및 그 제조 방법
CN206271494U (zh) 一种叠层式平面电感器
WO2022020984A1 (zh) 电感器件及电子设备
US9041506B2 (en) Multilayer inductor and method of manufacturing the same
TWI573149B (zh) 平面線圈及其製法,以及使用該平面線圈之平面變壓器
JP2010062409A (ja) インダクター部品
JP2009117676A (ja) カップルドインダクタ
KR20180024045A (ko) 적층 전자부품 및 그 제조방법
WO2022083092A1 (zh) 薄膜型功率电感器
CN213070861U (zh) 一种薄膜型功率电感器
JP2013065853A (ja) 積層型インダクタ及びその製造方法
KR20170097864A (ko) 코일 부품 및 그 제조방법
KR20170097862A (ko) 코일 부품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947278

Country of ref document: EP

Kind code of ref document: A1