WO2022082497A1 - 基于正负极的继电器检测电路及检测装置 - Google Patents

基于正负极的继电器检测电路及检测装置 Download PDF

Info

Publication number
WO2022082497A1
WO2022082497A1 PCT/CN2020/122450 CN2020122450W WO2022082497A1 WO 2022082497 A1 WO2022082497 A1 WO 2022082497A1 CN 2020122450 W CN2020122450 W CN 2020122450W WO 2022082497 A1 WO2022082497 A1 WO 2022082497A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
resistor
positive
negative
voltage
Prior art date
Application number
PCT/CN2020/122450
Other languages
English (en)
French (fr)
Inventor
刘鹏飞
罗乐
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN202080013170.7A priority Critical patent/CN113439215A/zh
Priority to PCT/CN2020/122450 priority patent/WO2022082497A1/zh
Publication of WO2022082497A1 publication Critical patent/WO2022082497A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches

Definitions

  • the present application relates to the technical field of circuits, in particular to a positive and negative-based relay detection circuit and a detection device.
  • relays are widely used in related equipment such as automobile batteries. It is often necessary to detect relays when charging scenarios occur.
  • the existing technology is generally judged by measuring the voltage of the low-voltage coil, but this The method cannot accurately reflect the current state of the relay, and the steps are cumbersome and inefficient.
  • the present application provides a relay detection circuit and detection device based on positive and negative electrodes.
  • a relay detection circuit and detection device based on positive and negative electrodes.
  • a first aspect of the embodiments of the present application discloses a relay detection circuit based on positive and negative electrodes, the relay detection circuit includes a power supply circuit, a positive relay detection circuit, a negative relay detection circuit and an auxiliary detection circuit;
  • the power supply circuit includes a power supply, Electrical equipment, positive relay, and negative relay;
  • the positive relay detection circuit includes a first resistor, a second resistor, a third resistor and a first voltage sampling terminal;
  • the negative relay detection circuit includes a fourth resistor, a fifth resistor, a sixth resistor and a second voltage sampling terminal;
  • the auxiliary detection circuit includes a seventh resistor, an eighth resistor and a third voltage sampling terminal;
  • the positive pole of the power supply is connected to one end of the seventh resistor, one end of the first resistor, one end of the fourth resistor and one end of the positive relay, and the other end of the seventh resistor is connected to the eighth resistor
  • One end of the resistor and the third voltage sampling end, the other end of the positive relay is connected to one end of the third resistor and the positive electrode of the electrical device, and the other end of the third resistor is connected to the first resistor
  • the other end of the second resistor, the other end of the second resistor and the first voltage sampling end, the other end of the fourth resistor is connected to one end of the fifth resistor, one end of the sixth resistor and the second voltage Sampling end, the other end of the fifth resistor is connected to the other end of the second resistor, the other end of the eighth resistor, the negative electrode of the power supply and one end of the negative electrode relay, and the other end of the negative electrode relay connecting the other end of the sixth resistor and the negative electrode of the electrical device; the ratio of the resistance values of
  • the negative relay detection circuit further includes a first diode, and the anode of the first diode is connected to the other end of the fourth resistor, one end of the fifth resistor and the second The voltage sampling end, the cathode of the first diode is connected to one end of the sixth resistor.
  • the relay detection circuit based on positive and negative poles further includes a positive pole relay drive detection unit and a negative pole relay drive detection unit, the positive pole relay drive detection unit is connected to both ends of the positive pole relay, and is used to detect all the positive pole relays. Whether the positive relay has a driving signal, the negative relay driving detection unit is connected to both ends of the negative relay, and is used to detect whether the negative relay has a driving signal.
  • the relay detection circuit based on positive and negative poles further includes a positive pole relay fault determination unit and a negative pole relay fault determination unit, the positive pole relay fault determination unit is connected to the positive pole relay drive detection unit, and according to the positive pole relay fault determination unit Whether the relay has a driving signal, the voltage relationship between the voltage of the first voltage sampling terminal and the voltage of the third voltage sampling terminal to determine whether the positive relay is faulty, the negative relay fault judgment unit is connected to the negative relay The driving detection unit determines whether the negative relay is faulty according to whether the negative relay has a driving signal, and the voltage relationship between the voltage of the second voltage sampling terminal and the voltage of the third voltage sampling terminal.
  • the relay detection circuit based on positive and negative electrodes further includes a fault prompting unit
  • the fault prompting unit includes a positive relay fault prompting unit and a negative relay fault prompting unit
  • the positive relay fault prompting unit is connected to the A positive relay fault judging unit, when the positive relay fault judging unit judges that the positive relay is faulty, the positive fault prompting unit sends out a fault prompt
  • the negative relay fault prompting unit is connected to the negative relay fault judging unit, when When the negative relay fault judgment unit judges that the negative relay is faulty, the negative relay fault prompt unit issues a fault prompt.
  • the relay detection circuit based on positive and negative poles further includes a protection circuit configured to limit the first voltage sampling terminal, the second voltage sampling terminal and the third voltage sampling terminal terminal voltage.
  • the protection circuit includes a Zener diode, the positive pole of the Zener diode is connected to the negative pole of the power supply, and the negative pole of the Zener diode is connected to the other end of the first resistor or the fourth the other end of the resistor or the other end of the seventh resistor.
  • the protection circuit includes a power supply and a second diode, the power supply is connected to the cathode of the second diode, and the anode of the second diode is connected to the first resistor the other end of the fourth resistor or the other end of the seventh resistor.
  • the protection circuit further includes a third diode, the anode of the third diode is connected to the cathode of the power supply, and the cathode of the third diode is connected to the anode of the second diode .
  • a second aspect of the embodiments of the present application discloses a detection device, and the detection device includes the positive and negative electrode-based relay detection circuit described in the first aspect of the embodiments of the present application.
  • the relay detection circuit includes a power supply circuit, a positive relay detection circuit, a negative relay detection circuit and an auxiliary detection circuit;
  • the power supply circuit includes a power supply, electrical equipment, a positive relay, A negative relay;
  • the positive relay detection circuit includes a first resistor, a second resistor, a third resistor, and a first voltage sampling terminal;
  • the negative relay detection circuit includes a fourth resistor, a fifth resistor, a sixth resistor, and a second voltage a sampling terminal;
  • the auxiliary detection circuit includes a seventh resistor, an eighth resistor and a third voltage sampling terminal.
  • FIG. 1 is a schematic structural diagram of a relay detection circuit based on positive and negative electrodes in an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of another relay detection circuit based on positive and negative electrodes in an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a protection circuit based on FIG. 1 or FIG. 2 in an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of another protection circuit based on FIG. 1 or FIG. 2 in an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of another protection circuit based on FIG. 4 in an embodiment of the present application.
  • the closing of the relay means that the relay is turned on, which can be regarded as a direct connection through the wire in performance; the adhesion of the relay also means that the contacts have been connected (meaning that current can flow), but the resistance may be large.
  • the biggest difference between relay closure and relay sticking is whether the relay will respond to the command to open the relay and effectively cut off the relay.
  • the application scenario of this application involves the relay between the power supply side and the electrical equipment, including the relay between the power battery and the output of the on-board charger (OBC), the battery and the OBC (DC/DC (DC/DC converter) )) relay between outputs, relay between battery and vehicle controller, relay between battery and fast charging interface, relay between Parking Distance Control (PDC) and heater, integrated
  • OBC on-board charger
  • PDC Parking Distance Control
  • the voltage on the power supply side is a preset voltage value, while the voltage on the consumer side is zero.
  • FIG. 1 is a schematic structural diagram of a relay detection circuit based on positive and negative electrodes in an embodiment of the present application.
  • the above-mentioned relay detection circuit includes: A power supply circuit, a positive relay detection circuit, a negative relay detection circuit and an auxiliary detection circuit; the above-mentioned power supply circuit includes a power supply DC1, an electrical equipment DC2, a positive relay K1, and a negative relay K2; the above-mentioned positive relay detection circuit includes a first resistor R1, a second Resistor R2, third resistor R3 and first voltage sampling terminal AD-SMP1; the above-mentioned negative relay detection circuit includes a fourth resistor R4, a fifth resistor R5, a sixth resistor R6 and a second voltage sampling terminal AD-SMP2; the above-mentioned auxiliary detection
  • the circuit includes a seventh resistor R7, an eighth resistor R8 and a third
  • connection mode of the above circuit components is:
  • the positive pole of the power supply DC1 is connected to one end of the seventh resistor R7, one end of the first resistor R1, one end of the fourth resistor R4 and one end of the positive relay K1, and the other end of the seventh resistor R7 is connected to the eighth resistor One end of R8 and the third voltage sampling terminal AD-SMP3, the other end of the positive relay K1 is connected to one end of the third resistor R3 and the positive electrode of the electrical equipment DC2, and the other end of the third resistor R3 is connected to the first The other end of the resistor R1, one end of the second resistor R2 and the first voltage sampling terminal AD-SMP1, the other end of the fourth resistor R4 is connected to one end of the fifth resistor R5, one end of the sixth resistor R6 and the above The second voltage sampling terminal AD-SMP2, the other end of the fifth resistor R5 is connected to the other end of the second resistor R2, the other end of the eighth resistor R8, the negative electrode of the power supply DC1 and the negative electrode of the relay K2.
  • the other end of the negative relay K2 is connected to the other end of the sixth resistor R6 and the negative electrode of the electrical equipment DC2; it should be noted that the ratio of the resistance values of the eighth resistor R8 to the seventh resistor R7, the second resistor R2 The ratio with the resistance value of the first resistor R1 and the ratio of the resistance value of the fifth resistor R5 and the fourth resistor R4 are equal.
  • the ratio of the eighth resistor R8 to the seventh resistor R7 is equal to the ratio of the second resistor R2 to the first resistor R1, and the ratio of the fifth resistor R5 to the fourth resistor R4, when the positive relay When K1 is disconnected, it can be determined that the voltage of the first voltage sampling terminal AD-SMP1 is equal to the voltage of the third voltage sampling terminal AD-SMP3, and when the negative relay K2 is disconnected, it can be determined that the second voltage sampling terminal AD- The voltage of SMP2 is equal to the voltage of the above-mentioned third voltage sampling terminal AD-SMP3; when the above-mentioned positive relay K1 is closed or stuck, the above-mentioned first resistor R1 and the above-mentioned third resistor R3 are connected in parallel, resulting in the above-mentioned first voltage sampling terminal AD-SMP1.
  • the voltage is lower than the voltage of the third voltage sampling terminal AD-SMP3.
  • the fifth resistor R5 is connected in parallel with the sixth resistor R6, resulting in the voltage of the second voltage sampling terminal AD-SMP2 being less than the voltage of the third voltage sampling terminal AD-SMP3.
  • the state of the positive relay K1 can be detected by comparing the voltage of the first voltage sampling terminal AD-SMP1 with the voltage of the third sampling terminal AD-SMP3. Specifically, when the third voltage sampling terminal AD - When the voltage of SMP3 is equal to the voltage of the first voltage sampling terminal AD-SMP1, it is determined that the positive relay K1 is disconnected; when the voltage of the third voltage sampling terminal AD-SMP3 is greater than the voltage of the first voltage sampling terminal AD-SMP1 When it is determined that the above-mentioned positive relay K1 is closed or adhered; the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 can be compared with the voltage of the above-mentioned third sampling terminal AD-SMP3, and the state of the above-mentioned negative relay K2 can be detected.
  • a sampling point voltage can be shared as a detection basis when detecting the state of the positive relay and the state of the negative relay K2, which greatly improves the detection accuracy and detection efficiency of the positive relay and the negative relay K2.
  • FIG. 2 is a schematic structural diagram of another relay detection circuit based on positive and negative electrodes in the embodiment of the present application.
  • the circuit includes a power supply circuit, a positive relay detection circuit, a negative relay detection circuit and an auxiliary detection circuit;
  • the above-mentioned power supply circuit includes a power supply DC1, an electrical equipment DC2, a positive relay K1, and a negative relay K2;
  • the above-mentioned positive relay detection circuit includes a first resistor R1, The second resistor R2, the third resistor R3 and the first voltage sampling terminal AD-SMP1;
  • the negative relay detection circuit includes a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a first diode D1 and a second voltage Sampling terminal AD-SMP2;
  • the above-mentioned auxiliary detection circuit includes a seventh resistor R7, an eighth resistor R8 and a third voltage sampling terminal AD-SMP
  • the anode of the first diode D1 is connected to the other end of the fourth resistor R4, one end of the fifth resistor R5 and the second voltage sampling terminal AD-SMP2, and the cathode of the first diode D1 is connected to the first voltage sampling terminal AD-SMP2.
  • One end of the six resistors R6; the first diode D1 is used for some abnormal conditions, such as when the positive relay K1 is closed and the negative relay K2 is disconnected, if there is no first diode D1, then the internal
  • the resistor is connected in series with the sixth detection resistor R6 and then in parallel with the fourth resistor R4, which will lead to detection errors, resulting in a wrong judgment.
  • the first diode D1 After adding the first diode D1, when an abnormal situation occurs, the first diode D1 is reversed. No conduction, so there will be no detection error, which greatly reduces the safety hazard caused by the wrong state of the detection relay.
  • the positive electrode relay drive detection unit 210 is connected to both ends of the positive electrode relay K1 for detecting whether the positive electrode relay K1 has a drive signal
  • the negative electrode relay drive detection unit 220 is connected to both ends of the negative electrode relay K2 for detecting the above Whether there is a drive signal for the negative relay K2.
  • the above-mentioned positive relay fault judging unit 230 is connected to the above-mentioned positive relay driving detection unit 210. It should be noted that the above connection represents a logical connection relationship. In actual connection, the above-mentioned positive relay fault judging unit 230 should also be connected to the above-mentioned first A voltage sampling terminal AD-SMP1 and the third voltage sampling terminal AD-SMP3 are used for determining whether the positive relay K1 has a driving signal, the voltage of the first voltage sampling terminal AD-SMP1 and the third voltage sampling terminal AD- The voltage relationship between the voltages of SMP3 is used to determine whether the positive relay K1 is faulty.
  • the above-mentioned negative relay fault judging unit 240 is connected to the above-mentioned negative relay driving detection unit 220. It should be noted that the above-mentioned connection represents a logical connection relationship. In actual connection, the above-mentioned negative relay fault judging unit 240 should also be connected to the above-mentioned second voltage at the same time.
  • the sampling terminal AD-SMP2 and the above-mentioned third voltage sampling terminal AD-SMP3 are used to determine whether there is a driving signal in the above-mentioned negative relay K2, the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 and the above-mentioned third voltage sampling terminal AD-SMP3.
  • the voltage relationship between the voltages can be used to judge whether the above-mentioned negative relay K2 is faulty. If there is no driving signal, it is determined that the above-mentioned negative relay K2 is normally disconnected; when the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 is equal to the voltage of the above-mentioned third voltage sampling terminal AD-SMP3, if the above-mentioned negative relay K2 has a driving signal, Then it is determined that the above-mentioned negative relay K2 is abnormally disconnected; when the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 is less than the voltage of the above-mentioned third voltage sampling terminal AD-SMP3, if the above-mentioned negative relay K2 does not have a drive signal, then it is determined that the above-mentioned negative pole The relay K2 is stuck; when the voltage of the second voltage sampling terminal AD-SMP2 is lower than the voltage of the third voltage sampling terminal AD-SMP3, if the
  • the fault prompting unit includes a positive relay fault prompting unit 250 and a negative relay fault prompting unit 260.
  • the positive relay fault prompting unit 250 is connected to the positive relay fault judging unit 230.
  • the positive relay fault judging unit 230 judges the positive relay K1
  • the above-mentioned positive fault prompting unit 250 issues a fault prompt
  • the above-mentioned negative relay fault prompting unit 260 is connected to the above-mentioned negative relay fault judging unit 240.
  • the above-mentioned negative relay fault judging unit 240 judges that the above-mentioned negative relay K2 has a fault, the above-mentioned negative relay K2 is faulty.
  • the fault prompting unit 260 issues a fault prompt.
  • the above-mentioned manner of issuing a fault prompt may use flashing light, prompt sound, etc.
  • the above-mentioned fault prompting unit may include any one of warning lights, electro-acoustic elements, or a combination thereof.
  • the warning light can be turned on to indicate that there is a driving signal in the relay.
  • the above-mentioned relay is in a working state, and the warning light can be turned off to indicate that there is no driving signal in the relay.
  • the above-mentioned relay has no driving signal.
  • the user can know that the relay has a fault and repair it in time, reducing the probability of safety accidents caused by the fault of the relay.
  • FIG. 3 is a schematic structural diagram of a protection circuit based on FIG. 1 or FIG. 2 in an embodiment of the present application.
  • the protection circuit is used to limit the magnitude of the voltage of the first voltage sampling end, the second voltage sampling end and the third voltage sampling end.
  • the protection circuit includes a Zener diode ZD, the positive pole of the Zener diode ZD is connected to the negative pole of the power supply DC1, and the negative pole of the Zener diode ZD is connected to the other end of the first resistor R1 or the fourth resistor R4. The other end or the other end of the above seventh resistor R7.
  • the forward characteristic of the volt-ampere characteristic curve of the Zener diode ZD is similar to that of ordinary diodes.
  • the reverse characteristic is that when the reverse voltage is lower than the reverse breakdown voltage, the reverse resistance is large and the reverse leakage current is extremely small.
  • the reverse current suddenly increases, which is called breakdown.
  • the reverse resistance suddenly drops to a very small value.
  • the voltage across the Zener diode ZD is basically stable around the breakdown voltage, thus realizing the function of the protection circuit.
  • Zener diode as a protection circuit can save circuit space and prevent safety hazards and errors in detection results caused by excessive voltage.
  • the above protection circuit may further include a power supply VCC and a second diode D2, as shown in FIG. 4 , which is a schematic structural diagram of another protection circuit based on FIG. 1 or FIG. 2 in the embodiment of the present application.
  • the power supply VCC is connected to the cathode of the second diode D2, and the anode of the second diode D2 is connected to the other end of the first resistor R1 or the other end of the fourth resistor R4 or the seventh resistor R7. On the other end, it can avoid damage to the sampling chip caused by excessive voltage or reverse connection.
  • the above-mentioned protection circuit may further include a third diode D3, as shown in FIG. 5, which is a schematic structural diagram of another protection circuit based on FIG. 4 in an embodiment of the present application, the above-mentioned third diode D3
  • the positive pole of the above-mentioned power supply DC1 is connected to the negative pole, and the negative pole of the above-mentioned third diode D3 is connected to the positive pole of the above-mentioned second diode D2, which further enhances the protection range.
  • the embodiment of the present application further provides a detection device, which includes the positive and negative electrode-based relay detection circuit in the above-mentioned embodiment of the application, and details are not described herein again.
  • a sampling chip When measuring the voltage sampling terminal AD-SMP3, a sampling chip can be used for sampling, and the sampling chip can automatically obtain the voltage of the first voltage sampling terminal AD-SMP1 and the voltage of the third voltage sampling terminal AD-SMP3 and send them to the positive electrode
  • the relay fault judging unit at the same time, the positive relay driving detection unit will also automatically detect whether there is a driving signal in the above positive relay, and send the detection result to the positive relay fault judging unit in time or in real time.
  • the voltage of a voltage sampling terminal AD-SMP1, the voltage of the third voltage sampling terminal AD-SMP3, and whether there is driving signal information in the positive relay are calculated and analyzed, and the judgment result is output.
  • the positive relay The fault judging unit sends a warning instruction to the positive relay fault prompting unit, and the warning instruction can make the positive relay fault prompting unit issue an alarm to the user;
  • the above-mentioned sampling chip can automatically obtain the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 and the above-mentioned third voltage
  • the voltage of the sampling terminal AD-SMP3 is sent to the negative relay fault judgment unit.
  • the negative relay drive detection unit will also automatically detect whether there is a driving signal in the above negative relay, and send the detection result to the negative relay fault judgment unit in time or in real time.
  • the negative relay fault judgment unit receives the voltage of the above-mentioned second voltage sampling terminal AD-SMP2 and the voltage of the above-mentioned third voltage sampling terminal AD-SMP3, whether there is driving signal information in the negative relay, calculate and analyze, and output the judgment result
  • the negative relay fault judging unit sends a warning instruction to the negative relay fault prompting unit, and the warning instruction can make the negative relay fault prompting unit send an alarm to the user.
  • the first voltage sampling terminal AD-SMP1, the second voltage sampling terminal AD-SMP2 and the third voltage sampling terminal AD-SMP3 can all be connected to a protection circuit to avoid damage to the sampling chip due to excessive voltage or reverse connection .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种基于正负极的继电器检测电路及检测装置,所述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;所述供电电路包括电源、用电设备、正极继电器、负极继电器;所述正极继电器检测电路包括第一电阻、第二电阻、第三电阻、第一电压采样端;所述负极继电器检测电路包括第四电阻、第五电阻、第六电阻、第二电压采样端;所述辅助检测电路包括第七电阻、第八电阻和第三电压采样端。通过在检测正极继电器的状态和负极继电器的状态时共用一个采样点电压作为检测依据,大大提升了检测正极继电器和负极继电器的准确性和检测效率。

Description

基于正负极的继电器检测电路及检测装置 技术领域
本申请涉及电路技术领域,特别是一种基于正负极的继电器检测电路及检测装置。
背景技术
随着技术的发展,继电器被广泛应用于汽车的电池等相关设备中,在出现充电的场景时往往需要对继电器进行检测,现有的技术一般是通过测量低压线圈电压来进行判断,但这种方法并不能准确反映继电器当前的状态,且步骤繁琐,效率不高。
发明内容
为解决上述问题,本申请提供了一种基于正负极的继电器检测电路及检测装置,通过在检测正极继电器的状态和负极继电器的状态时共用一个采样点电压作为检测依据,大大提升了检测正极继电器和负极继电器的准确性和检测效率。
本申请实施例第一方面公开了一种基于正负极的继电器检测电路,所述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;所述供电电路包括电源、用电设备、正极继电器、负极继电器;所述正极继电器检测电路包括第一电阻、第二电阻、第三电阻和第一电压采样端;所述负极继电器检测电路包括第四电阻、第五电阻、第六电阻和第二电压采样端;所述辅助检测电路包括第七电阻、第八电阻和第三电压采样端;
所述电源的正极连接所述第七电阻的一端、所述第一电阻的一端、所述第四电阻的一端和所述正极继电器的一端,所述第七电阻的另一端连接所述第八电阻的一端和所述第三电压采样端,所述正极继电器的另一端连接所述第三电阻的一端和所述用电设备的正极,所述第三电阻的另一端连接所述第一电阻的另一端、所述第二电阻的一端和所述第一电压采样端,所述第四电阻的另一端连接所述第五电阻的一端、所述第六电阻的一端和所述第二电压采样端,所述 第五电阻的另一端连接所述第二电阻的另一端、所述第八电阻的另一端、所述电源的负极和所述负极继电器的一端,所述负极继电器的另一端连接所述第六电阻的另一端和所述用电设备的负极;所述第八电阻与第七电阻的阻值之比、所述第二电阻与所述第一电阻的阻值之比以及所述第五电阻与所述第四电阻的阻值之比相等;
当所述第三电压采样端的电压等于所述第一电压采样端的电压时,确定所述正极继电器断开;当所述第三电压采样点端的电压大于所述第一电压采样端的电压时,确定所述正极继电器闭合或粘连;
当所述第三电压采样端的电压等于所述第二电压采样端的电压时,确定所述负极继电器断开;当所述第三电压采样端的电压大于所述第二电压采样端的电压时,确定所述负极继电器闭合或粘连。
在一个实施例中,所述负极继电器检测电路还包括第一二极管,所述第一二极管正极连接所述第四电阻的另一端、所述第五电阻的一端和所述第二电压采样端,所述第一二极管的负极连接所述第六电阻的一端。
在一个实施例中,所述基于正负极的继电器检测电路还包括正极继电器驱动检测单元和负极继电器驱动检测单元,所述正极继电器驱动检测单元连接所述正极继电器的两端,用于检测所述正极继电器是否存在驱动信号,所述负极继电器驱动检测单元连接所述负极继电器的两端,用于检测所述负极继电器是否存在驱动信号。
在一个实施例中,所述基于正负极的继电器检测电路还包括正极继电器故障判断单元和负极继电器故障判断单元,所述正极继电器故障判断单元连接所述正极继电器驱动检测单元,根据所述正极继电器是否存在驱动信号、所述第一电压采样端的电压与所述第三电压采样端的电压之间的电压关系来判断所述正极继电器是否出现故障,所述负极继电器故障判断单元连接所述负极继电器驱动检测单元,根据所述负极继电器是否存在驱动信号、所述第二电压采样端的电压与所述第三电压采样端的电压之间的电压关系来判断所述负极继电器是否出现故障。
在一个实施例中,所述基于正负极的继电器检测电路还包括故障提示单元,所述故障提示单元包括正极继电器故障提示单元和负极继电器故障提示单 元,所述正极继电器故障提示单元连接所述正极继电器故障判断单元,当所述正极继电器故障判断单元判断所述正极继电器出现故障时,所述正极故障提示单元发出故障提示;所述负极继电器故障提示单元连接所述负极继电器故障判断单元,当所述负极继电器故障判断单元判断所述负极继电器出现故障时,所述负极继电器故障提示单元发出故障提示。
在一个实施例中,所述基于正负极的继电器检测电路还包括保护电路,所述保护电路用于限制所述第一电压采样端、所述第二电压采样端和所述第三电压采样端的电压大小。
在一个实施例中,所述保护电路包括稳压二极管,所述稳压二极管的正极连接所述电源的负极,所述稳压二极管的负极连接所述第一电阻的另一端或所述第四电阻的另一端或所述第七电阻的另一端。
在一个实施例中,所述保护电路包括供电电源和第二二极管,所述供电电源连接所述第二二极管的负极,所述第二二极管的正极连接所述第一电阻的另一端或所述第四电阻的另一端或所述第七电阻的另一端。
进一步的,所述保护电路还包括第三二极管,所述第三二极管的正极连接所述电源的负极,所述第三二极管的负极连接所述第二二极管的正极。
本申请实施例第二方面公开了一种检测装置,所述检测装置包括本申请实施例第一方面所描述的基于正负极的继电器检测电路。
上述基于正负极的继电器检测电路及检测装置,所述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;所述供电电路包括电源、用电设备、正极继电器、负极继电器;所述正极继电器检测电路包括第一电阻、第二电阻、第三电阻、第一电压采样端;所述负极继电器检测电路包括第四电阻、第五电阻、第六电阻、第二电压采样端;所述辅助检测电路包括第七电阻、第八电阻和第三电压采样端。通过在检测正极继电器的状态和负极继电器的状态时共用一个采样点电压作为检测依据,大大提升了检测正极继电器和负极继电器的准确性和检测效率。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种基于正负极的继电器检测电路的结构示意图;
图2为本申请实施例中另一种基于正负极的继电器检测电路的结构示意图;
图3为本申请实施例中基于图1或图2的一种保护电路的结构示意图;
图4为本申请实施例中基于图1或图2的另一种保护电路的结构示意图;
图5为本申请实施例中基于图4的另一种保护电路的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,也不是表示元器件的类型不同。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合,需要说明的是,本申请的图都结合了供电电路即电源、用电设备、正极继电器和负极继电器。
需要说明的是,继电器闭合意味着继电器导通,在表现上可认为通过导线 直接连通;继电器粘连也意味着触点间已经接合(意味着可以有电流流过),但电阻可能较大。继电器闭合和继电器粘连的最大区别在于继电器是否会响应断开继电器指令,有效的切断继电器。本申请的应用场景涉及电源侧和用电设备之间的继电器,包括动力电池和车载充电器(On Board Charger,OBC)输出之间的继电器、蓄电池和OBC(DC/DC(直流/直流变换器))输出之间的继电器、电池和整车控制器之间的继电器、电池与快充接口之间的继电器、停车距离控制系统(Parking Distance Control,PDC)和加热器之间的继电器、集成式电机控制和DC/DC输入之间的继电器以及蓄电池馈电等,电源侧的电压为预设电压值,而用电设备侧电压为零。
下面结合图1对本申请实施例中一种基于正负极的继电器检测电路作详细说明,图1为本申请实施例中一种基于正负极的继电器检测电路的结构示意图,上述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;上述供电电路包括电源DC1、用电设备DC2、正极继电器K1、负极继电器K2;上述正极继电器检测电路包括第一电阻R1、第二电阻R2、第三电阻R3和第一电压采样端AD-SMP1;上述负极继电器检测电路包括第四电阻R4、第五电阻R5、第六电阻R6和第二电压采样端AD-SMP2;上述辅助检测电路包括第七电阻R7、第八电阻R8和第三电压采样端AD-SMP3。
其中,上述电路元件的连接方式为:
上述电源DC1的正极连接上述第七电阻R7的一端、上述第一电阻R1的一端、上述第四电阻R4的一端和上述正极继电器K1的一端,上述第七电阻R7的另一端连接上述第八电阻R8的一端和上述第三电压采样端AD-SMP3,上述正极继电器K1的另一端连接上述第三电阻R3的一端和上述用电设备DC2的正极,上述第三电阻R3的另一端连接上述第一电阻R1的另一端、上述第二电阻R2的一端和上述第一电压采样端AD-SMP1,上述第四电阻R4的另一端连接上述第五电阻R5的一端、上述第六电阻R6的一端和上述第二电压采样端AD-SMP2,上述第五电阻R5的另一端连接上述第二电阻R2的另一端、上述第八电阻R8的另一端、上述电源DC1的负极和上述负极继电器K2的一端,上述负极继电器K2的另一端连接上述第六电阻R6的另一端和上述 用电设备DC2的负极;需要说明的是,上述第八电阻R8与第七电阻R7的阻值之比、上述第二电阻R2与上述第一电阻R1的阻值之比以及上述第五电阻R5与上述第四电阻R4的阻值之比相等。
其中,由于上述第八电阻R8与第七电阻R7之比与上述第二电阻R2与上述第一电阻R1之比、上述第五电阻R5与上述第四电阻R4之比相等,所以当上述正极继电器K1断开时,可以确定上述第一电压采样端AD-SMP1的电压等于上述第三电压采样端AD-SMP3的电压,当上述负极继电器K2断开时,可以确定上述第二电压采样端AD-SMP2的电压等于上述第三电压采样端AD-SMP3的电压;当上述正极继电器K1闭合或粘连时,上述第一电阻R1与上述第三电阻R3并联,导致上述第一电压采样端AD-SMP1的电压小于上述第三电压采样端AD-SMP3的电压,当上述负极继电器K2闭合或粘连时,上述第五电阻R5与上述第六电阻R6并联,导致上述第二电压采样端AD-SMP2的电压小于上述第三电压采样端AD-SMP3的电压。
其中,可以通过将上述第一电压采样端AD-SMP1的电压与上述第三采样端AD-SMP3的电压进行比较,检测出上述正极继电器K1的状态,具体的,当上述第三电压采样端AD-SMP3的电压等于上述第一电压采样端AD-SMP1的电压时,确定上述正极继电器K1断开;当上述第三电压采样端AD-SMP3的电压大于上述第一电压采样端AD-SMP1的电压时,确定上述正极继电器K1闭合或粘连;可以将上述第二电压采样端AD-SMP2的电压与上述第三采样端AD-SMP3的电压进行比较,检测出上述负极继电器K2的状态,具体的,当上述第三电压采样端AD-SMP3的电压等于上述第二电压采样端AD-SMP2的电压时,确定上述负极继电器K2断开;当上述第三电压采样端AD-SMP3的电压大于上述第二电压采样端AD-SMP2的电压时,确定上述负极继电器K2闭合或粘连。
通过上述继电器检测电路,可以在检测正极继电器的状态和负极继电器K2的状态时共用一个采样点电压作为检测依据,大大提升了检测正极继电器和负极继电器K2的准确性和检测效率。
下面结合图2对本申请实施例中另一种基于正负极的继电器检测电路作详细说明,图2为本申请实施例中另一种基于正负极的继电器检测电路的结构 示意图,上述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;上述供电电路包括电源DC1、用电设备DC2、正极继电器K1、负极继电器K2;上述正极继电器检测电路包括第一电阻R1、第二电阻R2、第三电阻R3和第一电压采样端AD-SMP1;上述负极继电器检测电路包括第四电阻R4、第五电阻R5、第六电阻R6、第一二极管D1和第二电压采样端AD-SMP2;上述辅助检测电路包括第七电阻R7、第八电阻R8和第三电压采样端AD-SMP3;上述继电器检测电路还包括正极继电器驱动检测单元210、负极继电器驱动检测单元220、正极继电器故障判断单元230、负极继电器故障判断单元240、正极继电器故障提示单元250和负极继电器故障提示单元260。需要说明的是,上述已经说明的电器元件连接方式及作用,请参加图1中描述的电路,在此不再赘述。
其中,上述第一二极管D1正极连接上述第四电阻R4的另一端、上述第五电阻R5的一端和上述第二电压采样端AD-SMP2,上述第一二极管D1的负极连接上述第六电阻R6的一端;上述第一二极管D1用于一些异常状况,如正极继电器K1闭合、负极继电器K2断开时,如果没有第一二极管D1,那此时用电设备DC2的内部电阻就和第六检测电阻R6串联后再与第四电阻R4并联,这会导致检测错误,形成错误判断,加入第一二极管D1之后,出现异常状况时由于第一二极管D1反向不导通,所以不会出现检测错误,这大大降低了检测继电器状态错误导致的安全隐患。
其中,上述正极继电器驱动检测单元210连接上述正极继电器K1的两端,用于检测上述正极继电器K1是否存在驱动信号,上述负极继电器驱动检测单元220连接上述负极继电器K2的两端,用于检测上述负极继电器K2是否存在驱动信号。
其中,上述正极继电器故障判断单元230连接上述正极继电器驱动检测单元210,需要说明的是,上述连接表示逻辑上的连接关系,在实际连接中,上述正极继电器故障判断单元230还应该同时连接上述第一电压采样端AD-SMP1和上述第三电压采样端AD-SMP3,用于根据上述正极继电器K1是否存在驱动信号、上述第一电压采样端AD-SMP1的电压与上述第三电压采样端AD-SMP3的电压之间的电压关系来判断上述正极继电器K1是否出现故障, 具体的,当上述第一电压采样端AD-SMP1的电压等于上述第三电压采样端AD-SMP3的电压时,若上述正极继电器K1不存在驱动信号,则认定上述正极继电器K1正常断开;当上述第一电压采样端AD-SMP1的电压等于上述第三电压采样端AD-SMP3的电压时,若上述正极继电器K1存在驱动信号,则认定上述正极继电器K1异常断开;当上述第一电压采样端AD-SMP1的电压小于上述第三电压采样端AD-SMP3的电压时,若上述正极继电器K1不存在驱动信号,则认定上述正极继电器K1粘连;当上述第一电压采样端AD-SMP1的电压小于上述第三电压采样端AD-SMP3的电压时,若上述正极继电器K1存在驱动信号,则认定上述正极继电器K1正常闭合;
上述负极继电器故障判断单元240连接上述负极继电器驱动检测单元220,需要说明的是,上述连接表示逻辑上的连接关系,在实际连接中,上述负极继电器故障判断单元240还应该同时连接上述第二电压采样端AD-SMP2和上述第三电压采样端AD-SMP3,用于根据上述负极继电器K2是否存在驱动信号、上述第二电压采样端AD-SMP2的电压与上述第三电压采样端AD-SMP3的电压之间的电压关系来判断上述负极继电器K2是否出现故障,具体的,当上述第二电压采样端AD-SMP2的电压等于上述第三电压采样端AD-SMP3的电压时,若上述负极继电器K2不存在驱动信号,则认定上述负极继电器K2正常断开;当上述第二电压采样端AD-SMP2的电压等于上述第三电压采样端AD-SMP3的电压时,若上述负极继电器K2存在驱动信号,则认定上述负极继电器K2异常断开;当上述第二电压采样端AD-SMP2的电压小于上述第三电压采样端AD-SMP3的电压时,若上述负极继电器K2不存在驱动信号,则认定上述负极继电器K2粘连;当上述第二电压采样端AD-SMP2的电压小于上述第三电压采样端AD-SMP3的电压时,若上述负极继电器K2存在驱动信号,则认定上述负极继电器K2正常闭合。
进一步的,故障提示单元包括正极继电器故障提示单元250和负极继电器故障提示单元260,上述正极继电器故障提示单元250连接上述正极继电器故障判断单元230,当上述正极继电器故障判断单元230判断上述正极继电器K1出现故障时,上述正极故障提示单元250发出故障提示;上述负极继电器故障提示单元260连接上述负极继电器故障判断单元240,当上述负极继电器 故障判断单元240判断上述负极继电器K2出现故障时,上述负极继电器故障提示单元260发出故障提示。可选的,上述发出故障提示的方式可以采用闪光、提示音等,上述故障提示单元可以包括警示灯、电声元件中的任一种或者其组合。
可选的,当上述故障提示单元为警示灯时,可以将警示灯亮起表示继电器中存在驱动信号,此时上述继电器处于工作状态,将警示灯关闭表示继电器中不存在驱动信号,此时上述继电器处于休眠状态,进一步的,当上述警示灯亮起时,若灯光颜色为绿色,则确定此时上述继电器处于正常状态,若灯光颜色为黄色,则确定上述继电器处于异常断开状态,若灯光颜色为红色,则确定上述继电器处于粘连状态。需要说明的是,上述实施例只是一种可能的实现方式,并不构成对本申请中故障提示单元的限定。
通过增加故障提示单元,可以使用户了解到继电器产生了故障并及时进行修理,降低了因继电器故障导致安全事故的发生概率。
下面结合图3对本申请实施例中基于图1或图2的一种保护电路作详细说明,图3为本申请实施例中基于图1或图2的一种保护电路的结构示意图,其中,上述保护电路用于限制第一电压采样端、第二电压采样端和第三电压采样端的电压大小。
可选的,上述保护电路包括稳压二极管ZD,上述稳压二极管ZD的正极连接上述电源DC1的负极,上述稳压二极管ZD的负极连接上述第一电阻R1的另一端或上述第四电阻R4的另一端或上述第七电阻R7的另一端。稳压二极管ZD的伏安特性曲线的正向特性和普通二极管类似,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。尽管电流在很大的范围内变化,而稳压二极管ZD两端的电压却基本上稳定在击穿电压附近,从而实现了保护电路的功能。
通过一个稳压二极管充当保护电路,可以节省电路空间,并防止电压过大带来的安全隐患和检测结果出现错误。
可选的,上述保护电路还可以包括供电电源VCC和第二二极管D2,如图4所示,图4为本申请实施例中基于图1或图2的另一种保护电路的结构示意 图,上述供电电源VCC连接上述第二二极管D2的负极,上述第二二极管D2的正极连接上述第一电阻R1的另一端或上述第四电阻R4的另一端或上述第七电阻R7的另一端,可以避免电压过高或反接引起采样芯片损坏。
进一步的,上述保护电路还可以包括第三二极管D3,如图5所示,图5为本申请实施例中基于图4的另一种保护电路的结构示意图,上述第三二极管D3的正极连接上述电源DC1的负极,上述第三二极管D3的负极连接上述第二二极管D2的正极,进一步增强了保护范围。
本申请实施例还提供了一种检测装置,包括上述申请实施例中的基于正负极的继电器检测电路,在此不再赘述。
下面结合上述实施例对本申请实施例中的基于正负极的继电器检测电路的工作原理做详细说明,对上述第一电压采样端AD-SMP1、上述第二电压采样端AD-SMP2和上述第三电压采样端AD-SMP3进行测量时,可以使用采样芯片进行采样,上述采样芯片可以自动获取上述第一电压采样端AD-SMP1的电压和上述第三电压采样端AD-SMP3的电压并发送至正极继电器故障判断单元,同时,正极继电器驱动检测单元也会自动检测上述正极继电器中是否存在驱动信号,并将检测结果定时或实时发送至正极继电器故障判断单元,上述正极继电器故障判断单元接收到上述第一电压采样端AD-SMP1的电压和上述第三电压采样端AD-SMP3的电压、正极继电器中是否存在驱动信号信息之后进行计算分析,输出判断结果,当出现异常断开或粘连时,正极继电器故障判断单元向正极继电器故障提示单元发送警示指令,该警示指令可以使正极继电器故障提示单元向用户发出警报;上述采样芯片可以自动获取上述第二电压采样端AD-SMP2的电压和上述第三电压采样端AD-SMP3的电压并发送至负极继电器故障判断单元,同时,负极继电器驱动检测单元也会自动检测上述负极继电器中是否存在驱动信号,并将检测结果定时或实时发送至负极继电器故障判断单元,上述负极继电器故障判断单元接收到上述第二电压采样端AD-SMP2的电压和上述第三电压采样端AD-SMP3的电压、负极继电器中是否存在驱动信号信息之后进行计算分析,输出判断结果,当出现异常断开或粘连时,负极继电器故障判断单元向负极继电器故障提示单元发送警示指令,该警示指令可以使负极继电器故障提示单元向用户发出警报。此外,上述第一电压采样端 AD-SMP1、上述第二电压采样端AD-SMP2和上述第三电压采样端AD-SMP3都可以接入保护电路,避免因电压过高或反接引起采样芯片损坏。
以上参照附图说明了本申请的优选实施例,本领域技术人员不脱离本申请的范围和实质,可以有多种变型方案实现本申请。举例而言,作为一个实施例的部分示出或描述的特征可用于另一实施例以得到又一实施例。以上仅为本申请较佳可行的实施例而已,并非因此局限本申请的权利范围,凡运用本申请说明书及附图内容所作的等效变化,均包含于本申请的权利范围之内。

Claims (10)

  1. 一种基于正负极的继电器检测电路,其特征在于,所述继电器检测电路包括供电电路、正极继电器检测电路、负极继电器检测电路和辅助检测电路;所述供电电路包括电源、用电设备、正极继电器、负极继电器;所述正极继电器检测电路包括第一电阻、第二电阻、第三电阻和第一电压采样端;所述负极继电器检测电路包括第四电阻、第五电阻、第六电阻和第二电压采样端;所述辅助检测电路包括第七电阻、第八电阻和第三电压采样端;
    所述电源的正极连接所述第七电阻的一端、所述第一电阻的一端、所述第四电阻的一端和所述正极继电器的一端,所述第七电阻的另一端连接所述第八电阻的一端和所述第三电压采样端,所述正极继电器的另一端连接所述第三电阻的一端和所述用电设备的正极,所述第三电阻的另一端连接所述第一电阻的另一端、所述第二电阻的一端和所述第一电压采样端,所述第四电阻的另一端连接所述第五电阻的一端、所述第六电阻的一端和所述第二电压采样端,所述第五电阻的另一端连接所述第二电阻的另一端、所述第八电阻的另一端、所述电源的负极和所述负极继电器的一端,所述负极继电器的另一端连接所述第六电阻的另一端和所述用电设备的负极;所述第八电阻与第七电阻的阻值之比、所述第二电阻与所述第一电阻的阻值之比以及所述第五电阻与所述第四电阻的阻值之比相等;
    当所述第三电压采样端的电压等于所述第一电压采样端的电压时,确定所述正极继电器断开;当所述第三电压采样点端的电压大于所述第一电压采样端的电压时,确定所述正极继电器闭合或粘连;
    当所述第三电压采样端的电压等于所述第二电压采样端的电压时,确定所述负极继电器断开;当所述第三电压采样端的电压大于所述第二电压采样端的电压时,确定所述负极继电器闭合或粘连。
  2. 根据权利要求1所述的基于正负极的继电器检测电路,其特征在于,所述负极继电器检测电路还包括第一二极管,所述第一二极管正极连接所述第四电阻的另一端、所述第五电阻的一端和所述第二电压采样端,所述第一二极管 的负极连接所述第六电阻的一端。
  3. 根据权利要求1或2所述的基于正负极的继电器检测电路,其特征在于,所述继电器检测电路还包括正极继电器驱动检测单元和负极继电器驱动检测单元,所述正极继电器驱动检测单元连接所述正极继电器的两端,用于检测所述正极继电器是否存在驱动信号,所述负极继电器驱动检测单元连接所述负极继电器的两端,用于检测所述负极继电器是否存在驱动信号。
  4. 根据权利要求3所述的基于正负极的继电器检测电路,其特征在于,所述继电器检测电路还包括正极继电器故障判断单元和负极继电器故障判断单元,所述正极继电器故障判断单元连接所述正极继电器驱动检测单元,根据所述正极继电器是否存在驱动信号、所述第一电压采样端的电压与所述第三电压采样端的电压之间的电压关系来判断所述正极继电器是否出现故障,所述负极继电器故障判断单元连接所述负极继电器驱动检测单元,根据所述负极继电器是否存在驱动信号、所述第二电压采样端的电压与所述第三电压采样端的电压之间的电压关系来判断所述负极继电器是否出现故障。
  5. 根据权利要求4所述的基于正负极的继电器检测电路,其特征在于,所述继电器检测电路还包括故障提示单元,所述故障提示单元包括正极继电器故障提示单元和负极继电器故障提示单元,所述正极继电器故障提示单元连接所述正极继电器故障判断单元,当所述正极继电器故障判断单元判断所述正极继电器出现故障时,所述正极故障提示单元发出故障提示;所述负极继电器故障提示单元连接所述负极继电器故障判断单元,当所述负极继电器故障判断单元判断所述负极继电器出现故障时,所述负极继电器故障提示单元发出故障提示。
  6. 根据权利要求5所述的基于正负极的继电器检测电路,其特征在于,所述继电器检测电路还包括保护电路,所述保护电路用于限制所述第一电压采样端、所述第二电压采样端和所述第三电压采样端的电压大小。
  7. 根据权利要求6所述的基于正负极的继电器检测电路,其特征在于,所述保护电路包括稳压二极管,所述稳压二极管的正极连接所述电源的负极,所述稳压二极管的负极连接所述第一电阻的另一端或所述第四电阻的另一端或所述第七电阻的另一端。
  8. 根据权利要求6所述的基于正负极的继电器检测电路,其特征在于,所述保护电路包括供电电源和第二二极管,所述供电电源连接所述第二二极管的负极,所述第二二极管的正极连接所述第一电阻的另一端或所述第四电阻的另一端或所述第七电阻的另一端。
  9. 根据权利要求8所述的基于正负极的继电器检测电路,其特征在于,所述保护电路还包括第三二极管,所述第三二极管的正极连接所述电源的负极,所述第三二极管的负极连接所述第二二极管的正极。
  10. 一种检测装置,其特征在于,所述检测装置包括权利要求1至9任意一项所述的继电器检测电路。
PCT/CN2020/122450 2020-10-21 2020-10-21 基于正负极的继电器检测电路及检测装置 WO2022082497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013170.7A CN113439215A (zh) 2020-10-21 2020-10-21 基于正负极的继电器检测电路及检测装置
PCT/CN2020/122450 WO2022082497A1 (zh) 2020-10-21 2020-10-21 基于正负极的继电器检测电路及检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122450 WO2022082497A1 (zh) 2020-10-21 2020-10-21 基于正负极的继电器检测电路及检测装置

Publications (1)

Publication Number Publication Date
WO2022082497A1 true WO2022082497A1 (zh) 2022-04-28

Family

ID=77753228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122450 WO2022082497A1 (zh) 2020-10-21 2020-10-21 基于正负极的继电器检测电路及检测装置

Country Status (2)

Country Link
CN (1) CN113439215A (zh)
WO (1) WO2022082497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963393A (zh) * 2022-12-28 2023-04-14 江苏纳通能源技术有限公司 一种触点粘连误判和触点粘连检测电路及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081340A (ja) * 2004-09-10 2006-03-23 Toyota Motor Corp 電源回路の制御装置
CN104142466A (zh) * 2013-05-06 2014-11-12 广州汽车集团股份有限公司 一种汽车继电器触点闭合状态检测系统及其检测方法
CN105137336A (zh) * 2015-07-29 2015-12-09 南通大学 检测电动汽车高压继电器故障的诊断电路及诊断方法
CN106338688A (zh) * 2016-08-24 2017-01-18 深圳市科列技术股份有限公司 车载电池管理系统主继电器粘连检测电路及其检测方法
CN207924092U (zh) * 2018-02-01 2018-09-28 宁波吉利汽车研究开发有限公司 一种电池管理系统的继电器粘合故障检测电路
CN210007431U (zh) * 2019-06-20 2020-01-31 东软睿驰汽车技术(沈阳)有限公司 一种电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417892B2 (ja) * 2014-11-21 2018-11-07 三菱自動車工業株式会社 コンタクタ故障判定方法およびコンタクタ故障判定装置
CN107479002A (zh) * 2017-08-29 2017-12-15 宁德时代新能源科技股份有限公司 继电器诊断电路及方法、电池管理系统
CN108051733A (zh) * 2017-10-31 2018-05-18 惠州市蓝微新源技术有限公司 一种多电池簇的继电器粘连检测系统及方法
JP2019164963A (ja) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 リレー異常検出装置
CN109490770A (zh) * 2018-12-20 2019-03-19 华人运通控股有限公司 继电器粘连检测的供电电路和电压采样方法及装置
CN209514003U (zh) * 2018-12-28 2019-10-18 深圳市蓝海华腾技术股份有限公司 继电器触点状态检测电路及其状态检测系统、电动汽车
CN109521359B (zh) * 2018-12-28 2020-11-03 华人运通(江苏)动力电池系统有限公司 一种动力电池负极继电器状态检测电路及方法
CN213482396U (zh) * 2020-10-21 2021-06-18 深圳欣锐科技股份有限公司 基于正负极的继电器检测电路及检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081340A (ja) * 2004-09-10 2006-03-23 Toyota Motor Corp 電源回路の制御装置
CN104142466A (zh) * 2013-05-06 2014-11-12 广州汽车集团股份有限公司 一种汽车继电器触点闭合状态检测系统及其检测方法
CN105137336A (zh) * 2015-07-29 2015-12-09 南通大学 检测电动汽车高压继电器故障的诊断电路及诊断方法
CN106338688A (zh) * 2016-08-24 2017-01-18 深圳市科列技术股份有限公司 车载电池管理系统主继电器粘连检测电路及其检测方法
CN207924092U (zh) * 2018-02-01 2018-09-28 宁波吉利汽车研究开发有限公司 一种电池管理系统的继电器粘合故障检测电路
CN210007431U (zh) * 2019-06-20 2020-01-31 东软睿驰汽车技术(沈阳)有限公司 一种电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963393A (zh) * 2022-12-28 2023-04-14 江苏纳通能源技术有限公司 一种触点粘连误判和触点粘连检测电路及方法
CN115963393B (zh) * 2022-12-28 2024-01-05 江苏纳通能源技术有限公司 一种触点粘连误判和触点粘连检测电路及方法

Also Published As

Publication number Publication date
CN113439215A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN103036494B (zh) 双极电机控制器中的过流条件的诊断
CN111289857B (zh) 一种电动汽车车载高压电池组绝缘状态在线检测系统
CN2781390Y (zh) 汽车负载短路、开路预检测电路
CN110907853B (zh) 负载状态的检测电路及方法
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
KR20130119666A (ko) 릴레이 융착 위치 판단 회로
TW201607205A (zh) 漏電保護裝置及供電控制裝置
WO2022082524A1 (zh) 基于差分采样的继电器检测电路和检测装置
WO2022082529A1 (zh) 继电器粘连检测方法及系统
CN105946584B (zh) 一种汽车电池继电器粘连检测保护装置
CN108832686B (zh) 充电回路及充电回路检测方法
WO2022082497A1 (zh) 基于正负极的继电器检测电路及检测装置
US10994627B2 (en) Charge management system
JP7137652B1 (ja) バッテリー試験システムの安全保護装置と方法
KR20210002971A (ko) 전기차 충전기용 접지오류 검출장치 및 방법
CN112003261B (zh) 防反接保护电路、方法及电化学装置
CN213482396U (zh) 基于正负极的继电器检测电路及检测装置
CN206685314U (zh) 一种具有负载故障检测功能的继电器
CN213934120U (zh) 基于差分采样的继电器检测电路和检测装置
WO2022082531A1 (zh) 继电器工作状态检测系统、装置、方法及反接检测方法
CN213482398U (zh) 主负继电器检测系统
WO2022082525A1 (zh) 主负继电器工作状态检测系统和检测方法
WO2022082526A1 (zh) 主负继电器检测系统
CN213934123U (zh) 主正继电器粘连状态检测电路和开关电源
CN105591430B (zh) 智能搭火控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958080

Country of ref document: EP

Kind code of ref document: A1