WO2022080994A1 - Covid 진단 키트 - Google Patents

Covid 진단 키트 Download PDF

Info

Publication number
WO2022080994A1
WO2022080994A1 PCT/KR2021/014513 KR2021014513W WO2022080994A1 WO 2022080994 A1 WO2022080994 A1 WO 2022080994A1 KR 2021014513 W KR2021014513 W KR 2021014513W WO 2022080994 A1 WO2022080994 A1 WO 2022080994A1
Authority
WO
WIPO (PCT)
Prior art keywords
covid
electrode
target material
diagnostic kit
connection
Prior art date
Application number
PCT/KR2021/014513
Other languages
English (en)
French (fr)
Inventor
이혜연
배남호
이석재
Original Assignee
주식회사 마라나노텍코리아
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마라나노텍코리아, 한국과학기술원 filed Critical 주식회사 마라나노텍코리아
Publication of WO2022080994A1 publication Critical patent/WO2022080994A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus

Definitions

  • the present invention relates to a COVID diagnostic kit, and more particularly, by electrochemically quantifying a COVID target material through a diagnostic kit comprising a connection module electrically connectable to an external device and a sensing module detachable to the connection module as components. It relates to a COVID diagnostic kit that makes a diagnosis possible.
  • Specific molecules in the blood have a large interference between other blood molecules, high non-specific binding, and extremely low concentrations, making it difficult to develop a biosensor for diagnosing specific molecules in the blood.
  • COVID disease patients are patients with potential high-risk groups capable of rapid infection and transmission, quick and simple measurement is required, and the development of a COVID antigen diagnostic kit that can measure quickly and simply is necessary.
  • connection module electrically connectable to an external device
  • a diagnostic kit comprising a; a sensing module configured to detect a COVID target material from the analysis sample introduced into the inside, and transmit an electrical signal generated by reacting with the detected COVID target material to the connection module;
  • the module is provided with a sensor that detects the COVID target material from the analyte sample and reacts with the COVID target material to generate the electrical signal, wherein the sensor is provided on one surface of the substrate and the substrate;
  • the sensing module is detachable to the connection module.
  • connection module electrically connectable to an external device
  • a diagnostic kit comprising a; a sensing module configured to detect a COVID target material from the analysis sample introduced into the inside, and transmit an electrical signal generated by reacting with the detected COVID target material to the connection module;
  • the module is provided with a sensor that detects the COVID target material from the analyte sample and reacts with the COVID target material to generate the electrical signal, wherein the sensor is provided on one surface of the substrate and the substrate; It provides a diagnostic kit for diagnosing COVID, including a plurality of electrodes that react with a COVID target material to generate an electrochemical signal, and the sensing module is detachable to the connection module.
  • the senor may include a microwell or nanowell structure having a plurality of grooves on the electrode.
  • the analysis sample of the diagnostic kit for diagnosing COVID may be a biological sample isolated from an individual.
  • the COVID target material of the diagnostic kit for diagnosing COVID may be a COVID antigen or a COVID antibody.
  • a material capable of detecting a COVID target material by reacting with the COVID target material may be coupled to the sensor of the diagnostic kit for diagnosing COVID-19.
  • the electrochemical signal of the diagnostic kit for diagnosing COVID is obtained by further adding a probe and an electron transfer activating material that can be bound to a COVID target material reacted with a material capable of detecting the COVID target material it may be happening
  • the electrode of the diagnostic kit for diagnosing COVID may be a working electrode, a counter electrode, or a reference electrode.
  • the microwell or nanowell of the diagnostic kit for diagnosing COVID may have a diameter of 50 nm to 50 ⁇ m.
  • connection module and the sensing module of the diagnostic kit for diagnosing COVID may be detachably coupled to each other through magnetism, and electrically connected to each other through surface contact.
  • the present invention relates to a COVID diagnostic kit, which performs an electrochemical analysis method, and through this, has the advantage of quantifying a very small amount of a COVID target material in the blood to enable in vitro diagnosis.
  • the present invention has an advantage in that the resolution can be improved by inserting an analysis sample through a microwell or nanowell structure, and the present invention provides a connection module electrically connected to an external device, and a sensing module detachable from the connection module. Since it is composed of , it is possible to perform various types of inspection through replacement of the sensing module, and only the sensing module can be replaced while the connection module is coupled to an external device, so that it is possible to perform continuous and rapid inspection.
  • FIG. 1 is a diagram schematically illustrating a process of detecting an electrical signal according to an embodiment of the present invention.
  • FIG. 2 is a state diagram showing a state in which a kit according to an embodiment of the present invention is connected to an external device:
  • Fig. 2 (a) is a state diagram showing a state in which an external device in the form of a smartphone or tablet and a kit are connected
  • Figure 2 (b) is a state diagram showing a state in which the external device in the form of a PC and the kit are connected.
  • FIG. 3 is a perspective view illustrating a kit in which a microwell or nanowell structure is formed according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing a disassembled state of the kit according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line VI-VI of FIG. 4 .
  • FIG. 6 is a side view showing a portion “A” of FIG. 4 .
  • FIG. 7 is a plan view schematically showing a disassembled state of a kit according to another embodiment of the present invention.
  • FIG. 8 is an enlarged view of part “B” of FIG. 7 .
  • FIG. 9 is a plan view schematically showing a disassembled state of a kit according to another embodiment of the present invention.
  • FIG. 10 is a view schematically illustrating a process in which part “C” of FIG. 9 is coupled.
  • FIG. 11 is a side view schematically showing a disassembled state of a kit according to another embodiment of the present invention.
  • 12(a) is a diagram illustrating a label-free electrochemical analysis method
  • 12B is a diagram illustrating an electrochemical analysis method using a probe and an electron transfer activating material according to an embodiment of the present invention.
  • a “module” or “unit” for a component performs at least one function or operation.
  • a “module” or “unit” may perform a function or operation by hardware, software, or a combination of hardware and software.
  • a plurality of “modules” or a plurality of “units” other than a “module” or “unit” to be performed in specific hardware or to be executed in at least one processor may be integrated into at least one module.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • the present invention relates to a COVID diagnostic kit, and to a kit in which a sensing part can be replaced by using a connection module electrically connectable to an external device and a sensing module detachable from the connection module.
  • a kit 10 using a microwell or nanowell structure improves resolution by using a microwell or nanowell structure 220 , and is generated in the kit 10 . It is configured to be electrically connected to the external device 20 in which software capable of measuring and analyzing the electrical signal is installed.
  • the kit 10 is electrically connected to the external device 20 in the form of a smartphone or tablet as shown in FIG. 2(a), or electrically connected to the external device 20 in the form of a PC as shown in FIG. 2(b).
  • the external device 20 is not limited thereto, and can be used in various forms electrically connectable to the kit 10 .
  • the external device 20 has a terminal unit (not shown) that can be coupled with the first connection terminal 110 provided in the connection module 100 so as to be electrically connectable to the connection module 100 of the kit 10 to be described later. can be provided.
  • the external device 20 includes a program or application capable of qualitative and quantitative analysis of a COVID target material by measuring and analyzing the potential according to the redox reaction of the kit 10 when connected to the kit 10 . etc. may be installed. Through this, the external device 20 collects and analyzes signals generated by the kit 10, and can detect various diseases or diseases, or measure and display changes thereof.
  • the external device 20 may be connected to the Internet through wired or wireless communication to transmit data measured through the kit 10 to a user terminal or a server of a medical institution. Through the transmitted data, the subject or medical institution can monitor the health status in real time.
  • the external device 20 includes an input unit (not shown) electrically connected to the kit 10 to which the kit 10 is coupled, a signal (data) transmitted through the input unit, storage, analysis and A control unit for diagnosis (not shown), a display unit for outputting data transmitted from the control unit in an externally identifiable form (not shown), a communication unit for transmitting data received from the control unit to a selected user terminal and a medical institution server (not shown), and It may include a power supply unit (not shown) for supplying power to the input unit, the control unit, the display unit, and the communication unit.
  • the kit according to an embodiment of the present invention includes a connection module 100 , a sensing module 200 , and a sensor 210 .
  • a connection module 100 a connection module 100 , a sensing module 200 , and a sensor 210 .
  • connection module 100 is electrically connectable to the external device 20 .
  • the connection module 100 includes a first connection terminal 110 , a second connection terminal 120 , a controller 130 , and a body 140 .
  • the first connection terminal 110 is coupled to the external device 20 to be electrically connectable to the external device 20 .
  • the first connection terminal 110 may have various configurations as long as it can be electrically connected to the external device 20 .
  • the first connection terminal 110 is coupled to the terminal provided in the external device 20 in a shape corresponding to the terminal of the external device 20 so as to be electrically connected to the external device 20 .
  • the first connection terminal 110 may be provided in the form of USB, micro USB, or a pin (PIN), but is not limited thereto, and various configurations are possible if it can be electrically connected to the external device 20 .
  • PIN pin
  • the second connection terminal 120 is coupled to the sensing module 200 to be described later to be electrically connectable to the sensing module 200 .
  • the second connection terminal 120 may be provided in the form of a micro USB or a PIN, but is not limited thereto, and various configurations may be used as long as it can be electrically connected to the sensing module 200 .
  • the controller 130 is electrically connected to the first connection terminal 110 and the second connection terminal 120, and a signal ( data) may be configured to control the transmission.
  • the controller 130 may be electrically connected to the first connection terminal 110 and the second connection terminal 120 through an electric wire, but is not limited thereto. If the two connection terminals 120 can be electrically connected, various configurations can be used.
  • the main body 140 includes a lower body in which the first connection terminal 110 , the second connection terminal 120 , and the controller 130 are installed, and is coupled to the lower body to provide the first connection terminal 110 .
  • the second connection terminal 120 and the controller 130 may include an upper body that protects the upper portion.
  • the sensing module 200 detects a COVID target material from the analysis sample introduced into it, and transmits an electrical signal generated by reacting with the detected COVID target material to the connection module 100 ), while being configured to transmit, a microwell or nanowell structure 220 is provided.
  • the analysis sample may refer to a biological sample isolated from a subject, and blood, plasma, serum, urine, mucus, saliva, tears, sputum, spinal fluid, pleural fluid, nipple aspirate, lymph fluid, airway fluid, intestinal fluid, genitourinary tract fluid , breast milk, lymphatic fluid, semen, cerebrospinal fluid, intratracheal fluid, ascites, cystic tumor fluid, amniotic fluid, or a combination thereof.
  • the analysis sample is not limited thereto, and may be a variety of materials as long as it is a biological sample.
  • the biological sample may include an intact protein.
  • the intact protein may be a protein isolated from a biological sample without further modification of the protein.
  • An intact protein may be a protein that has been isolated from a biological sample, for example, without proteolysis by proteolytic enzymes.
  • the sensing module 200 may be provided with a sensor 210 that detects the COVID target material from the analysis sample and generates the electrical signal by reacting with the COVID target material, the sensor 210 includes , including a substrate 211 , a plurality of electrodes 212 , and a microwell or nanowell structure 220 .
  • the senor 210 may be provided with a sensing material (eg, an antibody, etc.) that reacts with the COVID target material included in the analysis sample to detect the COVID target material.
  • a sensing material eg, an antibody, etc.
  • the sensor 210 comes into contact with the analyte sample, it interacts with the COVID target material included in the analyte sample to generate an electrical signal.
  • the external device 20 connected to the kit 10 may detect the presence or concentration of the COVID target material by analyzing the electrical signal generated from the kit 10 .
  • the sensor 210 is not limited thereto, and may be configured to allow movement, stopping, filtration, purification, reaction, and mixing of an analysis sample.
  • the COVID target material and the material capable of detecting the COVID target material may be a COVID antigen or a COVID antibody.
  • a material capable of detecting a COVID target material is a COVID antibody
  • a material capable of detecting a COVID target material is a COVID antigen
  • the COVID antigen may be receptor-binding domains (RBD) or N-terminal domain (NTD) of the COVID virus surface protein (S protein), and the COVID antibody may be IgM or IgG.
  • the electrochemical signal may be generated by further adding a probe capable of binding to a COVID target material that has reacted with a material capable of detecting the COVID target material and an electron transfer activating material.
  • COVID may refer to the Corona 19 virus (COVID 19, Severe Acute Respiratory Syndrome Coronavirus-2 or SARS-CoV-2).
  • the diagnostic kit uses an electrochemical analysis method for measuring changes in current and impedance according to multiple antigen-antibody reactions or DNA and RNA complementary binding based on a protein aggregation reaction. As it can identify the COVID target material, various electrochemical analysis methods can be used.
  • the diagnostic kit according to an embodiment of the present invention can determine the COVID target material in the analysis sample by various electrochemical methods such as cyclic voltammetry and SWQ (square wave voltammetry).
  • the following method may be used for quick and simple diagnosis.
  • the COVID target material is reacted with a material capable of detecting the COVID target material. Thereafter, it can be performed by inserting a probe that binds to the COVID target material and an electron transfer activating material that generates an electric current by causing oxidation and reduction reactions while being bound to the probe into the microwell or nanowell.
  • the COVID target material can be determined by applying a specified voltage to the electrode 212 and reading the current value.
  • the probe may be a secondary antibody capable of reacting to the COVID target material
  • the electron transfer activating material may be a material generating an electric current by oxidation or reduction reaction with the probe.
  • the electron transport activating material may be ferrocene, methylene blue, or ferrate.
  • the electron transfer activating material is not limited thereto, and may be a variety of materials as long as the material generates an electric current through oxidation or reduction reaction with the probe.
  • the conventional electrochemical analysis method is a label-free method, in which a material capable of detecting a target material is fixed to an electrode, the target material is inserted, and then the impedance is measured while applying an alternating voltage.
  • the target material is determined by reading the current value after applying only a specified voltage to the electrode 212 while using the probe and the electron transfer activation material, It has the advantage of short analysis time and low cost and portable equipment.
  • particles treated with a fluorescent material may be inserted into the microwells or nanowells of the diagnostic kit according to an embodiment of the present invention. Accordingly, the diagnostic kit according to an embodiment of the present invention can simultaneously implement the electrochemical analysis method and the optical analysis method on one electrode.
  • one particle may react. That is, the microwell or nanowell and the particle may have a 1:1 reaction.
  • the diagnostic kit according to an embodiment of the present invention forms the microwell or nanowell structure, and as the fluorescent material-treated particles are inserted, there is an advantage of reducing protein aggregation and improving sensitivity.
  • the diagnostic kit according to an embodiment of the present invention, as one of the particles is inserted into one of the microwells or nanowells and reacts 1:1, it is possible to reduce the protein aggregation reaction and improve the sensitivity.
  • the size of the particles is greater than 1/2 of the diameter of the microwell or nanowell, and the size of the microwell or nanowell It is preferably smaller than the diameter.
  • the size of the particle is smaller than 1/2 of the size of the microwell or nanowell, since the 1:1 reaction may not occur while two or more particles are inserted into one microwell or nanowell, the The size of the particles is preferably larger than 1/2 of the size of the microwell or nanowell.
  • the size of the particle when the size of the particle is larger than the size of the microwell or nanowell, the particle cannot be inserted into the microwell or nanowell, so the size of the particle is preferably smaller than the size of the microwell or nanowell . As described above, by controlling the size of the particles, the microwell or nanowell and the particle can be reacted 1:1.
  • the substrate 211 provided in the sensor 210 may have a predetermined size, and the substrate 211 may have a size of 2 x 2 mm.
  • the size of the substrate 211 is not necessarily limited thereto, and may be changed to various sizes.
  • the substrate 211 may be made of a material that has elasticity and is bendable.
  • the substrate 211 may be a polyurethane (Poly urethane, PU)-based, polydimethylsiloxane (PDMS)-based, NOA (Noland Optical Adhesive)-based, epoxy-based, polyethylene terephthalate, At least one of PET), polymethyl methacrylate (PMMA), polyimide (PI), polystyrene (PS), polyethylene naphthalate (PEN), and polycarbonate (PC) It may be made of a material of PET), polymethyl methacrylate (PMMA), polyimide (PI), polystyrene (PS), polyethylene naphthalate (PEN), and polycarbonate (PC) It may be made of a material of
  • the material of the substrate 211 is not necessarily limited thereto, and electrodes generating a potential difference according to the reaction with the COVID target material may be disposed, and various materials having flexibility may be changed and applied.
  • the electrode 212 may be provided in plurality, and the electrode 212 is provided on one surface of the substrate 211 and reacts with the COVID target material included in the analysis sample to generate an electrochemical signal. will be.
  • the electrode may be a working electrode, a counter electrode, or a reference electrode.
  • a plurality of the electrodes 212 are a first electrode 212a that oxidizes or reduces a COVID target material, and a second electrode 212b that oxidizes or reduces a COVID target material in opposition to the reaction of the first electrode 212a. ), and a third electrode 212c configured to maintain a constant operating voltage between the first electrode 212a and the second electrode 212b.
  • the plurality of electrodes 212 may be formed on the insulating substrate 211 through a screen printing method.
  • the second electrode 212b and the third electrode 212c may be disposed to surround the circumference of the first electrode 212a.
  • the first electrode 212a and the second electrode 212b may be disposed on the substrate 211 to be spaced apart from each other by a predetermined distance.
  • the first electrode 212a may have a circular shape
  • the second electrode 212b may have a semicircular shape to surround a portion of the first electrode 212a.
  • the arrangement of the first electrode 212a and the second electrode 212b and the shape of each of these electrodes are not limited thereto, and may be changed as necessary.
  • the first electrode 212a may refer to a working electrode that performs oxidation or reduction reaction by reaction with a COVID target material or an analysis sample containing a COVID target material on the substrate 211 .
  • a bioreceptor (not shown) that specifically binds to a COVID target material may be disposed on the first electrode 212a.
  • a pillar having a conductive layer deposited thereon is disposed on the first electrode 212a, and a bioreceptor such as an antibody, antigen, or aptamer may be disposed on the pillar.
  • a material inducing an electrochemical signal by reacting with a COVID target material may be further disposed on the first electrode 212a.
  • the reaction area with the COVID target material is widened, and through this, the kit 10 uses a small amount of the COVID target material It can also provide sensitive qualitative and quantitative analysis results.
  • the pillar may be a polymer structure having a nano size.
  • the pillar may be made of at least one of polyurethane, polydimethylsiloxane, Norland Optical Adhesives (NOA), epoxy, polyethylene terephthalate, polymethylmethacrylate, polyimide, polystyrene, polyethylene naphtharate, polycarbonate, and combinations thereof. there is.
  • NOA Norland Optical Adhesives
  • the pillars may also be made of a combination of polyurethane and NOA (eg NOA 68).
  • NOA eg NOA 68
  • the pillars are not limited thereto, and may be made of more various polymers as long as they have flexibility.
  • the conductive layer deposited on the pillar may refer to a layer made of a conductive material.
  • the conductive layer may be formed of at least one of Ni, Zn, Pd, Ag, Cd, Pt, Ga, In, and Au, but is not limited thereto.
  • the second electrode 212b may refer to a counter electrode facing the first electrode 212a on the substrate 211 . Therefore, if an oxidation reaction occurs in the first electrode 212a by reaction with a COVID target material, a reduction reaction may occur in the second electrode 212b.
  • the above-described pillar having a conductive layer deposited thereon may be disposed on the second electrode 212b.
  • the third electrode 212c may refer to a reference electrode in which a potential is stably maintained even when in contact with a COVID target material.
  • a reaction layer capable of maintaining a constant potential even when in contact with a COVID target material may be provided on the third electrode 212c.
  • the reaction layer is Ag/AgCl, Ag, Hg2SO4, Ag/Ag+, Hg/Hg2SO4, RE-6H, Hg/HgO, Hg/Hg2Cl2, Ag/Ag2SO4, Cu/CuSO4, KCl saturated calomel half cell (SCE) and salt bridge
  • SCE KCl saturated calomel half cell
  • the microwell or nanowell structure 220 is provided on the electrode 212 and includes a plurality of grooves.
  • the microwell or nanowell structure 220 may be provided at an inlet into which the analysis sample is inserted into the sensing module 200 , and the resolution is improved by using the microwell or nanowell structure 220 . There are advantages to doing it.
  • the microwell or nanowell structure 220 may be provided above a working electrode, and the microwell or nanowell structure 220 includes the first electrode 212a formed of a working electrode. It may be provided on the top.
  • the microwell or nanowell may have a diameter of 50 nm to 50 ⁇ m.
  • the term “nanowell” may mean a well in which the diameter of a well is in nanometers (nm)
  • “microwell” may mean a well in which the diameter of a well is in micrometers ( ⁇ m) units. there is.
  • the nanowell has a diameter of 50 nm to 1000 nm, 50 nm to 900 nm, 50 nm to 600 nm, 50 nm to 500 nm, 100 nm to 1000 nm, 100 nm to 900 nm, 100 nm to 600 nm, 100 nm to 500 nm, 200 nm to 1000 nm, 200 nm to 900 nm, 200 nm to 600 nm, 200 nm to 500 nm, 300 nm to 1000 nm, 300 nm to 900 nm or 300 nm to 500 nm;
  • the microwell has a diameter of 1 ⁇ m to 50 ⁇ m, 1 ⁇ m to 30 ⁇ m, 1 ⁇ m to 20 ⁇ m, 5 ⁇ m to 50 ⁇ m, 5 ⁇ m to 30 ⁇ m, 5 ⁇ m to 20 ⁇ m, 10 ⁇ m to 50 ⁇ m, 10 ⁇ m to 30 ⁇ m,
  • the sensing module 200 may further include a connection pad 230 , a connection port 240 , a housing 250 , and a bonding wire 260 .
  • connection pad 230 may be provided in single or plural, and may be electrically connected to the sensor 210 through the bonding wire 260 . 4 and 6 , on the lower surface of the sensor 210 , a plurality of connection pads 230 and a plurality of connection pads 213 electrically connected to the plurality of electrodes 212 provided in the sensor 210 are connected to each other. ) may be further provided.
  • connection pad 213 attached to the bottom surface of the sensor 210 is electrically connected to the plurality of electrodes 212 provided in the sensor 210 , and the other surface of the connection pad 213 is the It may be electrically connected to the plurality of connection pads 230 through the bonding wire 260 .
  • the plurality of connection pads 230 and the connection pads 213 may be provided in the form of a copper foil, and a surface of the plurality of connection pads 230 may be further coated with gold foil.
  • connection pad 213 and the sensor 210 may be electrically connected to each other through a conductive material (not shown), and a double-sided adhesive carbon tape may be used as the conductive material.
  • a conductive material is not limited thereto, and various materials may be used as long as the connection pad 213 and the sensor 210 can be electrically connected.
  • the bonding wire 260 is made of gold (Au), and one end of the bonding wire 260 is bonded to the connection pad 213 attached to the sensor 210 .
  • the electrodes 212 may be electrically connected, and the other end of the bonding wire 260 may be bonded to the plurality of connection pads 230 to be electrically connected to the plurality of connection pads 230 .
  • connection port 240 may be electrically connected to the plurality of connection pads 230 , and may be coupled to the connection module 100 to be electrically connected to the connection module 100 .
  • connection port 240 may be electrically connected to the plurality of connection pads 230 through an electric wire 261 , and when coupled to the connection module 100 , the sensor ( Power may be supplied to 210 , and an electrical signal generated from the sensor 210 may be transmitted to the connection module 100 .
  • the connection port 240 may be provided in a shape corresponding to the second connection terminal 120 provided in the connection module 100 .
  • the senor 210, the plurality of connection pads 230, and the connection port 240 are installed, and the housing 250 includes the sensor 210 and the plurality of connection pads ( 230 ), may be configured to surround the circumference of the connection port 240 to protect the sensor 210 , the plurality of connection pads 230 , and the connection port 240 from the outside.
  • the housing 250 is disposed opposite to the first member 251 and the first member 251 provided with a channel 253 for guiding the analyte sample provided from the outside to the electrode 212 of the sensor 210 . and is coupled to the first member 251 and includes a second member 252 on which the sensor 210 , the plurality of connection pads 230 , and the connection port 240 are seated.
  • the channel 253 is a hole formed through the first member 251 , and the channel 253 is an inclined surface 254 for guiding an analysis sample provided from the outside to the electrode 212 of the sensor 210 . ) is included.
  • the inclined surface 254 may be provided along the periphery of the channel 253 , and the analysis sample provided from the outside moves along the inclined surface 254 stably to the electrode 212 of the sensor 210 . be able to reach
  • the microwell or nanowell structure 220 may be provided in the channel 253 .
  • the microwell or nanowell structure 220 may be provided on the first electrode 212a-working electrode, and the channel 253 is the first electrode 212a-working electrode. (working electrode) may be provided on top.
  • the microwell or nanowell structure 220 is preferably provided in the channel 253 , and the microwell or nanowell structure 220 can be supported while being coupled to the channel 253 .
  • the microwell or nanowell structure 220 is provided in the channel 253 , it is possible to improve resolution when the analyzed sample is moved to the electrode 212 through the channel 253 .
  • the first member 251 may be coupled to the second member 252 to cover the sensor 210 and the connection port 240 disposed on the second member 252 to protect them from the outside. . Also, the first member 251 may press the sensor 210 and the connection port 240 with a predetermined force to firmly support them. In addition, the first member 251 prevents the analysis sample provided to the sensor 210 through the channel 253 from leaking to the outside of the housing 250 through coupling with the second member 252 . can do.
  • the sensor 210 , the plurality of connection pads 230 , and the connection port 240 are accommodated between the first member 251 and the second member 252 . and an accommodation space 250a for protecting the bonding wire 260 may be provided.
  • the accommodating space 250a may be provided in the form of an intaglio pattern on the inside of the first member 251 and the second member 252, respectively.
  • At least one coupling protrusion 252a coupled to the first member 251 and supporting the first member 251 is provided on the second member 252 .
  • One member 251 may be provided with at least one coupling groove 251a corresponding to the coupling protrusion 252a.
  • the center of the channel 253 and the center of the sensor 210 may naturally be aligned at a predetermined position.
  • a sealer made of rubber or silicone for airtightening between the coupling protrusion 252a and the coupling groove 251a may be further provided.
  • the second member 252 has a receiving groove 252b in which the sensor 210 is seated and supported, and a collection groove 252c in which the analysis sample flowing out of the sensor 210 is stored. This may be further provided.
  • a sample guide surface 252d for guiding the analysis sample flowing out of the sensor 210 toward the collection groove 252c may be further provided between the sensor 210 and the collection groove 252c, and the sample guide surface (252d) may be formed in an inclined shape.
  • the housing 250 includes a flow state of the analyte sample, whether the analyte sample leaks, an alignment state of the channel 253 and the sensor 210 , and the bonding wire 260 through the
  • the sensor 210 and the plurality of connection pads 230 are connected to each other and the electrical connection of the plurality of connection pads 230 and the connection port 240 can be easily observed from the outside, and it is made of a transparent material. can be
  • the housing 250 may be made of at least one of polymethyl methacrylate, polycarbonate, cyclic olefin copolymer, polyethylene sulfone, and polystyrene, or at least two or more of them. It may be provided with these combined materials.
  • the material of the housing 250 is not necessarily limited thereto, and may be made of a polydimethylsiloxane material, which is a silicone-based organic polymer.
  • a kit using a microwell or nanowell structure according to an embodiment of the present invention may be modified and used as follows.
  • a plurality of sensing modules 200 of the kit may be provided, and the plurality of sensing modules 200 may be detachably coupled to the connection module 100 .
  • the connection module 100 may be electrically connected to the plurality of sensing modules 200 .
  • connection module 100 includes the first connection terminal 110 that can be coupled to the external device 20 and the second connection terminal 120 that can be coupled to the sensing module 200, A plurality of 2 connection terminals 120 may be provided.
  • the plurality of sensing modules 200 may be selectively coupled to the plurality of second connection terminals 120 .
  • the controller 130 is configured to operate through the plurality of second connection terminals 120 . After memorizing the order in which the electrical signals are transmitted, the electrical signals of the sensing module 200 connected to the corresponding second connection terminal 120 may be sequentially received and transmitted to the first connection terminal 110 .
  • the connection module 100 is a power supply unit 150 for controlling the connection between the plurality of second connection terminals 120 and the controller 130 between the plurality of second connection terminals 120 and the controller 130 . may further include.
  • a plurality of the power supply unit 150 may be provided, and may be individually connected to the plurality of second connection terminals 120 . Also, the power supply unit 150 may be connected to each of the controllers 130 .
  • the power supply unit 150 may be configured to be ON/OFF controlled through a user's operation. Only when the power supply unit 150 is controlled to an ON state through a user's operation, the power supply unit 150 is connected to the second connection terminal 120 . An electrical signal of the connected sensing module 200 may be transmitted to the controller 130 .
  • connection module 100 is installed on the circumference of the first connection terminal 110, the angle adjusting unit ( 160) may be further included.
  • the angle adjusting unit 160 is installed on the main body 140 and a rotating member 161 that is coupled to the first connection terminal 110 and is configured to rotate together with the first connection terminal 110 and is provided inside the
  • the rotating member 161 may be accommodated and may include a guide member 162 for guiding the rotation of the rotating member 161 .
  • a plurality of projections 161a spaced apart from each other are provided on the outer peripheral surface of the rotating member 161, and a plurality of grooves 162a corresponding to the plurality of projections 161a are provided on the inner peripheral surface of the guide member 162.
  • the user can arrange the plurality of second connection terminals 120 in predetermined positions by rotating the main body 140 in a state in which the first connection terminal 110 is coupled to the external device 20 . there is.
  • connection module 100 and the sensing module 200 may be detachably coupled to each other through magnetism, and may be electrically connected to each other through surface contact. .
  • connection module 100 may include a first coupling member 170
  • the sensing module 200 may include a second coupling member 270 capable of being coupled to the first coupling member 170 .
  • the first coupling member 170 includes a coupling protrusion 171 protruding from one end of the connection module 100 and a first magnetic body 172 accommodated at an end of the coupling protrusion 171 .
  • the coupling protrusion 171 may be formed in a wedge structure in which the size of the outer diameter gradually decreases along the protrusion direction. Through this, when the connection module 100 and the sensing module 200 are coupled, an inclined outer circumferential surface of the coupling protrusion 171 is a coupling groove of the second coupling member 270 provided in the sensing module 200 . Guided to the inner peripheral surface of the (271) can be easily coupled.
  • the second coupling member 270 is formed concavely on the other end of the sensing module 200 facing one end of the connection module 100 , and the coupling groove 271 is formed inside the coupling groove 271 . It is accommodated in the first magnetic body 172 and may include a second magnetic body 272 capable of being coupled through a magnetic force.
  • connection module 100 and the sensing module 200 are primarily coupled through the structural coupling of the coupling protrusion 171 and the coupling groove 271, and the first magnetic body 172 and the second As the magnetic body 272 is secondaryly coupled through coupling using the magnetism, they may be stably fixed to each other.
  • the sensing module 200 has a magnetic force of the second magnetic body 272 is shielded so that the magnetic force of the second magnetic body 272 does not affect other parts of the sensing module 200.
  • a shielding structure 280 configured to do so may be provided.
  • the shielding structure 280 may be provided inside the housing 250 and be provided in a shape surrounding the coupling groove 271 of the second coupling member 270 and the periphery of the second magnetic body 272 . there is.
  • the shielding structure 280 may be made of the same material as the housing 250 , and may be made of a material capable of shielding magnetic force.
  • connection module 100 and the sensing module 200 may be electrically connected to each other through surface contact coupling.
  • the second connection terminal 120 of the connection module 100 connected to the connection port 240 of the sensing module 200 is of a flat plate type that can be electrically connected to each other through surface contact. It may be provided in the form of a terminal.
  • connection port 240 and the second connection terminal 120 can be electrically connected to each other just by being interviewed.
  • connection module 100 and the sensing module 200 This makes it easier to combine and separate the connection module 100 and the sensing module 200, and it is possible to prevent the connection port 240 and the second connection terminal 120 from being damaged even in a detachable type.
  • An identification film may be attached to the end of the sensing module 200 according to an embodiment of the present invention to confirm whether the sensing module 200 is used or not through the presence or absence of damage.
  • a receiving groove (not shown) that can be engaged with a wedge-shaped pressing protrusion (not shown) provided at the end of the connection module 100 is provided, and at the entrance of the receiving groove, the sensing module ( 200) attached to the end of the identification film in the form of a thin film configured to block the entrance of the receiving groove may be attached.
  • the identification film may be configured to be damaged by being pressed with a predetermined force by the pressing protrusion of the connection module 100 inserted into the receiving groove when the sensing module 200 and the connection module 100 are coupled. Accordingly, the user can determine whether the sensing module 200 is used by checking whether the identification film provided at the end of the sensing module 200 is damaged.
  • the configuration capable of confirming whether the sensing module 200 is used is not necessarily limited thereto, and may be changed and applied in various forms.
  • the sensing module 200 may include a plurality of sensing units configured to detect a target material from an analysis sample.
  • the plurality of sensing units are electrically connected to the connection port 240 and may be installed inside the housing 250 .
  • Each of the plurality of sensing units includes the sensor 210 , and the plurality of sensing units are separated from each other through a partition wall 214 , through the connection port 240 electrically coupleable to the connection module 100 . They can be electrically connected to each other.
  • the plurality of sensing units may include a first sensing unit 210a and a second sensing unit 210b.
  • the first sensing unit 210a and the second sensing unit 210b may be disposed in separate spaces through the partition wall 214 provided in the housing 250 .
  • the first sensing unit 210a and the second sensing unit 210b each detect a COVID target material from a contacted analysis sample, and the sensor 210 and the sensor that reacts with the COVID target material to generate an electrical signal
  • the connection pad 230 may be electrically connected to the sensor 210 through a bonding wire 260 and electrically connected to the connection port 240 through the electric wire 261 .
  • first sensing unit 210a and the second sensing unit 210b may each include the channel 253 , and each of the channels 253 has the microwell or nanowell structure 220 . may be provided.
  • connection pad 230 and the connection port 240 are provided.
  • a power supply unit 290 for controlling the connection may be further provided.
  • the power supply unit 290 is electrically connected to the connection pad 230 and the connection port 240 , and may be configured to be ON/OFF controlled through a user's manipulation. Accordingly, only when the power supply unit 290 is controlled to be in the ON state through a user's manipulation, the electrical signal of the sensor 210 connected to the connection pad 230 may be transmitted to the connection port 240 .
  • kit using the microwell or nanowell structure has been described as including the first sensing unit 210a and the second sensing unit 210b, it is not limited thereto, and two The above sensing unit may be provided.
  • the kit using the microwell or nanowell structure according to the embodiment of the present invention described above has the following effects.
  • the kit 10 using a microwell or nanowell structure is configured to be electrically connected to the external device 20 through a connection terminal provided in the form of a USB or pin, so that it can be applied to various devices. , cost can be reduced, and convenience and usability of the product can be increased because it can be easily used in real life.
  • the kit 10 using a microwell or nanowell structure includes a connection module 100 electrically connected to the external device 20 and a sensing module detachable from the connection module 100 . Since it is composed of 200, it is possible to perform various types of tests through replacement of the sensing module 200, and only the sensing module 200 can be replaced while the connection module 100 is coupled to the external device 20. Able to perform continuous and rapid inspection.
  • the kit 10 using a microwell or nanowell structure is configured such that the sensing module 200 and the external device 20 are electrically connected to each other through the connection module 100 . , even when the kit 10 is coupled to or separated from the external device 20 , the sensing part is prevented from being damaged by the external device 20 .
  • the shape of the electrode provided on the substrate 211 applied to the kit 10 using the microwell or nanowell structure according to an embodiment of the present invention is improved, so that a larger number of sensors 210 than in the prior art is improved. By making it possible, the manufacturing cost can be reduced.
  • the sensor 210 can be manufactured in a size of 2 x 2 mm. Therefore, the number of sensors 210 that can be manufactured using an existing 8-inch wafer has greatly increased from a low of 1000 to a high of 20,000. Except for the sensor 210, the manufacturing cost can be further reduced by using a PCB process with a low manufacturing cost.
  • kit 10 using a microwell or nanowell structure has the advantage of improving resolution by inserting an analysis sample through the microwell or nanowell structure 220 . .
  • nanowell electrode (manufactured by Marananotek Korea), portable electrochemical measuring instrument (manufactured by Marananotek Korea), milli-size electrode (USB Type) (manufactured by Marananotek Korea), microwell electrode (USB Type) ) (manufactured by Marananotek Korea), and the reagents are DTSSP (purchased from THERMO), capture antibody (purchased from abclon), Detection antibody (biotin conjugate) (purchased from abclon), Detection antibody (HRP conjugate) (from abclon) purchased), COVID S protein (purchased from abclon), 1xPBS (purchased from Dubellco), 0.05% Tween 20 in 1xPBS, DI water, potassium ferricyanide (purchased from Sigma aldrich), and Blocking solution (purchased from Thermo) were used.
  • DTSSP purchasedd from THERMO
  • capture antibody purchased from abclon
  • Detection antibody biotin conjugate
  • electrode washing and initialization verification step (2) self assembled monolayer (SAM) processing step, (3) capture antibody (primary) immobilization, (4) blocking step through BSA immobilization, (5) antigen immobilization Step, (6) Detection antibody (secondary) immobilization step, and (7) electrical signal measurement step were performed.
  • SAM self assembled monolayer
  • the number of electrodes to be tested according to the concentration to be measured was prepared.
  • One electrode is used for one concentration analysis.
  • CV, SWV, and CA of the bare electrode were measured for comparative analysis.
  • Nanowell electrodes (USB type) and nanowell electrodes (8 channels) manufactured by Marananotek Korea were used.
  • 10 mM ferricyadnide solution was prepared in 1xPBS solution and stored at room temperature. Since the molecular weight is 329.26, it was prepared according to the concentration, stored in a 50 ml tube, and stored in a rack at room temperature. The prepared solution was checked for foreign matter before use, and a new solution was made and used every 14 days.
  • the electrode was inserted into the MP101, and 30 ⁇ l of a 10 mM ferricyanide solution was added thereto, and the conditions shown in Table 1 below were applied.
  • Electrochemical measurement Potential/current limit (vertexl, 2) repeat Scan rate 08 to -0.8 V (CV), microwell No.2 200 mv/s 0.9 ⁇ -0.9 V (repeat 2 times), nanowell array electrode No.2 200 mv/s 0.5 to -0.7 V Metric size (can be omitted) No.2 200 mv/s
  • the pass/fail ratio was determined after measuring the magnitude of the current and the shape of the redox current derived under the same conditions as described above. After that, the used electrode was washed by flowing DI water for 3 seconds, and then the remaining material was blown away with a pump to prepare for the experiment.
  • the (2) self assembled monolayer (SAM) treatment step was performed as follows. This step is for improvement of orientation and density.
  • DTSSP 10 mM DTSSP was dissolved in DI water to make a solution in EP tube. Since DTSSP is a sensitive material to moisture and light, it is taken out of the refrigerator immediately, weighed, prepared a solution, and refrigerated immediately after use.
  • a dilution reagent used for diluting the antibody 10 mg/ml BSA (Bovine serum albumin) in 1x PBS was used. Antibodies are kept refrigerated, and the required dose is taken out at room temperature 10 minutes before use and stabilized. Then, 30 ul of antibody was dispensed on the electrode and incubated for 1 hour. At this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper part of the electrode surface with a pipette during dispensing.
  • BSA Bovine serum albumin
  • BSA was used as a blocking solution and was used at a concentration of 1% (10 mg/ml). 30 ul of BSA was dispensed on the electrode and incubated for 30 minutes. At this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper part of the electrode surface with a pipette during dispensing.
  • Horseradish peroxidase (HRP)-labeled antibody was used as a detection antibody. 30 ul of detection antibody at a concentration of 1 ug/ml was dispensed on the electrode and incubated for 30 minutes. At this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper surface of the electrode with a pipette during dispensing, and the HRP-labeled antibody was sensitive to light, so it was wrapped in silver foil and incubated.
  • OPD o-phenylenediamine
  • TMB 3,3',5,5'-Tetramethylbenzidine
  • A OPD, silver, small tablet
  • B Buffer with urea H2O2, gold, large tablet
  • electrode cleaning and initialization verification step (2) self assembled monolayer (SAM) processing step, (3) capture antibody (primary) immobilization, (4) blocking step through BSA immobilization, (5) antibody immobilization Step, (6) Detection antibody (secondary) immobilization step, and (7) electrical signal measurement step were performed.
  • SAM self assembled monolayer
  • the number of electrodes to be tested according to the concentration to be measured was prepared.
  • One electrode is used for one concentration analysis.
  • CV, SWV, and CA of the bare electrode were measured for comparative analysis.
  • Nanowell electrodes (USB type) and nanowell electrodes (8 channels) manufactured by Marananotek Korea were used.
  • 10 mM ferricyadnide solution was prepared in 1xPBS solution and stored at room temperature. Since the molecular weight is 329.26, it was prepared according to the concentration, stored in a 50 ml tube, and stored in a rack at room temperature. The prepared solution was checked for foreign substances before use, and a new solution was made and used every 14 days.
  • the electrode was inserted into the MP101, and 30 ⁇ l of a 10 mM ferricyanide solution was added thereto, and the conditions shown in Table 3 below were applied.
  • Electrochemical measurement Potential/current limit (vertexl, 2) repeat Scan rate 08 to -0.8 V (CV), microwell No.2 200 mv/s 0.9 ⁇ -0.9 V (repeat 2 times), nanowell array electrode No.2 200 mv/s 0.5 to -0.7 V Metric size (can be omitted) No.2 200 mv/s
  • the pass/fail ratio was determined. After that, the used electrode was washed by flowing DI water for 3 seconds, and then the remaining material was blown away with a pump to prepare for the experiment.
  • the (2) self assembled monolayer (SAM) treatment step was performed as follows. This step is for improvement of orientation and density.
  • DTSSP is a sensitive substance to moisture and light, it was taken out of the refrigerator immediately, weighed, prepared a solution, and refrigerated immediately after use.
  • BSA was used as a blocking solution and was used at a concentration of 1% (10 mg/ml). 30 ul of BSA was dispensed on the electrode and incubated for 30 minutes. At this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper part of the electrode surface with a pipette during dispensing.
  • the dilution reagent used for diluting the antibody was 10 mg/ml Bovine serum albumin (BSA) in 1x PBS.
  • BSA Bovine serum albumin
  • Antibodies are kept refrigerated, and the required dose is taken out at room temperature 10 minutes before use and stabilized. Then, 30 ul of antibody was dispensed on the electrode and incubated for 1 hour. At this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper part of the electrode surface with a pipette during dispensing.
  • Horseradish peroxidase (HRP)-labeled antibody was used as a detection antibody. 30 ul of detection antibody at a concentration of 1 ug/ml was dispensed on the electrode and incubated for 30 minutes. Also at this time, the humidity was maintained as in step (2). In addition, it was made not to touch the upper surface of the electrode with a pipette during dispensing, and the HRP-labeled antibody was sensitive to light, so it was wrapped in silver foil and incubated. After 30 minutes, 1xPBST was dispensed on the electrode for 5 seconds to wash the residue.
  • HRP-labeled antibody was used as a detection antibody.
  • OPD o-phenylenediamine
  • TMB 3,3',5,5'-Tetramethylbenzidine
  • A OPD, silver, small tablet
  • B Buffer with urea H2O2, gold, large tablet
  • the electrode on which OPD or TMB is placed was plugged into mp101 and the current was measured.
  • the minimum detection limit was confirmed using the kit including the nanowell or microwell electrode used in Example 1.
  • a sample of the confirmed group was provided from Seoul Atomic Energy Hospital, and the test was repeated 3 times for each sample.
  • the minimum detection limit was confirmed to be 5.0x10 2 pfu/ml.
  • nanowell or microwell electrode of Example 1 has repeatability and lot-to-lot reproducibility.
  • oropharyngeal and nasopharyngeal samples 44 clinical samples were provided from Seoul Atomic Energy Hospital. Samples were provided in a state contained in universal VTM (viral transport medium), and 10 samples of the confirmed group and 34 samples of normal bacteria were used for the experiment. Saliva samples were also provided with 40 saliva samples from Seoul Atomic Energy Hospital. It was provided as a stock solution in a 50ml tube, and 20 samples of the confirmed group and 20 samples of normal bacteria were used for the experiment.
  • HRP horseradish peroxidase
  • the nanowell sensor was inserted into the MARA ESEN 2000 (manufactured by Marananotek Korea), which is a kit according to an embodiment, and 30 ⁇ L of TMB (3,3',5,5'-Tetramethylbenzidine) was loaded. Measurements were made immediately after 5 minutes.
  • RT-PCR TM RT-PCR Detection Systems
  • the clinical sensitivity is 90% (95% CI: 54.11% - 99.48%)
  • the clinical specificity is 100% (95% CI: 87.40% - 100%)
  • the positive predictive value is 100% (95% CI) : 62.88% - 100%)
  • the negative predictive value was 97.14% (95% CI: 83.38% - 99.85%).
  • the clinical sensitivity is 90% (95% CI: 66.87% - 98.25%)
  • the clinical specificity is 100% (95% CI: 79.95% - 100%)
  • the positive predictive value is 100% (95% CI).
  • the negative predictive value was 97.14% (95% CI: 69.38% - 98.41%).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nanotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 COVID 진단을 위한 마이크로웰 또는 나노웰 구조의 진단 키트에 관한 것으로, 더욱 상세하게는 외부장치와 전기적으로 연결 가능한 접속모듈과 접속모듈에 탈부착 가능하면서 마이크로웰 또는 나노웰 구조가 형성된 센싱모듈을 구성요소로 하는 진단키트를 통해 전기 화학적으로 COVID 표적 물질을 정량화하여 체외 진단을 가능하게 하는 COVID 진단을 위한 마이크로웰 또는 나노웰 구조의 진단 키트에 관한 것으로, 혈중 극소량의 COVID 표적 물질을 정량화하여 체외 진단이 가능하고, 센싱모듈의 교체를 통해 다양한 종류의 검사를 수행 가능하며, 접속모듈이 외부장치에 결합된 상태에서 센싱모듈만 교체 가능하여 연속적으로 신속한 검사를 수행할 수 있는 장점이 있다.

Description

COVID 진단 키트
본 발명은 COVID 진단 키트에 관한 것으로, 더욱 상세하게는 외부장치와 전기적으로 연결 가능한 접속모듈과 접속모듈에 탈부착 가능한 센싱모듈을 구성요소로 하는 진단키트를 통해 전기 화학적으로 COVID 표적 물질을 정량화하여 체외 진단을 가능하게 하는 COVID 진단 키트에 관한 것이다.
최근 특정 분자를 진단하는 바이오센서에 관한 연구가 활발히 진행되고 있으나, 혈중 내 특정 분자를 진단하는 바이오센서에 관한 기술 개발은 미비한 실정이다.
혈중 내 특정 분자들은 다른 혈중 분자들 간의 간섭현상이 크고 비특이적 결합이 많으며, 존재하는 농도가 극히 낮기 때문에 혈중 내 특정 분자를 진단하는 바이오 센서를 개발하기 어려운 문제점이 있다.
한편, 최근 COVID 감염이 급격하게 증가하고 있으나, COVID 질환을 측정하기 위한 표적 물질은 혈중 내에 극소량이 존재하기 때문에 그 측정이 어렵다.
COVID는 대부분 증상 발현 후 항원 검사를 하는데, 증상 발현 이후 감염의 진전이 급속히 빠르게 진행되므로, 빠르고 정확한 항원 또는 항체의 측정으로 환자의 감염 여부를 신속히 결정하는 것이 필수적이다.
따라서 COVID 질환 환자는 빠른 감염 및 전염이 가능한 고위험군 잠재적 위험성을 가진 환자이기 때문에 빠르고 간단한 측정이 필요하며, 이에 빠르고 간단하게 측정할 수 있는 COVID 항원 진단키트의 개발이 필요한 실정이다.
일 양상은 외부장치와 전기적으로 연결 가능한 접속모듈; 내부로 유입된 분석 시료로부터 COVID 표적 물질을 감지하고, 상기 감지된 COVID 표적 물질과 반응하여 발생된 전기적인 신호를 상기 접속모듈에 전송하도록 구성되는 센싱모듈;을 포함하는 진단 키트에 있어서, 상기 센싱모듈에는, 상기 분석 시료로부터 상기 COVID 표적 물질을 감지하고, 상기 COVID 표적 물질과 반응하여 상기 전기적인 신호를 발생시키는 센서가 구비되며, 상기 센서는, 기판;과 상기 기판의 일면에 마련되고, 상기 COVID 표적 물질과 반응하여 전기 화학적 신호를 발생시키는 복수개의 전극을 포함하고, 상기 센싱모듈은 상기 접속모듈에 탈부착 가능한 것인, COVID 진단을 위한 진단 키트를 제공하는 것이다.
일 양상은 외부장치와 전기적으로 연결 가능한 접속모듈; 내부로 유입된 분석 시료로부터 COVID 표적 물질을 감지하고, 상기 감지된 COVID 표적 물질과 반응하여 발생된 전기적인 신호를 상기 접속모듈에 전송하도록 구성되는 센싱모듈;을 포함하는 진단 키트에 있어서, 상기 센싱모듈에는, 상기 분석 시료로부터 상기 COVID 표적 물질을 감지하고, 상기 COVID 표적 물질과 반응하여 상기 전기적인 신호를 발생시키는 센서가 구비되며, 상기 센서는, 기판;과 상기 기판의 일면에 마련되고, 상기 COVID 표적 물질과 반응하여 전기 화학적 신호를 발생시키는 복수개의 전극을 포함하고, 상기 센싱모듈은 상기 접속모듈에 탈부착 가능한 것인, COVID 진단을 위한 진단 키트를 제공한다.
일 구체예에 있어서, 상기 센서는 상기 전극 상부에 복수 개의 홈으로 이루어진 마이크로웰 또는 나노웰 구조를 포함하는 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 분석 시료는 개체로부터 분리된 생물학적 시료인 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 COVID 표적 물질은 COVID 항원 또는 COVID 항체인 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 센서에는 상기 COVID 표적 물질과 반응하여 COVID 표적 물질을 감지할 수 있는 물질이 결합되어 있는 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 전기 화학적 신호는 상기 COVID 표적 물질을 감지할 수 있는 물질과 반응한 COVID 표적물질에 결합될 수 있는 프로브 및 전자 전달 활성화 물질을 더 추가함으로써 발생하는 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 전극은 작업 전극(working electrode), 대 전극(counter electrode) 또는 기준 전극(reference electrode)인 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 마이크로웰 또는 나노웰은 직경이 50 nm 내지 50 ㎛인 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 접속모듈과 상기 센싱모듈은 자성을 통해 서로 탈부착 가능하게 결합되며, 면접촉을 통해 서로 전기적으로 연결되는 것일 수 있다.
일 구체예에 있어서, 상기 COVID 진단을 위한 진단 키트의 상기 센싱모듈은 한 개 이상이며, 한 개 이상의 상기 센싱모듈은 하나의 상기 접속모듈에 탈부착 가능한 것일 수 있다.
본 발명은 COVID 진단 키트에 관한 것으로, 전기 화학적 분석법을 수행하며, 이를 통해 혈중 극소량의 COVID 표적 물질을 정량화하여 체외 진단이 가능한 장점이 있다.
또한, 본 발명은 마이크로웰 또는 나노웰 구조를 통해 분석 시료를 삽입함에 따라 분해능을 향상시킬 수 있는 장점이 있으며, 본 발명은 외부장치와 전기적으로 연결되는 접속모듈과, 접속모듈에 탈착 가능한 센싱모듈로 구성되므로, 센싱모듈의 교체를 통해 다양한 종류의 검사를 수행 가능하고, 접속모듈이 외부장치에 결합된 상태에서 센싱모듈만 교체 가능하여 연속적으로 신속한 검사를 수행할 수 있는 장점이 있다.
도 1은 본 발명의 실시 예에 따라 전기 신호를 검출하는 과정을 개략적으로 나타낸 그림이다.
도 2는 본 발명의 실시 예에 따른 키트가 외부장치에 연결된 상태를 나타내는 사용상태도이다:
도 2(a)는 스마트폰 혹은 태블릿 형태의 외부장치와 키트가 연결된 상태를 나타낸 사용상태도이고; 도 2(b)는 PC 형태의 외부장치와 키트가 연결된 상태를 나타낸 사용상태도이다.
도 3은 본 발명의 일 실시예에 따라 마이크로웰 또는 나노웰 구조가 형성된 키트를 나타낸 사시도이다.
도 4는 본 발명의 일 실시예에 따른 키트가 분해된 상태를 나타낸 평면도이다.
도 5는 도 4의 VI-VI 선 단면도이다.
도 6은 도 4의 “A”부분을 나타낸 측면도이다.
도 7은 본 발명의 다른 실시 예에 따른 키트가 분해된 상태를 개략적으로 나타낸 평면도이다.
도 8은 도 7의 “B”부분을 확대한 확대도이다.
도 9는 본 발명의 또 다른 실시 예에 따른 키트가 분해된 상태를 개략적으로 나타낸 평면도이다.
도 10은 도 9의 “C”부분이 결합되는 과정을 개략적으로 나타낸 도면이다.
도 11은 본 발명의 또 다른 실시 예에 따른 키트가 분해된 상태를 개략적으로 나타낸 측면도이다.
도 12는 서로 다른 두 가지 전기 화학적 분석 방법을 나타낸 도면이다:
도 12(a)는 label-free 방식의 전기 화학적 분석 방법을 나타내는 도면이고; 도 12(b)는 본 발명의 실시 예에 따른 프로브와 전자 전달 활성화 물질을 이용하는 전기 화학적 분석 방법을 나타내는 도면이다.
본 명세서는 본 발명의 권리범위를 명확히 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시할 수 있도록, 본 발명의 원리를 설명하고, 실시 예들을 개시한다. 개시된 실시 예들은 다양한 형태로 구현될 수 있다.
본 발명의 다양한 실시 예에서 사용될 수 있는 "포함한다" 또는 "포함할 수 있다" 등의 표현은 발명(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 발명의 다양한 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어, 결합되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결 또는 결합되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 결합되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.
한편, 본 명세서에서 사용되는 구성요소에 대한 "모듈" 또는 "부"는 적어도 하나의 기능 또는 동작을 수행한다. 그리고, "모듈" 또는 "부"는 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합에 의해 기능 또는 동작을 수행할 수 있다. 또한, 특정 하드웨어에서 수행되어야 하거나 적어도 하나의 프로세서에서 수행되는 "모듈" 또는 "부"를 제외한 복수의 "모듈들" 또는 복수의 "부들"은 적어도 하나의 모듈로 통합될 수도 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
그 밖에도, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.
본 발명은 COVID 진단 키트에 관한 것으로, 외부장치와 전기적으로 연결 가능한 접속모듈과 접속모듈에 탈부착 가능한 센싱모듈을 사용함에 따라 센싱 부분의 교체가 가능한 키트에 관한 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직할 실시 예를 상세하게 설명하기로 한다.
도 2를 참조하면, 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)는 마이크로웰 또는 나노웰 구조(220)를 사용하여 분해능을 향상시키며, 키트(10)에서 발생된 전기적 신호를 측정 및 분석 가능한 소프트웨어가 설치된 외부장치(20)와 전기적으로 연결되도록 구성된다.
구체적으로, 상기 키트(10)는 도 2(a)와 같이 스마트폰 혹은 태블릿 형태의 외부장치(20)와 전기적으로 연결되거나, 도 2(b)와 같이 PC 형태의 외부장치(20)와 전기적으로 연결될 수 있다. 다만, 외부장치(20)는 이에 한정되는 것은 아니며, 상기 키트(10)와 전기적으로 연결 가능한 다양한 형태로 변경되어 사용될 수 있다.
상기 외부장치(20)에는 후술할 상기 키트(10)의 접속모듈(100)과 전기적으로 연결 가능하도록 상기 접속모듈(100)에 마련된 제1접속단자(110)와 결합 가능한 단자부(미도시)가 구비될 수 있다. 또한, 상기 외부장치(20)에는 상기 키트(10)와 연결시 상기 키트(10)의 산화 환원 반응에 따른 전위를 측정 및 분석하여 COVID 표적 물질에 대한 정성 및 정량 분석이 가능할 수 있는 프로그램 혹은 어플리케이션 등이 설치될 수 있다. 이를 통해, 상기 외부장치(20)는 상기 키트(10)에서 발생되는 신호를 수집 및 분석하고, 이를 통해 각종 질병 또는 질환 등을 검출하거나, 이들의 변화를 측정하여 디스플레이 할 수 있다.
또한, 상기 외부장치(20)는 유선 또는 무선통신을 통해 인터넷에 연결되어 상기 키트(10)를 통해 측정된 데이터를 사용자 단말 혹은 의료기관의 서버에 전송할 수 있다. 전송된 데이터를 통해, 검사대상자 또는 의료기관에서는 실시간으로 건강 상태를 모니터링 할 수 있다.
가령, 예시적으로, 상기 외부장치(20)는 키트(10)가 결합되어 상기 키트(10)와 전기적으로 연결되는 입력부(미도시), 입력부를 통하여 전송된 신호(데이터)를 저장, 분석 및 진단하는 제어부(미도시), 제어부로부터 전송받은 데이터를 외부에서 식별 가능한 형태로 출력하는 디스플레이부(미도시), 제어부로부터 전송받은 데이터를 선택된 사용자 단말 및 의료기관 서버로 전송하는 통신부(미도시) 및 입력부, 제어부, 디스플레이부 및 통신부에 전원을 공급하는 전원공급부(미도시) 등을 포함할 수 있다.
본 발명의 실시 예에 따른 키트는, 접속모듈(100), 센싱모듈(200), 센서(210)를 포함한다. 이하에서는, 본 발명의 바람직한 실시 예를 상세하게 설명하기로 한다.
도 3 및 도 4를 참조하면, 상기 접속모듈(100)은 상기 외부장치(20)와 전기적으로 연결 가능한 것이다. 이를 위해, 상기 접속모듈(100)은 제1접속단자(110), 제2접속단자(120), 컨트롤러(130), 본체(140)를 포함한다.
상기 제1접속단자(110)는 상기 외부장치(20)에 결합되어 상기 외부장치(20)와 전기적으로 연결 가능한 것이다. 상기 제1접속단자(110)는 상기 외부장치(20)와 전기적으로 연결될 수 있다면 다양한 구성이 사용될 수 있다.
상기 제1접속단자(110)는 상기 외부장치(20)에 마련된 상기 단자부에 결합되어 상기 외부장치(20)와 전기적인 접속을 수행할 수 있도록 상기 외부장치(20)의 단자부에 대응되는 형태로 이루어질 수 있다. 구체적으로, 상기 제1접속단자(110)는 USB, 마이크로 USB 혹은 핀(PIN)의 형태로 마련될 수 있으나, 이에 한정되는 것은 아니며, 상기 외부장치(20)에 전기적으로 연결될 수 있다면 다양한 구성이 사용될 수 있다.
상기 제2접속단자(120)는 후술할 상기 센싱모듈(200)에 결합되어 상기 센싱모듈(200)과 전기적으로 연결 가능한 것이다. 상기 제2접속단자(120)는 마이크로 USB 혹은 핀(PIN)의 형태로 마련될 수 있으나, 이에 한정되는 것은 아니며, 상기 센싱모듈(200)과 전기적으로 연결될 수 있다면 다양한 구성이 사용될 수 있다.
상기 컨트롤러(130)는 상기 제1접속단자(110) 및 상기 제2접속단자(120)와 전기적으로 연결되고, 상기 제1접속단자(110)와 상기 제2접속단자(120) 사이에서 신호(데이터)의 전송을 제어하도록 구성될 수 있다. 상기 컨트롤러(130)는 전선을 통하여 상기 제1접속단자(110) 및 상기 제2접속단자(120)와 전기적으로 연결할 수 있으나, 이에 한정되는 것은 아니며, 상기 제1접속단자(110)와 상기 제2접속단자(120)를 전기적으로 연결할 수 있다면 다양한 구성이 사용될 수 있다.
상기 본체(140)는 상기 제1접속단자(110), 상기 제2접속단자(120), 상기 컨트롤러(130)가 설치되는 하부체와, 상기 하부체에 결합되어 상기 제1접속단자(110), 상기 제2접속단자(120), 상기 컨트롤러(130)의 상부를 보호하는 상부체를 포함할 수 있다.
도 3 및 도 4를 참조하면, 상기 센싱모듈(200)은 내부로 유입된 분석 시료로부터 COVID 표적 물질을 감지하고, 상기 감지된 COVID 표적 물질과 반응하여 발생된 전기적인 신호를 상기 접속모듈(100)에 전송하도록 구성되면서, 마이크로웰 또는 나노웰 구조(220)가 구비된 것이다.
상기 분석 시료는 개체로부터 분리된 생물학적 시료를 의미할 수 있으며, 혈액, 혈장, 혈청, 소변, 점액, 타액, 눈물, 객담, 척수액, 흉수, 유두 흡인물, 림프액, 기도액, 장액, 비뇨생식관액, 모유, 림프계 체액, 정액, 뇌척수액, 기관계내 체액, 복수, 낭성 종양 체액, 양수액 또는 이들의 조합을 의미할 수 있다. 다만, 상기 분석 시료는 이에 한정되는 것은 아니며, 생물학적 시료라면 다양한 물질이 될 수 있다. 또한 상기 생물학적 시료는 온전한(intact) 단백질을 포함할 수 있다. 온전한 단백질은 별도의 단백질의 변형 없이 생물학적 시료로부터 분리된 단백질일 수 있다. 온전한 단백질은, 예를 들어 단백질 분해 효소에 의한 단백질 분해 없이, 생물학적 시료로부터 분리된 단백질일 수 있다.
상기 센싱모듈(200)에는, 상기 분석 시료로부터 상기 COVID 표적 물질을 감지하고, 상기 COVID 표적 물질과 반응하여 상기 전기적인 신호를 발생시키는 센서(210)가 구비될 수 있으며, 상기 센서(210)는, 기판(211)과 복수 개의 전극(212)과 마이크로웰 또는 나노웰 구조(220)를 포함한다.
구체적으로, 상기 센서(210)에는 분석 시료에 포함된 COVID 표적 물질과 반응하여 COVID 표적 물질을 감지하는 감지 물질(예컨대, 항체 등)이 마련될 수 있다. 센서(210)는, 분석 시료와 접촉하게 될 경우, 분석 시료에 포함된 COVID 표적 물질과 상호 반응하여 전기적인 신호를 발생시킨다.
이에 따라 상기 키트(10)와 연결된 외부장치(20)는 상기 키트(10)에서 발생되는 전기적인 신호를 분석하여 COVID 표적 물질의 존재 또는 농도 등을 검출할 수 있다. 다만, 상기 센서(210)는 이에 한정되는 것은 아니며, 분석 시료의 이동, 정지, 여과, 정화, 반응 및 혼합이 이루어질 수 있도록 구성될 수 있다.
상기 COVID 표적 물질 및 COVID 표적 물질을 감지할 수 있는 물질은 COVID 항원 또는 COVID 항체일 수 있다. 구체적으로, 상기 COVID 표적 물질이 COVID 항원인 경우, COVID 표적 물질을 감지할 수 있는 물질은 COVID 항체이고, 상기 COVID 표적 물질이 COVID 항체인 경우, COVID 표적 물질을 감지할 수 있는 물질은 COVID 항원일 수 있다. 상기 COVID 항원은 COVID 바이러스 표면 단백질 (S 단백질)의 RBD(receptor-binding domains) 또는 NTD(N - terminal domain)일 수 있으며, 상기 COVID 항체는 IgM 또는 IgG일 수 있다.
상기 전기 화학적 신호는 상기 COVID 표적 물질을 감지할 수 있는 물질과 반응한 COVID 표적물질에 결합될 수 있는 프로브 및 전자 전달 활성화 물질을 더 추가함으로써 발생하는 것일 수 있다.
본 명세서에서 용어 “COVID”는 코로나 19 바이러스(COVID 19, Severe Acute Respiratory Syndrome Coronavirus-2 or SARS-CoV-2)를 의미하는 것일 수 있다.
본 발명의 실시 예에 따른 진단키트는 단백질 응집 반응을 기반으로 다수의 항원-항체 반응, 또는 DNA, RNA 상호보완 결합에 따라 전류 및 임피던스의 변화량을 측정하는 전기 화학적 분석 방법을 이용하여 분석 시료 중 COVID 표적 물질을 판별할 수 있는 것으로, 다양한 전기 화학적 분석방법이 사용될 수 있다.
본 발명의 실시 예에 따른 진단키트는 순환전압전류법(cyclic voltammetry), SWQ(Square wave voltammetry) 등 다양한 전기 화학적 방법으로 분석 시료 중 COVID 표적 물질을 판별할 수 있다.
다만, 본 발명의 실시 예에 따른 진단키트에서 사용되는 전기 화학적 분석 방법은 빠르고 간단한 진단을 위해 다음과 같은 방법이 사용될 수 있다.
본 발명의 실시 예에 따른 전기 화학적 분석 방법은, 먼저 상기 COVID 표적 물질을 상기 COVID 표적 물질을 감지할 수 있는 물질에 반응시킨다. 이후, 상기 COVID 표적 물질에 결합되는 프로브와, 상기 프로브에 결합되면서 산화, 환원 반응을 일으켜 전류를 발생키는 전자 전달 활성화 물질을 상기 마이크로웰 또는 나노웰에 삽입함으로써 수행될 수 있다.
다음으로, 상기 전극(212)에 지정된 전압을 인가하여 전류 값을 읽는 방법으로 상기 COVID 표적 물질을 판별할 수 있다.
상기 프로브는 상기 COVID 표적 물질에 반응할 수 있는 2차 항체일 수 있으며, 상기 전자 전달 활성화 물질은 상기 프로브와 산화, 환원 반응하여 전류를 발생시키는 물질일 수 있다. 구체적으로, 상기 전자 전달 활성화 물질은 페로센(Ferrocene), 메틸렌 블루(Methylene blue) 또는 철산염(Ferrate)일 수 있다. 다만, 상기 전자 전달 활성화 물질은 이에 한정되는 것은 아니며, 상기 프로브와 산화, 환원 반응하여 전류를 발생시키는 물질이라면 다양한 물질일 수 있다.
도 12를 참조하면, 종래의 전기 화학적 분석방법은 label-free 방법으로, 전극에 표적 물질을 감지할 수 있는 물질을 고정하고 표적 물질을 삽입한 이후, 교류 전압을 주면서 임피던스를 측정하는 방법이다.
이와 같은 방법은 시료 처리 방법이 간단하나, 임피던스를 해석해야 함에 따라 복잡한 해석 방식에 의해 분석 시간이 오래 소요되며, 교류 전압을 인가하여야 하기 때문에 고가의 장비가 필요한 문제점이 있다.
그러나 본 발명의 실시 예에 따른 전기 화학적 분석 방법은, 상기 프로브와 상기 전자 전달 활성화 물질을 사용하면서 지정된 전압만을 상기 전극(212)에 인가한 이후 전류 값을 읽는 방법으로 표적 물질을 판별함에 따라, 분석시간이 짧으면서 저가의 포터블한 장비로 제작 가능한 장점이 있다.
또한, 본 발명의 실시 예에 따른 진단키트의 상기 마이크로웰 또는 나노웰에는 형광 물질이 처리된 파티클이 삽입될 수도 있다. 이에 따라, 본 발명의 실시 예에 따른 진단키트는 전기 화학 분석 방법과 광학적 분석 방법을 동시에 하나의 전극에서 구현할 수 있다.
하나의 상기 마이크로웰 또는 나노웰에서는 하나의 상기 파티클이 반응하는 것일 수 있다. 즉, 상기 마이크로웰 또는 나노웰과 상기 파티클은 1:1 반응하는 것일 수 있다.
종래의 마이크로웰 또는 나노웰 구조가 형성되어 있지 않은 전극에 형광 물질이 처리된 파티클을 삽입하면, 단백질의 응집반응에 의해 민감도가 떨어지는 문제점이 있다. 그러나 본 발명의 실시 예에 따른 진단키트는 상기 마이크로웰 또는 나노웰 구조를 형성하여, 형광 물질이 처리된 상기 파티클을 삽입함에 따라 단백질의 응집반응을 줄이면서 민감도를 향상시킬 수 있는 장점이 있다.
특히, 본 발명의 실시 예에 따른 진단키트는, 하나의 상기 파티클이 하나의 상기 마이크로웰 또는 나노웰에 삽입되면서 1:1 반응됨에 따라 단백질의 응집 반응을 줄이면서 민감도를 향상시킬 수 있게 된다.
하나의 상기 파티클이 하나의 상기 마이크로웰 또는 나노웰에 삽입되면서 1:1 반응하기 위해, 상기 파티클의 크기는 상기 마이크로웰 또는 나노웰의 직경의 1/2 보다 크며, 상기 마이크로웰 또는 나노웰의 직경보다 작은 것이 바람직하다.
상기 파티클의 크기가 상기 마이크로웰 또는 나노웰의 사이즈의 1/2 보다 작은 경우, 하나의 상기 마이크로웰 또는 나노웰에 2개 이상의 상기 파티클이 삽입되면서 1:1 반응이 되지 않을 수 있기 때문에, 상기 파티클의 크기는 상기 마이크로웰 또는 나노웰의 사이즈의 1/2 보다 큰 것이 바람직하다.
또한, 상기 파티클의 크기가 상기 마이크로웰 또는 나노웰 사이즈 보다 큰 경우, 상기 파티클이 상기 마이크로웰 또는 나노웰에 삽입될 수 없으므로, 상기 파티클의 크기는 상기 마이크로웰 또는 나노웰 사이즈 보다 작은 것이 바람직하다. 이와 같이 상기 파티클의 크기를 조절함에 따라 상기 마이크로웰 또는 나노웰과 상기 파티클을 1:1 반응시킬 수 있게 된다.
상기 센서(210)에 구비된 상기 기판(211)은 미리 지정된 크기를 가질 수 있는 것으로, 상기 기판(211)은 2 x 2 mm의 크기를 가질 수 있다. 그러나 상기 기판(211)의 크기는 반드시 이에 한정되는 것은 아니며, 다양한 크기로 변경될 수 있다.
또한, 상기 기판(211)은 신축성을 가지며, 절곡 가능한 재질로 마련될 수 있다. 가령, 상기 기판(211)은 폴리우레탄(Poly urethane, PU) 계, 폴리디메틸실록산(Polydimethylsiloxane, PDMS) 계, NOA(Noland Optical Adhesive) 계, 에폭시(Epoxy) 계, 폴리에틸렌 테레프타레이트(Polyethylene terephthalate, PET), 폴리메칠메타크릴레이트(Polymethyl methacrylate, PMMA), 폴리이미드(Polyimide, PI), 폴리스티렌(Polystyrene, PS), 폴리에틸렌 나프타레이트(Polyethylene naphthalate, PEN) 및 폴리카보네이트(Polycarbonate, PC) 중 적어도 하나의 재질로 이루어질 수 있다.
다만, 상기 기판(211)의 재질은 반드시 이에 제한되는 것이 아니며, COVID 표적 물질과의 반응에 따른 전위차가 발생하는 전극들이 배치될 수 있고, 유연성을 가지는 다양한 소재로 변경되어 적용될 수 있다.
상기 전극(212)은 복수 개가 구비될 수 있는 것으로, 상기 전극(212)은 상기 기판(211)의 일면에 구비되고, 분석 시료에 포함된 COVID 표적 물질과 반응하여 전기 화학적 신호를 발생시킬 수 있는 것이다.
상기 전극은 작업 전극(working electrode), 대 전극(counter electrode) 또는 기준 전극(reference electrode)인 것일 수 있다.
복수 개의 상기 전극(212)은 COVID 표적 물질과 산화 또는 환원 반응하는 제1전극(212a), 상기 제1전극(212a)의 반응에 대향하여 COVID 표적 물질과 산화 또는 환원 반응하는 제2전극(212b), 및 상기 제1전극(212a)과 제2전극(212b) 사이에 일정한 작동전압이 유지되도록 구성되는 제3전극(212c)을 포함할 수 있다.
복수 개의 상기 전극(212)은 절연성 상기 기판(211) 위에 스크린 프린팅 방식을 통해 형성될 수 있다. 상기 제2전극(212b) 및 상기 제3전극(212c)은 상기 제1전극(212a)의 주위를 둘러싸도록 배치될 수 있다.
상기 제1전극(212a)과 상기 제2전극(212b)은 상기 기판(211) 상에서 서로 일정한 거리로 이격된 상태로 배치될 수 있다. 상기 제1전극(212a)은 원형의 형태를 갖고, 상기 제2전극(212b)은 상기 제1전극(212a)의 일부분을 감싸도록 반원의 형태를 가질 수 있다. 다만, 상기 제1 전극(212a) 및 상기 제2전극(212b)의 배치 형태, 및 이들 전극 각각의 모양은 이에 제한되는 것은 아니며, 필요에 따라 변경될 수 있다.
상기 제1전극(212a)은 상기 기판(211) 상에서 COVID 표적 물질 또는 COVID 표적 물질을 포함하는 분석 시료와의 반응에 의해 산화 또는 환원 반응을 수행하는 작업 전극(working electrode)을 의미할 수 있다.
상기 제1전극(212a) 상에는 COVID 표적 물질에 특이적으로 결합하는 바이오 리셉터(미도시)가 배치될 수 있다. 상기 제1전극(212a) 상에는 도전층이 증착된 필라(pillar)가 배치되고, 필라에는 항체, 항원, 앱타머 등의 바이오 리셉터가 배치될 수 있다. 상기 제1전극(212a) 상에는 COVID 표적 물질과 반응하여 전기 화학적 신호를 유도하는 물질이 더 배치될 수도 있다.
상기 제1전극(212a)과 상기 제2전극(212b)에 배치된 필라 및 바이오 리셉터를 통하여, COVID 표적 물질과의 반응 면적이 넓어지게 되고, 이를 통해 상기 키트(10)는 소량의 COVID 표적 물질에 대해서도 민감도 높은 정성 및 정량 분석 결과를 제공할 수 있다. 여기서, 필라는 나노 크기를 가지는 폴리머 구조물일 수 있다.
필라는, 폴리우레탄, 폴리디메틸실록산, NOA(Norland Optical Adhesives), 에폭시, 폴리에틸렌 테레프타레이트, 폴리메칠메타크릴레이트, 폴리이미드, 폴리스티렌, 폴리에틸렌 나프타레이트, 폴리카보네이트 및 이들의 조합 중 적어도 하나로 이루어질 수 있다.
또한, 필라는 폴리우레탄과 NOA(예컨대, NOA 68)의 조합으로 이루어질 수도 있다. 그러나, 필라는 이에 제한되는 것은 아니며, 유연성을 갖는 한 보다 다양한 고분자로 이루어질 수 있다.
그리고, 필라에 증착된 도전층은 도전성 물질로 구성된 레이어를 의미할 수 있다. 도전층은 Ni, Zn, Pd, Ag, Cd, Pt, Ga, In 및 Au 중 적어도 하나로 이루어질 수 있으나, 이에 제한되는 것은 아니다.
상기 제2전극(212b)은 기판(211) 상에서 상기 제1전극(212a)에 대향하는 대 전극(counter electrode)을 의미할 수 있다. 따라서, COVID 표적 물질과의 반응에 의해 상기 제1전극(212a)에서 산화 반응이 일어난다면, 상기 제2전극(212b)에서는 환원 반응이 일어날 수 있다. 상기 제2전극(212b) 상에는 도전층이 증착된 상술한 필라가 배치될 수 있다.
상기 제3전극(212c)은 COVID 표적 물질과의 접촉 시에도 전위가 안정적으로 유지되는 기준 전극(reference electrode)을 의미할 수 있다. 상기 제3전극(212c) 상에는 COVID 표적 물질과의 접촉시에도 일정한 전위를 유지할 수 있는 반응층이 마련될 수 있다.
반응층은 Ag/AgCl, Ag, Hg2SO4, Ag/Ag+, Hg/Hg2SO4, RE-6H, Hg/HgO, Hg/Hg2Cl2, Ag/Ag2SO4, Cu/CuSO4, KCl 포화된 칼로멜 반전지(SCE) 및 염다리 백금의 전위차가 미리 알려진 물질로 이루어질 수 있다.
도 3을 참조하면, 상기 마이크로웰 또는 나노웰 구조(220)는 상기 전극(212) 상부에 구비되는 것으로, 복수 개의 홈으로 이루어진 것이다. 상기 마이크로웰 또는 나노웰 구조(220)는 상기 센싱모듈(200)에 상기 분석 시료가 삽입되는 입구부에 구비될 수 있는 것으로, 상기 마이크로웰 또는 나노웰 구조(220)를 사용함에 따라 분해능을 향상시킬 수 있는 장점이 있다.
구체적으로, 상기 마이크로웰 또는 나노웰 구조(220)는 작업 전극(working electrode) 상부에 구비될 수 있는 것으로, 상기 마이크로웰 또는 나노웰 구조(220)는 작업 전극으로 이루어진 상기 제1전극(212a) 상부에 구비될 수 있다.
또한, 상기 마이크로웰 또는 나노웰은 직경이 50 nm 내지 50 ㎛인 것일 수 있다. 본 명세서에서 용어 “나노웰”은 웰의 직경이 나노미터(nm) 단위인 웰을 의미하는 것일 수 있고, “마이크로웰”은 웰의 직경이 마이크로미터(㎛) 단위인 웰을 의미하는 것일 수 있다. 구체적으로, 나노웰은 직경이 50 nm 내지 1000 nm, 50 nm 내지 900 nm, 50 nm 내지 600 nm, 50 nm 내지 500 nm, 100 nm 내지 1000 nm, 100 nm 내지 900 nm, 100 nm 내지 600 nm, 100 nm 내지 500 nm, 200 nm 내지 1000 nm, 200 nm 내지 900 nm, 200 nm 내지 600 nm, 200 nm 내지 500 nm, 300 nm 내지 1000 nm, 300 nm 내지 900 nm 또는 300 nm 내지 500 nm일 수 있고, 마이크로웰은 직경이 1 ㎛ 내지 50 ㎛, 1 ㎛ 내지 30 ㎛, 1 ㎛ 내지 20 ㎛, 5 ㎛ 내지 50 ㎛, 5 ㎛ 내지 30 ㎛, 5 ㎛ 내지 20 ㎛, 10 ㎛ 내지 50 ㎛, 10 ㎛ 내지 30 ㎛, 20 ㎛ 내지 50 ㎛ 또는 30 ㎛ 내지 50 ㎛일 수 있다.
본 발명의 실시 예에 따른 상기 센싱모듈(200)은, 접속패드(230), 접속포트(240), 하우징(250), 본딩 와이어(260)를 더 포함할 수 있다.
상기 접속패드(230)는 단수 또는 복수 개가 구비될 수 있는 것으로, 상기 본딩 와이어(260)를 통해 상기 센서(210)와 전기적으로 연결될 수 있는 것이다. 도 4 및 도 6을 참조하면, 상기 센서(210)의 저면에는 복수 개의 상기 접속패드(230)와 상기 센서(210)에 구비된 복수 개의 전극(212)을 서로 전기적으로 연결하는 연결패드(213)가 더 마련될 수도 있다.
상기 센서(210)의 저면에 부착된 상기 연결패드(213)의 일면은 상기 센서(210)에 구비된 복수 개의 전극(212)과 전기적으로 연결되는 것으로, 상기 연결패드(213)의 타면은 상기 본딩 와이어(260)를 통하여 복수의 상기 접속패드(230)와 전기적으로 연결될 수 있다. 구체적으로, 복수 개의 상기 접속패드(230) 및 상기 연결패드(213)는 동박형태로 구비되고, 복수 개의 상기 접속패드(230)의 표면에는 금박이 더 코팅될 수 있다.
또한, 상기 연결패드(213)와 상기 센서(210)는 전도성 물질(미도시)을 통해 서로 전기적으로 연결될 수 있으며, 전도성 물질은 양면 접착 카본 테이프 등이 사용될 수 있다. 다만, 전도성 물질은 이에 한정되는 것은 아니며, 상기 연결패드(213)와 상기 센서(210)를 전기적으로 연결할 수 있다면 다양한 물질이 사용될 수 있음은 물론이다.
상기 본딩 와이어(260)는 금(Au)으로 구성되며, 상기 본딩 와이어(260)의 일단은 상기 센서(210)에 부착된 상기 연결패드(213)에 본딩되어 상기 센서(210)에 구비된 복수 개의 상기 전극(212)과 전기적으로 연결되고, 상기 본딩 와이어(260)의 타단은 복수 개의 상기 접속패드(230)에 본딩되어 복수 개의 상기 접속패드(230)와 전기적으로 연결될 수 있다.
도 3 및 도 4를 참조하면, 상기 접속포트(240)는 복수 개의 상기 접속패드(230)와 전기적으로 연결되고, 상기 접속모듈(100)에 결합되어 상기 접속모듈(100)과 전기적으로 연결될 수 있는 것이다.
상기 접속포트(240)는 전선(261)을 통하여 복수 개의 상기 접속패드(230)와 전기적으로 연결될 수 있으며, 상기 접속모듈(100)에 결합 시 복수 개의 상기 접속패드(230)를 통해 상기 센서(210)에 전원을 공급하고, 상기 센서(210)에서 발생된 전기신호를 상기 접속모듈(100)로 전송할 수 있다. 상기 접속포트(240)는 상기 접속모듈(100)에 구비된 상기 제2접속단자(120)에 대응되는 형태로 구비될 수 있다.
상기 하우징(250)은 상기 센서(210), 복수 개의 상기 접속패드(230), 상기 접속포트(240)가 설치되는 것으로, 상기 하우징(250)은 상기 센서(210), 복수 개의 상기 접속패드(230), 상기 접속포트(240)의 둘레를 감싸 상기 센서(210), 복수 개의 상기 접속패드(230), 상기 접속포트(240)를 외부로부터 보호하도록 구성될 수 있다.
상기 하우징(250)은 외부에서 제공된 분석 시료를 상기 센서(210)의 상기 전극(212)으로 안내하는 채널(253)이 구비된 제1부재(251)와 상기 제1부재(251)에 대향 배치되어 상기 제1부재(251)에 결합되고, 상기 센서(210), 복수 개의 상기 접속패드(230), 상기 접속포트(240)가 안착되는 제2부재(252)를 포함한다.
상기 채널(253)은 상기 제1부재(251)를 관통하여 형성된 구멍으로, 상기 채널(253)은 외부에서 제공된 분석 시료를 상기 센서(210)의 상기 전극(212)으로 안내하기 위한 경사면(254)을 포함한다. 상기 경사면(254)은 상기 채널(253)의 둘레를 따라 구비될 수 있는 것으로, 외부에서 제공된 분석 시료는 상기 경사면(254)을 따라 이동하여 안정적으로 상기 센서(210)의 상기 전극(212)로 도달할 수 있게 된다.
여기서, 도 5를 참조하면, 상기 채널(253)에는 상기 마이크로웰 또는 나노웰 구조(220)가 구비될 수 있다. 상기 마이크로웰 또는 나노웰 구조(220)는 상기 제1전극(212a)-작업 전극(working electrode)의 상부에 구비될 수 있는 것으로, 상기 채널(253)은 상기 제1전극(212a)-작업 전극(working electrode)의 상부에 구비될 수 있다.
따라서, 상기 마이크로웰 또는 나노웰 구조(220)는 상기 채널(253)에 구비되는 것이 바람직하며, 상기 마이크로웰 또는 나노웰 구조(220)는 상기 채널(253)에 결합되면서 지지될 수 있게 된다. 상기 마이크로웰 또는 나노웰 구조(220)를 상기 채널(253)에 구비함에 따라, 분석된 시료를 상기 채널(253)을 통해 상기 전극(212)으로 이동시킬 때 분해능을 향상시킬 수 있게 된다.
상기 제1부재(251)는 상기 제2부재(252)에 결합되어, 상기 제2부재(252)에 배치된 상기 센서(210) 및 상기 접속포트(240)를 덮어 이들을 외부로부터 보호할 수 있다. 또한, 상기 제1부재(251)는 상기 센서(210) 및 상기 접속포트(240)를 소정의 힘으로 가압하여 이들을 견고하게 지지할 수도 있다. 또한, 상기 제1부재(251)는 상기 제2부재(252)와의 결합을 통하여 상기 채널(253)을 통해 상기 센서(210)로 제공된 분석 시료가 상기 하우징(250)의 외부로 누수되는 것을 방지할 수 있다.
도 4 및 도 6을 참조하면, 상기 제1부재(251)와 상기 제2부재(252) 사이에는, 상기 센서(210), 복수 개의 상기 접속패드(230), 상기 접속포트(240)를 수용하고, 본딩 와이어(260)를 보호하는 수용공간(250a)이 구비될 수 있다. 상기 수용공간(250a)은 상기 제1부재(251)와 상기 제2부재(252)의 내측에 각각 음각 패턴의 형태로 구비될 수 있다.
도 5를 참조하면, 상기 제2부재(252)에는, 상기 제1부재(251)와 결합되고, 상기 제1부재(251)를 지지하는 적어도 하나의 결합돌기(252a)가 마련되고, 상기 제1부재(251)에는 상기 결합돌기(252a)에 대응되는 적어도 하나의 결합홈(251a)이 구비될 수 있다.
상기 결합돌기(252a)와 상기 결합홈(251a)을 결합하면, 상기 채널(253)의 중심과 상기 센서(210)의 중심이 자연스럽게 정해진 위치에 정렬될 수 있다. 상기 결합홈(251a)의 내측에는, 상기 결합돌기(252a)가 상기 결합홈(251a)에 삽입될 경우 상기 결합돌기(252a)와 상기 결합홈(251a) 사이를 기밀하는 고무 또는 실리콘 재질의 실러가 더 구비될 수 있다.
도 5를 참조하면, 상기 제2부재(252)에는 상기 센서(210)가 안착되어 지지되는 안착홈(252b)과 상기 센서(210)의 외측으로 흘러내린 분석 시료가 저장되는 수거홈(252c)이 더 구비될 수 있다. 상기 센서(210)와 상기 수거홈(252c) 사이에는 상기 센서(210)의 외측으로 흐르는 분석 시료를 상기 수거홈(252c) 측으로 안내하는 시료 안내면(252d)이 더 마련될 수 있으며, 상기 시료 안내면(252d)은 경사진 형태로 이루어질 수 있다.
도 3 및 도 4를 참조하면, 상기 하우징(250)은 분석 시료의 흐름 상태, 분석 시료의 누수 여부, 상기 채널(253)과 상기 센서(210)의 정렬상태, 상기 본딩 와이어(260)를 통한 상기 센서(210)와 복수 개의 상기 접속패드(230)의 연결상태 및 복수 개의 상기 접속패드(230)와 상기 접속포트(240)의 전기적 연결상태 등을 외부에서 관찰하기 용이하도록, 투명한 재질로 마련될 수 있다.
가령, 상기 하우징(250)은 폴리메칠메타크릴레이트, 폴리카보네이트, 시클릭올레핀코폴리머(Cyclic olefine copolymer), 폴리에틸렌술폰(Polyethylene sulfone) 및 폴리스티렌 중 적어도 하나의 재질로 마련되거나, 이들 중 적어도 둘 이상이 조합된 재질로 마련될 수 있다. 그러나 상기 하우징(250)의 재질은 반드시 이에 한정되는 것은 아니며, 실리콘 기반의 유기폴리머인 폴리디메틸실록산 재질로 구성될 수도 있다.
본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트는 다음과 같이 변형되어 사용될 수도 있다.
도 7을 참조하면, 본 발명의 실시 예에 따른 키트의 상기 센싱모듈(200)은 복수 개가 구비될 수 있으며, 복수 개의 상기 센싱모듈(200)은 상기 접속모듈(100)에 탈부착 가능하게 결합될 수 있다. 즉, 상기 접속모듈(100)은 복수 개의 상기 센싱모듈(200)과 전기적으로 연결될 수 있다.
이를 위해, 상기 접속모듈(100)은 상기 외부장치(20)와 결합 가능한 상기 제1접속단자(110)와 상기 센싱모듈(200)에 결합 가능한 제2접속단자(120)를 포함하면서, 상기 제2접속단자(120)는 복수 개가 구비될 수 있다. 복수 개의 상기 센싱모듈(200)은 복수 개의 상기 제2접속단자(120)에 선택적으로 결합될 수 있다.
이와 같이 상기 센싱모듈(200)을 복수 개 구비하면서 상기 제2접속단자(120)를 복수 개 구비하면, 서로 다른 COVID 표적 물질을 감지하여 다수의 검사를 한 번에 수행할 수 있는 장점이 있다.
여기서, 복수 개의 상기 센싱모듈(200)이 복수 개의 상기 제2접속단자(120)에 모두 연결되어 전기적 신호를 발생하는 경우, 상기 컨트롤러(130)는 복수 개의 상기 제2접속단자(120)를 통해 전기적 신호가 전달된 순서를 기억한 뒤, 순차적으로 해당 제2접속단자(120)에 연결된 상기 센싱모듈(200)의 전기적 신호를 수신하여 상기 제1접속단자(110)로 전송할 수 있다.
상기 접속모듈(100)은 복수 개의 상기 제2접속단자(120)와 상기 컨트롤러(130) 사이에서 복수 개의 상기 제2접속단자(120)와 상기 컨트롤러(130)의 접속을 제어하는 전원부(150)를 더 포함할 수 있다.
상기 전원부(150)는 복수 개가 구비될 수 있으며, 복수 개의 상기 제2접속단자(120)와 개별적으로 연결될 수 있다. 또한, 상기 전원부(150)는 각각의 상기 컨트롤러(130)와 연결될 수 있다.
상기 전원부(150)는 사용자의 조작을 통해 ON/OFF 제어되도록 구성될 수 있는 것으로, 사용자의 조작을 통하여 상기 전원부(150)가 ON 상태로 제어된 경우에만, 상기 제2접속단자(120)에 연결된 상기 센싱모듈(200)의 전기적 신호가 상기 컨트롤러(130)로 전송될 수 있다.
도 7 및 도 8을 참조하면, 상기 접속모듈(100)은 상기 제1접속단자(110)의 둘레에 설치되면서 상기 제1접속단자(110)가 미리 설정된 각도만큼 회전 가능하게 하는 각도 조절부(160)를 더 포함할 수 있다.
상기 각도 조절부(160)는 상기 제1접속단자(110)에 결합되어 상기 제1접속단자(110)와 함께 회전하도록 구성되는 회전부재(161)와 상기 본체(140)에 설치되고 내측에 상기 회전부재(161)가 수용되어 상기 회전부재(161)의 회전을 가이드하는 안내부재(162)를 포함할 수 있다.
상기 회전부재(161)의 외주면에는 서로 이격 배치된 복수 개의 돌기(161a)가 마련되고, 안내부재(162)의 내주면에는 복수 개의 상기 돌기(161a)에 대응되는 복수 개의 홈(162a)이 마련될 수 있다. 따라서, 사용자는 상기 제1접속단자(110)가 상기 외부장치(20)에 결합된 상태에서 상기 본체(140)를 회전시켜 복수 개의 상기 제2접속단자(120)를 소정의 위치로 배치시킬 수 있다.
도 9를 참조하면, 본 발명의 실시 예에 따르면, 상기 접속모듈(100)과 상기 센싱모듈(200)은 자성을 통해 서로 탈부착 가능하게 결합될 수 있으며, 면접촉을 통해 서로 전기적으로 연결될 수 있다.
이를 위해, 상기 접속모듈(100)에는 제1결합부재(170)가 구비되며, 상기 센싱모듈(200)에는 제1결합부재(170)와 결합 가능한 제2결합부재(270)가 구비될 수 있다.
도 10을 참조하면, 상기 제1결합부재(170)는 상기 접속모듈(100)의 일 단부로부터 돌출되는 결합돌기(171)와 상기 결합돌기(171)의 단부에 수용된 제1자성체(172)를 포함할 수 있다.
상기 결합돌기(171)는 돌출방향을 따라 외경의 크기가 점차 감소하는 웨지(wedge) 구조로 형성될 수 있다. 이를 통해 상기 접속모듈(100)과 상기 센싱모듈(200)의 결합 시, 상기 결합돌기(171)의 경사진 외주면이 상기 센싱모듈(200)에 구비된 상기 제2결합부재(270)의 결합홈(271)의 내주면에 안내되어 용이하게 결합될 수 있다.
상기 제2결합부재(270)는 상기 접속모듈(100)의 일 단부와 마주하는 상기 센싱모듈(200)의 타 단부에 오목하게 형성되는 상기 결합홈(271)과 상기 결합홈(271)의 내측에 수용되어 상기 제1자성체(172)와 자력을 통해 결합 가능한 제2자성체(272)를 포함할 수 있다.
상기 접속모듈(100)과 상기 센싱모듈(200)은 상기 결합돌기(171)와 상기 결합홈(271)의 구조적인 결합을 통하여 1차적으로 결합되고, 상기 제1자성체(172)와 상기 제2자성체(272)의 자성을 이용한 결합을 통해 2차적으로 결합됨에 따라 서로 안정적으로 고정될 수 있다.
도 9를 참조하면, 상기 센싱모듈(200)에는 상기 제2자성체(272)의 자기력이 상기 센싱모듈(200)의 다른 부분에 영향을 미치지 않도록, 상기 제2자성체(272)의 자기력을 차폐시키도록 구성되는 차폐 구조물(280)이 구비될 수 있다.
상기 차폐 구조물(280)은 상기 하우징(250)의 내측에 마련되고, 상기 제2결합부재(270)의 상기 결합홈(271)과 상기 제2자성체(272)의 둘레를 감싸는 형태로 구비될 수 있다. 상기 차폐 구조물(280)은 상기 하우징(250)과 동일한 재질로 형성되되, 자기력을 차폐시킬 수 있는 재질로 이루어질 수 있다.
본 발명의 실시 예에 따르면, 상기 접속모듈(100)과 상기 센싱모듈(200)은 면접촉 결합을 통하여 서로 전기적으로 연결될 수 있다. 도 9를 참조하면, 상기 센싱모듈(200)의 상기 접속포트(240)와 연결되는 상기 접속모듈(100)의 상기 제2접속단자(120)는 면접촉을 통해 서로 전기적으로 연결 가능한 평판형의 단자 형태로 구비될 수 있다.
상기 접속모듈(100)의 상기 제1결합부재(170)와 상기 센싱모듈(200)의 상기 제2결합부재(270)가 서로 결합되면, 상기 접속포트(240)와 상기 제2접속단자(120)는 면접촉되는 것만으로 서로 전기적으로 연결될 수 있다.
이를 통해 상기 접속모듈(100)과 상기 센싱모듈(200)의 결합 및 분리가 더욱 용이해지며, 탈부착 식에도 상기 접속포트(240)와 상기 제2접속단자(120)가 파손되는 것을 방지할 수 있게 된다.
본 발명의 실시 예에 따른 상기 센싱모듈(200)의 단부에는, 훼손 유무를 통해 상기 센싱모듈(200)의 사용여부를 확인 가능한 식별필름이 부착될 수 있다. 상기 센싱모듈(200)의 단부에는 상기 접속모듈(100)의 단부에 마련된 웨지형상의 가압돌기(미도시)와 결합 가능한 수용홈(미도시)이 마련되고, 수용홈의 입구에는 상기 센싱모듈(200)의 단부에 부착되어 수용홈의 입구를 차단하도록 구성되는 박막형태의 상기 식별필름이 부착될 수 있다.
상기 식별필름은 상기 센싱모듈(200)과 상기 접속모듈(100)의 결합 시 수용홈으로 삽입되는 상기 접속모듈(100)의 가압돌기에 의해 소정의 힘으로 가압되어 파손되도록 구성될 수 있다. 따라서, 사용자는 상기 센싱모듈(200)의 단부에 마련된 식별필름의 훼손유무를 확인하여 상기 센싱모듈(200)의 사용여부를 파악할 수 있다. 다만, 센싱모듈(200)의 사용여부를 확인 가능한 구성은 반드시 이에 한정되는 것은 아니며, 다양한 형태로 변경되어 적용될 수 있다.
도 11을 참조하면, 본 발명의 실시 예에 따른 상기 센싱모듈(200)은 분석 시료로부터 표적물질을 감지하도록 구성되는 복수 개의 센싱부를 포함할 수 있다. 복수 개의 상기 센싱부는 상기 접속포트(240)와 전기적으로 연결되는 것으로, 상기 하우징(250) 내부에 설치될 수 있다.
복수 개의 상기 센싱부 각각에는 상기 센서(210)를 포함하며, 복수 개의 상기 센싱부는 격벽(214)을 통해 서로 분리되되, 상기 접속모듈(100)과 전기적으로 결합 가능한 상기 접속포트(240)를 통해 서로 전기적으로 연결될 수 있는 것이다.
복수 개의 상기 센싱부는 제1센싱부(210a)와 제2센싱부(210b)를 포함할 수 있다. 상기 제1센싱부(210a)와 상기 제2센싱부(210b)는 상기 하우징(250) 내에 구비된 상기 격벽(214)을 통하여 서로 독립된 공간에 배치될 수 있다.
상기 제1센싱부(210a)와 상기 제2센싱부(210b)는 각각 접촉된 분석 시료로부터 COVID 표적 물질을 감지하고, COVID 표적 물질과 반응하여 전기적인 신호를 발생시키는 상기 센서(210) 및 상기 본딩 와이어(260)를 통하여 상기 센서(210)와 전기적으로 연결되고, 상기 전선(261)을 통하여 상기 접속포트(240)와 전기적으로 연결되는 상기 접속패드(230)를 포함할 수 있다.
또한, 상기 제1센싱부(210a)와 상기 제2센싱부(210b)는 상기 채널(253)이 각각 구비될 수 있으며, 각각의 상기 채널(253)에는 상기 마이크로웰 또는 나노웰 구조(220)가 구비될 수 있다.
또한, 상기 제1센싱부(210a)와 상기 제2센싱부(210b) 각각에는 상기 접속패드(230)와 상기 접속포트(240) 사이에서 상기 접속패드(230)와 상기 접속포트(240)의 접속을 제어하는 전원부(290)가 더 구비될 수 있다.
상기 전원부(290)는 상기 접속패드(230)와 상기 접속포트(240)에 전기적으로 연결되고, 사용자의 조작을 통해 ON/OFF 제어되도록 구성될 수 있다. 따라서, 사용자의 조작을 통하여 상기 전원부(290)가 ON 상태로 제어된 경우에만, 상기 접속패드(230)와 연결된 상기 센서(210)의 전기적 신호가 상기 접속포트(240)로 전송될 수 있다.
본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트는 상기 제1센싱부(210a)와 상기 제2센싱부(210b)를 포함하는 것으로 설명하였으나, 이에 한정되는 것은 아니며, 2개 이상의 센싱부가 구비될 수도 있다.
상술한 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트는 다음과 같은 효과가 있다.
본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)는 USB 또는 핀 형태로 마련된 접속단자를 통해 외부장치(20)와 전기적으로 연결되도록 구성되므로, 다양한 장치에 적용 가능하여, 비용을 절감할 수 있음은 물론, 실생활에서도 쉽게 사용 가능하여 편의성 및 제품의 활용성이 증대될 수 있다.
또한, 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)는 외부장치(20)와 전기적으로 연결되는 접속모듈(100)과, 접속모듈(100)에 탈착 가능한 센싱모듈(200)로 구성되므로, 센싱모듈(200)의 교체를 통해 다양한 종류의 검사를 수행 가능하고, 접속모듈(100)이 외부장치(20)에 결합된 상태에서 센싱모듈(200)만 교체 가능하여 연속적으로 신속한 검사를 수행할 수 있다.
또한, 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)는 접속모듈(100)을 매개로 센싱모듈(200)과 외부장치(20)가 서로 전기적으로 연결되도록 구성되므로, 키트(10)를 외부장치(20)에 결합하거나 분리할 경우에도 센싱부위가 외부장치(20)에 의해 손상되는 것이 방지된다.
또한, 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)에 적용되는 기판(211)에 마련되는 전극의 형상이 개선됨으로써, 종래 대비 더 많은 수량의 센서(210)의 제작이 가능하게 되어, 제조비용이 절감될 수 있다.
구체적으로, 기판(211)에 마련되는 전극의 형상이 개선됨으로써, 센서(210)를 2 x 2 mm 크기로 제작 가능하게 되고. 따라서 기존에 8인치 웨이퍼를 이용하여 제작 가능한 센서(210)의 수량이 적게는 1000개에서 많게는 2만개까지 크게 증가하였다. 센서(210)를 제외한 타 부분은 제조 단가가 저렴한 PCB 공정을 이용하여 제조비용을 더욱 절감할 수 있다.
이와 함께, 본 발명의 실시 예에 따른 마이크로웰 또는 나노웰 구조를 사용하는 키트(10)는 마이크로웰 또는 나노웰 구조(220)를 통해 분석 시료를 삽입함에 따라 분해능을 향상시킬 수 있는 장점이 있다.
실시예 1. COVID 표적 물질 측정
1-1. 실험재료
부속품으로 나노웰 전극(USB Type)(㈜마라나노텍코리아 제조), 포터블 전기화학 측정기(㈜마라나노텍코리아 제조), 밀리사이즈 전극(USB Type)(㈜마라나노텍코리아 제조), 마이크로웰 전극(USB Type)(㈜마라나노텍코리아 제조)을 사용하였고, 시약은 DTSSP(THERMO에서 구입), capture antibody(abclon에서 구입), Detection antibody(biotin conjugate)(abclon에서 구입), Detection antibody(HRP conjugate)(abclon에서 구입), COVID S 단백질(abclon에서 구입), 1xPBS(Dubellco에서 구입), 1xPBS 중 0.05% Tween 20, DI water, potassium ferricyanide(Sigma aldrich에서 구입), Blocking solution(Thermo에서 구입)을 사용하였다.
1-2. COVID 항원 측정
COVID를 진단하기 위해 COVID 항원을 측정하였다.
구체적으로, (1) 전극 세척 및 초기화 검증 단계, (2) Self assembled monolayer(SAM) 처리단계, (3) Capture antibody(primary) 고정화, (4) BSA 고정화를 통한 blocking 단계, (5) 항원 고정화 단계, (6) Detection antibody(secondary) 고정화 단계, (7) 전기 신호 측정 단계를 거쳐 측정하였다.
먼저, (1) 전극 세척 및 초기화 검증 단계는 구체적으로 하기와 같이 수행하였다.
먼저 실험할 전극을 측정할 농도에 따른 개수를 준비하였다. 하나의 농도 분석시 하나의 전극이 사용된다. 실험 전, 비교 분석을 위해 Bare 전극의 CV, SWV, CA 측정을 해 놓았다. ㈜마라나노텍코리아가 제조한 나노웰 전극(USB type) 및 나노웰 전극 (8 채널)을 사용하였다.
실험 시작 전에 10 mM의 ferricyadnide 용액을 1xPBS 용액에 만들어 상온에 보관하였다. 분자량은 329.26 이므로 농도에 따라 제조 후 50 ml 튜브에 보관하여 상온 랙에 끼워서 보관하였다. 만들어진 용액은 사용 전 이물질이 없는지 체크하고 14 일마다 새로운 용액을 만들어서 사용하였다.
그 다음, 전극을 MP101에 끼우고 10 mM의 ferricyanide 용액을 30ul 떨어뜨린 후 하기 표 1과 같은 조건을 걸어주었다.
전기화학 측정 (CV)
포텐셜/전류 한계치 (vertexl, 2) 반복 Scan rate
08 ~ -0.8 V(CV), microwell 2번 200 mv/s
0.9 ~ -0.9 V (2번 반복), nanowell array electrode 2번 200 mv/s
0.5 ~ -0.7 V 밀리사이즈 (생략 가능) 2번 200 mv/s
상기와 같은 조건을 걸어 도출된 전류의 크기와 산화환원 전류 모양을 측정 후 합격/불량률을 판단하였다. 그 후 사용한 전극은 DI WATER를 3초간 흘려주어서 세척 후 펌프로 잔여물질을 날려서 실험 준비를 하였다.
다음으로 (2) Self assembled monolayer(SAM) 처리단계는 하기와 같이 수행하였다. 본 단계는 배양성(orientation) 및 밀도의 향상을 위한 것이다.
먼저, 10 mM의 DTSSP 를 DI water에 녹여서 EP TUBE에 용액을 만들었다. DTSSP는 습기 및 빛에 민감한 물질이므로 냉장고에서 바로 꺼내서 무게를 잰 후 용액을 만들고 사용이 끝나면 바로 냉장 보관하였다.
전극당 30 ul의 DTSSP가 들어가므로 개수에 맞게 준비하고 (예를 들어, 10 개의 전극이라면 300 ul), DTSSP 30 ul를 전극 부위를 다 덮도록 전극위에 떨어뜨리고 상온에서 60분 동안 인큐베이션 시켰다. 이 때, 전극위의 DTSSP가 마르지 않게 워터배스(water bath)를 사용하거나 보관함에 물을 넣은 휴지를 넣어서 습도를 유지하였다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (3) capture antibody 고정화 단계는 하기와 같이 수행하였다.
항체 희석 시 사용되는 희석 시약은 1x PBS 중 10mg/ml BSA(Bovine serum albumin)를 사용하였다. 항체는 냉장 보관 되어 있으며, 사용 전 10분전에 필요한 용량만큼 상온에 꺼내어 안정화 시켰다. 그 다음, 전극위에 30 ul의 항체를 분주하여 1시간 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (4) BSA 고정화를 통한 blocking 단계는 하기와 같이 수행하였다.
Blocking solution으로 BSA를 사용하였고 1%의 농도 (10 mg/ml)로 사용하였다. 전극위에 30 ul의 BSA를 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (5) 항원 고정화 단계를 하기와 같이 수행하였다.
COVID S 단백질 30 ul을 전극위에 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (6) detection antibody 고정화 단계를 하기와 같이 수행하였다.
detection antibody로 HRP(Horseradish peroxidase) 표지 항체를 사용하였다. detection antibody를 농도 1 ug/ml로 하여 30 ul을 전극위에 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였고, HRP 표지 항체는 빛에 민감하므로 은박지로 싸서 인큐베이션 시켰다.
마지막으로 (7) 전기 신호 측정 단계를 하기와 같이 수행하였다.
시약으로 OPD(o-phenylenediamine) 또는 TMB(3,3',5,5'-Tetramethylbenzidine)를 사용하였다. 사용된 OPD의 경우 타블렛 형식으로 되어있고 A(OPD, 은색, 작은 타블렛)와 B(Buffer with urea H2O2, 금색, 큰 타블렛) 두가지로 나누어져 있으며 냉장보관 되어있다. 먼저 B 타블렛을 DI water 20 ml에 녹이고 다 녹으면 A를 넣어서 용액을 만들었다. OPD를 반응이 끝난 전극위에 30ul 떨어뜨리고 5분동안 반응시켰다. 또한, TMB의 경우 원액을 사용하였고 동일하게 반응이 끝난 전극위에 30ul 떨어뜨리고 5분동안 반응시켰다.
하기 표 2와 같은 전기 화학 조건으로 OPD 또는 TMB가 올려져 있는 전극을 mp101에 꽂고 전류를 측정하였다.
CA SMV
Quiet Time(s) 0 Sensitivity 100uA Quiet Time(s) 0
Initial Volt(mV) 0 Wave Type Single Volt Delta(mV) 5
1st Time(s) 10s 1st Volt(mV) -0.9V Incre Volt(mV) 25
2nd Tims(s) 2nd Volt(mV) Initial Volt(mV) -0.8
Numbers of Step 1 Final Volt(mV) 0
Sample Interval(Hz) Sensitivity 1 mA
Frequency(Hz) 10
1-3. COVID 항체 측정
COVID를 진단하기 위해 COVID 항체을 측정하였다.
구체적으로, (1) 전극 세척 및 초기화 검증 단계, (2) Self assembled monolayer(SAM) 처리단계, (3) Capture antibody(primary) 고정화, (4) BSA 고정화를 통한 blocking 단계, (5) 항체 고정화 단계, (6) Detection antibody(secondary) 고정화 단계, (7) 전기 신호 측정 단계를 거쳐 측정하였다.
먼저, (1) 전극 세척 및 초기화 검증 단계는 구체적으로 하기와 같이 수행하였다.
먼저 실험할 전극을 측정할 농도에 따른 개수를 준비하였다. 하나의 농도 분석시 하나의 전극이 사용된다. 실험 전, 비교 분석을 위해 Bare 전극의 CV, SWV, CA 측정을 해 놓았다. ㈜마라나노텍코리아가 제조한 나노웰 전극(USB type) 및 나노웰 전극 (8 채널)을 사용하였다.
실험 시작 전에 10 mM의 ferricyadnide 용액을 1xPBS 용액에 만들어 상온에 보관하였다. 분자량은 329.26 이므로 농도에 따라 제조 후 50 ml 튜브에 보관하여 상온 랙에 끼워서 보관하였다. 만들어진 용액은 사용 전 이물질이 없는지 체크하고 14 일마다 새로운 용액을 만들어서 사용하였다.
그 다음, 전극을 MP101에 끼우고 10 mM의 ferricyanide 용액을 30ul 떨어뜨린 후 하기 표 3과 같은 조건을 걸어주었다.
전기화학 측정 (CV)
포텐셜/전류 한계치 (vertexl, 2) 반복 Scan rate
08 ~ -0.8 V(CV), microwell 2번 200 mv/s
0.9 ~ -0.9 V (2번 반복), nanowell array electrode 2번 200 mv/s
0.5 ~ -0.7 V 밀리사이즈 (생략 가능) 2번 200 mv/s
상기와 같은 조건을 걸어 도출된 전류의 크기와 산화환원 전류 모양을 측정 후 합격/불량률을 판단하였다. 그 후 사용한 전극은 DI WATER를 3초간 흘려주어서 세척 후 펌프로 잔여물질을 날려서 실험 준비를 하였다.
다음으로 (2) Self assembled monolayer(SAM) 처리단계는 하기와 같이 수행하였다. 본 단계는 배양성(orientation) 및 밀도의 향상을 위한 것이다.
먼저, 10 mM의 DTSSP 를 DI water에 녹여서 EP TUBE에 용액을 만들었다. DTSSP는 습기 및 빛에 민감한 물질이므로 냉장고에서 바로 꺼내서 무게를 잰 후 용액을 만들고 사용이 끝나면 바로 냉장 보관하였다.
전극당 30 ul의 DTSSP가 들어가므로 개수에 맞게 준비하고 (예를 들어, 10 개의 전극이라면 300 ul), DTSSP 30 ul를 전극 부위를 다 덮도록 전극위에 떨어뜨리고 상온에서 60분 동안 인큐베이션 시켰다. 이 때, 전극위의 DTSSP가 마르지 않게 워터배스(water bath)를 사용하거나 보관함에 물을 넣은 휴지를 넣어서 습도를 유지하였다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (3) 항원 고정화 단계는 하기와 같이 수행하였다.
COVID S 단백질 30 ul을 전극위에 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다. 30 분후 1xPBST로 5초 동안 전극 위에 분주하여 잔여물을 씻어냈다.
다음으로 (4) BSA 고정화를 통한 blocking 단계는 하기와 같이 수행하였다.
Blocking solution으로 BSA를 사용하였고 1%의 농도 (10 mg/ml)로 사용하였다. 전극위에 30 ul의 BSA를 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (5) capture antibody 고정화 단계를 하기와 같이 수행하였다.
항체 희석 시 사용되는 희석 시약은 1x PBS 중 10mg/ml BSA(Bovine serum albumin)를 사용하였다. 항체는 냉장 보관 되어 있으며, 사용 전 10분전에 필요한 용량만큼 상온에 꺼내어 안정화 시켰다. 그 다음, 전극위에 30 ul의 항체를 분주하여 1시간 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였다.
다음으로 (6) detection antibody 고정화 단계를 하기와 같이 수행하였다.
detection antibody로 HRP(Horseradish peroxidase) 표지 항체를 사용하였다. detection antibody를 농도 1 ug/ml로 하여 30 ul을 전극위에 분주하여 30분 동안 인큐베이션 시켰다. 이때도 상기 (2)단계와 같이 습도를 유지시켰다. 또한 분주 시 피펫으로 전극 표면 상부를 건드리지 않도록 하였고, HRP 표지 항체는 빛에 민감하므로 은박지로 싸서 인큐베이션 시켰다. 30 분후 1xPBST로 5초 동안 전극 위에 분주하여 잔여물을 씻어냈다.
마지막으로 (7) 전기 신호 측정 단계를 하기와 같이 수행하였다.
시약으로 OPD(o-phenylenediamine) 또는 TMB(3,3',5,5'-Tetramethylbenzidine)를 사용하였다. 사용된 OPD의 경우 타블렛 형식으로 되어있고 A(OPD, 은색, 작은 타블렛)와 B(Buffer with urea H2O2, 금색, 큰 타블렛) 두가지로 나누어져 있으며 냉장보관 되어있다. 먼저 B 타블렛을 DI water 20 ml에 녹이고 다 녹으면 A를 넣어서 용액을 만들었다. OPD를 반응이 끝난 전극위에 30ul 떨어뜨리고 5분동안 반응시켰다. 또한, TMB의 경우 원액을 사용하였고 동일하게 반응이 끝난 전극위에 30ul 떨어뜨리고 5분동안 반응시켰다.
하기 표 4와 같은 전기 화학 조건으로 OPD 또는 TMB가 올려져 있는 전극을 mp101에 꽂고 전류를 측정하였다.
CA SMV
Quiet Time(s) 0 Sensitivity 100uA Quiet Time(s) 0
Initial Volt(mV) 0 Wave Type Single Volt Delta(mV) 5
1st Time(s) 10s 1st Volt(mV) -0.9V Incre Volt(mV) 25
2nd Tims(s) 2nd Volt(mV) Initial Volt(mV) -0.8
Numbers of Step 1 Final Volt(mV) 0
Sample Interval(Hz) Sensitivity 1 mA
Frequency(Hz) 10
실시예 2. 분석적 민감도 확인
상기 실시예 1에서 사용한 나노웰 또는 마이크로웰 전극이 포함된 키트를 이용하여 최소검출한계를 확인하였다.
구체적으로, 서울원자력병원에서 확진군 시료를 제공받아, 각 검체당 3회 반복 실험한 후 최소검출한계 부근의 3개 농도에서 20회씩 반복시험하여 95% 이상의 양성률을 보이는 최소농도를 확인하였다.
하기 표 5와 같이 단계별로 검체를 희석하여 확인하였고, 그 결과 최소검출한계는 5.0x102 pfu/ml로 확인되었다.
Virus titer
(pfu/ml)
1.0 x 104 1.0 x 103 1.0 x 102 1.0 x 101
평가 결과 P P P P P P P N N P N N
3/3* 3/3 1/3 1/3
·참고: P: Positive, N: negative, *: 양성수/테스트수
실시예 3. 정밀도 확인
상기 실시예 1에서 사용한 나노웰 또는 마이크로웰 전극이 포함된 키트를 이용하여 동일 검체에 대해 동일한 결과가 나오는지 반복 실험을 통해 확인하였다.
구체적으로, 음성 표준물질 및 양성 표준물질 (최소검출한계 3배 농도)을 이용하여 하루에 2회씩 4일간 반복실험하여, 1회 실험 시 3번을 실시한 결과 하기 표 6에 나타낸 바와 같이 모두 동일한 결과를 확인하였다.
이러한 결과는, 상기 실시예 1의 나노웰 또는 마이크로웰 전극이 반복성(Repeatability) 및 재현성(Lot-to-Lot reproducibility)이 있음을 나타낸다.
실험
일자
반복수 SARS-CoV-2 양성검체 SARS-CoV-2 음성검체
1일차 1-1 463 P 391 P 258 P 81 N 92 N 60 N
1-2 202 P 320 P 260 P 84 N 79 N 66 N
2일차 2-1 336 P 244 P 259 P 75 N 60 N 72 N
2-2 325 P 229 P 243 P 75 N 66 N 28 N
3일차 3-1 321 P 239 P 206 P 76 N 79 N 67 N
3-2 242 P 204 P 203 P 97 N 91 N 51 N
4일차 4-1 222 P 232 P 232 P 78 N 70 N 70 N
4-2 215 P 246 P 225 P 26 N 60 N 53 N
·참고: P: Positive, N: negative, 각 검체 당 기재된 숫자: 전류치
실시예 4. 임상 시료를 이용한 COVID 진단
상기 실시예 1에서 사용한 나노웰 또는 마이크로웰 전극이 포함된 키트를 이용하여 임상 시료에서 COVID 확진 여부를 판별할 수 있는지 확인하였다.
구체적으로, 구인두 및 비인두 시료는 서울원자력병원에서 44개의 임상 시료를 제공받았다. universal VTM(viral transport medium)에 담겨진 상태로 시료를 제공받았고, 확진군 시료 10개, 정상균 시료 34개를 실험에 사용하였다. 타액 시료 또한 서울원자력병원에서 40개의 타액 시료를 제공받았다. 50ml tube에 원액 상태로 제공받았고, 확진군 시료 20개, 정상균 시료 20개를 실험에 사용하였다.
100 μL의 상기 임상 시료와 3 μg/ml HRP(horseradish peroxidase) 항체를 동량 섞어주었다. 섞은 용액 25 μL를 나노웰 센서 위에 로딩한 후, 상온에서 5분 반응시키고, 면봉으로 남은 용액을 제거하였다.
일 구체예에 따른 키트인 MARA ESEN 2000(㈜마라나노텍코리아 제조)에 상기 나노웰 센서를 삽입하고, TMB(3,3',5,5'-Tetramethylbenzidine) 30 μL를 로딩하였다. 5분 후에 바로 측정하였다.
판별 기준으로, 긴급사용승인된 RT-PCR(CFX96TM RT-PCR Detection Systems)으로 검증된 정상군과 확진군을 구분할 수 있는 값을 결정하여 판별하였고, 그 값은 다음과 같다:
1) 양성(P): 106 이상; 2) 음성(N): 99 이하; 3) 무효(E1): 100-105; 4) Error(E): 25 이하.
그 결과, 구인두 및 비인두 시료에서 하기 표 7에 나타낸 바와 같이, 확진군 10명 중 1명은 위음성으로 확인되었고, 정상군 34명은 모두 음성으로 확인되었다.
COVID-19 확진 결과 (RT-PCR)
양성 음성 Total
MARA ESEN 2000 양성 9 0 9
음성 1 34 35
Total 10 34 44
이에, 임상적 민감도는 90% (95% CI: 54.11% - 99.48%), 임상적 특이도는 100% (95% CI: 87.40% - 100%)이고, 양성예측도는 100% (95% CI: 62.88% - 100%), 음성예측도는 97.14% (95% CI: 83.38% - 99.85%)으로 확인되었다.
타액 시료에서는 하기 표 8에 나타낸 바와 같이 확진군 20명 중 2명은 위음성으로 확인되었고, 정상군 20명은 모두 음성으로 확인되었다.
COVID-19 확진 결과 (RT-PCR)
양성 음성 Total
MARA ESEN 2000 양성 18 0 18
음성 2 20 22
Total 20 20 40
이에, 임상적 민감도는 90% (95% CI: 66.87% - 98.25%), 임상적 특이도는 100% (95% CI: 79.95% - 100%)이고, 양성예측도는 100% (95% CI: 78.12% - 100%), 음성예측도는 97.14% (95% CI: 69.38% - 98.41%)으로 확인되었다.
상기와 같은 결과는, 본 발명의 나노웰 또는 마이크로웰 전극을 이용해 COVID 확진 여부를 거의 정확하게 확인할 수 있음을 나타낸다.
이와 같이 본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 외부장치와 전기적으로 연결 가능한 접속모듈;
    내부로 유입된 분석 시료로부터 COVID 표적 물질을 감지하고, 상기 감지된 COVID 표적 물질과 반응하여 발생된 전기적인 신호를 상기 접속모듈에 전송하도록 구성되는 센싱모듈;을 포함하는 진단 키트에 있어서,
    상기 센싱모듈에는, 상기 분석 시료로부터 상기 COVID 표적 물질을 감지하고, 상기 COVID 표적 물질과 반응하여 상기 전기적인 신호를 발생시키는 센서가 구비되며,
    상기 센서는,
    기판;과 상기 기판의 일면에 마련되고, 상기 COVID 표적 물질과 반응하여 전기 화학적 신호를 발생시키는 복수개의 전극을 포함하고,
    상기 센싱모듈은 상기 접속모듈에 탈부착 가능한 것인, COVID 진단을 위한 진단 키트.
  2. 청구항 1에 있어서, 상기 센서는 상기 전극 상부에 복수 개의 홈으로 이루어진 마이크로웰 또는 나노웰 구조를 포함하는 것인, COVID 진단을 위한 진단 키트.
  3. 청구항 1에 있어서, 상기 분석 시료는 개체로부터 분리된 생물학적 시료인 것인, COVID 진단을 위한 진단 키트.
  4. 청구항 1에 있어서, 상기 COVID 표적 물질은 COVID 항원 또는 COVID 항체인 것인, COVID 진단을 위한 진단 키트.
  5. 청구항 1에 있어서, 상기 센서에는 상기 COVID 표적 물질과 반응하여 COVID 표적 물질을 감지할 수 있는 물질이 결합되어 있는 것인, COVID 진단을 위한 진단 키트.
  6. 청구항 5에 있어서, 상기 전기 화학적 신호는 상기 COVID 표적 물질을 감지할 수 있는 물질과 반응한 COVID 표적물질에 결합될 수 있는 프로브 및 전자 전달 활성화 물질을 더 추가함으로써 발생하는 것인, COVID 진단을 위한 진단 키트.
  7. 청구항 1에 있어서, 상기 전극은 작업 전극(working electrode), 대 전극(counter electrode) 또는 기준 전극(reference electrode)인 것인, COVID 진단을 위한 진단 키트.
  8. 청구항 1에 있어서, 상기 마이크로웰 또는 나노웰은 직경이 50 nm 내지 50 ㎛인 것인, COVID 진단을 위한 진단 키트.
  9. 청구항 1에 있어서, 상기 접속모듈과 상기 센싱모듈은 자성을 통해 서로 탈부착 가능하게 결합되며, 면접촉을 통해 서로 전기적으로 연결되는 것인, COVID 진단을 위한 진단 키트.
  10. 청구항 1에 있어서, 상기 센싱모듈은 한 개 이상이며, 한 개 이상의 상기 센싱모듈은 하나의 상기 접속모듈에 탈부착 가능한 것인, COVID 진단을 위한 진단 키트.
PCT/KR2021/014513 2020-10-16 2021-10-18 Covid 진단 키트 WO2022080994A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200134664 2020-10-16
KR10-2020-0134664 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080994A1 true WO2022080994A1 (ko) 2022-04-21

Family

ID=81209128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014513 WO2022080994A1 (ko) 2020-10-16 2021-10-18 Covid 진단 키트

Country Status (2)

Country Link
KR (1) KR102606867B1 (ko)
WO (1) WO2022080994A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070118501A (ko) * 2006-06-12 2007-12-17 서경식 나노 입자 표지, 나노 입자 표지를 이용하는 진단 방법,진단 키트 및 진단 장치
EP3462174A2 (en) * 2013-03-15 2019-04-03 Arizona Board of Regents on behalf of Arizona State University Biosensor microarray compositions and methods
KR20190111611A (ko) * 2018-03-23 2019-10-02 주식회사 마라나노텍코리아 바이오 센서 제조방법
KR20190121247A (ko) * 2018-04-17 2019-10-25 한국화학연구원 멀티웰 전극 기반 바이오센서
KR20200001389A (ko) * 2018-06-27 2020-01-06 전자부품연구원 자성입자와 전기화학센서를 이용한 면역진단 바이오마커 검출 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150355129A1 (en) * 2014-06-05 2015-12-10 Avails Medical, Inc. Systems and methods for detecting substances in bodily fluids
KR20170030376A (ko) * 2015-09-09 2017-03-17 삼성전자주식회사 전자 장치의 전원 연결 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070118501A (ko) * 2006-06-12 2007-12-17 서경식 나노 입자 표지, 나노 입자 표지를 이용하는 진단 방법,진단 키트 및 진단 장치
EP3462174A2 (en) * 2013-03-15 2019-04-03 Arizona Board of Regents on behalf of Arizona State University Biosensor microarray compositions and methods
KR20190111611A (ko) * 2018-03-23 2019-10-02 주식회사 마라나노텍코리아 바이오 센서 제조방법
KR20190121247A (ko) * 2018-04-17 2019-10-25 한국화학연구원 멀티웰 전극 기반 바이오센서
KR20200001389A (ko) * 2018-06-27 2020-01-06 전자부품연구원 자성입자와 전기화학센서를 이용한 면역진단 바이오마커 검출 시스템 및 방법

Also Published As

Publication number Publication date
KR20220050827A (ko) 2022-04-25
KR102606867B1 (ko) 2023-11-29

Similar Documents

Publication Publication Date Title
JP2708276B2 (ja) バイオセンサ電極用励起回路
WO2013041008A1 (zh) 磁块锁扣结构及其使用方法和在生化分析仪上的应用
EP1785494B1 (en) Application of biosensor chips
WO2018143680A1 (ko) 자동화된 액상 면역반응 분석 장치
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
WO2017039356A1 (ko) 전기화학적 검출방법에 의한 알레르겐 검출 장치
WO2018016896A1 (ko) 전계효과 대장암 센서
WO2019203493A1 (ko) 멀티웰 전극 기반 바이오센서
WO2022080994A1 (ko) Covid 진단 키트
US20030119030A1 (en) Immunoassay diagnostic probe and a method for use thereof
WO2013042877A2 (ko) 바이오센서 및 그 측정장치
WO2016192168A1 (zh) 基于生物标志物的肿瘤早期检测试剂盒及其制备方法
WO2023204429A1 (ko) 바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기
WO2022197049A1 (ko) 밀리웰 또는 마이크로웰 구조를 사용하는 바이오 센서
KR20140140502A (ko) 전기 화학적 물질 검출 모듈 및 이를 구비한 물질 검출 장치
KR102434151B1 (ko) 생체 물질 정량 분석 시스템 및 이를 이용한 생체 물질 정량 분석 방법
WO2017095202A1 (ko) 전기화학센서 및 그 제조방법
WO2020040509A1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
WO2016137113A1 (ko) 유방암의 예후 및 항암화학요법 사용 여부 판단 장치 및 방법
JP2011102729A (ja) 分析チップ装置、分析チップ装置に用いる化学センサチップ収納アダプター及び分析装置ならびに分析チップ装置を用いた分析方法
KR102327315B1 (ko) 나노웰 구조를 사용하는 바이오 센서
WO2017119583A1 (ko) 검사장치 및 그 제어방법
KR20230137040A (ko) Covid 항원 검출용 covid 진단 키트
KR102290207B1 (ko) 바이오 센서
WO2020235964A1 (ko) 면역 분석 진단 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880640

Country of ref document: EP

Kind code of ref document: A1