WO2018016896A1 - 전계효과 대장암 센서 - Google Patents

전계효과 대장암 센서 Download PDF

Info

Publication number
WO2018016896A1
WO2018016896A1 PCT/KR2017/007835 KR2017007835W WO2018016896A1 WO 2018016896 A1 WO2018016896 A1 WO 2018016896A1 KR 2017007835 W KR2017007835 W KR 2017007835W WO 2018016896 A1 WO2018016896 A1 WO 2018016896A1
Authority
WO
WIPO (PCT)
Prior art keywords
colorectal cancer
sensor
analyte
cancer diagnostic
sensing unit
Prior art date
Application number
PCT/KR2017/007835
Other languages
English (en)
French (fr)
Inventor
이관희
전민홍
박성욱
명승재
김청수
김상엽
도은주
강자영
Original Assignee
한국과학기술연구원
재단법인 아산사회복지재단
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 재단법인 아산사회복지재단, 울산대학교 산학협력단 filed Critical 한국과학기술연구원
Priority to US16/314,253 priority Critical patent/US20190204321A1/en
Publication of WO2018016896A1 publication Critical patent/WO2018016896A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • Colorectal cancer is the third most common cancer among men (746,000 as of 2012) and the second most common cancer among women (614,000 as of 2012), with a total mortality rate of 8.5% and 694,000 deaths in 2012. .
  • advanced cancer is a frequent cancer in the United States and Europe, colon cancer patients are rapidly increasing in Korea.
  • the incidence of colorectal cancer in South Korea is the first in Asia and the fourth in the world, reaching an extremely dangerous level.
  • the incidence of colorectal cancer is expected to double.
  • Colorectal cancer is very likely to be cured if detected early (90% or more), but there is no symptom in the early stage, and unlike other cancers, the rate of colorectal cancer is significantly higher and 51.6 of patients diagnosed with colorectal cancer are diagnosed. Percentages are diagnosed in stages 3 and 4, and thus there is a need for early diagnosis of colorectal cancer.
  • the US FDA has approved several tumor-associated antigens for cancer diagnosis, including prostate-cancer antigen (PSA) for prostate cancer, carcinoembryonic antigen (CEA) for colon cancer, and alphafetoprotein for diagnosis of testicular and liver cancer. (AFP) and the like.
  • PSA prostate-cancer antigen
  • CEA carcinoembryonic antigen
  • AFP alphafetoprotein for diagnosis of testicular and liver cancer.
  • Molecular diagnostic methods for determining the direction of treatment using cancer tissues of the patient include MammaPrint, OncotypeDx, etc., which are approved by the US FDA or commercialized at the CLIA lab level, but molecular diagnosis technology using major body fluid samples such as blood / urine / sputum There are few examples of this commercialization.
  • the present invention is to provide a high-precision field effect colorectal cancer diagnostic sensor that can detect colorectal cancer biomarker in a sample, for example, blood, or stool, and can diagnose colorectal cancer early or always.
  • the present invention utilizes relatively easily obtained blood or stool for diagnosis, thereby minimizing patient's rejection and side effects for existing colorectal cancer diagnostic tests such as colonoscopy, and provides a quick and easy patient-friendly disease monitoring / diagnosis technology. This can replace traditional invasive diagnostic testing techniques.
  • CCSP Cold Cancer Secreted Protein
  • CCSP Cold Cancer Secreted Protein
  • the present invention is capable of ultra-precise / low concentration detection so that colon cancer can be diagnosed early with only a small amount of samples.
  • the senor of the present invention is capable of detecting the ultra-precise / low concentration, so that the CCSP can be detected.
  • One aspect provides a colorectal cancer diagnostic sensor including a sensing unit for detecting an analyte in a sample, and a signal processing unit including an ion sensing field effect transistor electrically connected to the sensing unit.
  • the senor includes an electrochemical sensing unit for detecting an analyte in a sample, and an ion sensing field effect transistor electrically connected to the sensing unit and amplifying a signal generated from the sensing unit.
  • the sensor may include a signal processor, wherein the sensing unit may be detachable from the signal processor, and the connection may be made between an electrode of the sensing unit and an upper gate electrode of the transistor.
  • the senor may further include a connection unit for connecting the sensing unit and the signal processing unit.
  • the connection part may be configured to be detachable from the connection part, for example, may have a plug shape.
  • the senor may further include a display unit for displaying a result.
  • the display unit may further include a frame having a display for displaying a result and one or more control interfaces (eg, a power button, a scroll wheel, etc.).
  • the frame may comprise a slot for receiving a sensor.
  • Inside the mold there may be a circuit for applying a potential or current to the electrode of the sensor when a sample is provided.
  • Suitable circuitry that may be used in the meter may be, for example, an ideal voltage meter capable of measuring the potential across the electrode.
  • a switch may also be provided which opens when the potential is measured or closes for the measurement of the current.
  • the switch may be a mechanical switch (eg a relay) or a solid-state switch.
  • Such a circuit can be used to measure the potential difference or the current difference.
  • other circuits including simpler and more complex circuits, can be used to achieve the application of the potential difference or current or both.
  • the sensing unit substrate A working electrode and a reference electrode formed on the substrate; An analyte binding material immobilized on the working electrode; And a test cell for receiving the electrode, the analyte binding material, and the analyte.
  • the sensing unit may be configured to be used for single use.
  • the substrate may be a material selected from the group consisting of silicon, glass, metal, plastic, and ceramic.
  • the substrate may be selected from the group consisting of silicon, glass, polystyrene, polymethylacrylate, polycarbonate, and ceramic.
  • the electrode may be titanium nitride, silver, silver epoxy, palladium, copper, gold, platinum, silver / silver chloride, silver / silver ions, or mercury / mercury oxide.
  • the sensing unit may include an insulating electrode formed on the substrate or the working electrode.
  • the insulating electrode may include an oxide film formed naturally or artificially. Examples of the oxide film may include Si x O y , H x fO y , Al x O y , Ta x O y , or Ti x O y (where x or y are integers of 1 to 5). Forming the oxide film can be made by a known method. For example, the oxide may be formed by depositing liquid phase deposition, evaporation, and sputtering on a substrate.
  • analyte binding materials or analyte binding reagents are used interchangeably and may be analyte-specifically binding material or analyte capable of imparting functionalization to the sensing portion.
  • the analyte binding material may be a DNA, RNA, nucleotide, nucleoside, protein, polypeptide, peptide, amino acid, carbohydrate, enzyme, antibody, antigen, receptor, virus, substrate, ligand or membrane,
  • the analyte binding material is specific for Colon Cancer Secreted Protein (CCSP), for example, CCSP-2, or carcinoembryonic antigen (CEA), which is a marker for diagnosing colorectal cancer.
  • CCSP Colon Cancer Secreted Protein
  • CEA carcinoembryonic antigen
  • the colorectal cancer diagnostic sensor may be a colorectal cancer diagnostic biomarker, for example, a sensor for detecting CCSP or CEA.
  • the analyte binding material may include a redox enzyme
  • the redox enzyme may refer to an enzyme for oxidizing or reducing a substrate, for example, oxidase, peroxidase.
  • examples of the redox enzyme include blood sugar oxidase, lactate oxidase, cholesterol oxidase, glutamate oxidase, horseradish peroxidase (HRP), alcohol oxidase, and glucose oxidase (glucose oxidase).
  • the analyte binding material may be immobilized on a substrate, working electrode, or insulated electrode, and the term “immobilized” may mean a chemical or physical bond between the analyte binding material and the substrate.
  • the immobilization compound may be immobilized on the substrate or the electrode.
  • the immobilization compound may mean a material capable of binding analyte or a linker for immobilizing the analyte binding material on the surface of a substrate or an electrode.
  • the immobilization compound may be biotin, avidin, streptavidin, carbohydrate, poly L-lysine, hydroxyl group, thiol group, amine group, alcohol group, carboxyl group, amino group, sulfur group, aldehyde group, carbonyl group, succinimide group, maleimide group, It may be a compound having an epoxy group, an isothiocyanate group, or a combination thereof.
  • analyte may refer to a material of interest that may be present in a sample.
  • Detectable analytes may include those that may be involved in specific-binding interactions with one or more analyte binding agents that may participate in sandwich, competition, or substitution assay configurations.
  • analytes include antigens or peptides such as peptides (eg hormones), proteins (eg enzymes), carbohydrates, proteins, drugs, pesticides, microorganisms, antibodies, and complementary sequences and sequence specific hybridization reactions.
  • Nucleic acids that can participate. More detailed examples of the analytes may include Colon Cancer Secreted Protein (CCSP), for example CCSP-2, or carcinoembryonic antigen (CEA), a marker for diagnosing colorectal cancer.
  • CCSP Colon Cancer Secreted Protein
  • CEA carcinoembryonic antigen
  • the sample may be a biological sample derived from an individual, eg, a mammal, including a human.
  • the biological sample may be blood, whole blood, serum, plasma, lymph, urine, feces, tissues, cells, organs, bone marrow, saliva, sputum, cerebrospinal fluid or a combination thereof.
  • colorectal cancer may include adenomas occurring in the mucous membrane of the large intestine, in addition to lymphoma, sarcoma, or squamous cell carcinoma.
  • a sample is introduced through the test cell for accommodating the electrode, the analyte binding material, and the analyte, and the analyte, and the analyte present in the sample is combined with the analyte binding material to set the chemical potential gradient in the test cell.
  • chemical potential gradient may refer to the concentration gradient of the active species. When such a slope is present between the two electrodes, the potential difference may be detected when the circuit is opened and the current will flow until the slope is lost when the circuit is closed. Chemical potential gradient may refer to any potential gradient resulting from the application of a current difference or a potential difference between the electrodes.
  • the test cell is polydimethylsiloxane (PDMS), polyethersulfone (PES), poly (3,4-ethylenedioxythiophene) (poly (3,4-ethylenedioxythiophene)), poly (styrenesulfonate) (poly (styrenesulfonate)), polyimide, polyurethane, polyester, perfluoropolyether (PFPE), polycarbonate, or a combination of the above polymers It may be.
  • PDMS polydimethylsiloxane
  • PES polyethersulfone
  • PES poly (3,4-ethylenedioxythiophene)
  • poly (styrenesulfonate) poly (styrenesulfonate)
  • polyimide polyurethane
  • polyester polyester
  • PFPE perfluoropolyether
  • PFPE perfluoropolyether
  • the ion sensing field effect transistor may include a lower gate electrode; A lower insulating film formed on the lower gate electrode; A source and a drain formed on the lower insulating film and spaced apart from each other; A channel layer formed on the lower insulating film and disposed between the source and the drain; It may include an upper insulating film formed on the source, the drain, and the channel layer, and an upper gate electrode formed on the upper insulating film.
  • the small surface potential voltage difference generated in the sensing unit greatly amplifies the threshold voltage change of the lower field transistor due to the supercapacitive coupling generated in the double gate ion sensing field effect transistor (ISFET) including the channel layer.
  • the amplification factor may be determined by the thickness of the lower insulating film, the thickness of the channel layer, and the thickness of the insulating film of the upper gate. The thicker the lower insulating film, the thinner the upper insulating film and the channel layer, the larger the size of the amplification factor.
  • the channel layer may be an ultra-thin layer, and for example, the thickness may be 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, or 4 nm or less.
  • the transistor including the ultra-thin channel layer allows a large amplification factor compared to the conventional transistor, while also increasing the ion sensing power.
  • the transistor including the ultra-thin channel layer within the range of the thickness of the channel layer can improve the stability compared to the conventional transistor.
  • the varying amplification factors seen in the thick channel layer, in combination with leakage current components induced at the upper interface, can cause device degradation due to ion damage.
  • the transistor according to the embodiment in which the leakage current is controlled while allowing a constant amplification factor can minimize the ion damage effect.
  • the lower insulating layer becomes excessively thick in the existing transistor, the lower electric field does not control all of the channel regions, and thus the electrostatic coupling of the upper and lower gates is weakened.
  • Transistors can obtain large amplification factors while maintaining electrostatic coupling. The electrostatic coupling of the upper and lower gates occurs when the upper channel interface is completely depleted. In the conventional transistor, the amplification does not occur because the entire length of the lower gate does not control the upper channel.
  • the channel layer may include any one selected from the group consisting of an oxide semiconductor, an organic semiconductor, polycrystalline silicon, and single crystal silicon.
  • the channel layer includes any one selected from the group consisting of semiconductors, organic semiconductors, polycrystalline silicon, and single crystal silicon, upper and lower gate electrostatic coupling occurs and high sensitivity sensors can be manufactured, and transparent and flexible sensors can be provided. have.
  • the channel layer is not limited in width or length, and may utilize an electrostatic coupling phenomenon by using upper and lower gate electrodes in a double gate structure.
  • an equivalent oxide thickness of the upper insulating layer may be thinner than an equivalent oxide thickness of the lower insulating layer.
  • the thickness of the upper insulating film may be about 25 nm or less, and the thickness of the lower insulating film may be about 50 nm or more.
  • the equivalent oxide film thickness of the upper insulating film is thinner than the equivalent oxide film thickness of the lower insulating film, a sensitivity amplification phenomenon may be caused.
  • the upper insulating film and the lower insulating film may include an oxide film formed naturally or artificially.
  • the oxide film may include Si x O y , H x fO y , Al x O y , Ta x O y , or Ti x O y (where x or y are integers of 1 to 5).
  • the oxide layer may have a single, double, or triple stacked structure.
  • the double gate ion sensing field effect transistor may have a structure including a field transistor including an upper insulating layer and a lower field transistor including a lower insulating layer in one device. According to each operation mode, it can operate independently with the upper and lower gates. When the upper and lower gates of the device are used at the same time, as the electrostatic coupling phenomenon is observed due to the structural specificity of the double gate structure, the interconnection of the upper and lower field transistors can be established.
  • the dual operation mode may be to use the lower gate as the main gate.
  • the transistor according to one embodiment may be operating in the double gate mode.
  • the sensing unit may be coupled to the analyte binding material by an analyte in a sample, and may further include a probe having a negative charge or a positive charge.
  • the signal of the analyte may be amplified by capacitive coupling of electrons of the probe and the channel layer of the transistor.
  • the probe may be one containing metal nanoparticles.
  • the metal nanoparticles may be, for example, gold nanoparticles, and have an effect of additionally supplying charge.
  • the probe may include a quantum dot. When quantum dots are used, the bio-imaging role may be simultaneously performed while additionally supplying charges like gold nanoparticles.
  • the probe may include ferritin. Through the combined structure of ferritin and metal nanoparticles, a larger signal can be obtained by additionally receiving more charge than when using a single metal nanoparticle.
  • the senor may include a plurality of sensing units and a plurality of transistors for detecting a plurality of analytes.
  • the sensor may include a plurality of sensing units and a plurality of ion sensing field effect transistors, and the plurality of sensing units and the plurality of ion sensing field effect transistors may be electrically connected to each other.
  • a plurality of sources in the plurality of transistors may be commonly grounded, a plurality of upper gate electrodes may be commonly grounded, and a plurality of lower gate electrodes may be applied with a common voltage.
  • the source of the first transistor and the second transistor, and the reference electrodes of the first sensing unit and the second sensing unit may be commonly grounded.
  • a constant common voltage may be applied to the lower electrodes of the first transistor and the second transistor.
  • the plurality of drains in the plurality of transistors may have a parallel structure.
  • the drains of the first transistor and the second transistor may have a parallel structure.
  • the plurality of sensing units may be independently immobilized different analyte binding material.
  • an antibody to PSA may be immobilized in the first sensing unit
  • an antibody to PSMA may be immobilized in the second sensing unit.
  • the plurality of transistors may sense the same or different analyte signals from the plurality of sensing units, amplify them, and output a signal through a semiconductor parameter analyzer.
  • the signal processor may be electrically connected to the transistor, and may further include a calculation module for determining the amount of analyte in the sample from the potential difference measured by the transistor.
  • the computing module may be for the determination of analytes.
  • the term “determination of an analyte” may mean a qualitative, semi-quantitative and quantitative process for evaluating a sample. In qualitative evaluation, the results indicate whether an analyte is detected in the sample. In a semi-quantitative assessment, the results indicate whether the analyte is above some predefined threshold. In quantitative evaluation, the result is a numerical representation of the amount of analyte present.
  • the conversion of measured values can also use a look-up table that converts specific values of current or potential to values of analytes depending on the specific device structure and calibration values for the analytes.
  • the computation module can be determined by measuring the potential difference over a known concentration of the analyte. For example, the calculation module may be to determine the amount of colorectal cancer biomarker in the sample compared to the normal control.
  • the senor is provided with a communication means may be configured to enable transmission and reception of information with an external server or terminal unit.
  • the communication means may employ a wired or wireless communication means. Therefore, wired communication using a cable connection means can be used, and wireless communication means including 4G, LTE, UWB, WiFi, WCDMA, USN, IrDA module, as well as Bluetooth module or Zigbee module can be used.
  • the terminal unit may include a communication device such as a computer, a notebook computer, a smart phone, a general mobile phone, a PDA, a measuring instrument or a control device having a separate communication function.
  • the terminal unit may be provided with a central processing unit and may be based on an operating system (OS) capable of driving software such as a computer program and an application program. Therefore, the terminal unit is equipped with an application program for analyzing, analyzing and processing the analyte measurement data in the sample provided by the sensor may perform a function of interpreting, analyzing and processing the analyte measurement data in the sample. .
  • OS operating system
  • the terminal unit may perform a function of displaying the data obtained by analyzing, analyzing and processing the analyte measurement data or the analyte measurement data in the sample.
  • the terminal unit is connected or interlocked with the control unit of the sensor, the terminal unit may perform a function for operating and controlling the sensor.
  • a sensor it is possible to detect ultra-precise / low concentration of colon cancer biomarker from a sample such as blood or stool, so that colon cancer can be diagnosed early with only a small amount of sample.
  • FIG. 1 is a view showing a schematic diagram of a sensor according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating a sensing unit of a sensor according to an embodiment.
  • FIG. 3 is a diagram schematically illustrating a signal amplification by a probe of a sensor according to an embodiment.
  • Figure 4 shows the results for the stability of the sensor according to one embodiment.
  • 5 is a result of detecting the CCSP2 in the serum of the actual colorectal cancer patient using a sensor according to one embodiment.
  • Figure 6 is a graph showing the results of the actual serum sample and the PDX model and the control group (control group) measured.
  • a part when a part is connected to another part, it includes not only a case where the part is directly connected, but also an electric part connected between other components in between. .
  • a part when a part includes a certain component, this means that the component may further include other components, not to exclude other components unless specifically stated otherwise.
  • the terms "... unit”, “... module” described in the embodiments means a unit for processing at least one function or operation, which is implemented in hardware or software, or a combination of hardware and software. Can be implemented.
  • the sensor 100 includes a sensing unit 110 for detecting an analyte in a sample, and an ion sensing field effect transistor 130 electrically connected to the sensing unit 110. ) May be included.
  • the sensor 100 is electrically connected to the electrochemical sensing unit 110, the sensing unit 110 for detecting the analyte in the sample, and generated from the sensing unit 110 And a signal processing unit 130 including an ion sensing field effect transistor 130 for amplifying a signal, wherein the sensing unit 110 may be detachable from the signal processing unit 130, and the connection may be a sensing unit.
  • the sensor 100 may further include a connection unit 120 for connecting the sensing unit 110 and the signal processing unit 130.
  • the connection part 120 may be configured such that the sensing part 120 is detachable from the connection part, for example, may have a plug shape.
  • the sensor 100 may further include a display unit for displaying a result.
  • the display unit may further include a frame having a display for displaying a result and one or more control interfaces (eg, a power button, a scroll wheel, etc.).
  • the frame may comprise a slot for receiving a sensor.
  • Inside the mold there may be a circuit for applying a potential or current to the electrode of the sensor when a sample is provided. Suitable circuitry that may be used in the meter may be, for example, an ideal voltage meter capable of measuring the potential across the electrode. A switch is also provided which opens when the potential is measured or closes for the measurement of the current.
  • the ion sensing field effect transistor 130 includes a lower gate electrode 131; A lower insulating film 132 formed on the lower gate electrode 131; A source 134 and a drain 133 formed on the lower insulating film 132 and spaced apart from each other; A channel layer 135 formed on the lower insulating layer 132 and disposed between the source 134 and the drain 133; It may include an upper insulating layer 136 formed on the source 134, the drain 133, and the channel layer 135, and an upper gate electrode 137 formed on the upper insulating layer 136. .
  • the small surface potential voltage difference generated by the sensing unit may be changed due to the supercapacitive coupling generated by the dual gate ion sensing field effect transistor (ISFET) 130 including the channel layer 135.
  • ISFET dual gate ion sensing field effect transistor
  • the amplification factor may be determined by the thickness of the lower insulating layer 132, the thickness of the channel layer 135, and the thickness of the insulating layer 136 of the upper gate. As the thickness of the lower insulating layer 132 is thicker and the thickness of the upper insulating layer 136 and the channel layer 135 is thinner, the size of the amplification factor may be larger.
  • the channel layer 135 may be an ultra-thin layer, and for example, the thickness may be 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, or 4 nm or less.
  • the channel layer 135 may include any one selected from the group consisting of an oxide semiconductor, an organic semiconductor, polycrystalline silicon, and single crystal silicon.
  • an equivalent oxide thickness of the upper insulating layer 136 may be thinner than an equivalent oxide thickness of the lower insulating layer 132.
  • the thickness of the upper insulating layer 136 may be about 25 nm or less, and the thickness of the lower insulating layer 132 may be about 50 nm or more.
  • the equivalent oxide film thickness of the upper insulating film 136 is thinner than the equivalent oxide film thickness of the lower insulating film 132, a signal amplification phenomenon may be induced.
  • the double gate ion sensing field effect transistor 130 may have a structure including a field transistor including the upper insulating layer 136 and a lower field transistor including the lower insulating layer 132 in one device. . According to each operation mode, it can operate independently with the upper and lower gates. When the upper and lower gates of the device are used at the same time, as the electrostatic coupling phenomenon is observed due to the structural specificity of the double gate structure, the interconnection of the upper and lower field transistors can be established.
  • the dual operation mode may be to use the lower gate as the main gate. Thus, the transistor according to one embodiment may be operating in the double gate mode.
  • the senor may include a plurality of sensing units 110 and a plurality of transistors 130 to detect a plurality of analytes.
  • the sensor includes a plurality of sensing units 110 and a plurality of ion sensing field effect transistors 130, and the plurality of sensing units 110 and the plurality of ion sensing field effect transistors 130 are each electrically connected. It may be connected to.
  • a plurality of sources in the plurality of transistors 130 may be commonly grounded, a plurality of upper gate electrodes may be commonly grounded, and a plurality of lower gate electrodes may be applied with a common voltage.
  • the plurality of drains in the plurality of transistors 130 may have a parallel structure.
  • the plurality of sensing units 110 may be independently immobilized different analyte binding material.
  • the plurality of transistors 130 may detect the same or different analyte signals from the plurality of sensing units 110, amplify them, and output a signal through a semiconductor parameter analyzer.
  • the signal processor is electrically connected to the transistor 130, and further includes a calculation module (not shown) for determining the amount of analyte in the sample from the potential difference measured from the transistor 130 It may be.
  • the computing module may be for the determination of analytes.
  • the computation module can be determined by measuring the potential difference over a known concentration of the analyte.
  • the calculation module may be to determine the amount of colorectal cancer markers in the sample compared to the normal control.
  • the sensor 100 is provided with a communication means (not shown) may be configured to enable the transmission and reception of information with an external server or terminal unit.
  • the communication means may employ a wired or wireless communication means.
  • the sensing unit 110 includes a substrate 111; A working electrode 112 and a reference electrode 115 formed on the substrate; An analyte binding material immobilized on the working electrode 112; And a test cell 114 for receiving the electrodes 112 and 115, the analyte binding material, and the analyte.
  • the sensing unit 110 may be configured to be used for single use.
  • the substrate may be a material selected from the group consisting of silicon, glass, metal, plastic, and ceramic.
  • the electrodes 112 and 115 may be silver, silver epoxy, palladium, copper, gold, platinum, silver / silver chloride, silver / silver ions, or mercury / mercury oxide.
  • the sensing unit 110 may include an insulating electrode 113 formed on the substrate 111 or the working electrode 112.
  • the insulating electrode 113 may include an oxide film formed naturally or artificially. Examples of the oxide film may include Si x O y , H x fO y , Al x O y , Ta x O y , or Ti x O y (where x or y are integers of 1 to 5). Forming the oxide film can be made by a known method.
  • the oxide may be formed by depositing liquid phase deposition, evaporation, and sputtering on a substrate.
  • the analyte binding material may comprise DNA, RNA, nucleotides, nucleosides, proteins, polypeptides, peptides, amino acids, carbohydrates, enzymes, antibodies, antigens, receptors, viruses, substrates, ligands or membranes, or combinations thereof.
  • the analyte binding material is an antibody capable of specifically binding to Colon Cancer Secreted Protein (CCSP), for example, CCSP-2, or carcinoembryonic antigen (CEA), which is a marker for diagnosing colorectal cancer. Can be.
  • CCSP Colon Cancer Secreted Protein
  • CEA carcinoembryonic antigen
  • analytes include antigens or peptides such as peptides (eg hormones), proteins (eg enzymes), carbohydrates, proteins, drugs, pesticides, microorganisms, antibodies, and complementary sequences and sequence specific hybridization reactions. Nucleic acids that can participate. More detailed examples of the analytes may include Colon Cancer Secreted Protein (CCSP), for example CCSP-2, or carcinoembryonic antigen (CEA), a marker for diagnosing colorectal cancer.
  • CCSP Colon Cancer Secreted Protein
  • CEA carcinoembryonic antigen
  • a sample is introduced through the test cell 114 for receiving the electrode, the analyte binding material and the analyte, and the analyte present in the sample is combined with the analyte binding material. It causes a chemical potential gradient in the test cell 114.
  • the sensing unit may be coupled to the analyte binding material 10 by an analyte 20 in a sample, and further include a probe 30 having a negative charge or a positive charge. Charge collection occurs by the probe 30 (1), followed by capacitive coupling of electrons between the probe 30 and the channel layer 135 of the transistor (2), thereby amplifying the signal of the analyte. It may be.
  • the substrate is made of silicon-on-insulator (SOI) having a resistivity of about 10 to 20 ⁇ cm, the thickness of silicon, the lower gate electrode, is about 107 nm, and the thickness of the buried SiO 2 oxide film, the lower insulating film, is about 224 nm.
  • SOI silicon-on-insulator
  • the upper silicon was etched with about 2.38% by weight of tetramethylammonium hydroxide (TMAH) solution to form an ultra thin film, and a channel region was formed using a photolithography.
  • the length and width of the formed channels were about 20 um and 20 um, respectively, and the thickness was about 4.3 nm.
  • TiN titanium nitride
  • silicon dioxide was formed on the source and drain through oxidation to form an upper insulating film.
  • the upper gate electrode was deposited using a sputtering system on a TiN thin film layer having a thickness of about 150 nm.
  • heat treatment was performed under gas conditions including N 2 , and H 2 at a temperature of about 450 ° C. in order to eliminate defects and improve the interfacial state therebetween to prepare a double gate ion sensing field effect transistor.
  • a glass substrate of about 300 nm was used.
  • a working electrode ITO was deposited to a thickness of about 100 nm to measure the electrical potential difference on the substrate surface using an E-beam evaporator.
  • a SnO 2 film which is an oxide film, was deposited to a thickness of about 45 nm on the ITO layer using an RF sputter.
  • RF power was about 50 W.
  • the sputtering process was performed under Ar gas conditions and about 3 mtorr pressure conditions having a flow rate of about 20 sccm.
  • a test cell for accommodating a sample was made of polydimethylsiloxane (PDMS) and attached to the insulating electrode to form a sensing unit.
  • PDMS polydimethylsiloxane
  • a silver / silver chloride electrode was used as a reference electrode.
  • the sensor was manufactured by connecting the upper gate electrode of the transistor manufactured in (1.1) and the working electrode of the sensing unit manufactured in (1.2) in the form of a plug-in.
  • Figure 4 is a graph showing the stability evaluation results of the sensor according to an embodiment.
  • the sensor according to one embodiment measures the reference voltage uniformly according to the solution even when alternately injecting different solutions. Therefore, the sensor according to the embodiment can stably measure an electrical signal. It can be seen that.
  • a colorectal cancer marker In order to detect CCSP2, a colorectal cancer marker, the thickness of the box (Buried oxide) and Top Si is increased so that it can operate stably in blood and feces, and the sensitivity is increased. Sensing membrane) was subjected to colorectal cancer specific antibody treatment to detect colorectal cancer markers, the results are shown in Figure 5, 6 and Table 1 below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Ceramic Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)

Abstract

시료, 예를 들면, 혈액, 또는 변 등에 적용가능한 고감도 액상용 전계효과 대장암 센서에 관한 것으로, 일 양상에 따른 센서에 의하면 대장암 바이오마커의 초정밀/저농도 검지가 가능하여 극소량의 샘플만으로도 대장암을 조기 진단할 수 있는 효과가 있다.

Description

전계효과 대장암 센서
시료, 예를 들면, 혈액, 또는 변 등에 적용가능한 고감도 액상용 전계효과 대장암 센서, 그를 포함하는 대장암 진단용 키트, 및 대장암 진단 방법에 관한 것이다.
대장암은 남성 발병 암 중에서 세 번째 (2012년 기준 746,000 명), 여성 발병 암 중에서 두 번째 (2012년 기준 614,000 명)를 차지하는 암으로서, 사망률은 전체 8.5 %로 2012년 694,000 명이 대장암으로 사망하였다. 주로 미국, 유럽 등에서 빈발하는 선진국형 암이었으나, 식생활이 변하고 있는 우리나라의 경우 현재 대장암 환자가 급속하게 증가하고 있는 실정이다. 대한민국 남성의 대장암 발병률은 아시아 1위, 세계 4위로 현재 극히 위험한 수준까지 도달했고, 2030년에는 대장암 발병률이 두 배까지 급증할 것으로 예상된다. 대장암은 초기에 발견할 경우 완치할 확률이 매우 높으나 (90 % 이상), 초기에는 별다른 증상이 없어서, 다른 암과 달리 후기 진행함으로 발견되는 비율이 월등하게 높으며, 대장암 진단을 받은 환자의 51.6 % 가 3 ~ 4 기에 진단을 받으며, 따라서, 대장암의 조기 진단에 대한 필요성이 요구되고 있다.
한편, 현재 체외 진단 시장에서의 기술 트렌드는 분자진단 기술로 급격히 이동되고 있으며, 분자진단에서 중요한 기술적 요소는 특정 질환을 대표하는 분자진단용 핵산 바이오마커의 발굴기술과 높은 민감도 및 특이도로 바이오마커를 감지할 수 있는 바이오마커 검출기술로 대별될 수 있다. 특정 질환을 높은 민감도와 특이도로 진단할 수 있는 분자진단 바이오마커에 대한 발굴은 그 자체로도 다양한 검출 시스템에 적용할 수 있는 기반기술이며, 짧은 시간 내에 실용화할 수 있는 지식 집약적 기술이다.
미국 FDA는 암 진단 목적을 위하여 여러 개의 종양 관련 항원을 승인하였는데, 대표적으로 전립선암 진단을 위한 prostate-cancer antigen (PSA), 대장암 진단을 위한 carcinoembryonic antigen (CEA), 고환암 및 간암 진단을 위한 alphafetoprotein (AFP) 등이 있다. 환자의 암조직을 이용한 치료의 방향성을 판단하는 분자진단 방법은 MammaPrint, OncotypeDx 등이 미국 FDA 승인을 받거나 CLIA 랩 수준에서 상용화된 상품이 있으나, 혈액/소변/객담 등 주요 체액 샘플을 이용한 분자진단 기술이 상용화된 사례는 거의 없다.
따라서, 혈액 등의 체액 샘플을 대상으로 하여 조기 대장암 세포 등에서 발현되는 물질에 대해 특이적이고 고민감도로 검출할 수 있는 기술에 대한 요구가 존재한다.
이에 본 발명은 시료, 예를 들면, 혈액, 또는 변 등에서 대장암 바이오 마커를 검출함으로써, 대장암을 조기 또는 상시 진단할 수 있는 고정밀 전계효과 대장암 진단 센서를 제공하는 것이다.
또한, 본 발명은 비교적 쉽게 얻을 수 있는 혈액 또는 변을 진단에 이용함으로써, 대장 내시경과 같은 기존 대장암 진단 검사에 대한 환자의 거부감 및 부작용을 최소화하고, 빠르고 간편한 환자 친화적 질병 모니터링/진단 기술을 제공함으로써 기존의 침습적인 진단 검사기술을 대체할 수 있다.
특히, 본 발명의 바이오마커로서 사용되는 CCSP (Colon Cancer Secreted Protein) 는 대장암 초기 단계에 검출 가능한 혈청 마커로서 정상에 비해 평균 78배의 발현을 보이며, 현재에는 대장암의 선종(adenoma) 단계의 적절한 바이오 마커가 거의 없지만, CCSP의 경우 선종에서 높은 수준의 발현을 보이므로, 본 발명은 초정밀/저농도 검지가 가능하여 극소량의 샘플만으로도 대장암을 조기 진단할 수 있다.
또한, 상기 CCSP는 기존의 ELISA 방식으로는 검출되지 않는데 반해, 본 발명의 센서는 초정밀/저농도 검지가 가능하여 상기 CCSP의 검출이 가능한 효과가 있다.
일 양상은 시료 내의 분석물을 검출하기 위한 센싱부, 및 상기 센싱부와 전기적으로 연결된 이온 감지 전계 효과 트랜지스터를 포함하는 신호 처리부를 포함하는 대장암 진단 센서를 제공한다.
일 구체예에 있어서, 상기 센서는 시료 내의 분석물을 검출하기 위한 전기화학적 센싱부, 및 상기 센싱부와 전기적으로 연결되고, 상기 센싱부로부터 발생된 신호를 증폭하기 위한 이온 감지 전계 효과 트랜지스터를 포함하는 신호 처리부를 포함하고, 상기 센싱부는 상기 신호 처리부로부터 분리가능한 것일 수 있고, 상기 연결은 센싱부의 전극과 트랜지스터의 상부 게이트 전극 사이에 이루어진 것일 수 있다.
다른 구체예에 있어서, 상기 센서는 상기 센싱부와 상기 신호 처리부를 연결하기 위한 연결부를 더 포함하는 것일 수 있다. 상기 연결부는 상기 센싱부가 상기 연결부로부터 분리 가능하도록 구성된 것일 수 있고, 예를 들면, 플러그의 형태를 가질 수 있다.
또 다른 구체예에 있어서, 상기 센서는 결과를 표시하기 위한 디스플레이부를 더 포함할 수 있다. 상기 디스플레이부는 결과를 표시하는 디스플레이 및 하나 이상의 조절 인터페이스(예를 들어, 전원 버튼, 또는 스크롤 휠 등)를 갖는 틀을 더 포함할 수 있다. 상기 틀은 센서를 수신하기 위한 슬롯을 포함할 수 있다. 틀의 내부에는 시료가 제공되었을 때 센서의 전극에 전위 또는 전류를 인가하기 위한 회로가 있을 수 있다. 상기 측정기에 사용될 수 있는 적절한 회로는 예를 들어 상기 전극을 가로지르는 상기 전위를 측정할 수 있는 이상적인 전압 측정기일 수 있다. 상기 전위가 측정될 때 열리거나 또는 전류의 측정을 위해 닫히는 스위치가 또한 제공될 수 있다. 상기 스위치는 기계적인 스위치(예를 들어, 릴레이) 또는 고상(solid-state) 스위치일 수 있다. 이러한 회로는 전위차 또는 전류차를 측정하는데 사용될 수 있다. 당업자에게 이해될 수 있는 것과 같이, 더 간단하고 더 복잡한 회로를 포함하는, 다른 회로들이 전위차 또는 전류 또는 양쪽 모두의 인가를 달성하는데 사용될 수 있다.
상기 센싱부는 기판; 상기 기판 상에 형성된 작업 전극 및 기준 전극; 상기 작업 전극 상에 고정화된 분석물 결합 물질; 및 상기 전극, 분석물 결합 물질 및 분석물을 수용하기 위한 테스트 셀을 포함하는 것일 수 있다. 상기 센싱부는 일회용으로 사용하도록 구성된 것일 수 있다. 예를 들면, 상기 기판은 실리콘, 유리, 금속, 플라스틱, 및 세라믹으로 구성되는 군으로부터 선택되는 물질일 수 있다. 구체적으로, 상기 기판은 실리콘, 유리, 폴리스티렌, 폴리메틸아크릴레이트, 폴리카르보네이트 및 세라믹으로 구성되는 군으로부터 선택될 수 있다. 상기 전극의 예는 타이타늄 나이트라이드, 은, 은에폭시, 팔라듐, 구리, 금, 백금, 은/염화은, 은/은이온, 또는 수은/산화수은일 수 있다. 또한, 상기 센싱부는 상기 기판 또는 상기 작업 전극 상에 형성된 절연 전극을 포함할 수 있다. 상기 절연 전극은 천연 또는 인공적으로 형성된 산화막을 포함하는 것일 수 있다. 상기 산화막의 예는 SixOy, HxfOy, AlxOy, TaxOy, 또는 TixOy (여기서, x 또는 y는 1 내지 5의 정수)를 포함할 수 있다. 상기 산화막을 형성하는 것은 알려진 방법에 의하여 이루어질 수 있다. 예를 들면, 산화물을 기판 상에 액상침적 (liquid phase deposition), 증발, 및 스퍼터링에 의하여 침적함으로써 이루어질 수 있다.
본 명세서에서 용어 "분석물 결합 물질(analyte binding materials)" 또는 분석물 결합 시약(analyte binding reagents)"은 호환적으로 사용되고, 센싱부에 기능화를 부여할 수 있는 물질 또는 분석물-특이적으로 결합하는 물질을 의미할 수 있다. 상기 분석물 결합 물질은 DNA, RNA, 뉴클레오티드, 뉴클레오시드, 단백질, 폴리펩티드, 펩티드, 아미노산, 탄수화물, 효소, 항체, 항원, 수용체, 바이러스, 기질, 리간드 또는 멤브레인, 또는 그의 조합을 포함할 수 있다. 예를 들면, 상기 분석물 결합 물질은 대장암 진단을 위한 마커인 CCSP(Colon Cancer Secreted Protein), 예를 들면, CCSP-2, 또는 CEA (carcinoembryonic antigen)에 특이적으로 결합할 수 있는 항체인 것일 수 있다. 따라서, 예를 들면, 상기 대장암 진단 센서는 대장암 진단 바이오마커, 예를 들면, CCSP 또는 CEA를 검출하기 위한 센서일 수 있다. 또한, 상기 분석물 결합 물질은 산화 환원 효소(redox enzyme)를 포함할 수 있다. 상기 산화 환원 효소는 기질을 산화 또는 환원시키는 효소를 의미할 수 있으며, 예를 들면, 옥시다아제, 퍼옥시다아제, 리덕타아제, 카탈라아제 또는 디히드로게나아제를 포함할 수 있다. 상기 산화 환원 효소의 예는 혈당 옥시다아제, 락테이트 옥시다아제, 콜레스테롤 옥시다아제, 글루타메이트 옥시다아제, HRP(horseradish peroxidase), 알코올 옥시다아제, 글루코오스 옥시다아제(glucose oxidase; GOx), 글루코오스 디히드로게나아제(glucose dehydrogenase; GDH), 콜레스테롤 에스테르게나아제, 아스코르브산 옥시다아제(ascorbic acid oxidase), 알코올 디히드로게나아제, 락카아제(laccase), 티로시나아제(tyrosinase), 갈락토오스 옥시다아제(galactose oxidase) 또는 빌리루빈 옥시다아제(bilirubin oxidase)를 포함할 수 있다. 상기 분석물 결합 물질은 기판, 작업 전극, 또는 절연 전극 상에 고정화된 것일 수 있으며, 용어 "고정화된(immobilized)"은 분석물 결합 물질과 기판 사이의 화학적 또는 물리적 결합을 의미할 수 있다. 또한, 상기 기판, 또는 전극 상에는 고정화 화합물이 고정화된 것일 수 있다. 상기 고정화 화합물은 분석물과 결합할 수 있는 물질을 의미하거나 분석물 결합 물질을 기판 또는 전극의 표면에 고정화하기 위한 링커를 의미할 수 있다. 상기 고정화 화합물은 비오틴, 아비딘, 스트렙트아비딘, 탄수화물, 폴리 L-리신, 수산화기, 티올기, 아민기, 알코올기, 카르복실기, 아미노기, 설퍼기, 알데히드기, 카르보닐기, 숙신이미드기, 말레이미드기, 에폭시기, 이소티오시아네이트기를 갖는 화합물 또는 그의 조합인 것일 수 있다.
본 명세서에서 용어 "분석물(analyte)"은 시료 중에 존재할 수 있는 대상 물질(material of interest)을 의미할 수 있다. 검출할 수 있는 분석물은 샌드위치, 경쟁 또는 치환 분석법 배치(configuration)에 참여할 수 있는 하나 이상의 분석물 결합 물질과의 특이적-결합 상호 작용에 관련될 수 있는 것들을 포함할 수 있다. 분석물의 예는 펩티드(예를 들어, 호르몬)와 같은 항원 또는 햅텐, 단백질(예를 들어, 효소), 탄수화물, 단백질, 약물, 농약, 미생물, 항체, 및 상보적인 서열과 서열 특이적 혼성화 반응에 참여할 수 있는 핵산을 포함할 수 있다. 상기 분석물의 보다 상세한 예는 대장암 진단을 위한 마커인 CCSP(Colon Cancer Secreted Protein), 예를 들면, CCSP-2, 또는 CEA (carcinoembryonic antigen)를 포함할 수 있다.
상기 시료는 개체, 예를 들면, 인간을 포함한 포유류 등으로부터 유래된 생물학적 시료일 수 있다. 또한, 상기 생물학적 시료는 혈액, 전혈, 혈청, 혈장, 림프액, 소변, 분변, 조직, 세포, 기관, 골수, 타액, 객담, 뇌척수액 또는 그들의 조합일 수 있다.
또한, 상기 대장암은 대장의 점막에서 발생하는 선종, 이 외에도 림프종, 육종, 또는 편평상피암을 포함할 수 있다.
상기 센싱부에 있어서, 상기 전극, 분석물 결합 물질 및 분석물을 수용하기 위한 테스트 셀을 통해 시료가 들어오게 되고, 시료 내 존재하는 분석물은 분석물 결합 물질과 결합하여 테스트 셀 내에 화학적 전위 기울기를 일으킨다. 용어 "화학적 전위 기울기(chemical potential gradient)"는 활성종의 농도 기울기를 의미할 수 있다. 그러한 기울기가 2개의 전극 사이에 존재할 때, 전위차는 회로가 열리면 검출될 수 있을 것이고, 상기 회로가 닫히는 경우 기울기가 없어질 때까지 전류는 흐를 것이다. 화학적 전위 기울기는 상기 전극 사이의 전위차 또는 전류 흐름의 인가로부터 생겨나는 어떠한 전위 기울기를 의미할 수 있다. 상기 테스트 셀은 폴리디메틸실록산(polydimethylsiloxane, PDMS), 폴리에테르설폰(polyethersulfone, PES), 폴리(3,4-에틸렌디옥시티오펜)(poly(3,4-ethylenedioxythiophene)), 폴리(스티렌설포네이트)(poly(styrenesulfonate)), 폴리이미드(polyimide), 폴리우레탄(polyurethane), 폴리에스테르(polyester), 퍼플루오로폴리에테르(Perfluoropolyether, PFPE), 폴리카보네이트(polycarbonate), 또는 상기 고분자의 조합으로부터 제조된 것일 수 있다.
상기 이온 감지 전계효과 트랜지스터는 하부 게이트 전극; 상기 하부 게이트 전극 상에 형성된 하부 절연막; 상기 하부 절연막 상에 형성되고 서로 이격되어 있는 소스 및 드레인; 상기 하부 절연막 상에 형성되고 상기 소스와 상기 드레인 사이에 배치된 채널층; 상기 소스, 상기 드레인, 및 상기 채널층 상에 형성된 상부 절연막, 및 상기 상부 절연막 상에 형성된 상부 게이트 전극을 포함하는 것일 수 있다.
상기 센싱부에서 발생하는 작은 표면 전위전압 차이는, 채널층을 포함하는 이중 게이트 이온 감지 전계 효과 트랜지스터(ISFET)에서 발생하는 초정전결합으로 인해, 하부 전계 트랜지스터의 문턱전압변화를 크게 증폭시킨다. 여기서 증폭인자는 하부 절연막의 두께, 채널층의 두께, 상부 게이트의 절연막 두께에 의해 결정될 수 있다. 하부 절연막의 두께가 두꺼울수록, 상부 절연막 및 채널층의 두께가 얇을수록 증폭인자의 크기는 커질 수 있다.
채널층은 초박막층일 수 있고, 예를 들면, 두께가 10 nm 이하, 9 nm 이하, 8 nm 이하, 7 nm 이하, 6 nm 이하, 5 nm 이하, 또는 4 nm 이하일 수 있다.
상기 채널층의 두께의 범위 내에서, 초박막체에 유기되는 하부 게이트 전극의 강한 전기장으로 인해, 상부 계면까지 모든 조건에서 제어할 수 있는 초정전결합이 발생한다. 이를 통해, 상부 게이트 계면에 유기되는 전자 및 정공 또한 제어하고, 누설 전류를 차단할 수 있다. 또한, 안정된 증폭인자를 허용하여, 표면 전위에 따른 선형적 반응, 히스테리시스, 및 드리프트 현상을 개선시키고, 상하부 게이트의 정전 결합을 지속시킬 수 있다. 또한, 상기 채널층의 두께의 범위 내에서, 초박막 채널층을 포함하는 트랜지스터는 기존 트랜지스터에 비하여 큰 증폭인자를 허용하면서, 이온 감지력도 증대될 수 있다. 또한, 상기 채널층의 두께의 범위 내에서 초박막 채널층을 포함하는 트랜지스터는 기존 트랜지스터에 비하여 안정성도 향상시킬 수 있다. 두꺼운 채널층에서 보여지는 변화하는 증폭인자는, 상부 계면에 유기되는 누설전류 요소와 결합하여, 이온 데미지로 인한 소자의 열화 현상을 일으킬 수 있다. 반면에 일정한 증폭인자를 허용하면서 누설 전류가 제어되는 일 구체예에 따른 트랜지스터는 이온 데미지 효과를 최소화할 수 있다. 또한, 기존 트랜지스터에서 하부 절연막이 과다하게 두꺼워질 경우, 하부 전장이 채널 영역을 모두 제어하지 못하는 현상이 일어나면서, 상하부 게이트의 정전 결합이 약해지게 되는데, 일 구체예에 따른 초박막 채널층을 포함하는 트랜지스터는 정전 결합을 유지하면서 큰 증폭인자를 얻을 수 있다. 상하부 게이트의 정전 결합 현상은 상부 채널 계면이 완전 공핍이될 경우에 발생하게 되는데, 기존 트랜지스터에서는 하부 게이트의 전장이 상부 채널을 제어하지 못하기 때문에 증폭현상이 발생하지 않는다.
상기 채널층은 산화물 반도체, 유기물 반도체, 다결정 실리콘, 및 단결정 실리콘으로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다. 채널층이 반도체, 유기물 반도체, 다결정 실리콘, 및 단결정 실리콘으로 이루어진 군으로부터 선택된 어느 하나를 포함하는 경우, 상하부 게이트 정전 결합이 발생하고 고감도 센서의 제작이 가능하며, 투명하고, 유연한 센서를 제공할 수 있다. 상기 채널층은 넓이 또는 길이에 제한받지 않으며, 이중 게이트 구조에서 상하부 게이트 전극을 사용하여 정전결합 현상을 활용할 수 있다.
또한, 상기 센서에 있어서, 상기 상부 절연막의 등가 산화막 두께(Equivalent oxide thickness)는 상기 하부 절연막의 등가 산화막 두께보다 얇은 것일 수 있다. 예를 들면, 상부 절연막의 두께는 약 25 nm 이하일 수 있고, 하부 절연막의 두께는 약 50 nm 이상일 수 있다. 상기 상부 절연막의 등가 산화막 두께가 상기 하부 절연막의 등가 산화막 두께보다 얇은 경우, 신호의 감도 증폭 현상을 유발할 수 있다.
상기 상부 절연막, 하부 절연막은 천연 또는 인공적으로 형성된 산화막을 포함하는 것일 수 있다. 상기 산화막의 예는 SixOy, HxfOy, AlxOy, TaxOy, 또는 TixOy (여기서, x 또는 y는 1 내지 5의 정수)를 포함할 수 있다. 상기 산화막은 단일, 이중, 또는 삼중 적층 구조를 가질 수 있다. 이를 통해, 물리적 두께를 증가시키고, 상부 절연막의 등가 산화막 두께는 감소시킴으로써, 센서의 감도를 증폭시키고, 누설 전류에 의한 열화 현상을 방지할 수 있다.
일 구체예에 따른 이중 게이트 이온 감지 전계 효과 트랜지스터는, 한 소자 내에 상부 절연막을 포함하는 전계 트랜지스터와 하부 절연막을 포함하는 하부 전계 트랜지스터를 동시에 포함하는 구조일 수 있다. 각각의 동작 모드에 따라서, 상부와 하부의 게이트로 독립적으로 동작할 수 있다. 소자의 상하부의 게이트를 동시에 사용하였을 때, 이중 게이트의 구조의 구조적 특수성으로 인하여 정전 결합 현상이 관찰되면서, 상하부 전계 트랜지스터의 상호연관성이 수립될 수 있다. 이중 동작 모드는 하부 게이트를 주 게이트로 사용하는 것일 수 있다. 따라서, 일 구체예에 따른 트랜지스터는 이중 게이트 모드로 동작하는 것일 수 있다.
다른 구체예에 있어서, 상기 센싱부는 시료 내 분석물에 의해 상기 분석물 결합 물질과 결합되고, 음전하 또는 양전하를 갖는 프로브를 더 포함하는 것일 수 있다. 상기 프로브와 상기 트랜지스터의 채널층의 전자의 정전 결합(capacitive coupling)에 의해 분석물의 신호가 증폭되는 것일 수 있다.
상기 프로브는 금속 나노 입자를 포함하는 것일 수 있다. 상기 금속 나노 입자는 예를 들면, 금 나노 입자일 수 있으며, 전하를 추가적으로 공급하는 효과가 있다. 또한, 상기 프로브는 양자점을 포함할 수 있다. 양자점을 이용하였을 때 금 나노 입자와 같이 전하를 추가적으로 공급하는 역할을 수행하면서, 바이오 이미징 역할도 동시에 수행할 수 있다. 또한, 상기 프로브는 페리틴(ferritin)을 포함할 수 있다. 페리틴과 금속 나노입자의 결합 구조를 통하여 단일 금속 나노 입자를 사용하였을 때에 비하여, 더 많은 전하를 추가적으로 공급 받아 더 큰 신호를 얻을 수 있다.
다른 구체예에 있어서, 상기 센서는 복수의 분석물을 검출하기 위해 복수의 센싱부, 및 복수의 트랜지스터를 포함하는 것일 수 있다.
상기 센서는 복수의 상기 센싱부, 및 복수의 상기 이온 감지 전계 효과 트랜지스터를 포함하고, 상기 복수의 센싱부와 복수의 이온 감지 전계 효과 트랜지스터는 각각 전기적으로 연결된 것일 수 있다. 상기 복수의 트랜지스터 내의 복수의 소스는 공통으로 접지되어 있고, 복수의 상부 게이트 전극은 공통으로 접지되어 있고, 및 복수의 하부 게이트 전극은 공통 전압이 인가되는 것일 수 있다. 예를 들면, 제1 트랜지스터와 제2 트랜지스터의 소스, 및 제1 센싱부와 제2 센싱부의 기준 전극은 공통으로 접지된 것일 수 있다. 예를 들면, 제1 트랜지스터와 제2 트랜지스터의 하부 전극에는 일정한 공통 전압이 인가되는 것일 수 있다. 또한, 상기 복수의 트랜지스터의 내의 복수의 드레인은 병렬 구조일 수 있다. 예를 들면, 제1 트랜지스터와 제2 트랜지스터의 드레인은 병렬 구조일 수 있다. 또한, 상기 복수의 센싱부는 독립적으로 상이한 분석물 결합 물질이 고정화된 것일 수 있다. 예를 들면, 상기 제1 센싱부에는 PSA에 대한 항체가 고정화된 것일 수 있고, 제2 센싱부에는 PSMA에 대한 항체가 고정화된 것일 수 있다. 상기 복수의 트랜지스터는 상기 복수의 센싱부로부터 동일한 또는 상이한 분석물 신호를 감지하고, 이를 증폭하여 반도체 파라미터 분석기(semiconductor parameter analyzer)를 통해 신호를 출력할 수 있다.
다른 구체예에 있어서, 상기 신호 처리부는 상기 트랜지스터와 전기적으로 연결되고, 상기 트랜지스터로부터 측정된 전위차로부터 시료 내 분석물의 양을 결정하기 위한 연산 모듈을 더 포함하는 것일 수 있다. 상기 연산 모듈은 분석물의 결정을 위한 것일 수 있다. 본 명세서에서 용어 "분석물의 결정(determination of an analyte)"은 시료를 평가하기 위한 정성적, 반-정량적 및 정량적 과정을 의미할 수 있다. 정성적 평가에서, 결과는 시료 중에 분석물이 검출되는지 여부를 나타낸다. 반-정량적 평가에서, 결과는 분석물이 미리 정의된 어떤 경계값 이상 존재하는지 여부를 나타낸다. 정량적 평가에서, 결과는 존재하는 분석물의 양의 수치적 표시이다. 또한 측정된 수치의 변환은 전류 또는 전위의 특이적 수치를 특이적 장치 구조 및 분석물에 대한 보정 수치에 의존한 분석물의 수치로 변환시키는 룩업 테이블(look-up table)을 사용할 수 있다. 상기 연산 모듈은 분석물의 알려진 농도에 따른 전위차를 측정함으로써 결정될 수 있다. 예를 들면, 상기 연산 모듈은 정상 대조군 대비 시료 내 대장암 바이오마커의 양을 결정하는 것일 수 있다.
또 다른 구체예에 있어서, 상기 센서는 통신수단이 구비되어 있어 외부의 서버 또는 단말부와 정보의 송수신이 가능하도록 구성될 수 있다. 상기한 통신수단은 유선 또는 무선의 통신수단을 채용할 수 있다. 따라서 케이블 연결수단을 이용한 유선 통신을 이용할 수 있으며, Bluetooth 모듈 또는 Zigbee 모듈 뿐만 아니라 4G, LTE, UWB, WiFi, WCDMA, USN, IrDA 모듈 등을 포함하는 무선의 통신 수단을 이용할 수 있다.
상기 단말부는 컴퓨터, 노트북, 스마트폰, 일반 휴대폰, PDA, 별도의 통신기능을 가지는 계측기 또는 제어 기기 등의 통신기를 포함할 수 있다. 상기 단말부는 중앙처리장치가 구비되어 있고 컴퓨터 프로그램, 애플리케이션 프로그램 등과 같은 소프트웨어를 구동할 수 있는 OS(operationg system) 기반이 되어있는 것일 수 있다. 따라서 상기 단말부는 상기 센서에서 제공하는 시료 내 분석물 측정데이터를 해석, 분석, 가공할 수 있는 응용프로그램이 탑재되어 있어 시료 내 분석물 측정데이터를 해석, 분석, 가공하는 기능을 수행하게 될 수 있다. 또한 상기 단말부는 상기한 시료 내 분석물 측정데이터 또는 시료 내 분석물 측정데이터를 해석, 분석, 가공한 데이터를 디스플레이하는 기능을 수행할 수 있다. 또한 상기 단말부는 센서 의 제어부와 연결 또는 연동되어 있어서, 이 단말부에서 상기 센서를 운전, 제어하는 기능을 수행할 수 있다.
일 양상에 따른 센서에 의하면 혈액 또는 변 등의 시료로부터의 대장암 바이오마커의 초정밀/저농도 검지가 가능하여 극소량의 샘플만으로도 대장암을 조기 진단할 수 있는 효과가 있다.
도 1은 일 구체예에 따른 센서의 모식도를 나타낸 도면이다.
도 2는 일 구체예에 따른 센서의 센싱부를 도식화하여 나타낸 도면이다.
도 3은 일 구체예에 따른 센서의 프로브에 의한 신호 증폭에 관한 것을 도식화 하여 나타낸 도면이다.
도 4는 일 구체예에 따른 센서의 안정성에 대한 결과를 나타낸 것이다.
도 5는 일 구체예에 따른 센서를 사용한 실제 대장암 환자의 혈청에서 CCSP2를 검출한 결과이다.
도 6은 실제 측정된 환자의 혈청 샘플 과 PDX 모델 및 대조군(control group)에 대한 결과를 나타낸 그래프이다.
본 실시예들에서 사용되는 용어는 본 실시예들에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 기술분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 임의로 선정된 용어도 있으며, 이 경우 해당 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서, 본 실시예들에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 실시예들의 전반에 걸친 내용을 토대로 정의되어야 한다.
실시예들에 대한 설명들에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 구성요소를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 실시예들에 기재된 "...부", "...모듈"의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 실시예들에서 사용되는 "구성된다" 또는 "포함된다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 도는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
하기 실시예들에 대한 설명은 권리범위를 제한하는 것으로 해석되지 말아야 하며, 해당 기술분야의 당업자가 용이하게 유추할 수 있는 것은 실시예들의 권리범위에 속하는 것으로 해석되어야 할 것이다. 이하 첨부된 도면들을 참조하면서 오로지 예시를 위한 실시예들을 상세히 설명하기로 한다.
도 1은 일 구체예에 따른 센서의 모식도를 나타낸 도면이다. 도 1을 참조하여 설명하면, 일 구체예에 따른 센서(100)는 시료 내의 분석물을 검출하기 위한 센싱부(110), 및 상기 센싱부(110)와 전기적으로 연결된 이온 감지 전계 효과 트랜지스터(130)를 포함할 수 있다. 일 구체예에 있어서, 상기 센서(100)는 시료 내의 분석물을 검출하기 위한 전기화학적 센싱부(110), 및 상기 센싱부(110)와 전기적으로 연결되고, 상기 센싱부(110)로부터 발생된 신호를 증폭하기 위한 이온 감지 전계 효과 트랜지스터(130)를 포함하는 신호 처리부(130)를 포함하고, 상기 센싱부(110)는 상기 신호 처리부(130)로터 분리가능한 것일 수 있고, 상기 연결은 센싱부(110)의 전극과 트랜지스터(130)의 상부 게이트 전극 사이에 이루어진 것일 수 있다. 다른 구체예에 있어서, 상기 센서(100)는 상기 센싱부(110)와 상기 신호 처리부(130)를 연결하기 위한 연결부(120)를 더 포함하는 것일 수 있다. 상기 연결부(120)는 상기 센싱부(120)가 상기 연결부로터 분리 가능하도록 구성된 것일 수 있고, 예를 들면, 플러그의 형태를 가질 수 있다. 또 다른 구체예에 있어서, 상기 센서(100)는 결과를 표시하기 위한 디스플레이부를 더 포함할 수 있다. 상기 디스플레이부는 결과를 표시하는 디스플레이 및 하나 이상의 조절 인터페이스(예를 들어, 전원 버튼, 또는 스크롤 휠 등)를 갖는 틀을 더 포함할 수 있다. 상기 틀은 센서를 수신하기 위한 슬롯을 포함할 수 있다. 틀의 내부에는 시료가 제공되었을 때 센서의 전극에 전위 또는 전류를 인가하기 위한 회로가 있을 수 있다. 상기 측정기에 사용될 수 있는 적절한 회로는 예를 들어 상기 전극을 가로지르는 상기 전위를 측정할 수 있는 이상적인 전압 측정기일 수 있다. 상기 전위가 측정될 때 열리거나 또는 전류의 측정을 위해 닫히는 스위치가 또한 제공된다.
상기 이온 감지 전계효과 트랜지스터(130)는 하부 게이트 전극(131); 상기 하부 게이트 전극(131) 상에 형성된 하부 절연막(132); 상기 하부 절연막(132) 상에 형성되고 서로 이격되어 있는 소스(134) 및 드레인(133); 상기 하부 절연막(132) 상에 형성되고 상기 소스(134)와 상기 드레인(133) 사이에 배치된 채널층(135); 상기 소스(134), 상기 드레인(133), 및 상기 채널층(135) 상에 형성된 상부 절연막(136), 및 상기 상부 절연막(136) 상에 형성된 상부 게이트 전극(137)을 포함하는 것일 수 있다. 상기 센싱부에서 발생하는 작은 표면 전위전압 차이는, 채널층(135)을 포함하는 이중 게이트 이온 감지 전계 효과 트랜지스터(ISFET)(130)에서 발생하는 초정전결합으로 인해, 하부 전계 트랜지스터의 문턱전압변화를 크게 증폭시킨다. 여기서 증폭인자는 하부 절연막(132)의 두께, 채널층(135)의 두께, 상부 게이트의 절연막(136) 두께에 의해 결정될 수 있다. 하부 절연막(132)의 두께가 두꺼울수록, 상부 절연막(136) 및 채널층(135)의 두께가 얇을수록 증폭인자의 크기는 커질 수 있다. 채널층(135)은 초박막층일 수 있고, 예를 들면, 두께가 10 nm 이하, 9 nm 이하, 8 nm 이하, 7 nm 이하, 6 nm 이하, 5 nm 이하, 또는 4 nm 이하일 수 있다. 상기 채널층(135)은 산화물 반도체, 유기물 반도체, 다결정 실리콘, 및 단결정 실리콘으로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다. 또한, 상기 센서에 있어서, 상기 상부 절연막(136)의 등가 산화막 두께(Equivalent oxide thickness)는 상기 하부 절연막(132)의 등가 산화막 두께보다 얇은 것일 수 있다. 예를 들면, 상부 절연막(136)의 두께는 약 25 nm 이하일 수 있고, 하부 절연막(132)의 두께는 약 50 nm 이상일 수 있다. 상기 상부 절연막(136)의 등가 산화막 두께가 상기 하부 절연막(132)의 등가 산화막 두께보다 얇은 경우, 신호의 감도 증폭 현상을 유발할 수 있다. 일 구체예에 따른 이중 게이트 이온 감지 전계 효과 트랜지스터(130)는, 한 소자 내에 상부 절연막(136)을 포함하는 전계 트랜지스터와 하부 절연막(132)을 포함하는 하부 전계 트랜지스터를 동시에 포함하는 구조일 수 있다. 각각의 동작 모드에 따라서, 상부와 하부의 게이트로 독립적으로 동작할 수 있다. 소자의 상하부의 게이트를 동시에 사용하였을 때, 이중 게이트의 구조의 구조적 특수성으로 인하여 정전 결합 현상이 관찰되면서, 상하부 전계 트랜지스터의 상호연관성이 수립될 수 있다. 이중 동작 모드는 하부 게이트를 주 게이트로 사용하는 것일 수 있다. 따라서, 일 구체예에 따른 트랜지스터는 이중 게이트 모드로 동작하는 것일 수 있다.
다른 구체예에 있어서, 상기 센서는 복수의 분석물을 검출하기 위해 복수의 센싱부(110), 및 복수의 트랜지스터(130)를 포함하는 것일 수 있다. 상기 센서는 복수의 상기 센싱부(110), 및 복수의 상기 이온 감지 전계 효과 트랜지스터(130)를 포함하고, 상기 복수의 센싱부(110)와 복수의 이온 감지 전계 효과 트랜지스터(130)는 각각 전기적으로 연결된 것일 수 있다. 상기 복수의 트랜지스터(130) 내의 복수의 소스는 공통으로 접지되어 있고, 복수의 상부 게이트 전극은 공통으로 접지되어 있고, 및 복수의 하부 게이트 전극은 공통 전압이 인가되는 것일 수 있다. 또한, 상기 복수의 트랜지스터(130)의 내의 복수의 드레인은 병렬 구조일 수 있다. 또한, 상기 복수의 센싱부(110)는 독립적으로 상이한 분석물 결합 물질이 고정화된 것일 수 있다. 상기 복수의 트랜지스터(130)는 상기 복수의 센싱부(110)로부터 동일한 또는 상이한 분석물 신호를 감지하고, 이를 증폭하여 반도체 파라미터 분석기(semiconductor parameter analyzer)를 통해 신호를 출력할 수 있다.
다른 구체예에 있어서, 상기 신호 처리부는 상기 트랜지스터(130)와 전기적으로 연결되고, 상기 트랜지스터(130)로부터 측정된 전위차로부터 시료 내 분석물의 양을 결정하기 위한 연산 모듈(미도시)을 더 포함하는 것일 수 있다. 상기 연산 모듈은 분석물의 결정을 위한 것일 수 있다. 상기 연산 모듈은 분석물의 알려진 농도에 따른 전위차를 측정함으로써 결정될 수 있다. 예를 들면, 상기 연산 모듈은 정상 대조군 대비 시료 내 대장암 마커의 양을 결정하는 것일 수 있다. 또 다른 구체예에 있어서, 상기 센서(100)는 통신수단(미도시)이 구비되어 있어 외부의 서버 또는 단말부와 정보의 송수신이 가능하도록 구성될 수 있다. 상기한 통신수단은 유선 또는 무선의 통신수단을 채용할 수 있다.
도 2는 일 구체예에 따른 센서의 센싱부를 도식화하여 나타낸 도면이다. 도 2를 참조하여 센싱부를 설명하면, 상기 센싱부(110)는 기판(111); 상기 기판 상에 형성된 작업 전극(112) 및 기준 전극(115); 상기 작업 전극(112) 상에 고정화된 분석물 결합 물질; 및 상기 전극(112, 115), 분석물 결합 물질 및 분석물을 수용하기 위한 테스트 셀(114)을 포함하는 것일 수 있다. 상기 센싱부(110)는 일회용으로 사용하도록 구성된 것일 수 있다. 예를 들면, 상기 기판은 실리콘, 유리, 금속, 플라스틱, 및 세라믹으로 구성되는 군으로부터 선택되는 물질일 수 있다. 상기 전극(112, 115)의 예는 은, 은에폭시, 팔라듐, 구리, 금, 백금, 은/염화은, 은/은이온, 또는 수은/산화수은일 수 있다. 또한, 상기 센싱부(110)는 상기 기판(111) 또는 상기 작업 전극(112) 상에 형성된 절연 전극(113)을 포함할 수 있다. 상기 절연 전극(113)은 천연 또는 인공적으로 형성된 산화막을 포함하는 것일 수 있다. 상기 산화막의 예는 SixOy, HxfOy, AlxOy, TaxOy, 또는 TixOy (여기서, x 또는 y는 1 내지 5의 정수)를 포함할 수 있다. 상기 산화막을 형성하는 것은 알려진 방법에 의하여 이루어질 수 있다. 예를 들면, 산화물을 기판 상에 액상침적 (liquid phase deposition), 증발, 및 스퍼터링에 의하여 침적함으로써 이루어질 수 있다. 상기 분석물 결합 물질은 DNA, RNA, 뉴클레오티드, 뉴클레오시드, 단백질, 폴리펩티드, 펩티드, 아미노산, 탄수화물, 효소, 항체, 항원, 수용체, 바이러스, 기질, 리간드 또는 멤브레인, 또는 그의 조합을 포함할 수 있다. 예를 들면, 상기 분석물 결합 물질은 대장암 진단을 위한 마커인 CCSP(Colon Cancer Secreted Protein), 예를 들면, CCSP-2, 또는 CEA (carcinoembryonic antigen)에 특이적으로 결합할 수 있는 항체인 것일 수 있다. 분석물의 예는 펩티드(예를 들어, 호르몬)와 같은 항원 또는 햅텐, 단백질(예를 들어, 효소), 탄수화물, 단백질, 약물, 농약, 미생물, 항체, 및 상보적인 서열과 서열 특이적 혼성화 반응에 참여할 수 있는 핵산을 포함할 수 있다. 상기 분석물의 보다 상세한 예는 대장암 진단을 위한 마커인 CCSP(Colon Cancer Secreted Protein), 예를 들면, CCSP-2, 또는 CEA (carcinoembryonic antigen)를 포함할 수 있다. 상기 센싱부(110)에 있어서, 상기 전극, 분석물 결합 물질 및 분석물을 수용하기 위한 테스트 셀(114)을 통해 시료가 들어오게 되고, 시료 내 존재하는 분석물은 분석물 결합 물질과 결합하여 테스트 셀(114) 내에 화학적 전위 기울기를 일으킨다.
도 3은 일 구체예에 따른 프로브를 사용한 센서를 도식화하여 나타낸 도면이다. 도 3을 참조하여 설명하면, 상기 센싱부는 시료 내 분석물(20)에 의해 상기 분석물 결합 물질(10)과 결합되고, 음전하 또는 양전하를 갖는 프로브(30)를 더 포함하는 것일 수 있다. 상기 프로브(30)에 의해 charge collection이 일어나고(①), 이후에 상기 프로브(30)와 상기 트랜지스터의 채널층(135)의 전자의 정전 결합(capacitive coupling)이 일어나(②) 분석물의 신호가 증폭되는 것일 수 있다.
실시예. 센서의 제작 및 특성 분석
(1) 전계 효과 대장암 진단 센서의 제작
(1.1) 이중 게이트 이온 감지 전계 효과 트랜지스터의 제작
기판은 약 10 내지 20 Ωcm의 비저항을 갖는 SOI(silicon-on-insulator)로 제작하고, 하부 게이트 전극인 실리콘의 두께는 약 107 nm로, 하부 절연막인 매몰된 SiO2 산화막의 두께는 약 224nm로 제조하였다. 표준 RCA cleaning을 수행한 후, 초박막 형성을 위하여 약 2.38 중량%의 테트라메틸암모늄 히드록옥시드(TMAH) 용액으로 상부 실리콘을 식각하고, 포토리소그래프를 이용하여 채널영역을 형성하였다. 형성된 채널의 길이와 폭은 각각 약 20 um, 및 20um 이었고, 두께는 약 4.3 nm이었다. 이어서, sputtering system을 사용하여 타이타늄 나이트라이드 (TiN) 전극을 형성하였다. 이후, 소스와 드레인 상에 약 23 nm 두께의 실리콘 다이옥시드를 산화를 통해 상부 절연막을 형성시켰다. 상부 게이트 전극은 약 150 nm 두께의 TiN 박막층을 sputtering system을 사용하여 증착 시켰다. 다음으로, 결함을 없애고 그들 사이의 계면 상태를 향상시키기 위해 약 450 ℃의 온도에서 N2, 및 H2를 포함하는 가스 조건에서 열처리를 수행하여 이중 게이트 이온 감지 전계 효과 트랜지스터를 제조하였다.
(1.2) 전기화학적 센싱부의 제작
전기화학적 센싱부를 제작하기 위하여 기판은 약 300 nm의 glass를 사용하였다. 표준 RCA cleaning을 실시한 후, E-beam evaporator를 사용하여 기판 표면에 전기적 전위차를 측정하기 위한 작업 전극 ITO 를 약 100 nm 두께로 증착하였다. 다음에, 절연 전극으로, 산화막인 SnO2 막을 RF 스퍼터를 사용하여 상기 ITO 층 위에 약 45 nm 두께로 증착하였다. 이 때 RF power는 약 50 W이었다. 이후에, 약 20 sccm의 유동 속도(flow rate)를 갖는 Ar 가스 조건 및 약 3 mtorr 압력 조건에서 스퍼터링 공정을 수행하였다. 이어서, 시료를 수용하기 위한 테스트 셀을 폴리디메틸실록세인(PDMS)로 제작하고 상기 절연 전극 상에 부착하여 센싱부를 제작하였다. 아울러, 기준 전극으로는 은/염화은 전극을 사용하였다.
(1.3) 센서의 제작
상기 (1.1)에서 제작한 트랜지스터의 상부 게이트 전극과 상기 (1.2)에서 제작한 센싱부의 작업 전극을 플러그인의 형태로 연결하여 센서를 제작하였다.
(2) 센서의 특성 분석
(2.1) 센서의 안정성 평가
상기 (1.3)에서 제작한 센서의 안정성을 평가하기 위하여 pH4, pH7, 그리고, pH10 용액을 번갈아 가며 사용하여 측정하였다. 또한, pH7에서 10시간 동안 신호를 측정하여 안정성을 평가 하였다.
최초에 pH7 용액을 10 분 반응시킨 뒤, 이를 제거하고 바로 pH 10 용액을 주입하여 다시 10분 반응시키고, 이후 pH 10 용액 제거 후 다시 pH7 샘플을 주입, 10분을 반응시키고, 이후 pH4를 주입, 10분간 반응시키는 방법을 반복적으로 수행하여 센서의 신호가 얼마나 변하는지를 분석하였고, 그 결과를 도 4에 나타내었다.
도 4는 일 구체예에 따른 센서의 안정성 평가 결과를 나타낸 그래프이다.
도 4에 나타낸 바와 같이, 일 구체예에 따른 센서는 상이한 용액을 번갈아 주입하여도 기준 전압이 용액에 따라 일정하게 측정됨을 알 수 있고, 따라서 일 구체예에 따른 센서는 전기적 신호를 안정하게 측정할 수 있음을 알 수 있다.
(2.2) 대장암 마커인 CCSP2의 검출
대장암 마커인 CCSP2를 검출하기 위하여 혈액 및 변에서 안정적으로 동작 할 수 있도록 Box (Buried oxide) 및 Top Si의 두께를 조절하여 민감도를 증대 시키고, 센서의 보호를 위해서 분리된 교체형 감지부 (Disposable Sensing membrane)을 대장암 특이적 항체처리를 하여, 대장암 마커를 검출하였고, 그 결과를 도 5, 6 및 하기 표 1에 나타내었다.
sample 정상 PDX1 1번 2번 3번 4번
ΔV -0.1536 0.35356 0.10172 -0.04471 0.16138 -0.3362
Concentration(fg/ml) 0.137 fg/ml 1.36 fg/ml 0.318 fg/ml 0.137 fg/ml 0.450 fg/ml 0.0253 fg/ml
sample 5번 6번 7번 8번 9번 10번
ΔV 0.4241 0.38574 0.14369 0.00409 -0.25617 -4.26E-01
Concentration(fg/ml) 2.05 fg/ml 1.64 fg/ml 0.406 fg/ml 0.181 fg/ml 0.0402 fg/ml 0.0151 fg/ml
도 5, 6은 실제 측정된 환자의 혈청 샘플 및 대조군(control group)에 대한 결과를 나타낸다.
도 5, 6 및 표 1에 나타낸 바와 같이, Positive control에서 가장 높은 전압의 변화를 확인하였으며, 환자의 혈청에서 정상인보다 높은 양의 전압 변화가 있었음을 확인하였다. 또한 이를 Standard data와 비교하여 환자의 혈청에서 CCSP-2가 검출되었음을 정량적으로 계산하였다.
상기의 결과로 기존 ELISA 방식으로는 검출되지 않는 CCSP-2에 대해 일 구체예에 따른 센서를 사용하여 검출하였으며, 이는 일 구체예에 따른 진단 센서의 우수성을 나타내는 것이다.

Claims (15)

  1. 시료 내의 분석물을 검출하기 위한 전기화학적 센싱부, 및 상기 센싱부와 전기적으로 연결되고, 상기 센싱부로부터 발생된 신호를 증폭하기 위한 이온 감지 전계 효과 트랜지스터를 포함하는 신호 처리부를 포함하고,
    상기 센싱부는 상기 신호 처리부로터 분리가능하고,
    상기 이온 감지 전계효과 트랜지스터는 하부 게이트 전극; 상기 하부 게이트 전극 상에 형성된 하부 절연막; 상기 하부 절연막 상에 형성되고 서로 이격되어 있는 소스 및 드레인; 상기 하부 절연막 상에 형성되고 상기 소스와 상기 드레인 사이에 배치된 채널층; 상기 소스, 상기 드레인, 및 상기 채널층 상에 형성된 상부 절연막, 및 상기 상부 절연막 상에 형성된 상부 게이트 전극을 포함하고, 및
    상기 연결은 센싱부의 전극과 상기 트랜지스터의 상부 게이트 전극 사이에 이루어진 것인 대장암 진단 센서.
  2. 청구항 1에 있어서, 상기 센서는 센싱부와 신호 처리부를 연결하기 위한 연결부를 더 포함하는 것인 대장암 진단 센서.
  3. 청구항 1에 있어서, 상기 센서는 결과를 표시하기 위한 디스플레이부를 더 포함하는 것인 대장암 진단 센서.
  4. 청구항 1에 있어서, 상기 센싱부는,
    기판;
    상기 기판 상에 형성된 작업 전극 및 기준 전극;
    상기 작업 전극 상에 고정화된 분석물 결합 물질; 및
    상기 전극, 분석물 결합 물질 및 분석물을 수용하기 위한 테스트 셀을 포함하는 것인 대장암 진단 센서.
  5. 청구항 4에 있어서, 상기 센싱부는 시료 내 분석물에 의해 상기 분석물 결합 물질과 결합되고, 음전하 또는 양전하를 갖는 프로브를 더 포함하고, 상기 프로브와 상기 트랜지스터의 채널층의 전자의 정전 결합(capacitive coupling)에 의해 분석물의 신호가 증폭되는 것인 대장암 진단 센서.
  6. 청구항 4에 있어서, 상기 분석물 결합 물질은 DNA, RNA, 뉴클레오티드, 뉴클레오시드, 단백질, 폴리펩티드, 펩티드, 아미노산, 탄수화물, 효소, 항체, 항원, 수용체, 바이러스, 기질, 리간드 또는 멤브레인, 및 그의 조합인 것인 대장암 진단 센서.
  7. 청구항 4에 있어서, 상기 분석물 결합 물질은 대장암 진단을 위한 마커인 CCSP (Colon Cancer Secreted Protein), 또는 CEA (carcinoembryonic antigen)에 특이적으로 결합할 수 있는 항체인 것인 대장암 진단 센서.
  8. 청구항 5에 있어서, 상기 프로브는 금속 나노 입자를 포함하는 것인 대장암 진단 센서.
  9. 청구항 1에 있어서, 상기 상부 절연막의 등가 산화막 두께는 상기 하부 절연막의 등가 산화막 두께보다 얇은 것인 대장암 진단 센서.
  10. 청구항 1에 있어서, 상기 채널층의 두께는 10 nm 이하인 것인 대장암 진단 센서.
  11. 청구항 1에 있어서, 상기 채널층은 산화물 반도체, 유기물 반도체, 다결정 실리콘, 및 단결정 실리콘으로 이루어진 군으로부터 선택된 어느 하나를 포함하는 것인 대장암 진단 센서.
  12. 청구항 1에 있어서, 복수의 상기 센싱부, 및 복수의 상기 이온 감지 전계 효과 트랜지스터를 포함하고, 상기 복수의 센싱부와 복수의 이온 감지 전계 효과 트랜지스터는 각각 전기적으로 연결된 것인 대장암 진단 센서.
  13. 청구항 12에 있어서, 상기 복수의 트랜지스터 내의 복수의 소스는 공통으로 접지되어 있고, 복수의 상부 게이트 전극은 공통으로 접지되어 있고, 및 복수의 하부 게이트 전극은 공통 전압이 인가되는 것인 대장암 진단 센서.
  14. 청구항 12에 있어서, 상기 복수의 센싱부는 독립적으로 상이한 분석물 결합 물질이 고정화된 것인 대장암 진단 센서.
  15. 청구항 1에 있어서, 상기 신호 처리부는 상기 트랜지스터와 전기적으로 연결되고, 상기 트랜지스터로부터 측정된 전위차로부터 시료 내 분석물의 양을 결정하기 위한 연산 모듈을 더 포함하는 것인 대장암 진단 센서.
PCT/KR2017/007835 2016-07-20 2017-07-20 전계효과 대장암 센서 WO2018016896A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/314,253 US20190204321A1 (en) 2016-07-20 2017-07-20 Field effect sensor for colon cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160091997A KR101906447B1 (ko) 2016-07-20 2016-07-20 전계효과 대장암 센서
KR10-2016-0091997 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016896A1 true WO2018016896A1 (ko) 2018-01-25

Family

ID=60992288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007835 WO2018016896A1 (ko) 2016-07-20 2017-07-20 전계효과 대장암 센서

Country Status (3)

Country Link
US (1) US20190204321A1 (ko)
KR (1) KR101906447B1 (ko)
WO (1) WO2018016896A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426931A (zh) * 2018-03-28 2018-08-21 山东理工大学 一种基于Hemin-rGO的电化学免疫传感器的制备方法及应用
CN109580736A (zh) * 2018-11-09 2019-04-05 中山大学 基于双栅结构氧化物薄膜晶体管的传感器件及其制备方法
CN112255290A (zh) * 2020-09-30 2021-01-22 太原理工大学 一种具有水溶液稳定性的柔性生物传感器及其制作方法
CN112255291A (zh) * 2020-09-30 2021-01-22 太原理工大学 一种高灵敏度、高稳定性生物传感器及其制作方法
CN113784988A (zh) * 2019-01-29 2021-12-10 财团法人峨山社会福祉财团 特异性结合ccsp-2的单克隆抗体及其用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142701B1 (ko) * 2018-08-13 2020-08-07 한국과학기술연구원 중성 제제로 표면 개질된 바이오센서 및 이를 이용한 검출방법
KR102345694B1 (ko) * 2018-12-26 2021-12-31 한국전자기술연구원 가스 감지 센서
AU2021216478A1 (en) * 2020-02-06 2022-09-08 Graphene-Dx, Inc. Graphene-based sensor for detecting hemoglobin in a biological sample
KR102345695B1 (ko) * 2020-04-13 2021-12-31 한국전자기술연구원 Fet 소자와 확장 게이트 전극을 이용한 바이오센서 및 그 동작방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035576A2 (en) * 2005-09-15 2007-03-29 Northern Advancement Center For Science & Technolgy Surface plasmon resonance biosensor system for detection of antigens and method for determining the presence of antigens
US20090061464A1 (en) * 2003-07-10 2009-03-05 Kalle Levon Methods for detecting and/or quantifying a concentration of specific bacterial molecules using bacterial biosensors
KR20160013768A (ko) * 2014-07-28 2016-02-05 한국과학기술연구원 이중 게이트 이온 감지 전계 효과 트랜지스터(isfet) 센서
KR101616560B1 (ko) * 2014-11-24 2016-04-28 한국과학기술연구원 나노프로브 융합 이온 감지 전계 효과 트랜지스터 바이오센서
JP2016103577A (ja) * 2014-11-28 2016-06-02 学校法人東北学院 半導体バイオセンサ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090061464A1 (en) * 2003-07-10 2009-03-05 Kalle Levon Methods for detecting and/or quantifying a concentration of specific bacterial molecules using bacterial biosensors
WO2007035576A2 (en) * 2005-09-15 2007-03-29 Northern Advancement Center For Science & Technolgy Surface plasmon resonance biosensor system for detection of antigens and method for determining the presence of antigens
KR20160013768A (ko) * 2014-07-28 2016-02-05 한국과학기술연구원 이중 게이트 이온 감지 전계 효과 트랜지스터(isfet) 센서
KR101616560B1 (ko) * 2014-11-24 2016-04-28 한국과학기술연구원 나노프로브 융합 이온 감지 전계 효과 트랜지스터 바이오센서
JP2016103577A (ja) * 2014-11-28 2016-06-02 学校法人東北学院 半導体バイオセンサ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426931A (zh) * 2018-03-28 2018-08-21 山东理工大学 一种基于Hemin-rGO的电化学免疫传感器的制备方法及应用
CN109580736A (zh) * 2018-11-09 2019-04-05 中山大学 基于双栅结构氧化物薄膜晶体管的传感器件及其制备方法
CN113784988A (zh) * 2019-01-29 2021-12-10 财团法人峨山社会福祉财团 特异性结合ccsp-2的单克隆抗体及其用途
EP3919519A4 (en) * 2019-01-29 2022-09-28 The Asan Foundation ANTIBODIES SPECIFIC TO BINDING TO CCSP-2 AND USE THEREOF
CN112255290A (zh) * 2020-09-30 2021-01-22 太原理工大学 一种具有水溶液稳定性的柔性生物传感器及其制作方法
CN112255291A (zh) * 2020-09-30 2021-01-22 太原理工大学 一种高灵敏度、高稳定性生物传感器及其制作方法
CN112255291B (zh) * 2020-09-30 2023-01-10 太原理工大学 一种生物传感器及其制作方法

Also Published As

Publication number Publication date
KR20180009981A (ko) 2018-01-30
KR101906447B1 (ko) 2018-10-11
US20190204321A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018016896A1 (ko) 전계효과 대장암 센서
JP4775262B2 (ja) センサユニット及び反応場セルユニット並びに分析装置
Chuang et al. Immunosensor for the ultrasensitive and quantitative detection of bladder cancer in point of care testing
KR101758355B1 (ko) 비침습적 이온 감응 소변 센서
Boonyasit et al. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis
Kim et al. A simple electrochemical immunosensor platform for detection of Apolipoprotein A1 (Apo-A1) as a bladder cancer biomarker in urine
US8712701B2 (en) Potentiometric-sensor chip, potentiometric assay, and assay kit
US20160202208A1 (en) Multiplexing detection system of dual gate ion-sensitive field-effect transistor sensor
WO2016085126A1 (ko) 나노프로브 융합 이온 감지 전계 효과 트랜지스터 바이오센서
CN104854456A (zh) 利用电化学检测的免疫测定
US20210003528A1 (en) HANDHELD SENSOR FOR RAPID, SENSITIVE DETECTION AND QUANTIFICATION OF SARS-CoV-2 FROM SALIVA
US20090066347A1 (en) Biosensor and a method of measuring a concentration of an analyte within a medium
Campuzano et al. Electrochemical biosensing to assist multiomics analysis in precision medicine
Lin et al. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling
JP2009002939A (ja) アンペロメトリック型バイオセンサ
KR101921627B1 (ko) 전계 효과 트랜지스터, 이를 구비한 바이오 센서, 전계 효과 트랜지스터의 제조방법 및 바이오 센서의 제조방법
JP2013050426A (ja) Fet型センサを用いたインフルエンザウイルスrnaの検出方法
JP2008286714A (ja) ボルタノメトリック型バイオセンサ
KR102142701B1 (ko) 중성 제제로 표면 개질된 바이오센서 및 이를 이용한 검출방법
WO2010005172A1 (en) Bio-sensor
Aydogmus et al. FET-based integrated charge sensor for organ-on-chip applications
Ressler et al. New concepts for chip-supported multi-well-plates: realization of a 24-well-plate with integrated impedance-sensors for functional cellular screening applications and automated microscope aided cell-based assays
CN114689672B (zh) 用于检测生物分子的系统及方法
US20240002945A1 (en) Graphene-based biosensor and detection method using same
US20240077476A1 (en) Biosensor and a biosensing kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831369

Country of ref document: EP

Kind code of ref document: A1