WO2022080713A1 - 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 - Google Patents

메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 Download PDF

Info

Publication number
WO2022080713A1
WO2022080713A1 PCT/KR2021/013338 KR2021013338W WO2022080713A1 WO 2022080713 A1 WO2022080713 A1 WO 2022080713A1 KR 2021013338 W KR2021013338 W KR 2021013338W WO 2022080713 A1 WO2022080713 A1 WO 2022080713A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
silica
metallocene
supported catalyst
catalyst
Prior art date
Application number
PCT/KR2021/013338
Other languages
English (en)
French (fr)
Inventor
차진명
홍대식
안상은
김석환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210128298A external-priority patent/KR102718975B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180006248.7A priority Critical patent/CN114729075B/zh
Priority to US17/773,029 priority patent/US20220403062A1/en
Priority to EP21878747.1A priority patent/EP4032917A4/en
Publication of WO2022080713A1 publication Critical patent/WO2022080713A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/08Heteroatom bridge, i.e. Cp or analog where the bridging atom linking the two Cps or analogs is a heteroatom different from Si
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a metallocene-supported catalyst and a method for preparing an olefin polymer using the same.
  • Silica is mainly used as a carrier for the metallocene-supported catalyst, and the loading amount of the metallocene as the main catalyst and the co-catalyst is increased to increase the catalyst activity.
  • the loading amount of the main catalyst and the cocatalyst increases, the catalyst is exposed to the surface of the silica support in a large amount, so catalyst leaching is easy to occur, and the catalyst not tightly bound to the support is also leached through the pores of the support.
  • the catalyst leached in this way forms fine powder and causes fouling in the reactor during polymerization of the olefin polymer.
  • static electricity is generated during high-speed movement of powder. Since fine powder has a relatively high surface area, it is easily aggregated by static electricity to further increase reactor fouling.
  • the anti-fouling agent is a material having a molecular structure including a hydrophilic group and a hydrophobic group at the same time, suppresses static electricity generated during the preparation of a polymer, and as a result, can reduce reactor fouling.
  • the hydrophilic group of the anti-fouling agent generally includes a hydroxy (hydroxyl, -OH) structure, the catalyst present on the surface of the carrier or leached may be inactivated.
  • the anti-fouling agent also inactivates the catalyst present in the carrier, there is a problem in that the catalyst activity is greatly reduced.
  • An object of the present invention is to provide a metallocene-supported catalyst capable of significantly reducing the generation of fine powder during the preparation of an olefin polymer while exhibiting excellent catalytic activity, and a method for preparing the same.
  • Another object of the present invention is to provide a method for producing an olefin polymer by using the metallocene-supported catalyst to reduce the generation of fine powder, and as a result, to produce an olefin polymer having excellent physical properties.
  • a silica carrier comprising pores; a transition metal compound supported on the silica carrier; And located on the surface of the silica carrier, when measuring the particle size distribution by laser diffraction analysis, the particle size at the point at which 50% of the cumulative distribution of the number of particles according to the particle size is the average particle size, 10 to 100 nm It provides a metallocene-supported catalyst, including; nano-silica having an average particle size.
  • the step of supporting a transition metal compound on the silica carrier; And for the silica carrier on which the transition metal compound is supported, when the particle size distribution is measured by laser diffraction analysis, the particle size at a point at which 50% of the cumulative distribution of the number of particles according to the particle size is taken as the average particle size, 10 It provides a method for preparing the above-described metallocene-supported catalyst, including; adding and mixing nano-silica having an average particle size of 100 nm to 100 nm to support the nano-silica on the silica carrier.
  • a method for producing an olefin-based polymer comprising the step of polymerizing an olefin monomer in the presence of the metallocene-supported catalyst.
  • the metallocene-supported catalyst according to the present invention can greatly reduce the generation of fine powder while exhibiting excellent catalytic activity in the preparation of an olefin polymer. As a result, it is possible to prevent fouling of the reactor due to fine powder, and it is possible to prevent the problem of fine particles attaching to a classification device due to an electrostatic problem, reducing classification efficiency, or making the work environment difficult due to fine powder blowing. .
  • Example 1 is a photograph of the metallocene-supported catalyst prepared in Example 1-1 observed with a scanning electron microscope (SEM).
  • nano-silica in the preparation of the metallocene-supported catalyst, pores of the support are blocked to physically prevent catalyst leaching, and Si-OH of nano-silica is used to exist on the surface of the support or the carrier.
  • a highly active transition metal compound, or a transition metal compound not containing a tether group exhibits high activity during polymerization of an olefin polymer, particularly polypropylene, but the compound Due to the absence of a tether group, there is a problem in that catalyst leaching occurs relatively more than other transition metal compounds having a tether group.
  • the metallocene-supported catalyst according to the present invention includes nano silica, catalyst leaching is significantly reduced and excellent catalytic activity can be exhibited.
  • Silica carrier including pores
  • the average particle size is an average of 10 to 100 nm. and nano silica having a particle size (D50).
  • the silica carrier usually used in the metallocene supported catalyst includes pores having a level of 1 to 30 nm, and the metallocene catalyst is located in the pores.
  • the metallocene catalyst is located in the pores.
  • nano silica having a larger particle size than the pores present in the silica carrier specifically, an average particle size (D50) of 10 to 100 nm, the metal positioned in the pores while maintaining the activity of the catalyst material in the carrier It is possible to physically prevent the Rosene catalyst from leaching out of the pores.
  • the nano-silica does not penetrate into the pores of the silica carrier, is located on the surface of the silica carrier, and selectively inactivates the metallocene catalyst supported on the surface of the silica carrier, thereby preventing the generation of fine powder.
  • the nano-silica closes the open pores of the silica carrier to physically prevent the metallocene catalyst located in the pores from leaching out of the pores.
  • the average particle size (D50) of the nano-silica is too small to be less than 10 nm, it is not easy to manufacture, and it may penetrate into the pores of the carrier to inactivate the catalyst material. In addition, when the average particle size (D50) of the nano-silica exceeds 100 nm, the deactivation effect on the catalyst material that may cause fouling on the surface or the outside of the carrier may be reduced. More specifically, the nano silica may have an average particle size (D50) of 10 nm or more, or 20 nm or more, or 30 nm or more, or 40 nm or more, or 50 nm or more, or 60 nm or more, and 100 nm or less, or 70 nm or less. .
  • the average particle size (D50) of the nano-silica means the particle size at 50% of the cumulative distribution of the number of particles according to the particle size in the particle size distribution analysis for the nano-silica, and the laser diffraction method (laser diffraction) method) can be used. Specifically, after dispersing nano silica particles in a dispersion medium, it is introduced into a laser diffraction particle size measuring device, for example, Zetasizer Nano ZS manufactured by Marvern Co., Ltd.
  • the nano silica may be included in an amount of 1 to 10 parts by weight based on 100 parts by weight of the silica carrier catalyst. If the content of the nano-silica is less than 1 part by weight, the improvement effect due to the inclusion of the nano-silica is not sufficient, and when it exceeds 10 parts by weight, the catalyst activity is reduced due to a decrease in the amount of the metallocene catalyst supported in the total weight of the metallocene-supported catalyst. Rather, it may be lowered. More specifically, 1 part by weight or more, or 3 parts by weight or more, or 5 parts by weight or more, or 6 parts by weight or more, and may be included in an amount of 10 parts by weight or less, or 8 parts by weight or less.
  • porous silica may be used as the silica carrier.
  • the silica carrier may have an average particle size (D50) of 10 to 50 ⁇ m and a BET specific surface area of 100 to 500 m 2 /g.
  • D50 average particle size
  • BET specific surface area 100 to 500 m 2 /g.
  • the silica carrier may have an average particle size (D50) of 10 ⁇ m or more, or 20 ⁇ m or more, or 30 ⁇ m or more, or 35 ⁇ m or more, 50 ⁇ m or less, or 45 ⁇ m or less, or 40 ⁇ m or less.
  • D50 average particle size
  • BET specific surface area 100 m 2 /g or more, or 200 m 2 /g or more, or 250 m 2 /g or more, or 270 m 2 /g or more, or 290 m 2 /g or more, and 500 m 2 /g or less, or 450 m 2 /g or less, or 400 m 2 /g or less, or 350 m 2 /g or less, or 300 m 2 /g or less.
  • the average particle size (D50) of the silica carrier means the particle size at 50% of the cumulative particle volume distribution according to the particle size in the particle size distribution analysis of the silica carrier, and can be measured using laser diffraction method.
  • the silica carrier powder is dispersed in a dispersion medium, and then introduced into a laser diffraction particle size measuring device, for example, Microtrac S3500 by Microtrac, and silica carrier particles
  • a laser diffraction particle size measuring device for example, Microtrac S3500 by Microtrac
  • silica carrier particles When the laser beam passes through the laser beam, the particle size distribution is obtained by measuring the diffraction pattern difference according to the particle size, and the particle size is calculated and averaged at the point where it becomes 50% of the cumulative particle volume distribution according to the particle size in the measuring device. It is expressed as particle size (D50).
  • the BET specific surface area of the silica carrier is a Bruner-Emmett-Teller specific surface area (S BET ) measured by the Bruner-Emmett-Teller (BET) method, specifically, a specific surface area analyzer (BEL Japan Inc.). , BELSORP-max) can be measured through nitrogen gas adsorption/desorption analysis at 77K.
  • S BET Bruner-Emmett-Teller specific surface area
  • BET Bruner-Emmett-Teller specific surface area
  • BELSORP-max can be measured through nitrogen gas adsorption/desorption analysis at 77K.
  • the silica carrier may include pores having a pore size smaller than the particle size of the nano-silica for implementing and enhancing the effect in the present invention.
  • the silica carrier may have an average pore size of 1 to 30 nm, more specifically 1 nm or more, or 5 nm or more, or 10 nm or more, or 15 nm or more, or 16 nm or more, 30 nm or less, or 25 nm or less, or It may have an average pore size of 20 nm or less, or 18 nm or less.
  • the average pore size in the silica carrier is obtained by using a specific surface area analyzer (BEL Japan Inc., BELSORP-max) to obtain the adsorption/desorption isotherm of nitrogen gas at 77K, which is BJH It can be measured by plotting (Barrett-Joyner-Halenda).
  • a transition metal compound represented by the following Chemical Formula 1 may be used as the metallocene catalyst:
  • A is carbon, silicon or germanium
  • X 1 and X 2 are each independently halogen
  • R 1 and R 5 are each independently C 6-20 aryl unsubstituted or substituted with C 1-20 alkyl;
  • R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1-20 silylether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl;
  • R 9 and R 10 are the same as each other and are C 2-20 alkyl.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the C 1-20 alkyl group may be a straight chain, branched chain or cyclic alkyl group.
  • the C 1-20 alkyl group is a C 1-15 straight-chain alkyl group; C 1-10 straight chain alkyl group; C 1-5 straight chain alkyl group; C 3-20 branched or cyclic alkyl group; C 3-15 branched or cyclic alkyl group; Or it may be a C 3-10 branched or cyclic alkyl group.
  • the C1-20 alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, neo - It may be a pentyl group or a cyclohexyl group.
  • the C 2-20 alkenyl group may be a straight chain, branched chain or cyclic alkenyl group.
  • C 2-20 alkenyl group is C 2-20 straight chain alkenyl group, C 2-10 straight chain alkenyl group, C 2-5 straight chain alkenyl group, C 3-20 branched chain alkenyl group, C 3-15 branched chain alkenyl group It may be a nyl group, a C 3-10 branched chain alkenyl group, a C 5-20 cyclic alkenyl group, or a C 5-10 cyclic alkenyl group. More specifically, the C 2-20 alkenyl group may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, or a cyclohexenyl group.
  • C 6-30 aryl may mean a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, C 6-30 aryl may be a phenyl group, a naphthyl group, or an anthracenyl group.
  • C 7-30 alkylaryl may mean a substituent in which one or more hydrogens of aryl are substituted with alkyl.
  • C 7-30 alkylaryl may be methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl or cyclohexylphenyl.
  • C 7-30 arylalkyl may mean a substituent in which one or more hydrogens of the alkyl are substituted by aryl.
  • C 7-30 arylalkyl may be a benzyl group, phenylpropyl, or phenylhexyl.
  • the metallocene supported catalyst according to an embodiment of the present invention includes the compound of Formula 1 as a single catalyst. Accordingly, the molecular weight distribution of the prepared olefin polymer may be significantly narrowed compared to the case of using a mixture of two or more catalysts in the prior art.
  • both indenyl groups which are ligands, are substituted at the 2nd position by a methyl group, and the 4th position (R 1 and R 5 ) are each substituted with alkyl or include an unsubstituted aryl group, so that sufficient electrons can be supplied. Better catalytic activity may be exhibited by the inductive effect.
  • the compound of Formula 1 since the compound of Formula 1 includes zirconium (Zr) as a central metal, it has more orbitals capable of accommodating electrons compared to when it includes other Group 14 elements such as Hf. and can be easily combined, and as a result, it is possible to exhibit a more excellent catalytic activity improvement effect.
  • Zr zirconium
  • R 1 and R 5 may each independently be a C 6-12 aryl group substituted with C 1-10 alkyl or unsubstituted. More specifically, R 1 and R 5 may each independently be a phenyl group or a naphthyl group, and the phenyl group or naphthyl group may be unsubstituted or substituted with a C 3-6 branched chain alkyl group such as tert-butyl phenyl. .
  • R 1 and R 5 are a naphthyl group, or a phenyl group substituted with an alkyl group
  • substitution position of the alkyl group for the phenyl group corresponds to the position of R 1 or R 5 bonded to the indenyl group and the para position In the case of position 4, excellent catalytic activity may be exhibited.
  • R 2 to R 4 , and R 6 to R 8 may each independently be hydrogen, and X 1 and X 2 may each independently be chloro.
  • A may be silicon (Si), and R 9 and R 10 , which are substituents of A, are the same as each other in terms of improving the carrying efficiency by increasing solubility, and may be a C 1-10 alkyl group. and, more specifically, a C 1-4 or C 2-4 linear alkyl group, and more specifically, may be methyl or ethyl, respectively.
  • the substituent for the functional group A has 1 carbon atom
  • the atomic size increases and the solubility angle increases, so that the monomer can be easily accessed, and the solubility is excellent in preparing the supported catalyst, thereby exhibiting excellent supported reactivity.
  • excellent catalytic activity can be exhibited.
  • the compound of Formula 1 may be synthesized by applying known reactions, and more detailed synthesis methods may refer to Preparation Examples to be described later.
  • the metallocene-supported catalyst according to an embodiment of the present invention may further include a co-catalyst in terms of enhancing catalytic activity and improving process stability.
  • the cocatalyst may specifically include a compound represented by the following Chemical Formula 2, Chemical Formula 3, or Chemical Formula 4, and any one or a mixture of two or more thereof may be used:
  • R 11 may be the same as or different from each other, and each independently halogen; C 1-20 hydrocarbons; or a C 1-20 hydrocarbon substituted with halogen;
  • n is an integer greater than or equal to 2;
  • R 12 may be the same as or different from each other, and each independently halogen; C 1-20 hydrocarbons; or a C 1-20 hydrocarbon substituted with halogen;
  • J is aluminum or boron
  • E is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a group 13 element
  • Q may be the same or different from each other, and each independently one or more hydrogen atoms are substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy, C 6-20 aryl group or C 1-20 is an alkyl group.
  • Examples of the compound represented by Formula 2 include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and the like, and more specifically, may be methylaluminoxane.
  • Examples of the compound represented by Formula 3 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclopentylaluminum , tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, and more specifically, may be selected from trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum.
  • examples of the compound represented by Formula 4 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (p- Tolyl) boron, trimethylammonium tetra(o,p-dimethylphenyl) boron, tributylammonium tetra(p-trifluoromethylphenyl) boron, trimethylammonium tetra(p-trifluoromethylphenyl) boron, tributylammonium Umtetrapentafluorophenylboron, N,N-diethylaniliniumtetraphenylboron, N,N-diethylaniliniumtetrapentafluorophenylboron, diethylammoniumt
  • the cocatalyst is a compound represented by Formula 2, more specifically C 1 such as methylaluminoxane It may be an alkylaluminoxane-based compound of -20 .
  • the alkylaluminoxane-based compound acts as a scavenger for hydroxyl groups on the surface of the carrier to improve catalyst activity, and converts the halogen group of the catalyst precursor to a methyl group to promote chain growth during polymerization of the olefin polymer. make it
  • the cocatalyst may be supported in an amount of, for example, 0.1 mmol or more, or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, and 25 mmol or less, or 20 mmol or less, based on 1 g of the silica carrier by weight of the carrier.
  • 0.1 mmol or more or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, and 25 mmol or less, or 20 mmol or less, based on 1 g of the silica carrier by weight of the carrier.
  • the metallocene-supported catalyst having the above configuration includes the steps of supporting a transition metal compound on a silica carrier (step 1); And with respect to the silica carrier on which the transition metal compound is supported, adding and mixing nano-silica having an average particle size of 10 to 100 nm to support the nano-silica on the silica carrier (Step 2); Manufacturing method comprising a; can be manufactured by
  • step 1 for preparing a metallocene-supported catalyst is a step of supporting a transition metal compound on a silica support.
  • the types and contents of the silica carrier and the transition metal compound are as described above.
  • the loading of the transition metal compound on the silica carrier may be performed according to a conventional method. Specifically, it can be carried out by dispersing the silica carrier in a hydrocarbon solvent such as toluene, adding a transition metal compound to the resulting dispersion, and reacting at a temperature of 40 to 80°C. More specifically, the reaction may be carried out by stirring at a temperature of 40°C or higher, or 50°C or higher, 80°C or lower, or 70°C or lower, 3 hours or more, or 5 hours or more, and 7 hours or less.
  • a hydrocarbon solvent such as toluene
  • the transition metal compound may be added in a solution phase, and a hydrocarbon-based solvent such as toluene may be used as the solvent.
  • concentration of the transition metal compound in the solution may be appropriately determined in consideration of the supported amount of the transition metal compound in the supported catalyst, reaction efficiency, and the like.
  • the metallocene-supported catalyst further includes a co-catalyst
  • a co-catalyst supporting process on the silica carrier may be performed before the transition metal compound is supported.
  • the cocatalyst supporting process may be performed by adding the cocatalyst to a silica carrier or a dispersion in which the silica carrier is dispersed, and then heating to a temperature of 70 to 100° C. to react. More specifically, it may be carried out at a temperature of 70 °C or higher, or 80 °C or higher, and 100 °C or lower, or less than 100 °C, or 90 °C or lower. In addition, the cocatalyst loading process may be carried out by reacting with stirring for 12 hours or more, or 15 hours or more, and for 18 hours or less.
  • the cocatalyst may be introduced in a solution phase, and a hydrocarbon-based solvent such as toluene may be used as the solvent.
  • a hydrocarbon-based solvent such as toluene
  • the concentration of the transition metal compound in the solution may be appropriately determined in consideration of the supported amount of the cocatalyst in the supported catalyst, the reaction time, and the like.
  • step 2 is a step of supporting nano-silica on the silica carrier prepared in step 1, on which the transition metal compound and optionally the cocatalyst are supported.
  • the transition metal compound prepared in step 1 and optionally the silica carrier on which the promoter is supported are dispersed in an aliphatic hydrocarbon-based solvent such as hexane, and then nano-silica is added and reacted.
  • the nano silica may also be added as a dispersion dispersed in an aliphatic hydrocarbon-based solvent such as hexane.
  • concentration of nano-silica in the dispersion may be appropriately determined in consideration of the amount of nano-silica supported in the metallocene-supported catalyst, reaction efficiency, and the like.
  • the reaction may be carried out at room temperature, specifically 15°C or higher, or 18°C or higher, and 28°C or lower, or 25°C or lower, in which case a stirring process may be performed to increase reaction efficiency.
  • the metallocene-supported catalyst prepared by the above-described manufacturing method includes a metallocene compound and optionally a co-catalyst supported in the pores of the silica support, and nano-silica is included on the surface of the silica support. Accordingly, leaching of the transition metal compound is prevented, and by selectively inactivating the transition metal compound, which is located on the surface of the silica carrier by Si-OH of nano silica and has a high possibility of leaching, fine powder is generated during the production of the olefin-based polymer. , and as a result, reactor fouling can be prevented. Accordingly, the physical properties of the prepared polymer can also be improved.
  • a method for producing an olefin-based polymer comprising the step of polymerizing an olefin monomer in the presence of the metallocene-supported catalyst.
  • the metallocene-supported catalyst described above may be used in a slurry state mixed in a solvent, may be used in a diluted state, or in the form of a mud catalyst mixed with a mixture of oil and grease depending on the polymerization method of the olefin polymer can be used as
  • the solvent When used in a slurry state mixed with a solvent or used in a diluted state, the solvent includes an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for a polymerization process of an olefin monomer, for example, pentane, hexane, heptane, nonane, decane, and an aromatic hydrocarbon solvent such as an isomer thereof and toluene or benzene, or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane or chlorobenzene, and any one or a mixture of two or more thereof may be used.
  • the solvent may be used after removing a small amount of water or air that may act as a catalyst poison by treating with a small amount of alkylaluminum before use.
  • the metallocene supported catalyst may be used in the form of a mud catalyst mixed with a mixture of oil and grease.
  • the amount of the volatile organic compound contained in the prepared olefin polymer can be further reduced compared to the case of using it in a dissolved or diluted state in a solvent, and as a result, the odor caused by the volatile organic compound can also be reduced.
  • the polymerization reaction for preparing the olefin polymer may be performed by homopolymerization with one olefin monomer or copolymerization with two or more types of monomers using one continuous slurry polymerization reactor, loop slurry reactor, gas phase reactor, or solution reactor.
  • the method for preparing the olefin polymer may be performed in a single-CSTR reactor.
  • polymerization may proceed in the presence of an inert gas such as nitrogen.
  • the inert gas may serve to maintain the reaction activity of the transition metal compound included in the catalyst for a long time by suppressing the rapid reaction of the catalyst at the initial stage of the polymerization reaction.
  • hydrogen gas may be used for the purpose of controlling the molecular weight and molecular weight distribution of the olefin polymer.
  • Hydrogen gas serves to activate the inactive sites of the catalyst and cause a chain transfer reaction to control molecular weight. % or more, and may be added in an amount corresponding to 0.2% by volume or less, 0.18% by volume or less, or 10 to 1000ppm, more specifically 10ppm or more, or 30ppm or more, or 40ppm or more based on the total weight of the olefin monomer, It may be added in an amount of 1000 ppm or less, or 500 ppm or less, or 350 ppm or less.
  • processability can be improved by reducing the molecular weight of the polymer to be prepared.
  • the polymerization reaction temperature may be 70 to 100 °C, or 70 to 90 °C. If the polymerization reaction temperature is too low, it is not appropriate in terms of polymerization rate and productivity. Conversely, if the polymerization reaction temperature is higher than necessary, fouling in the reactor may be induced.
  • the pressure may be further controlled in order to secure optimal productivity during the polymerization reaction.
  • the pressure is 7 to 9 kg/cm 2 , more specifically 7 kg/cm 2 or more, or 8 kg/cm 2 more than 9 kg/cm 2 or less, or 8.5 kg/cm 2 can be below.
  • the polymerization reaction pressure may be 7 kg/cm 2 or more in terms of preventing blocking due to excessive generation of high molecular weight and optimizing productivity, and may be 9 kg/cm 2 or less in consideration of suppression of side reactions under high-pressure polymerization conditions. there is.
  • an organic solvent may be further used as a reaction medium or a diluent in the polymerization reaction.
  • Such an organic solvent may be used in an amount such that slurry-phase polymerization can be appropriately performed in consideration of the content of the olefin monomer.
  • trialkylaluminum such as triethylaluminum may be optionally further added.
  • alkyl is as defined above, specifically C 1-20 alkyl, more specifically C 1-6 straight or branched chain alkylyl such as methyl, ethyl, isobutyl, etc. can
  • the trialkylaluminum may be added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the olefin monomer, more specifically 0.1 parts by weight or more, or 0.3 parts by weight or more, and 10 parts by weight or less, or 5 parts by weight. It may be added in an amount of less than or equal to 1 part by weight or less.
  • an olefin polymer having excellent strength properties can be more easily prepared.
  • the olefin monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • olefin monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -dodecene, 1-tetradecene, 1-hexadecene, 1-aitocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc. are mentioned, and 2 or more types of these monomers may be mixed and copolymerized.
  • the olefin monomer may be specifically propylene.
  • the olefin polymer produced by the above production method has a very low content of fines having a particle size of 75 ⁇ m or less based on the total weight of the olefin polymer of 2 wt% or less, or 1.6 wt% or less, or 1 wt% or less.
  • the fine particles adhere to a classification device due to an electrostatic problem, thereby reducing classification efficiency, or making the work environment difficult, such as flying fine powder, there is no problem.
  • BET specific surface area of silica carrier It was measured by nitrogen gas adsorption/desorption analysis at 77 K using a specific surface area analyzer BELSORP-max (manufactured by BEL Japan Inc.) according to the BET method.
  • Average particle size (D50) of silica carrier Measured through laser diffraction analysis, specifically, after dispersing silica carrier powder in ethanol as a dispersion medium, it was introduced into Microtrac S3500 of Microtrac, and the silica carrier particles were laser beam The particle size distribution is obtained by measuring the diffraction pattern difference according to the particle size when passing through indicated as
  • Average particle size of nano silica Measured through laser diffraction analysis, specifically, after dispersing nano silica particles in ethanol as a dispersion medium, it was introduced into Zetasizer Nano ZS, a laser diffraction particle size measuring device manufactured by Marvern.
  • Zetasizer Nano ZS a laser diffraction particle size measuring device manufactured by Marvern.
  • the particle size distribution is obtained by measuring the diffraction pattern difference according to the particle size, and the particle size is calculated at the point at which 50% of the cumulative distribution of the number of particles according to the particle size is calculated. was expressed as the average particle size (D50) of
  • the washed product was treated with diethylsilanediyl bis(2-methyl-4-(4'-tert-butylphenyl)indenyl)zirconium dichloride (diethylsilanediyl bis(2-methyl-4-(4'-tert-) butylphenyl)indenyl)zirconium dichloride) 0.7g (90 ⁇ mol/gSiO 2 ) was added to a solution dissolved in 14ml toluene, and stirred at 50° C. for 5 hours.
  • the resulting reactant was cooled to room temperature, and after settling, the upper layer was decanted, and the residue was washed twice with 40ml toluene, and then 40ml of hexane was added and stirred.
  • 0.5 g of nano silica average particle size (D50): about 50 nm
  • D50 average particle size
  • a metallocene-supported catalyst was prepared in the same manner as in Example 1-1, except that the reactants were used in the formulation shown in Table 1 below.
  • Example 1-1 -2 rac-[dimethylsilanediylbis(2-methyl-4-(1-naphthyl)indenyl)]zirconium dichloride (1) of the following structure instead of the transition metal compound (1-1) in Example 1-1 -2) was carried out in the same manner as in Example 1-1, except that a metallocene-supported catalyst was prepared.
  • a metallocene-supported catalyst was prepared in the same manner as in Example 1-1, except that the reactants were used in the formulation shown in Table 1 below.
  • AtmerTM 163 was used as an antistatic agent in the amount shown in Table 1 instead of nano silica.
  • the metallocene-supported catalyst was carried out in the same manner except that nano-silica having an average particle size (D50) of about 150 nm was used instead of the nano-silica. was prepared.
  • D50 average particle size
  • Example 1-2 10 90 0 silica (10) 10 50 Examples 1-3 10 90 0 silica (10) 10 100
  • Examples 1-4 10 90 b) 0 silica (10) 10 50 Comparative Example 1-1 10 90 0 silica (10) 0 - Comparative Example 1-2 10 50 0 silica (10) 0 - Comparative Example 1-3 10 90 2 silica (10) 0 - Comparative Example 1-4 10 90 10 silica (10) 0 - Comparative Example 1-5 10 90 0 silica (10) 10 150
  • 'part by weight' in a) is a relative weight ratio based on 100 parts by weight of the silica carrier.
  • the transition metal compound used in Examples 1-4 of b) is rac-[dimethylsilanediylbis(2-methyl-4-(1-naphthyl)indenyl)]zirconium dichloride
  • the 2L stainless autoclave reactor was vacuum dried at 70° C. and then cooled, and 3 ml of triethylaluminum was added at room temperature, and then 331 ppm of hydrogen and 770 g of propylene were sequentially added.
  • 25 mg of the supported catalyst prepared in Example 1-1 was diluted in 20 ml of hexane and introduced into the reactor under Ar pressure. Thereafter, the temperature of the reactor was raised to 70° C. and polymerization was carried out for 1 hour. After completion of the reaction, unreacted propylene was vented to prepare homo polypropylene.
  • Example 2-1 using the supported catalysts prepared in Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-5 instead of the supported catalyst prepared in Example 1-1, respectively Except, homopolypropylene was prepared in the same manner as in Example 2-1.
  • Example 1-1 The supported catalysts prepared in Example 1-1 and Comparative Example 1-1 were respectively observed by SEM, and the results are shown in FIGS. 1 and 2 .
  • Example 1-1 in the case of the supported catalyst prepared in Example 1-1, it can be confirmed that nano-sized silica is present on the surface of the silica carrier.
  • the supported catalyst prepared in Comparative Example 1-1 had open pores, and the catalyst material was also present on the surface of the support.
  • the content of fine powder with a particle size of 75 ⁇ m or less contained in the homo polypropylene prepared in Examples and Comparative Examples was measured using Test Sieve. From the obtained results, it was confirmed that the fine powder content (% by weight) of 75 ⁇ m or less based on the total weight of the homopolypropylene.
  • the amount of fine powder can be greatly reduced even with a much smaller amount of nano silica compared to the amount of the antistatic agent used, and the reduction in catalyst activity is also significantly reduced compared to the case of using the antistatic agent became Specifically, the metallocene-supported catalyst used in Examples 2-1 to 2-4 has a large effect of reducing the amount of fine powder compared to Comparative Examples, particularly Comparative Examples 2-3 and 2-4 using a conventional antistatic agent. However, the degree of decrease in catalytic activity was small.
  • the metallocene-supported catalyst according to the present invention can significantly reduce the fine powder content during polymer preparation while exhibiting excellent catalytic activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명에서는 우수한 촉매 활성을 나타내면서도 올레핀 중합체의 제조시 미분 발생을 크게 감소시킬 수 있는 메탈로센 담지 촉매, 및 이를 이용한 올레핀 중합체의 제조방법이 제공된다.

Description

메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 10월 16일자 한국 특허 출원 제10-2020-0134651호 및 2021년 9월 28일자 한국 특허 출원 제10-2021-0128298호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법에 관한 것이다.
메탈로센 담지 촉매의 담체로는 주로 실리카가 이용되며, 촉매 활성 증가를 위해 주촉매인 메탈로센과 조촉매의 로딩양을 증가시켜 담지한다. 그러나 주촉매와 조촉매의 로딩량이 증가할수록 실리카 담체 표면에 촉매가 다량 노출되기 때문에, 촉매 침출이 일어나기 쉽고, 또 담체에 단단히 결합되지 않은 촉매 역시 담체의 기공을 통해 침출된다. 이렇게 침출된 촉매는 미분(fine powder)을 형성하고, 올레핀 중합체의 중합 반응시 반응기 내 파울링(fouling)을 유발한다. 특히 분말의 고속 이동시에는 정전기가 발생하는데, 미분의 경우 상대적으로 높은 표면적을 갖기 때문에, 정전기에 의해 쉽게 응집되어 반응기 파울링을 더욱 증가시킨다.
이에, 반응기 파울링을 방지하기 위해서는, 촉매 침출을 방지하거나 또는 침출된 촉매를 불활성화(deactivating) 시킴으로써 미분 생성을 감소시키는 방법, 또는 미분의 정전기적 특성을 감소시키는 방법이 필요하다.
종래 미분의 정전기적 특성을 감소시키기 위한 방법으로, 중합체의 제조시 안티 파울링제(anti-fouling agent)를 사용하는 방법이 제안되었다. 안티 파울링제는 친수성기와 소수성기를 동시에 포함하는 분자 구조를 갖는 물질로서, 중합체의 제조시 발생하는 정전기를 억제하고, 결과로서 반응기 파울링을 감소시킬 수 있다. 또, 안티 파울링제의 친수성기는 일반적으로 히드록시(hydroxyl, -OH) 구조를 포함하기 때문에, 담체 표면에 존재하거나 또는 침출된 촉매를 불활성화시킬 수 있다.
그러나, 안티 파울링제는 담체 내부에 존재하는 촉매도 함께 불활성화 시키기 때문에 촉매 활성을 크게 저하시키는 문제가 있었다.
이에, 촉매 활성을 향상시키면서도 침출 현상을 방지할 수 있는 메탈로센 담지 촉매의 제조 방법 개발이 필요하다.
본 발명은 우수한 촉매 활성을 나타내면서도 올레핀 중합체의 제조시 미분 발생을 크게 감소시킬 수 있는 메탈로센 담지 촉매, 및 그 제조방법을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 메탈로센 담지 촉매를 이용하여 미분 발생을 감소시키고, 결과로서 우수한 물성적 특징을 갖는 올레핀 중합체를 제조할 수 있는, 올레핀 중합체의 제조방법을 제공하는 것을 목적으로 한다.
본 발명에 따르면, 기공을 포함하는 실리카 담체; 상기 실리카 담체에 담지된 전이금속 화합물; 및 상기 실리카 담체의 표면에 위치하며, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 10 내지 100nm의 평균 입자 크기를 갖는 나노 실리카;를 포함하는, 메탈로센 담지 촉매를 제공한다.
또, 본 발명에 따르면, 실리카 담체에 대해 전이금속 화합물을 담지시키는 단계; 및 상기 전이금속 화합물이 담지된 실리카 담체에 대해, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 10 내지 100nm의 평균 입자 크기를 갖는 나노 실리카를 투입하고 혼합하여, 상기 실리카 담체에 나노 실리카를 담지시키는 단계;를 포함하는, 상기한 메탈로센 담지 촉매의 제조방법을 제공한다.
또, 본 발명에 따르면, 상기한 메탈로센 담지 촉매의 존재 하에, 올레핀 단량체를 중합하는 단계를 포함하는, 올레핀계 중합체의 제조방법을 제공한다.
본 발명에 따른 메탈로센 담지 촉매는, 올레핀 중합체의 제조시 우수한 촉매 활성을 나타내면서도 미분 발생을 크게 감소시킬 수 있다. 그 결과 미분에 의한 반응기 파울링을 방지할 수 있고, 또 미분 입자들이 정전기적 문제로 인해 분급 기기 등에 부착하여 분급 효율을 감소시키거나, 미분 날림 등으로 작업 환경을 어렵게 하는 문제를 방지할 수 있다.
도 1은 실시예 1-1에서 제조한 메탈로센 담지 촉매를 주사전자 현미경(SEM)으로 관찰한 사진이다.
도 2는 비교예 1-1에서 제조한 메탈로센 담지 촉매를 SEM으로 관찰한 사진이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따른 메탈로센 담지 촉매 및 이의 제조방법, 그리고 이를 이용한 올레핀 중합체의 제조방법 등에 대해 설명하기로 한다.
종래 메탈로센 담지 촉매의 제조시 촉매 활성 증가를 위하여 촉매 및 조촉매의 양을 증가시킬 경우 촉매 침출량 증가 등으로 인해 반응기 내 파울링이 발생하고, 이를 해결하기 위해 안티 파울링제를 사용할 경우, 반응기 내 파울링 발생은 억제되지만 안티 파울링제로 인해 촉매 활성이 저하되는 문제가 있었다.
이에 대해, 본 발명에서는 메탈로센 담지 촉매의 제조시 나노 실리카를 사용함으로써, 담체의 기공을 막아 촉매 침출을 물리적으로 방지하고, 또 나노 실리카의 Si-OH를 이용하여 담체 표면에 존재하거나 또는 담체 외부로 침출된 촉매를 선택적으로 불활성화시킴으로써, 높은 촉매 활성을 유지하면서도, 미분 발생을 억제하고, 결과로서 반응기 파울링을 방지할 수 있다.
특히, 고활성의 전이금속 화합물, 또는 테더기를 포함하지 않는 전이금속 화합물, 구체적으로 이하에서 설명하는 화학식 1로 표시되는 전이금속 화합물은 올레핀 중합체, 특히 폴리프로필렌 중합 시 고활성을 나타내지만, 화합물 내 테더기의 부재로 인해, 테더기를 갖는 다른 전이금속 화합물들에 비해 촉매 침출이 상대적으로 더 많이 발생하는 문제가 있다. 그러나, 본 발명에 따른 메탈로센 담지 촉매는 나노 실리카를 포함함에 따라, 촉매 침출이 현저히 감소되고, 우수한 촉매 활성을 나타낼 수 있다.
구체적으로, 본 발명에 따른 메탈로센 담지 촉매는,
기공을 포함하는 실리카 담체;
상기 실리카 담체에 담지된 전이금속 화합물; 및
상기 실리카 담체의 표면에 위치하며, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 10 내지 100nm의 평균 입자 크기(D50)를 갖는 나노 실리카;를 포함한다.
통상 메탈로센 담지 촉매에서 사용되는 실리카 담체는 1 내지 30 nm 수준의 기공을 포함하며, 상기 기공 내에 메탈로센 촉매가 위치한다. 본 발명에서는 실라카 담체에 존재하는 기공 보다 큰 입자 크기, 구체적으로는 10 내지 100nm의 평균 입자 크기(D50)를 갖는 나노 실리카를 사용함으로써, 담체 내 촉매 물질의 활성을 유지하면서 기공 내 위치하는 메탈로센 촉매가 기공 밖으로 침출되는 것을 물리적으로 막을 수 있다.
구체적으로, 상기 나노 실리카는 실리카 담체의 기공 내에 침투하지 않고, 실리카 담체의 표면에 위치하며, 실리카 담체의 표면에 담지된 메탈로센 촉매를 선택적으로 불활성화시켜 미분 발생을 방지할 수 있다. 또 상기 나노 실리카는 실리카 담체의 열린 기공을 패쇄(close)하여, 기공 내 위치하는 메탈로센 촉매가 기공 밖으로 침출 되는 것을 물리적으로 막을 수 있다.
만약 나노 실리카의 평균 입자 크기(D50)가 10nm 미만으로 지나치게 작은 경우, 제조가 용이하지 않을뿐더러, 담체의 기공 내로 침투하여 촉매 물질을 불활성화시킬 수 있다. 또 나노 실리카의 평균 입자 크기(D50)가 100nm를 초과할 경우, 담체 표면 또는 외부의 파울링을 일으킬 수 있는 촉매 물질에 대한 불활성화 효과가 저하될 수 있다. 보다 구체적으로는 상기 나노 실리카는 10nm 이상, 또는 20nm 이상, 또는 30nm 이상, 또는 40nm 이상, 또는 50nm 이상, 또는 60nm 이상이고, 100nm 이하, 또는 70nm 이하의 평균 입자 크기(D50)를 갖는 것일 수 있다.
한편 본 발명에 있어서 나노 실리카의 평균 입자 크기(D50)는 나노 실리카에 대한 입자 크기 분포 분석시 입자 크기에 따른 입자 개수 누적 분포의 50% 지점에서의 입자 크기를 의미하며, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로는 나노 실리카 입자를 분산매 중에 분산시킨 후, 레이저 회절 입도 측정 장치, 예를 들면 Marvern사제의 Zetasizer Nano ZS에 도입하여 나노 실리카 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절 패턴 차이를 측정하여 입자 크기 분포를 구하고, 측정 장치에 있어서의 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하여 평균 입자 크기(D50)로 나타내었다.
또, 상기 나노 실리카는 실리카 담체 촉매 100중량부에 대하여 1 내지 10중량부로 포함될 수 있다. 나노 실리카의 함량이 1중량부 미만이면, 나노 실리카 포함에 따른 개선 효과가 충분하지 않고, 또 10중량부를 초과할 경우에는 메탈로센 담지 촉매 총 중량 중 메탈로센 촉매 담지량의 감소로 촉매 활성이 오히려 저하될 수 있다. 보다 구체적으로는 1중량부 이상, 또는 3중량부 이상, 또는 5중량부 이상, 또는 6중량부 이상이고, 10중량부 이하, 또는 8중량부 이하의 양으로 포함될 수 있다.
한편, 발명의 일 구현예에 따른 메탈로센 담지 촉매에 있어서, 실리카 담체로는 다공성 실리카가 사용될 수 있다.
구체적으로, 상기 실리카 담체는 평균 입자 크기(D50)가 10 내지 50㎛이고, BET 비표면적이 100 내지 500 m2/g인 것일 수 있다. 이와 같이 입자 크기 대비 넓은 비표면적을 가짐에 따라 보다 높은 함량으로 메탈로센 촉매 및 나노 실리카를 담지할 수 있으며, 결과로서 촉매 활성이 증가될 수 있다.
보다 구체적으로는, 상기 실리카 담체는 평균 입자 크기(D50)가 10㎛ 이상, 또는 20㎛ 이상, 또는 30㎛ 이상, 또는 35㎛ 이상이고, 50㎛ 이하, 또는 45㎛ 이하, 또는 40㎛ 이하일 수 있으며, 또 BET 비표면적이 100 m2/g 이상, 또는 200 m2/g 이상, 또는 250 m2/g 이상, 또는 270 m2/g 이상, 또는 290 m2/g 이상이고, 500 m2/g 이하, 또는 450 m2/g 이하, 또는 400 m2/g 이하, 또는 350 m2/g 이하, 또는 300 m2/g 이하일 수 있다.
본 발명에 있어서 실리카 담체의 평균 입자 크기(D50)는 실리카 담체의 입자 크기 분포 분석시 입자 크기에 따른 입자 부피 누적 분포의 50% 지점에서의 입자 크기를 의미하며, 레이저 회절법을 이용하여 측정할 수 있다. 구체적으로는 상기 나노 실리카의 평균 입자 크기(D50) 측정시와 동일하게, 실리카 담체 분말을 분산매 중에 분산시킨 후, 레이저 회절 입도 측정 장치, 예를 들면, Microtrac사의 Microtrac S3500에 도입하고, 실리카 담체 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입자 크기 분포를 구하고, 측정 장치에 있어서의 입자 크기에 따른 입자 부피 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하여 평균 입자 크기(D50)로 나타내었다.
또, 상기 실리카 담체의 BET 비표면적은, 브루너-에메트-텔러(BET)법에 의해 측정한 브루너-에메트-텔러 비표면적(SBET)으로, 구체적으로는 비표면적 분석기(BEL Japan Inc., BELSORP-max)를 이용하여 77K에서의 질소 가스 흡착/탈착 분석을 통해 측정할 수 있다.
또 상기 실리카 담체는 상기 나노 실리카의 입자 크기보다 작은 기공 크기를 갖는 기공을 포함하는 것이 본 발명에서의 효과 구현 및 증진을 위해 바람직할 수 있다. 구체적으로 상기 실리카 담체는 1 내지 30nm의 평균 기공 크기를 가질 수 있으며, 보다 구체적으로는 1nm 이상, 또는 5nm 이상, 또는 10nm 이상, 또는 15nm 이상, 또는 16nm 이상이고, 30nm 이하, 또는 25nm 이하, 또는 20nm 이하, 또는 18nm 이하의 평균 기공 크기를 가질 수 있다.
한편, 본 발명에 있어서 실리카 담체 내 평균 기공 크기는 비표면적 분석기(BEL Japan Inc., BELSORP-max)를 이용하여 77K에서의 질소 가스의 흡착/탈착 등온선(Adsorption/desorption isotherm)을 구하고, 이를 BJH(Barrett-Joyner-Halenda) plot하여 측정할 수 있다.
한편, 발명의 일 구현예에 따른 메탈로센 담지 촉매에 있어서, 상기 메탈로센 촉매로는 구체적으로 하기 화학식 1로 표시되는 전이금속 화합물이 사용될 수 있다:
[화학식 1]
Figure PCTKR2021013338-appb-img-000001
상기 화학식 1에서,
A는 탄소, 실리콘 또는 게르마늄이고,
X1 및 X2는 각각 독립적으로 할로겐이고,
R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환되거나 또는 비치환된 C6-20 아릴이고,
R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
R9 및 R10은 서로 동일하며, C2-20 알킬이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
C1-20 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, C1-20 알킬기는 C1-15 직쇄 알킬기; C1-10 직쇄 알킬기; C1-5 직쇄 알킬기; C3-20 분지쇄 또는 고리형 알킬기; C3-15 분지쇄 또는 고리형 알킬기; 또는 C3-10 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, C1-20의 알킬기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기 또는 사이클로헥실기 등일 수 있다.
C2-20 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, C2-20 알케닐기는 C2-20 직쇄 알케닐기, C2-10 직쇄 알케닐기, C2-5 직쇄 알케닐기, C3-20 분지쇄 알케닐기, C3-15 분지쇄 알케닐기, C3-10 분지쇄 알케닐기, C5-20의 고리형 알케닐기 또는 C5-10의 고리형 알케닐기일 수 있다. 보다 구체적으로, C2-20 의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로헥세닐기 등일 수 있다.
C6-30 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, C6-30 아릴은 페닐기, 나프틸기 또는 안트라세닐기 등일 수 있다.
C7-30 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C7-30 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.
C7-30 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C7-30 아릴알킬은 벤질기, 페닐프로필 또는 페닐헥실 등일 수 있다.
본 발명의 일 구현예에 따른 메탈로센 담지 촉매는 상기 화학식 1의 화합물을 단일 촉매로서 포함한다. 이에 따라 종래 2종 이상의 촉매를 혼합하여 사용하는 경우에 비해 제조되는 올레핀 중합체의 분자량 분포가 현저히 좁아질 수 있다.
또, 리간드인 두 개의 인데닐기 모두 2번 위치가 메틸기로 치환되고, 4번 위치(R1 및 R5)는 각각 알킬로 치환되거나 또는 비치환된 아릴기를 포함함으로써, 충분한 전자를 공급할 수 있는 유도 효과(Inductive effect)에 의해 보다 우수한 촉매 활성을 나타낼 수 있다.
또, 상기 화학식 1의 화합물은 중심 금속으로서 지르코늄(Zr)을 포함함으로써, Hf 등과 같은 다른 14족 원소를 포함할 때와 비교하여 전자를 수용할 수 있는 오비탈을 더 많이 가지고 있어 보다 높은 친화력으로 단량체와 쉽게 결합할 수 있으며, 그 결과 보다 우수한 촉매 활성 개선 효과를 나타낼 수 있다.
보다 구체적으로 상기 화학식 1에서 R1 및 R5는 각각 독립적으로 C1-10 알킬로 치환되거나 또는 비치환된 C6-12 아릴기일 수 있다. 보다 더 구체적으로는 R1 및 R5는 각각 독립적으로 페닐기 또는 나프틸기일 수 있으며, 상기 페닐기 또는 나프틸기는 tert-부틸 페닐과 같은 C3-6 분지쇄 알킬기로 치환되거나 또는 비치환될 수 있다. 이중에서도 R1 및 R5가 각각 나프틸기인 경우, 또는 알킬기로 치환된 페닐기인 경우, 더 나아가 상기 페닐기에 대한 알킬기의 치환 위치가 인데닐기에 결합한 R1 또는 R5 위치와 para 위치에 해당하는 4번 위치인 경우 우수한 촉매 활성을 나타낼 수 있다.
또, 상기 화학식 1에서, R2 내지 R4, 및 R6 내지 R8은 각각 독립적으로 수소일 수 있으며, X1 및 X2는 각각 독립적으로 클로로일 수 있다.
또, 상기 화학식 1에서 A는 실리콘(Si)일 수 있으며, 또 상기 A의 치환기인 R9 및 R10는 용해도를 증대시켜 담지 효율성을 개선하는 측면에서 서로 동일하며, C1-10 알킬기일 수 있고, 보다 구체적으로는 C1-4 또는 C2-4 직쇄상 알킬기, 보다 더 구체적으로는 각각 메틸 또는 에틸일 수 있다.
상기한 화학식 1의 화합물 중에서도, 인데닐기 포함 두 개의 리간드를 연결하는 브릿지 그룹으로서, 탄소수 2 이상의 동일한 알킬기로 2 치환된 2가의 작용기 A를 포함하는 화합물의 경우, 작용기 A에 대한 치환기가 탄소수 1의 메틸기인 경우와 비교하여, 원자 사이즈가 증가하고, 가용 각도가 늘어남에 따라 단량체의 접근이 용이하고, 또 담지 촉매 제조시 용해도가 우수하여 우수한 담지 반응성을 나타낼 수 있다. 결과 우수한 촉매 활성을 나타낼 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2021013338-appb-img-000002
Figure PCTKR2021013338-appb-img-000003
.
상기 화학식 1의 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 후술하는 제조예를 참고할 수 있다.
발명의 일 구현예에 따른 메탈로센 담지 촉매는, 촉매 활성 증진 및 공정 안정성 향상의 측면에서 조촉매를 추가로 포함할 수 있다.
상기 조촉매로는 구체적으로 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다:
[화학식 2]
-[Al(R11)-O]m-
상기 화학식 2에서,
R11은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C1-20의 탄화수소; 또는 할로겐으로 치환된 C1-20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 3]
J(R12)3
상기 화학식 3에서,
R12는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C1-20의 탄화수소; 또는 할로겐으로 치환된 C1-20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZQ4]- 또는 [E]+[ZQ4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 염기이고;
H는 수소 원자이며;
Z는 13족 원소이고;
Q는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C1-20의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, C6-20의 아릴기 또는 C1-20의 알킬기이다.
상기 화학식 2로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 구체적으로는 메틸알루미녹산일 수 있다.
상기 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및 트리이소부틸알루미늄 중에서 선택되는 것일 수 있다.
또, 상기 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 또는 트리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 조촉매 중에서도, 상기 전이금속 화합물과의 사용시 보다 우수한 촉매 활성을 나타낼 수 있는 점을 고려할 때, 상기 조촉매로는 상기 화학식 2로 표시되는 화합물, 보다 구체적으로는 메틸알루미녹산 등의 C1-20의 알킬알루미녹산계 화합물일 수 있다. 상기 알킬알루미녹산계 화합물은 담체 표면에 존재하는 히드록실기의 스캐빈저(scavenger)로 작용하여 촉매 활성을 향상시키고, 촉매 전구체의 할로겐기를 메틸기로 전환시켜 올레핀 중합체의 중합시, 사슬 성장을 촉진시킨다.
상기 조촉매는 담체 중량당, 예컨대, 실리카 담체 1g을 기준으로 0.1mmol 이상 또는 5mmol 이상, 또는 8mmol 이상, 또는 10mmol 이상이고, 25 mmol 이하, 또는 20 mmol 이하의 함량으로 담지될 수 있다. 상기한 함량 범위로 포함시 조촉매 사용에 따른 촉매 활성 개선 효과와 함께 미분 발생 저감 효과를 충분히 얻을 수 있다.
상기한 구성을 갖는 메탈로센 담지 촉매는, 실리카 담체에 대해 전이금속 화합물을 담지시키는 단계(단계 1); 및 상기 전이금속 화합물이 담지된 실리카 담체에 대해, 10 내지 100nm의 평균 입자 크기를 갖는 나노 실리카를 투입하고 혼합하여, 상기 실리카 담체에 나노실리카를 담지시키는 단계(단계 2);를 포함하는 제조방법에 의해 제조될 수 있다.
이하 각 단계 별로 설명하면, 발명의 일 구현예에 따른 메탈로센 담지 촉매 제조를 위한 단계 1은, 실리카 담체에 전이금속 화합물을 담지시키는 단계이다.
이때 상기 실리카 담체 및 전이금속 화합물의 종류 및 함량은 앞서 설명한 바와 같다.
실리카 담체에 대한 전이금속 화합물의 담지는 통상의 방법에 따라 수행될 수 있다. 구체적으로는 실리카 담체를 톨루엔 등의 탄화수소계 용매에 분산시킨 후, 결과로 수득한 분산액에 전이금속 화합물을 투입하고, 40 내지 80℃의 온도에서 반응시킴으로써 수행될 수 있다. 보다 구체적으로는 40℃ 이상, 또는 50℃ 이상이고, 80℃ 이하, 또는 70℃ 이하의 온도에서, 3 시간 이상, 또는 5시간 이상이고, 7시간 이하로 교반하며 반응시킴으로써 수행될 수 있다.
상기 전이금속 화합물은 용액 상으로 투입될 수 있으며, 이때 용매로는 톨루엔 등의 탄화수소계 용매가 사용될 수 있다. 용액 중 전이금속 화합물의 농도는 담지 촉매에서의 전이금속 화합물의 담지량, 및 반응 효율 등을 고려하여 적절히 결정될 수 있다.
한편, 상기 메탈로센 담지 촉매가 조촉매를 더 포함하는 경우에는 상기 전이금속 화합물의 담지 전, 실리카 담체에 대한 조촉매 담지 공정이 수행될 수 있다.
조촉매 담지 공정은, 실리카 담체, 또는 실리카 담체가 분산된 분산액에 조촉매를 투입한 후, 70 내지 100℃의 온도로 가열하며 반응시킴으로써 수행될 수 있다. 보다 구체적으로는 70℃ 이상, 또는 80℃ 이상이고, 100℃ 이하, 또는 100℃ 미만, 또는 90℃ 이하의 온도에서 수행될 수 있다. 또 상기 조촉매 담지 공정은 12시간 이상, 또는 15시간 이상이고, 18시간 이하로 교반하며 반응시킴으로써 수행될 수 있다.
상기 조촉매는 용액 상으로 투입될 수 있으며, 이때 용매로는 톨루엔 등의 탄화수소계 용매가 사용될 수 있다. 용액 중 전이금속 화합물의 농도는 담지 촉매에서의 조촉매의 담지량, 및 반응 시간 등을 고려하여 적절히 결정될 수 있다.
다음으로, 단계 2는, 상기 단계 1에서 제조한, 전이금속 화합물 및 선택적으로 조촉매가 담지된 실리카 담체에 대해, 나노 실리카를 담지시키는 단계이다.
구체적으로는, 상기 단계 1에서 제조한 전이금속 화합물 및 선택적으로 조촉매가 담지된 실리카 담체를, 헥산 등의 지방족 탄화수소계 용매에 분산시킨 후, 나노 실리카를 투입하고 반응시킨다.
상기 나노 실리카 역시 헥산 등의 지방족 탄화수소계 용매에 분산시킨 분산액으로 투입될 수 있다. 이때 분산액 중 나노 실리카의 농도는 메탈로센 담지 촉매에서의 나노 실리카의 담지량, 및 반응 효율 등을 고려하여 적절히 결정될 수 있다.
상기 반응은 상온(room temperature), 구체적으로는 15℃ 이상, 또는 18℃ 이상이고, 28℃ 이하, 또는 25℃ 이하에서 수행될 수 있으며, 이때 반응 효율을 높이기 위하여 교반 공정이 수행될 수 있다.
상술한 제조방법으로 제조되는 메탈로센 담지 촉매는 실리카 담체의 기공 내 메탈로센 화합물 및 선택적으로 조촉매가 담지되어 포함되고, 또 상기 실리카 담체의 표면에는 나노실리카를 포함한다. 이에 따라, 전이금속 화합물의 침출이 방지되고, 또 나노 실리카의 Si-OH에 의해 실리카 담체의 표면에 위치하여 침출 가능성이 높은 전이금속 화합물을 선택적으로 불활성화 시킴으로써, 올레핀계 중합체의 제조시 미분 발생을 억제하고, 결과로서 반응기 파울링을 방지할 수 있다. 이에 따라 제조되는 중합체의 물성 또한 개선될 수 있다.
이에 발명의 또 다른 일 구현예에 따르면 상기한 메탈로센 담지 촉매의 존재 하에, 올레핀 단량체를 중합하는 단계를 포함하는, 올레핀계 중합체의 제조방법을 제공한다.
상기한 메탈로센 담지 촉매는, 올레핀 중합체의 중합 방법에 따라 용매 중에 혼합된 슬러리(slurry) 상태로 사용되거나, 희석된 상태로 사용될 수도 있고, 또는 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다.
용매에 혼합된 슬러리 상태로 사용되거나 희석한 상태로 사용되는 경우, 상기 용매로는 올레핀 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 또는 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 용매는 사용 전 소량의 알킬알루미늄으로 처리함으로써, 촉매 독으로 작용할 수 있는 소량의 물 또는 공기 등을 제거한 후, 사용될 수도 있다.
또, 연속 벌크 중합과 같은 중합 방법이 사용되는 경우 상기 메탈로센 담지 촉매는 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다. 이 경우, 용매에 용해 또는 희석한 상태로 사용하는 경우와 비교하여, 제조되는 올레핀 중합체에 포함되는 휘발성 유기 화합물의 양을 더욱 감소시킬 수 있고, 그 결과로서 휘발성 유기 화합물에 기인하는 냄새 또한 감소시킬 수 있다.
한편, 올레핀 중합체 제조를 위한 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 하나의 올레핀 단량체로 호모 중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다. 다만, 일 구현예의 방법에 따라, 보다 효과적으로 분자량 분포를 조절하기 위하여 슬러리 중합 또는 기상 중합으로 올레핀 단량체를 중합하는 것이 보다 적절하다.
또 상기 올레핀 중합체의 제조 방법은 단일-CSTR 반응기(Single-CSTR Reactor)에서 진행될 수도 있다.
상기 중합 반응기에서는, 예를 들어, 질소와 같은 불활성 기체의 존재 하에 중합이 진행될 수 있다. 상기 불활성 기체는 중합 반응 초기에 촉매의 급격한 반응을 억제함으로써 촉매내에 포함된 전이금속 화합물의 반응 활성을 길게 지속시키는 역할을 할 수 있다.
또, 상기 중합 반응시, 올레핀 중합체의 분자량 및 분자량 분포를 조절하기 위한 목적으로 수소 기체가 사용될 수 있다. 수소 기체는 촉매의 비활성 사이트를 활성화시키고, 체인 이동 반응을 일으켜 분자량을 조절하는 역할을 하는 것으로, 중합 반응시 수소 기체가 더 투입될 경우, 올레핀 단량체 총 부피에 대하여 0.1부피% 이상, 또는 0.12부피% 이상이고, 0.2부피% 이하, 0.18 부피% 이하에 해당하는 양으로 투입될 수 있으며, 또는 올레핀 단량체 총 중량에 대하여 10 내지 1000ppm, 보다 구체적으로는 10ppm 이상, 또는 30ppm 이상, 또는 40ppm 이상이고, 1000ppm 이하, 또는 500ppm 이하, 또는 350ppm 이하의 양으로 투입될 수 있다. 상기한 범위 내의 함량으로 수소 기체를 투입할 경우, 제조되는 중합체의 분자량이 감소함으로써 가공성을 증진시킬 수 있다.
또, 상기 중합 반응시 온도는 70 내지 100℃, 또는 70 내지 90℃가 될 수 있다. 이러한 중합 반응 온도가 지나치게 낮아지면 중합 속도 및 생산성 측면에서 적절하지 않고, 반대로 중합 반응 온도가 필요 이상으로 높아지면 반응기 내 파울링 현상이 유발될 수 있다.
또한, 상기 중합 반응시 최적의 생산성 확보를 위하여 압력을 더 제어할 수도 있다. 구체적으로 상기 압력은 7 내지 9 kg/cm2, 보다 구체적으로는 7 kg/cm2 이상, 또는 8 kg/cm2 이상이고, 9 kg/cm2 이하, 또는 8.5 kg/cm2 이하로 될 수 있다. 상기 중합 반응 압력은 고분자량 과다 생성에 의한 블록킹(blocking) 예방 및 생산성 최적화 측면에서 7kg/cm2 이상이 될 수 있고, 고압 중합 조건하에서 부반응 발생 억제 등을 고려하여 9kg/cm2 이하가 될 수 있다.
그리고, 상기 중합 반응에는 반응 매질 또는 희석제로서 유기 용매가 더 사용될 수 있다. 이러한 유기 용매는 올레핀 단량체의 함량을 고려하여 슬러리상 중합 등이 적절히 수행될 수 있는 정도의 함량으로 사용될 수 있다.
또, 상기 중합 반응시 트리에틸알루미늄과 같은 트리알킬알루미늄이 선택적으로 더 투입될 수 있다.
중합 반응기내에 수분이나 불순물이 존재하면 촉매의 일부가 분해(decomposition)되게 되는데, 상기한 트리알킬알루미늄은 반응기 내에 존재하는 수분이나 불순물 또는 단량체에 포함된 수분을 사전에 잡아내는 scavenger 역할을 하기 때문에, 제조에 사용되는 촉매의 활성을 극대화할 수 있으며, 그 결과로서 우수한 물성, 특히 좁은 분자량 분포를 갖는 올레핀 중합체를 보다 효율 좋게 제조할 수 있다. 구체적으로 상기 트리알킬알루미늄에 있어서, 알킬은 앞서 정의한 바와 같으며, 구체적으로는 C1-20의 알킬이고, 보다 구체적으로 메틸, 에틸, 이소부틸 등과 같은 C1-6의 직쇄 또는 분지쇄 알킬일 수 있다.
또, 상기 트리알킬알루미늄은 상기 올레핀 단량체 100중량부에 대하여 0.1 내지 10중량부로 투입될 수 있으며, 보다 구체적으로는 0.1중량부 이상, 또는 0.3중량부 이상이고, 10중량부 이하, 또는 5중량부 이하, 또는 1중량부 이하의 양으로 투입될 수 있다. 이러한 함량 범위의 트리알킬알루미늄의 존재 하에 중합 반응시, 우수한 강도 특성을 갖는 올레핀 중합체를 보다 용이하게 제조할 수 있다.
그리고, 상기 올레핀 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.
상기 올레핀 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디시클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다.
상술한 메탈로센 담지 촉매의 사용 및 이에 따른 중합체의 물성 제어 및 최적화, 그리고 미분 발생 억제 효과의 우수함을 고려할 때, 발명의 일 구현예에 따른 제조방법에 있어서 상기 올레핀 단량체는 구체적으로 프로필렌일 수 있다.
상기한 제조방법에 의해 제조되는 올레핀 중합체는, 올레핀 중합체 총 중량 기준, 입자 크기 75㎛ 이하의 미분 함량이 2중량% 이하, 또는 1.6중량% 이하, 또는 1중량% 이하로 매우 낮다.
이에 따라 상기 올레핀 중합체를 이용한 성형 및 가공시 미분 입자들이 정전기적 문제로 인해 분급 기기 등에 부착하여 분급 효율을 감소시키거나, 미분 날림 등의 작업 환경을 어렵게 하는 등의 문제가 없다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다.
이하 실시예 및 비교예에서 사용한 실리카 담체 및 나노 실리카의 물성은 하기와 같은 방법으로 측정하였다:
(1) 실리카 담체의 BET 비표면적: BET 법에 따라 비표면적 분석기 BELSORP-max (BEL Japan Inc.사제)를 이용하여 77K에서의 질소 가스 흡착/탈착 분석을 통해 측정하였다.
(2) 실리카 담체의 평균 입자 크기(D50): 레이저 회절 분석을 통해 측정하였으며, 구체적으로는 실리카 담체 분말을 분산매로서 에탄올 중에 분산시킨 후, Microtrac사의 Microtrac S3500에 도입하고, 실리카 담체 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입자 크기 분포를 구하고, 입자 크기에 따른 입자 부피 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하여 실리카 담체의 평균 입자 크기(D50)로 나타내었다.
(3) 실리카 담체의 평균 기공 크기: 비표면적 분석기 BELSORP-max (BEL Japan Inc.사제)를 이용하여 77K에서의 질소 가스 흡착/탈착 등온선을 구하고, 이를 BJH(Barrett-Joyner-Halenda) 플롯(plot)하여 측정하였다.
(4) 나노 실리카의 평균 입자 크기(D50): 레이저 회절 분석을 통해 측정하였으며, 구체적으로는 나노 실리카 입자를 분산매로서 에탄올 중에 분산시킨 후, Marvern사제의 레이저 회절 입도 측정 장치인 Zetasizer Nano ZS에 도입하여 나노 실리카 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입자 크기 분포를 구하고, 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하여 나노 실리카의 평균 입자 크기(D50)로 나타내었다.
<담지 촉매의 제조>
실시예 1-1
이중 자켓 반응기 내부를 충분히 아르곤(Ar) 퍼징(purging)한 후에, 50ml 톨루엔을 넣고 온도를 30℃로 설정하였다. 상기 반응기에 실리카 담체를 10g 넣고 충분히 교반하였다. 이때 상기 실리카 담체의 BET 비표면적이 299 m2/g이고, 평균 입자 크기(D50)가 37㎛, 그리고 평균 기공 크기가 16.5nm이었으며, 측정 방법은 상기에서 설명한 바와 같다.
여기에 10% 농도의 MAO 용액 (10mmol/g·SiO2, 용매: 톨루엔)을 천천히 투입한 후, 90℃에서 15시간 교반하였다. 상온으로 식힌 후, settling이 이루어지면 상층부는 decanting하고, 잔류물은 40ml 톨루엔으로 세척하였다. 세척한 수득물을, 디에틸실란디일 비스(2-메틸-4-(4'-터트-부틸페닐)인데닐)지르코늄 디클로라이드 (diethylsilanediyl bis(2-methyl-4-(4'-tert-butylphenyl)indenyl)zirconium dichloride) 0.7g (90 μmol/gSiO2)를 14ml 톨루엔에 용해시킨 용액에 투입하고, 50℃에서 5시간 교반하였다. 결과의 반응물을 상온으로 식히고, settling이 이루어지면 상층부는 decanting 하고, 잔류물은 40ml 톨루엔으로 2회 세척한 후, 40ml 헥산을 넣고 교반하였다. 결과의 반응물에, 나노 실리카(평균 입자 크기(D50): 약 50nm) 0.5g을 14ml 헥산에 희석하여 투입하고, 상온에서 30분간 교반하였다. Settling이 이루어지면 상층부는 decanting 하고, 잔류물은 진공 건조하여 메탈로센 담지 촉매 12.5g을 수득하였다.
Figure PCTKR2021013338-appb-img-000004
(1-1)
실시예 1-2 및 1-3
하기 표 1에 기재된 배합으로 반응물들을 사용하는 것을 제외하고는, 상기 실시예 1-1에서와 동일한 방법으로 수행하여 메탈로센 담지 촉매를 제조하였다.
실시예 1-4
실시예 1-1에서의 전이금속 화합물 (1-1) 대신에 하기 구조의 rac-[디메틸실란디일비스(2-메틸-4-(1-나프틸)인데닐)] 지르코늄 디클로라이드(1-2)를 사용하는 것을 제외하고는 상기 실시예 1-1 에서와 동일한 방법으로 수행하여 메탈로센 담지 촉매를 제조하였다.
Figure PCTKR2021013338-appb-img-000005
(1-2)
비교예 1-1 내지 1-4
하기 표 1에 기재된 배합으로 반응물들을 사용하는 것을 제외하고는, 상기 실시예 1-1에서와 동일한 방법으로 수행하여 메탈로센 담지 촉매를 제조하였다.
다만, 비교예 1-3 및 1-4에서는 나노 실리카 대신에 대전방지제로서 Atmer™ 163를 하기 표 1에 기재된 함량으로 사용되었다.
비교예 1-5
상기 실시예 1-1에서의 메탈로센 담지 촉매의 제조시 나노 실리카 대신에, 평균 입자 크기(D50)가 약 150nm인 나노 실리카를 사용하는 것을 제외하고는 동일한 방법으로 실시하여 메탈로센 담지 촉매를 제조하였다.
MAO
(mmol/g SiO2)
전이금속 화합물
(μmol/g SiO2)
대전방지제
(중량부 a))
담체
(g)
나노실리카
(중량부 a))
나노 실리카의 평균 입자 크기(D50)
(nm)
실시예 1-1 10 90 0 실리카
(10)
5 50
실시예 1-2 10 90 0 실리카
(10)
10 50
실시예 1-3 10 90 0 실리카
(10)
10 100
실시예 1-4 10 90b) 0 실리카
(10)
10 50
비교예 1-1 10 90 0 실리카
(10)
0 -
비교예 1-2 10 50 0 실리카
(10)
0 -
비교예 1-3 10 90 2 실리카
(10)
0 -
비교예 1-4 10 90 10 실리카
(10)
0 -
비교예 1-5 10 90 0 실리카
(10)
10 150
상기 표 1에서, a)의 '중량부'는 실리카 담체 100중량부를 기준으로 한 상대적인 중량비이다.
b)의 실시예 1-4에서 사용한 전이금속 화합물은 rac-[디메틸실란디일비스(2-메틸-4-(1-나프틸)인데닐)] 지르코늄 디클로라이드임
<올레핀 중합체의 제조>
실시예 2-1
2L 스테인레스 오토클레이브 반응기를 70℃에서 진공 건조한 후 냉각하고, 상온에서 트리에틸알루미늄 3ml를 넣고, 이후 수소 331ppm 및 프로필렌 770g을 순차 투입하였다. 이후 10분 동안 교반하고, 상기 실시예 1-1에서 제조한 담지 촉매 25mg을 헥산 20ml에 희석시키고 Ar 압력하에 반응기로 투입하였다. 이후 반응기 온도를 70℃까지 승온한 후, 1시간 동안 중합하였다. 반응 종료 후 미반응 프로필렌은 vent하고, 호모 폴리프로필렌을 제조하였다.
실시예 2-2 내지 2-4, 및 비교예 2-1 내지 2-5
상기 실시예 2-1에서, 실시예 1-1에서 제조한 담지 촉매 대신에 실시예 1-2 내지 1-4, 및 비교예 1-1 내지 1-5에서 제조한 담지 촉매를 각각 사용하는 것을 제외하고는, 상기 실시예 2-1에서와 동일한 방법으로 수행하여 호모 폴리프로필렌을 제조하였다.
실험예 1
상기 실시예 1-1 및 비교예 1-1에서 제조한 담지 촉매를 각각 SEM으로 관찰하고, 그 결과를 도 1 및 도 2에 나타내었다.
도 1에 나타난 바와 같이, 실시예 1-1에서 제조한 담지 촉매의 경우, 실리카 담체의 표면에 나노 사이즈의 실리카가 존재하고 있음을 확인할 수 있다.
한편, 도 2에 나타난 바와 같이 비교예 1-1에서 제조한 담지 촉매는 열린 기공을 포함하고, 또 촉매 물질이 담체 표면에도 존재하였다.
실험예 2
상기 실시예 및 비교예에 따른 호모 폴리프로필렌의 제조시, 사용된 촉매의 활성 및 제조된 호모 폴리프로필렌 내 미분 함량을 각각 측정하고, 하기 표 2에 나타내었다.
(1)촉매 활성
단위 시간(hr)을 기준으로 사용된 담지 촉매 중량(g)당 생성된 중합체의 중량(kg PP)의 비로 계산하였다.
(2) 미분 함량
Test Sieve를 이용하여 실시예 및 비교예에서 제조한 호모 폴리프로필렌 내 포함된 입자 크기 75㎛ 이하의 미분 함량을 측정하였다. 수득된 결과로부터 호모 폴리프로필렌 총 중량을 기준으로 한 75㎛ 이하 미분 함량(중량%)을 확인하였다.
촉매활성
(gPP/mg Cat·hr)
미분 함량
(중량%)
실시예 2-1 16.2 1.6
실시예 2-2 15.8 <0.5
실시예 2-3 16.0 0.9
실시예 2-4 13.5 <0.5
비교예 2-1 16.7 4.3
비교예 2-2 10.5 2.1
비교예 2-3 12.1 2.4
비교예 2-4 6.8 0.8
비교예 2-5 16.4 2.9
비교예 2-1 및 2-2의 결과로부터, 메탈로센 담지 촉매 내 전이금속 화합물의 함량이 증가할수록 촉매 활성이 증가하지만, 동시에 미분 발생량도 크게 증가함을 확인하였다. 또 이를 방지하지 위해 종래와 같이 대전방지제를 투입하는 경우, 비교예 2-3 및 2-4의 결과로부터 알 수 있듯이 미분 발생량은 감소하지만, 동시에 촉매 활성이 저하되었으며, 대전방지제의 투입량이 증가할수록 이 같은 경향은 심화되었다.
반면 대전방지제 대신에 나노 실리카를 투입하는 경우, 대전방지제의 사용량 대비 훨씬 적은 양의 나노 실리카 투입으로도 미분 발생량을 크게 감소시킬 수 있으며, 촉매 활성의 저하 또한 대전방지제를 사용하는 경우에 비해 현저히 감소되었다. 구체적으로, 실시예 2-1 내지 2-4에서 사용된 메탈로센 담지 촉매는, 비교예, 특히 종래 대전방지제를 사용한 비교예 2-3 및 2-4와 비교하여, 미분 발생량 감소 효과가 크면서도 촉매 활성의 저하 정도는 작았다.
또, 나노 실리카의 함량이 증가할수록, 그리고 나노 실리카의 평균 입자 크기가 작아질수록 미분 발생량 감소 효과가 증가하였으며, 나노 실리카의 평균 입자 크기가 최적 범위를 벗어나 지나치게 클 경우 미분 발생량 감소 효과가 크게 저하됨을 확인하였다. 이로부터 나노 실리카의 평균 입자 크기, 더 나아가 그 함량을 최적화함으로써 우수한 촉매 활성을 유지하면서도 미분 발생량을 크게 감소시킬 수 있음을 알 수 있다.
이 같은 결과로부터 본 발명에 따른 메탈로센 담지 촉매는 우수한 촉매활성을 나타내면서도 중합체 제조시 미분 함량을 크게 감소시킬 수 있음을 알 수 있다.

Claims (15)

  1. 기공을 포함하는 실리카 담체;
    상기 실리카 담체에 담지된 전이금속 화합물; 및
    상기 실리카 담체의 표면에 위치하며, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 10 내지 100nm의 평균 입자 크기를 갖는 나노 실리카;를 포함하는, 메탈로센 담지 촉매.
  2. 제1항에 있어서,
    상기 실리카 담체는, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 부피 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 평균 입자 크기가 10 내지 50㎛이고, BET 법에 따라 비표면적 분석기를 이용하여 77K에서의 질소 가스 흡착/탈착 분석을 통해 측정한 BET 비표면적이 100 내지 500 m2/g인, 메탈로센 담지 촉매.
  3. 제1항에 있어서,
    상기 실리카 담체는, 비표면적 분석기를 이용하여 77K에서의 질소 가스의 흡착/탈착 등온선을 구하고, 이를 BJH 플롯하여 측정한 평균 기공 크기가 1 내지 30nm인, 메탈로센 담지 촉매.
  4. 제1항에 있어서,
    상기 실리카 담체 내 기공의 평균 기공 크기가 상기 나노 실리카의 평균 입자 크기 보다 작은, 메탈로센 담지 촉매.
  5. 제1항에 있어서,
    상기 나노 실리카는 실리카 담체 100중량부에 대하여 1 내지 10중량부로 포함되는, 메탈로센 담지 촉매.
  6. 제1항에 있어서,
    상기 전이금속 화합물은 하기 화학식 1로 표시되는, 메탈로센 담지 촉매:
    [화학식 1]
    Figure PCTKR2021013338-appb-img-000006
    상기 화학식 1에서,
    A는 탄소, 실리콘 또는 게르마늄이고,
    X1 및 X2는 각각 독립적으로 할로겐이고,
    R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환되거나 또는 비치환된 C6-20 아릴이고,
    R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
    R9 및 R10은 서로 동일하며, C1-20 알킬이다.
  7. 제6항에 있어서,
    상기 A는 실리콘이고,
    상기 R1 및 R5는 각각 독립적으로 페닐 또는 나프틸기이고, 상기 페닐 또는 나프틸기는 C3-6 분지쇄 알킬기로 치환되거나 또는 비치환되며,
    상기 R9 및 R10는 동일하며, C1-4 직쇄상 알킬기인, 메탈로센 담지 촉매.
  8. 제6항에 있어서,
    상기 전이금속 화합물은 하기 화합물 중 어느 하나인, 메탈로센 담지 촉매:
    Figure PCTKR2021013338-appb-img-000007
    Figure PCTKR2021013338-appb-img-000008
    .
  9. 제1항에 있어서,
    상기 메탈로센 담지 촉매는, 하기 화학식 2, 화학식 3 및 화학식 4로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매를 더 포함하는, 메탈로센 담지 촉매:
    [화학식 2]
    -[Al(R11)-O]m-
    상기 화학식 2에서,
    R11은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C1-20의 탄화수소; 또는 할로겐으로 치환된 C1-20의 탄화수소이고;
    m은 2 이상의 정수이며;
    [화학식 3]
    J(R12)3
    상기 화학식 3에서,
    R12는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C1-20의 탄화수소; 또는 할로겐으로 치환된 C1-20의 탄화수소이고;
    J는 알루미늄 또는 보론이며;
    [화학식 4]
    [E-H]+[ZQ4]- 또는 [E]+[ZQ4]-
    상기 화학식 4에서,
    E는 중성 또는 양이온성 루이스 염기이고;
    H는 수소 원자이며;
    Z는 13족 원소이고;
    Q는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C1-20의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, C6-20의 아릴기 또는 C1-20의 알킬기이다.
  10. 제1항에 있어서,
    상기 메탈로센 담지 촉매는, C1-20의 알킬알루미녹산계 화합물을 조촉매로서 더 포함하는, 메탈로센 담지 촉매.
  11. 실리카 담체에 대해 전이금속 화합물을 담지시키는 단계; 및
    상기 전이금속 화합물이 담지된 실리카 담체에 대해, 레이저 회절 분석에 의한 입자 크기 분포 측정시 입자 크기에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 평균 입자 크기라 할 때, 10 내지 100nm의 평균 입자 크기를 갖는 나노 실리카를 투입하고 혼합하여, 상기 실리카 담체에 나노실리카를 담지시키는 단계;를 포함하는,
    제1항에 따른 메탈로센 담지 촉매의 제조방법.
  12. 제11항에 있어서,
    상기 실리카 담체에 대한 전이금속 화합물의 담지 전, 실리카 담체에 대해 조촉매를 투입하고, 70 내지 100℃의 온도로 가열하여 조촉매를 담지시키는 단계;를 더 포함하는, 메탈로센 담지 촉매의 제조방법
  13. 제1항에 따른 메탈로센 담지 촉매의 존재 하에, 올레핀 단량체를 중합하는 단계를 포함하는, 올레핀계 중합체의 제조방법.
  14. 제13항에 있어서,
    상기 올레핀 단량체는 프로필렌인, 올레핀계 중합체의 제조방법.
  15. 제13항에 있어서,
    상기 올레핀계 중합체는, 올레핀 중합체 총 중량 기준 입자 크기 75㎛ 이하의 미분 함량이 2중량% 이하인, 올레핀계 중합체의 제조방법.
PCT/KR2021/013338 2020-10-16 2021-09-29 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 WO2022080713A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180006248.7A CN114729075B (zh) 2020-10-16 2021-09-29 茂金属负载的催化剂和使用其制备烯烃聚合物的方法
US17/773,029 US20220403062A1 (en) 2020-10-16 2021-09-29 Metallocene supported catalyst and method for preparing olefine polymer using the same
EP21878747.1A EP4032917A4 (en) 2020-10-16 2021-09-29 SUPPORTED METALLOCENE CATALYST AND METHOD FOR PREPARING AN OLEFIN POLYMER USING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0134651 2020-10-16
KR20200134651 2020-10-16
KR10-2021-0128298 2021-09-28
KR1020210128298A KR102718975B1 (ko) 2020-10-16 2021-09-28 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법

Publications (1)

Publication Number Publication Date
WO2022080713A1 true WO2022080713A1 (ko) 2022-04-21

Family

ID=81209303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013338 WO2022080713A1 (ko) 2020-10-16 2021-09-29 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법

Country Status (4)

Country Link
US (1) US20220403062A1 (ko)
EP (1) EP4032917A4 (ko)
CN (1) CN114729075B (ko)
WO (1) WO2022080713A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002297A1 (en) * 1995-07-06 1997-01-23 Exxon Chemical Patents Inc. Method for producing prepolymerized, supported metallocene catalyst systems
KR20000023611A (ko) * 1996-07-11 2000-04-25 데니스 피. 산티니 올레핀 중합 반응에 사용되는 지지된 메탈로센 촉매
US20030054952A1 (en) * 2001-04-05 2003-03-20 Japan Polychem Corporation Component of catalyst for polymerizing olefin, catalyst for polymerizing olefin and process for polymerizing olefin
KR20110110350A (ko) * 2009-01-29 2011-10-06 더블유.알. 그레이스 앤드 캄파니-콘. 실리카-클래딩된 알루미나 지지체 상의 촉매
KR20170114056A (ko) * 2016-04-01 2017-10-13 주식회사 레이크머티리얼즈 올레핀 중합용 메탈로센 담지촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR20200134651A (ko) 2019-05-23 2020-12-02 동명대학교산학협력단 실내 화재예방 알림 시스템 및 그 방법
KR20210128298A (ko) 2020-04-16 2021-10-26 서정수 투명창 기능의 마스크

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211433A1 (de) * 2002-03-15 2003-10-02 Merck Patent Gmbh Katalysatorträger
CN1781997A (zh) * 2004-12-02 2006-06-07 北京化工大学 一种新型SiO2载体材料及在聚烯烃催化剂中的应用及其制备方法
US20060281879A1 (en) * 2005-06-13 2006-12-14 Univation Technologies, Llc Catalyst compositions comprising small silica support materials and methods of use in polymerization reactions
US10280283B2 (en) * 2012-12-28 2019-05-07 Univation Technologies, Llc Supported catalyst with improved flowability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002297A1 (en) * 1995-07-06 1997-01-23 Exxon Chemical Patents Inc. Method for producing prepolymerized, supported metallocene catalyst systems
KR20000023611A (ko) * 1996-07-11 2000-04-25 데니스 피. 산티니 올레핀 중합 반응에 사용되는 지지된 메탈로센 촉매
US20030054952A1 (en) * 2001-04-05 2003-03-20 Japan Polychem Corporation Component of catalyst for polymerizing olefin, catalyst for polymerizing olefin and process for polymerizing olefin
KR20110110350A (ko) * 2009-01-29 2011-10-06 더블유.알. 그레이스 앤드 캄파니-콘. 실리카-클래딩된 알루미나 지지체 상의 촉매
KR20170114056A (ko) * 2016-04-01 2017-10-13 주식회사 레이크머티리얼즈 올레핀 중합용 메탈로센 담지촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR20200134651A (ko) 2019-05-23 2020-12-02 동명대학교산학협력단 실내 화재예방 알림 시스템 및 그 방법
KR20210128298A (ko) 2020-04-16 2021-10-26 서정수 투명창 기능의 마스크

Also Published As

Publication number Publication date
EP4032917A4 (en) 2023-01-04
US20220403062A1 (en) 2022-12-22
CN114729075A (zh) 2022-07-08
CN114729075B (zh) 2023-09-08
EP4032917A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
EP2545084A2 (en) Supported metallocene catalyst, method for preparing the same and method for preparing polyolefin using the same
WO2015046930A1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2019038605A1 (en) NEW TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING HOMOPOLYMER OR ETHYLENE COPOLYMER AND ALPHA-OLEFIN USING THE SAME
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2021111282A1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조방법
WO2022080713A1 (ko) 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022071744A1 (ko) 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2021086027A1 (ko) 메탈로센 담지 촉매의 제조방법 및 메탈로센 담지 촉매
WO2018122693A1 (ko) 신규한 시클로펜타[B]티오펜일 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2022114910A1 (ko) 메탈로센 담지 촉매의 제조방법
WO2022035132A1 (ko) 메탈로센 담지 촉매의 제조 방법, 메탈로센 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2024090868A1 (ko) 내열성이 우수한 폴리에틸렌 수지
WO2024128572A1 (ko) 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
WO2019212306A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2019182290A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2021118103A1 (ko) 폴리올레핀

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021878747

Country of ref document: EP

Effective date: 20220420

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE