WO2022080589A1 - 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법 - Google Patents

야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법 Download PDF

Info

Publication number
WO2022080589A1
WO2022080589A1 PCT/KR2020/018775 KR2020018775W WO2022080589A1 WO 2022080589 A1 WO2022080589 A1 WO 2022080589A1 KR 2020018775 W KR2020018775 W KR 2020018775W WO 2022080589 A1 WO2022080589 A1 WO 2022080589A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall panel
negative pressure
panel
pressure isolation
isolation ward
Prior art date
Application number
PCT/KR2020/018775
Other languages
English (en)
French (fr)
Inventor
박종진
Original Assignee
박종진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종진 filed Critical 박종진
Priority to US17/630,357 priority Critical patent/US20220370274A1/en
Publication of WO2022080589A1 publication Critical patent/WO2022080589A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G10/00Treatment rooms or enclosures for medical purposes
    • A61G10/02Treatment rooms or enclosures for medical purposes with artificial climate; with means to maintain a desired pressure, e.g. for germ-free rooms
    • A61G10/023Rooms for the treatment of patients at over- or under-pressure or at a variable pressure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/12Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
    • E04H1/1277Shelters for decontamination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G10/00Treatment rooms or enclosures for medical purposes
    • A61G10/005Isolators, i.e. enclosures generally comprising flexible walls for maintaining a germ-free environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G10/00Treatment rooms or enclosures for medical purposes
    • A61G10/02Treatment rooms or enclosures for medical purposes with artificial climate; with means to maintain a desired pressure, e.g. for germ-free rooms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G12/00Accommodation for nursing, e.g. in hospitals, not covered by groups A61G1/00 - A61G11/00, e.g. trolleys for transport of medicaments or food; Prescription lists
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/34315Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts
    • E04B1/34321Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts mainly constituted by panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B1/6108Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/12Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
    • E04H1/1205Small buildings erected in the open air
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H3/00Buildings or groups of buildings for public or similar purposes; Institutions, e.g. infirmaries or prisons
    • E04H3/08Hospitals, infirmaries, or the like; Schools; Prisons
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/16Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against adverse conditions, e.g. extreme climate, pests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/70General characteristics of devices with special adaptations, e.g. for safety or comfort
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2210/00Devices for specific treatment or diagnosis
    • A61G2210/30Devices for specific treatment or diagnosis for intensive care
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements
    • E04B2001/389Brackets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B2001/6195Connections for building structures in general of slab-shaped building elements with each other the slabs being connected at an angle, e.g. forming a corner
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2002/7498Partitions for clean rooms

Definitions

  • the present invention relates to a field-type modular negative pressure isolation ward system, and more particularly, the main facilities required for building a negative pressure isolation ward within the legal regulations are manufactured in a module structure in a factory, and the facilities of the module structure are usually used. It is stored in a logistics base, etc., and in an emergency, it is installed on the outdoor ground such as a parking lot, playground, vacant lot, and then used as a negative pressure isolation ward.
  • a field-type modular negative pressure isolation ward system that can be quickly constructed and dismantled.
  • respiratory infectious diseases such as MERS, SARS, anthrax, and Ebola are diseases that require immediate isolation measures because the transmission route is not easy to predict and the spread is very fast.
  • the number of negative pressure isolation wards in Korea is about 2,000, including single and multi-person rooms.
  • the problem of facility expansion is being caused by the situation in which the demand is absolutely insufficient.
  • the negative pressure isolation ward keeps the air pressure in the ward lower than the atmospheric pressure in receiving and treating patients separately from the outside and general patients for reasons such as preventing the spread of infectious diseases, so that air or aerosols or droplets contained in the ward are treated.
  • the air in the ward is exhausted to the outside through an exhaust facility with a HEPA filter (Highly Efficient Particulate Air filter) applied to prevent pathogens from passing through.
  • HEPA filter Highly Efficient Particulate Air filter
  • the front room which is a space where medical staff wearing protective suits can disinfect, should be placed, and the absolute value of negative pressure should be maintained in the order of toilet -> hospital room -> front room -> hallway, and the door is opened.
  • the airflow direction is planned so that the air from the bathroom does not flow into the ward or the anterior chamber even in the closed state, and the air flow is designed so that the negative pressure state can be maintained.
  • the basic structure of a typical negative pressure isolation ward is arranged in order to increase the absolute value of negative pressure in the order of the front room, ward, and toilet from the hallway.
  • the air supply unit is located in the area adjacent to the
  • the FFU Fluorescence Filter Unit
  • the FFU Fluorescence Filter Unit
  • the FFU Fluorescence Filter Unit
  • dust collection and adsorption
  • Negative pressure isolation wards are Corona 19, Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrom (SARS), Avian Influenza Human Infection (AIHI), Novel swine -origin influenza A (H1N1)) and Ebola hemorrhagic fever are used to block the spread of new infectious diseases.
  • MERS Middle East Respiratory Syndrome
  • SARS Severe Acute Respiratory Syndrom
  • AIHI Avian Influenza Human Infection
  • H1N1 Novel swine -origin influenza A
  • Ebola hemorrhagic fever are used to block the spread of new infectious diseases.
  • the bacterial contamination prevention system of the bio clean room of the Republic of Korea Utility Model Registration No. 20-0406536 (registered on Jan. 12, 2006) has an air differential pressure sensor, a differential pressure device that controls the air differential pressure in the isolation room, and a It includes a control unit, and uses an air differential pressure device used in the isolation room where the inlet pipe and the outlet pipe are formed to isolate infectious disease patients and to introduce clean air.
  • the conventional negative pressure isolation ward has a serious problem that it is difficult to respond quickly when a new infectious disease spreads, because it takes a lot of money and time to install it. There is a risk of additional spread of infection, and although it is a principle that patients with new infectious diseases should use one room per person, there is a problem that it is often operated as a room for 2 to 6 people due to cost problems.
  • the present invention was invented to improve the above problems, and the first object to be solved by the present invention is to manufacture the main facilities necessary for building a negative pressure isolation ward within the legal regulations in a module method in a factory,
  • the module facility is stored in a distribution base, etc., and in case of an emergency, it is installed on the outdoor ground such as a parking lot, playground, vacant lot, etc., and then used as a negative pressure isolation ward.
  • the purpose is to provide a field type modular negative pressure isolation ward system that can be used repeatedly regardless of the number of times of use and rapid construction and dismantling by using the method of re-storing it, and the construction method of the field type modular negative pressure isolation ward system there is.
  • the second object of the present invention is to establish a negative pressure ward for patients with a new infectious disease outside the ward at an early stage so that it is possible to quickly and efficiently isolate and treat and observe a confirmed infection and a suspected infection, and the negative pressure isolation ward is relatively small. It is to provide a field type modular negative pressure isolation ward system that is highly economical because it can be built at a very low cost and a construction method of the field type modular negative pressure isolation ward system.
  • a third object of the present invention is to provide a field type modular negative pressure isolation ward system without fear of additional spread infection due to indoor transmission in the same ward, and a construction method of the field type modular negative pressure isolation ward system.
  • the fourth object of the present invention is a field type modular negative pressure isolation ward system having excellent maintainability due to easy access to the machine room in which the Hepa Filter Unit (HFU) is accommodated even though it is mobile, and the construction method of the field type modular negative pressure isolation ward system is to provide
  • a fifth object of the present invention is a field type modular negative pressure isolation ward system and its field type modular negative pressure isolation ward system that can fundamentally block the risk of additional infection due to patient transport because it is possible to move the infected person using a trailer while in isolation It is to provide a construction method of a hospital room system.
  • the sixth object of the present invention is to provide a field type modular negative pressure isolation ward system that isolates the drainage facility from the outside even though it is a mobile structure and pursues energy-saving energy independence, and a construction method of the field type modular negative pressure isolation ward system it is for
  • the seventh object of the present invention is to provide a field type modular negative pressure isolation ward system that is easy to apply the principle of one room per person to a confirmed or suspected infection with a new infectious disease, and a method of constructing the field type modular negative pressure isolation ward system is to provide
  • an inner wall panel and an outer wall panel are installed between the floor panel and the ceiling panel to partition a plurality of rooms. and wherein the floor panel, the ceiling panel, the inner wall panel, and the outer wall panel are detachably assembled as a module.
  • the plurality of rooms include an entire room, a negative pressure isolation ward, a toilet, and a machine room, or an entire room for a hallway, a shower and toilet for medical personnel, a waste treatment room, a utility and equipment storage room, a negative pressure hallway, and a video conference room, It may include a negative pressure isolation ward, an entire room for a ward, a toilet for a patient, and a machine room.
  • the bottom panel may include a plurality of base plates assembled adjacent to each other in a horizontal direction; a plurality of bottom plates installed on the base plate and assembled adjacent to each other in a horizontal direction; and a lower end fixing plate installed between the base plate and the bottom plate, and having a fixing groove bent at an edge portion for fitting and coupling the lower ends of the inner wall panel and the outer wall panel; includes
  • the ceiling panel is located on the uppermost surface, a plurality of roof plates are assembled adjacent to each other in the horizontal direction; a plurality of ceiling plates installed under the roof plate and assembled adjacent to each other in a horizontal direction; and an upper fixing plate installed between the roof plate and the ceiling plate, and having a fixing groove bent at an edge portion for fitting and coupling the upper ends of the inner wall panel and the outer wall panel; includes
  • a plurality of reinforcing wall panels may be installed on the outer surface of the outer wall panel by a wall panel reinforcing connection means.
  • the wall panel reinforcement connection means is a connection block which is fixedly installed on any one of both outer surfaces of the reinforcement wall panel; a "C"-shaped connection bracket that is fixedly installed on the other of both outer surfaces of the reinforcing wall panel so as to be coupled to the connection block; and a fastening bolt that passes through the "c"-shaped connecting bracket and the connecting block and fastens to each other in a state in which the connecting block is inserted in the engaging groove of the "c"-shaped connecting bracket; includes
  • supply and exhaust facilities may be alternately arranged in a zigzag form on the upper portion of the ceiling panel.
  • a sealing material may be installed in a connection portion between the inner wall panels, a connection portion between the outer wall panels, and a connection portion between the inner wall panel and the outer wall panel.
  • the field type modular negative pressure isolation hospital room system further includes a ceiling and wall panel connection bracket for assembling the inner wall panel and the outer wall panel under the ceiling panel.
  • the ceiling and wall panel connection bracket includes a first channel portion for fitting the upper end of the external wall panel; a coupling protrusion extending on an upper surface of the first channel part to be coupled into the coupling hole of the ceiling panel; and a second channel part formed orthogonal to the first channel part so that the upper end of the inner wall panel is fitted.
  • the ceiling and wall panel connection bracket is characterized in that the "T" shape.
  • the construction method of the field type modular negative pressure isolation hospital room system includes the steps of flattening the floor surface; installing a base truss on the floor surface; installing a floor panel on the base truss; combining the lower ends of the inner wall panel and the outer wall panel in a fixing groove formed in the lower end fixing plate of the floor panel, and dividing the plurality of rooms by vertically installing the inner wall panel and the outer wall panel; and a ceiling panel equipped with a supply/exhaust system and a HEPA filter installed on the inner wall panel and the outer wall panel, the inner wall panel and the outer wall panel in a fixing groove formed in a fixing plate at the upper end of the ceiling panel combining the upper end of the; includes
  • the construction method of the field-type modular negative pressure isolation hospital room system includes the steps of flattening the floor surface; installing a base truss on the floor surface; installing a floor panel on the base truss; combining the lower ends of the inner wall panel and the outer wall panel in a fixing groove formed in the lower end fixing plate of the floor panel, and dividing the plurality of rooms by vertically installing the inner wall panel and the outer wall panel; and a ceiling panel equipped with a supply/exhaust system and a HEPA filter is installed on the inner wall panel and the outer wall panel, and the upper end of the inner wall panel and the outer wall panel is installed using a ceiling and wall panel connection bracket. bonding; includes
  • a plurality of rooms are partitioned by assembling the floor panel, the ceiling panel, the inner wall panel, and the outer wall panel, the floor panel, the ceiling panel, the inner wall panel, and the outer wall panel
  • assembly and separation can be repeatedly performed.
  • the present invention has the following effects.
  • FIG. 1 is a plan view showing a field type modular negative pressure isolation ward system according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a part of a field-type modular negative pressure isolation hospital room system according to a first embodiment of the present invention, showing the inside of the room after removing the ceiling panel;
  • FIG. 3 is a plan view showing the types of coatings coated on the base plate surface of the floor panel in the field type modular negative pressure isolation ward system according to the first embodiment of the present invention
  • Figure 4 is a combined perspective view showing a part of the field type modular negative pressure isolation ward system according to the first embodiment of the present invention
  • 5 to 8 are exploded perspective views showing a part of a field-type modular negative pressure isolation ward system according to a first embodiment of the present invention
  • FIG. 9 is a front view showing a part of the field type modular negative pressure isolation ward system according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing a part of the field type modular negative pressure isolation ward system according to the first embodiment of the present invention.
  • FIG. 11 is a perspective view showing a wall panel reinforcement connection means in the field type modular negative pressure isolation hospital room system according to the first embodiment of the present invention
  • FIG. 12 is a field-type modular negative pressure isolation ward system according to the first embodiment of the present invention, a connection part between the inner wall panels, a connection part between the external wall panels, and a connection part between the inner wall panel and the external wall panel.
  • FIG. 13 and 14 are perspective views illustrating a ceiling and wall panel connection bracket installed under the ceiling panel in a field-type modular negative pressure isolation hospital room system according to a second embodiment of the present invention
  • FIG. 15 is a bottom perspective view showing a ceiling and wall panel connection bracket in a field-type modular negative pressure isolation hospital room system according to a second embodiment of the present invention.
  • 16 is a block diagram illustrating a method for constructing a field-type modular negative pressure isolation ward system according to the first embodiment of the present invention
  • FIG. 17 is a block diagram illustrating a method for constructing a field-type modular negative pressure isolation ward system according to a second embodiment of the present invention.
  • each component does not fully reflect the actual size.
  • the same or corresponding elements are assigned the same reference numerals.
  • FIG. 1 is a plan view showing a field type modular negative pressure isolation ward system according to a first embodiment of the present invention
  • FIG. 2 is a view of a part of a field type modular negative pressure isolation ward system according to a first embodiment of the present invention.
  • a perspective view showing the inside of a room after removing the ceiling panel FIG. 3 is a type of coating part coated on the base plate surface of the floor panel in the field type modular negative pressure isolation hospital room system according to the first embodiment of the present invention
  • FIG. 4 is a combined perspective view showing a part of a field type modular negative pressure isolation hospital room system according to a first embodiment of the present invention
  • FIG. 5 to 8 are field type modular negative pressure isolation units according to a first embodiment of the present invention
  • FIG. 9 is a front view showing a part of a field type modular negative pressure isolation hospital room system according to a first embodiment of the present invention
  • FIG. 10 is a night view according to the first embodiment of the present invention.
  • a plan view showing a part of a typical modular negative pressure isolation ward system FIG. 11 is a perspective view showing a wall panel reinforcement connection means in the field type modular negative pressure isolation hospital room system according to the first embodiment of the present invention
  • FIG. 12 is the present invention
  • In the field-type modular negative pressure isolation ward system according to the first embodiment of is a perspective view.
  • the field type modular negative pressure isolation hospital room system is between the floor panel 110 and the ceiling panel 120, the inner wall panel 130 and the outside A wall panel 140 is installed to partition a plurality of rooms, and the floor panel 110, the ceiling panel 120, the inner wall panel 130, and the outer wall panel 140 can be separated into a module structure. to be assembled
  • the modular structure is manufactured in a production factory so that various panels and negative pressure room structures can be assembled and disassembled to comply with medical regulations, and the module negative pressure room structure is usually stored in a distribution base, etc. It refers to a structure that uses outdoor facilities such as playgrounds and vacant lots to assemble and install, then use it as a negative pressure isolation ward, as well as disinfect it during demolition and then dismantle it and store it back in a logistics base.
  • the plurality of rooms may form an anterior chamber, a negative pressure isolation ward, a toilet, a machine room, or the like, or an anterior chamber for a hallway, a shower and toilet for medical personnel, a waste treatment room, a utility and equipment storage room, and the like.
  • a negative pressure corridor, and a video visit room, a negative pressure isolation ward, an entire room for a ward, a toilet for a patient, a machine room, and the like can be formed.
  • the plurality of rooms shown in FIG. 1 is an example for explaining the field-type modular negative pressure isolation ward system of the present invention, and is not limited thereto, and may be changed in various forms according to installation conditions or design conditions.
  • the floor panel 110, the inner and outer wall panels 130, 140, and the ceiling panel 120 are all ceiling panels without a separate fixing device ( 120) and a “ ⁇ ” or “ ⁇ ”-shaped conduit structure (groove structure) that is inserted and fastened, and the inner and outer wall panels 130 and 140 include various medical equipment for active treatment and healing of patients.
  • a door and a measuring instrument for securing airtightness may be integrally configured.
  • the ceiling panel 120 includes a supply/exhaust (including a HEPA filter) 160 and a negative pressure maintaining device (not shown) integrally configured, and the panels 110 to 140 are manufactured in the same standard to determine the size of the bed and There is a technical feature that the size of the structure can be freely adjusted according to the situation.
  • the floor panel 110 includes a plurality of base plates 111 , a plurality of floor plates 112 , and a fixed structure.
  • the groove portion 113a includes a lower fixing plate 113 formed by bending.
  • the base plate 111 is assembled adjacent to each other in the horizontal direction.
  • a coating portion 111a (see FIGS. 3 and 4) is formed on the surface of the base plate 111, and the coating portion 111a is a metal type (a), a mirror type (b), a field block type (c), and a marble. Type (d), etc.
  • the bottom plate 112 is installed on the top of the base plate 111 and is assembled adjacent to each other in the horizontal direction.
  • the lower end fixing plate 113 is installed between the base plate 111 and the bottom plate 112, and a fixing groove for fitting the lower ends of the inner wall panel 130 and the outer wall panel 140 to the edge portion ( 113a) is formed by bending.
  • the bent fixing groove portion 113a is formed in a “ ⁇ ” shape pipe structure, and the lower ends of the inner and outer walls 130 and 140 are inserted therein to be fastened.
  • the ceiling panel 120 includes a plurality of roof plates 121 positioned on the uppermost surface and assembled adjacent to each other in the horizontal direction; a plurality of ceiling plates 122 installed under the roof plate 121 and assembled adjacent to each other in a horizontal direction; and a fixing groove 123a installed between the roof plate 121 and the ceiling plate 122 and fitted with upper ends of the inner wall panel 130 and the outer wall panel 140 on the edge portion to couple them.
  • the upper fixing plate 123 is formed by bending; to provide
  • the roof plate 121 is located on the uppermost surface and is assembled adjacent to each other in the horizontal direction.
  • the ceiling plate 122 is installed under the roof plate 121 and is assembled adjacent to each other in the horizontal direction.
  • the upper part fixing plate 123 is installed between the roof plate 121 and the ceiling plate 122, and a fixing groove part 123a for fitting and coupling the upper ends of the inner wall panel 130 and the outer wall panel 140 to the edge portion. ) is formed by bending.
  • the bent fixing groove portion 123a is formed in a “ ⁇ ” shape pipe structure, and the upper ends of the inner and outer walls 130 and 140 are inserted therein to be fastened.
  • a plurality of reinforcing wall panels 145 may be further installed on the outer surface of the outer wall panel 140 by the wall panel reinforcing connection means 150 .
  • reinforcing wall panel 145 By further installing the reinforcing wall panel 145 to increase insulation and durability, it is possible to keep the interior warm in winter and cool in summer despite the field installation. Furthermore, it can be installed so that it is not affected by the surrounding climate even in very hot or cold areas.
  • the wall panel reinforcement connection means 150 includes a connection block 151 that is fixedly installed on either side of both outer surfaces of the reinforcement wall panel 145; "C"-shaped connection bracket 152 fixedly installed on the other of both outer surfaces of the reinforcing wall panel 145 so as to be coupled with the connection block 151; And in the state of inserting the connection block 151 in the coupling groove (152a) of the "c"-shaped connecting bracket 152, the "c"-shaped connecting bracket 152 and the connecting block 151 to pass through and fastening to each other fastening bolts (153); includes
  • the air supply/exhaust facility 160 may be integrally installed on the ceiling panel 120 , and the air supply/exhaust facility 160 is alternately zigzag on the upper portion of the ceiling panel 120 .
  • a HEPA filter (F) and a backflow prevention damper (not shown) are installed in the supply/exhaust facility 160 .
  • the supply/exhaust facility 160 in which the HEPA filter F is installed has a structure that is integrally installed on the ceiling panel 120 .
  • a blower fan 127 (refer to FIG. 8) is installed at a location connected to the supply/exhaust facility 160 and the ceiling panel 120 .
  • connection part between the inner wall panels 130 and 130 , a connection part between the external wall panels 140 and 140 , and the inner wall panel 130 and the external wall A sealing material 180 may be installed at a connection portion between the panels 140 .
  • the sealing material 180 may be made of a silicone material, and a connecting portion between the inner wall panels 130 and 130 , a connecting portion between the outer wall panels 140 and 140 , and the inner wall panel 130 . ) and the external wall panel 140 in close contact with the connection portion serves to maintain airtightness.
  • FIGS. 13 and 14 are perspective views illustrating a ceiling and wall panel connection bracket installed under the ceiling panel in a field-type modular negative pressure isolation hospital room system according to a second embodiment of the present invention
  • FIG. 15 is the present invention.
  • the field-type modular negative pressure isolation ward system according to the second embodiment of the present invention it is a bottom perspective view showing the ceiling and wall panel connection brackets.
  • the inner wall panel 130 and the outer wall panel 140 are assembled under the ceiling panel 120 .
  • a ceiling and wall panel connection bracket 170 for this may be installed.
  • the ceiling and wall panel connection bracket 170 includes a first channel portion 171 for fitting the upper end of the external wall panel 140; a coupling protrusion 172 extending on the upper surface of the first channel part 171 to be coupled into the coupling hole 120a of the ceiling panel 120; and a second channel portion 173 formed perpendicular to the first channel portion 171 so that the upper end of the inner wall panel 130 is fitted; includes
  • the ceiling and wall panel connection bracket 170 has a “T” shape.
  • the upper end of the external wall panel 140 is fitted into the first channel part 171 , and the coupling protrusion 172 is coupled to the first channel part 171 in the coupling hole 120a of the ceiling panel 120 .
  • the second channel portion 173 is formed perpendicular to the first channel portion 171 so that the upper end of the inner wall panel 130 is fitted.
  • FIG. 16 is a block diagram illustrating a method for constructing a field type modular negative pressure isolation ward system according to a first embodiment of the present invention.
  • the method for constructing a field-type modular negative pressure isolation ward includes the steps of flattening the floor (S10); Installing the base truss (B) on the floor (S20); Installing the floor panel 110 on the base truss (B: see Fig.
  • FIG. 17 is a block diagram illustrating a method for constructing a field type modular negative pressure isolation ward system according to a second embodiment of the present invention.
  • the method for constructing a field-type modular negative pressure isolation ward includes the steps of flattening the floor (S110); Installing the base truss (B) on the floor (S120); Installing the floor panel 110 on the base truss (B: see Fig.
  • a plurality of rooms are partitioned by assembling the floor panel 110, the ceiling panel 120, the inner wall panel 130, and the outer wall panel 140,
  • assembly and separation can be repeatedly performed.
  • the field type modular negative pressure isolation ward according to the first embodiment of the present invention is not only on the first floor, but also on the second floor and on the third floor through the method of installing the floor panel 110 on the base truss (B). This makes it possible to build a large-scale hospital room in a limited space.
  • the field type modular negative pressure isolation ward according to the first embodiment of the present invention has excellent airtightness, free cooling/heating, and no external contact, compared to negative pressure isolation facilities based on existing containers, tents, etc. It is easy to separate and discharge.
  • 1 Secure an area of 15 m2 or more, and do not include the area of the toilet and shower in the area. 2 Install the front room and install the door to the negative pressure room. 3 The door of the negative pressure room and the front room should not be opened and closed at the same time. 4 The toilet is installed inside the negative pressure room. 5 In the air supply facility, a HEPA filter is installed at the air inlet for each room, but a backflow prevention damper is provided.
  • a HEPA filter is installed, and an exhaust damper for each room is installed to prevent the spread of infection due to backflow, and the exhaust is discharged to the outside away from the air inlet and areas where people are concentrated.
  • 7 Install a differential pressure gauge and differential pressure indicator to check the sound pressure at all times, and make an alarm sound when abnormal.
  • the negative pressure difference in a negative pressure isolation ward, the negative pressure difference must be -25Pa (-0.255 mmAq, 0.01 inch H20, 0.254926 mmH20, 0.018752 mmHg) or more, so air circulation (ACH: air change) means the number of times fresh air is exchanged per hour. It is required to show the filter performance that can recover 99.97% or more of particles with a ratio of 12 or more per hour) and particles of 0.3 ⁇ m or more, and the flow of air in the direction of the patient in the ward.
  • ACH air change
  • the air conditioning equipment of the negative pressure isolation ward within the legal regulations is divided from the supply/exhaust equipment for other uses by 1 building a dedicated supply/exhaust facility. 2 Even when the air conditioning system is stopped due to a power outage or machine failure, a system must be in place that does not cause spread of infection or cross-contamination due to backflow of air. 3 Install an appropriate temperature and humidity maintenance system so that you can stay in the hospital without opening a window, but do not install a fan coil or system air conditioner that can cause infestation in summer. 4 Design so that the noise level in the hospital room is 50dB(A) or less. 5 Air conditioning equipment such as air conditioners and exhaust fans (filters) are designed to be linked with spare equipment. 6 Air conditioning facilities supplied to negative pressure beds are designed in a structure that does not cause power outages.
  • the air supply method of the negative pressure isolation ward is: 1 A dedicated supply/exhaust system must be provided, and the air supply is made using an all-outdoor air (heat recovery air conditioner) method. 2 The air discharged from the ward and all rooms is filtered with a HEPA filter so that it is discharged to the outside so that it is not recirculated to other beds. 3 The number of ventilation should be 6 ⁇ 12 times/hr. 4 Install a HEPA filter and Airtight Back Draft Damper in the supply/exhaust port of the hospital room to prevent the backflow of polluted air in preparation for the stoppage of air conditioning.
  • the air supply system and exhaust system should be interconnected so that positive pressure does not become higher than the ‘room’ adjacent to the hospital room due to a sudden pressure change when the exhaust system is stopped. 6
  • the operation of the air supply system is automatically turned off, and when the pressure is stabilized by the operation of the standby exhaust fan, the air supply system is installed again.
  • the exhaust method of the negative pressure isolation ward is: 1
  • the exhaust port exhausts the entire amount to the outside through a filter with a HEPA filter grade or higher.
  • the exhaust port should be as close to the patient's respiratory tract as possible.
  • 3 Install the exhaust port near the patient's head or at the bottom of the wall.
  • 4 Exhaust duct from each room exhausts independently, and an exhaust fan is installed at the end.
  • 5 For the exhaust fan in the negative pressure isolation area, install a spare fan and prepare for failure.
  • 6 Exhaust vents outside the building should be installed at least 2m from the ground to prevent direct exhaust to people around them, and there should be no inlets for other systems within 2m. It is recommended to install so that the direction of the exhaust port does not face the inlet of another system.
  • 7 Install facilities with sufficient capacity than necessary to maintain the set sound pressure.
  • the exhaust fan in the negative pressure isolation area is connected to the UPS (uninterruptible power supply) and emergency generator so that exhaust can be achieved even in the event of a power
  • the air pressure in the room is adjusted so that air flows from a low pollution level to a high pollution level.
  • Example 1 Non-Negative Pressure Isolation Area > All hallways (dressing) > Negative pressure hallways > All rooms > Hospital rooms > Toilets.
  • Example 2) After shower, changing room > shower room > protective clothing changing room > admiralty room > equipment storage room > internal hallway.
  • 1 Hand washing facilities should be designed so that water does not splash, and should be large enough to fit up to the wrist.
  • the faucet of sanitary equipment should be installed in a structure that can be used without touching it (non-contact type automatic faucet).
  • 3 Connect the water supply pipe to the toilet so that no backflow occurs into the water supply pipe. 4 If detergent or disinfectant is used, the container for detergent and disinfectant should be installed above the hand washing facility to avoid contamination on the top plate or wall of the counter washbasin.
  • the drainage system is: 1 Install the drain pipe and vent pipe connected to the hand washing container or toilet so that the drainage does not flow backwards. 2
  • the drain pipe of the negative pressure isolation area should be installed independently up to a dedicated wastewater tank, disinfected or sterilized, and then merged with other wastewater treatment facilities. 3
  • the wastewater treatment system should be installed suitable for chemical or heat treatment. 4
  • a vent pipe is installed in the wastewater tank to prevent backflow of wastewater, and a sterilization filter is installed at the end of the vent pipe. 5 Install facilities and verification ports for biological inactivation of microorganisms. 6
  • the dedicated high-temperature/high-pressure sterilized wastewater tank in the negative pressure isolation zone is to be installed with an overflow barrier.
  • the firefighting equipment of the negative pressure isolation ward is to prepare for a fire (outside the negative pressure room) by installing a fire hydrant, a fire extinguisher, etc. (clean fire extinguishing agent).
  • a fire hydrant e.g., a fire hydrant
  • a fire extinguisher e.g., a fire extinguisher
  • cleaning fire extinguishing agent e.g., a fire extinguishing agent
  • 2 Prepare for fire by installing a simple sprinkler system.
  • 3 In the event of a fire, all interlocks in the negative pressure isolation bed and isolation area should be released and opened automatically and manually.
  • 4 Install a fire extinguisher in the front of each ward.
  • Firefighting equipment shall be a simple fire extinguishing system.
  • the medical gas equipment of the negative pressure isolation ward is such that 1 oxygen and compressed air can be supplied from the outside (simple utility room) through a pipe.
  • the medical gas outlet box should be installed as exposed on the wall. 3 It should be structured so that other patients are not infected through the suction device (HEPA Filter installed). 4 Two vacuum pumps (reserve) and an oxygen supply device are provided in the utility room based on 7 beds. 5 The medical gas supply device and vacuum pump should be installed in reserve so that they can be dealt with in case of malfunction. 6
  • the utility room ( ⁇ ) is equipped with a device so that anyone other than the authorized person cannot enter.
  • the supply method of the electric equipment is supplied using the electric power of KEPCO.
  • Prepare for fire by installing a simple sprinkler system. Provides UPS power in case of power failure.
  • power is supplied to the emergency power generation system connected in parallel with the UPS.
  • the present invention has the following effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Nursing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Pest Control & Pesticides (AREA)
  • Emergency Management (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

본 발명은 야전형 모듈화 음압격리 병실 시스템에 관한 것으로, 법규정 내의 음압격리 병실 구축에 필요한 주요 시설물을 모듈(module) 방식으로 공장에서 제작하여, 평상시에는 그 모듈 시설물을 물류기지 등에 보관하였다가, 비상 시에는 주차장 및 운동장, 공터 등의 야외 지면 위에 설치한 후, 음압격리 병실로 활용함은 물론, 철거 시에는 그 모듈 시설물을 소독 후 철거하여 물류기지 등에 다시 보관하는 방식을 사용함으로써, 사용 횟수에 관계없이 반복적 사용이 가능하고 신속한 시공과 해체가 가능하다.

Description

야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법
본 발명은 야전형 모듈화 음압격리 병실 시스템에 관한 것으로, 좀 더 상세하게는 법규정 내의 음압격리 병실 구축에 필요한 주요 시설물을 모듈(module) 구조로 공장에서 제작하여, 평상시에는 그 모듈구조의 시설물을 물류기지 등에 보관하였다가, 비상 시에는 주차장 및 운동장, 공터 등의 야외 지면 위에 설치한 후, 음압격리 병실로 활용함은 물론, 철거 시에는 그 모듈 시설물을 소독 후 철거하여 물류기지 등에 다시 보관하는 방식을 사용함으로써, 사용 횟수에 관계없이 반복적 사용이 가능하고, 신속한 시공과 해체가 가능한 야전형 모듈화 음압격리 병실 시스템에 관한 것이다.
일반적으로 메르스, 사스, 탄저균, 및 에볼라 등과 같은 호흡기 감염병은 전염 경로를 예측하기 쉽지 않고, 그 확산 속도가 매우 빨라 즉각적인 격리 조치가 필요한 질병이다.
2003년 동남아시아에서 발병한 사스는 유럽, 북아메리카, 아시아 등으로 확산하여 약 83,000명이 감염되어 이중 10%가 사망했다. 이후, 2009년 신종플루, 2015년 메르스 등을 거치면서 감염병에 대하여 세계적으로 심각성이 대두되었으며, 확진자의 상당수가 병원 내의 감염이라는 점에 격리병실 확충이 시급한 상황이다.
하지만, 현재의 음압격리 병실은 대형 병원의 일부 시설물에 위치하고 있으며, 대형 병원의 지역적 위치나 규모로 볼 때에, 대형 병원 내의 발병 시, 감염 확산속도는 예측 불가할 정도로 빠를 것이란 예측이다.
2020년 현재, 대한민국 음압격리 병실은 1인 및 다인실을 포함 약 2,000여 실이며, 2019년 발병한 코로나 19 (COVID-19)가 전 세계적으로 대 유행(pandemic)되어 음압격리 병상 및 음압격리 병실의 수요가 절대적으로 부족한 상황으로 시설 확충 문제가 야기되고 있다.
이와 같이 환자의 치료 및 격리를 위한 음압격리 병실이 절대적으로 부족한 상황이나, 현실적으로 음압격리 병실 신설 시, 6개월 이상의 구축시간과 막대한 유지비용이 발생하여 기존 병원에서는 현실적으로 유지하기 어려운 문제가 있다.
음압격리 병실은, 전염병 확산 방지 등의 이유로 환자를 외부 및 일반 환자들과 분리하여 수용하고 치료함에 있어, 병실 내의 기압을 대기압보다 낮게 유지함으로써, 병실 내의 공기 또는 에어로졸(aerosol)이나 비말 중에 포함된 병원체가 외부로 배출되지 않게 구성한 의료 구조물로서, 병실 내의 공기는 병원체가 통과하지 못하도록 헤파필터(Highly Efficient Particulate Air filter)가 적용된 배기 시설을 경유하여 외부로 배기된다.
음압격리 병실에는 보호 슈트를 착용한 의료진이 소독할 수 있는 공간인 전실(前室)을 두어야 하며, 음압의 절대치는 화장실-> 병실-> 전실-> 복도의 순서가 되도록 유지하여, 출입문이 개방된 상태에서도 화장실의 공기가 병실 또는 전실로 유입되지 않음은 물론, 병실의 공기가 전실로 유입되지 않게 기류의 방향이 계획되고 음압 상태를 유지할 수 있도록 구성된다.
통상적인 음압격리 병실의 기본 구조는 복도로부터 전실, 병실, 화장실의 순서로 음압 절대치가 커질 수 있도록 순서대로 배치되며, 통상적으로 병실의 도어로부터 멀리 떨어지게 위치하는 베드 머리맡에 인접한 영역에 배기부가 위치하고 도어에 인접한 영역에 급기부가 위치하며, 전실에는 기압 확인을 위한 압류 계가 설치된다.
또한, 배기부가 연통된 FFU(Fan Filter Unit)는 병실의 내부 또는 외부에 위치할 수 있으나, 유지 보수 측면에서 병실 외부에 배치되는 것이 바람직할 수 있으며, 통상적으로 집진 및 흡착에 의한 제균(除菌)과 아울러, 살균 소독이 이루어질 수 있도록 구성된다.
음압격리 병실은 코로나 19, 중동 호흡기 증후군(MERS: Middle East Respiratory Syndrome), 중증 급성 호흡기 증후군(SARS: Severe Acute Respiratory Syndrom), 조류인플루엔자 인체감염증(AIHI: Avian Influenza Human Infection), 신종인플루엔자(Novel swine-origin influenza A (H1N1)), 에볼라 출열혈(Ebola hemorrhagic fever) 등과 같은 신종 감염병의 확산 감염을 차단할 목적으로 사용되고 있다.
한편, 대한민국 실용신안등록 제20-0406536호(2006.01.12 등록)의 바이오 클린룸의 세균오염방지 시스템은, 공기차압센서가 형성되어 있으며, 격리실 내의 공기 차압을 제어하는 차압장치, 및 이를 제어하는 제어부를 포함하며, 전염병 환자를 격리시키고 청정 공기가 유입되는 유입관과 배출관이 형성된 격리실에 사용되는 공기 차압장치를 이용한다.
그러나 종래 음압격리 병실은, 그 설치에 막대한 비용과 시간이 소요되므로, 신종 감염병의 확산 시, 그에 대해 신속한 대응이 곤란하다는 심각한 문제점이 있음은 물론, 의료진의 관리상 문제점이 있을 경우, 동일 병동 내의 추가 확산 감염 위험성이 있으며, 신종 감염병 환자는 1인 1실 사용을 원칙으로 하여야 함에도 비용 상의 문제로 2~6인 실로 운용되는 경우가 많다는 문제점이 있다.
본 발명은 상기한 문제점을 개선하기 위해 발명된 것으로, 본 발명이 해결하고자 하는 첫 번째 목적은, 법규정 내의 음압격리 병실 구축에 필요한 주요 시설물을 모듈(module) 방식으로 공장에서 제작하여, 평상시에는 그 모듈 시설물을 물류기지 등에 보관하였다가, 비상 시에는 주차장 및 운동장, 공터 등의 야외 지면 위에 설치한 후, 음압격리 병실로 활용함은 물론, 철거 시에는 그 모듈 시설물을 소독 후 철거하여 물류기지 등에 다시 보관하는 방식을 사용함으로써, 사용 횟수에 관계없이 반복적 사용이 가능하고 신속한 시공과 해체가 가능한 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공함에 그 목적이 있다.
또한, 본 발명의 두 번째 목적은, 병동 외부에 신종 감염병 환자를 위한 음압병실을 조기에 구축하여 감염 확진 및 감염 의심자에 대해 신속하고 효율적인 격리 치료 및 관찰이 가능하며, 음압격리 병실을 상대적으로 매우 낮은 비용으로 구축 가능하므로 경제성이 높은 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
또한, 본 발명의 세 번째 목적은, 동일 병동 내 실내 전파 감염으로 인한 추가 확산 감염 염려가 없는 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
또한, 본 발명의 네 번째 목적은, 이동식임에도 HFU(Hepa Filter Unit)가 수용된 기계실의 접근이 용이하여 우수한 유지 보수성을 지니는 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
또한, 본 발명의 다섯 번째 목적은, 감염자를 격리 상태 그대로 트레일러를 이용해 이동시키는 것도 가능해 환자 이송에 따른 추가 감염의 위험성을 원천적으로 차단할 수가 있는 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
또한, 본 발명의 여섯 번째 목적은, 이동형 구조임에도 배수 시설이 외부와 격리하고 에너지 절약형의 에너지 자립을 추구하는 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
또한, 본 발명의 일곱 번째 목적은, 신종 감염병 확진자 또는 감염 의심자에 대한 1인 1실의 원칙 적용이 용이한 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법을 제공하기 위한 것이다.
본 발명의 기술적 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템은 바닥패널과 천장패널 사이에, 내부 벽체패널과 외부 벽체패널이 설치되어 복수의 실(rooms)을 구획하며, 상기 바닥패널, 상기 천장패널, 상기 내부 벽체패널, 및 상기 외부 벽체패널이 모듈로 분리 가능하게 조립되는 것을 특징으로 한다.
또한, 상기 복수의 실(rooms)은 전실, 음압격리 병실, 화장실, 및 기계실을 포함하거나, 복도용 전실, 의료진용 샤워 및 화장실, 오폐기물처리실, 유틸리티 및 장비보관실, 음압복도, 및 화상 면회실, 음압격리 병실, 병실용 전실, 환자용 화장실, 및 기계실을 포함할 수 있다.
또한, 상기 바닥패널은 수평방향으로 서로 인접하여 조립되는 복수의 베이스 플레이트; 상기 베이스 플레이트의 상부에 설치되며, 수평방향으로 서로 인접하여 조립되는 복수의 바닥 플레이트; 및 상기 베이스 플레이트와 상기 바닥 플레이트 사이에 설치되며, 테두리 부분에 상기 내부 벽체패널과 상기 외부 벽체패널의 하단부를 끼워 결합하기 위한 고정홈부가 절곡 형성되는 하단부 고정 플레이트; 를 포함한다.
또한, 상기 천장 패널은 최상면에 위치하며, 수평방향으로 서로 인접하여 조립되는 복수의 루프 플레이트; 상기 루프 플레이트의 하부에 설치되며, 수평방향으로 서로 인접하여 조립되는 복수의 천장 플레이트; 및 상기 루프 플레이트와 상기 천장 플레이트 사이에 설치되며, 테두리 부분에 상기 내부 벽체패널과 상기 외부 벽체패널의 상단부를 끼워 결합하기 위한 고정홈부가 절곡 형성되는 상단부 고정 플레이트; 를 포함한다.
또한, 상기 외부 벽체패널의 외면에는 벽체패널 보강 연결수단에 의해서 복수의 보강 벽체패널이 설치될 수 있다.
또한, 상기 벽체패널 보강 연결수단은 상기 보강 벽체패널의 양쪽 외면 중 어느 일면에 고정 설치되는 연결블록; 상기 연결블록과 결합하도록 상기 보강 벽체패널의 양쪽 외면 중 다른 일면에 고정 설치되는 "ㄷ" 자형 연결 브래킷; 및 상기 "ㄷ" 자형 연결 브래킷의 결합홈 안에 상기 연결블록을 끼운 상태에서, 상기 "ㄷ" 자형 연결 브래킷과 상기 연결블록을 관통하여 서로 체결하는 체결볼트; 를 포함한다.
또한, 상기 천장 패널의 상부에는 급배기 설비가 서로 엇갈리게 지그재그 형태로 배치될 수 있다.
상기 내부 벽체패널들 간의 연결 부분, 상기 외부 벽체패널들 간의 연결 부분, 및 상기 내부 벽체패널과 상기 외부 벽체패널 간의 연결 부분에는 시일재가 설치될 수 있다.
한편, 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템은 상기 천장 패널의 하부에 상기 내부 벽체패널과 상기 외부 벽체패널을 조립하기 위한 천장 및 벽체패널 연결 브래킷을 더 포함한다.
상기 천장 및 벽체패널 연결 브래킷은 상기 외부 벽체패널의 상단이 끼워지기 위한 제1 채널부; 상기 천장 패널의 결합홀 안에 결합하기 위하여 상기 제1 채널부의 상면에 연장 형성되는 결합 돌기; 및 상기 내부 벽체패널의 상단이 끼워지기 위하여 상기 제1 채널부에 직교하여 형성되는 제2 채널부; 를 포함한다.
상기 천장 및 벽체패널 연결 브래킷은 "T"자 형상을 하는 것을 특징으로 한다.
한편, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 시공방법은 바닥면을 평탄화 작업하는 단계; 상기 바닥면에 베이스 트러스를 설치하는 단계; 상기 베이스 트러스 위에 바닥패널을 설치하는 단계; 상기 바닥패널의 하단부 고정 플레이트에 형성된 고정홈부 안에 내부 벽체패널과 외부 벽체패널의 하단부를 결합하되, 상기 내부 벽체패널과 상기 외부 벽체패널을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계; 및 상기 내부 벽체패널과 상기 외부 벽체패널의 상부에, 급배기설비와 헤파필터가 장착된 천장 패널을 설치하되, 상기 천장 패널의 상단부 고정 플레이트에 형성된 고정홈부 안에 상기 내부 벽체패널과 상기 외부 벽체패널의 상단부를 결합하는 단계; 를 포함한다.
또한, 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 시공방법은 바닥면을 평탄화 작업하는 단계; 상기 바닥면에 베이스 트러스를 설치하는 단계; 상기 베이스 트러스 위에 바닥패널을 설치하는 단계; 상기 바닥패널의 하단부 고정 플레이트에 형성된 고정홈부 안에 내부 벽체패널과 외부 벽체패널의 하단부를 결합하되, 상기 내부 벽체패널과 상기 외부 벽체패널을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계; 및 상기 내부 벽체패널과 상기 외부 벽체패널의 상부에, 급배기설비와 헤파필터가 장착된 천장 패널을 설치하되, 천장 및 벽체패널 연결 브래킷을 이용하여 상기 내부 벽체패널과 상기 외부 벽체패널의 상단부를 결합하는 단계; 를 포함한다.
본 발명은 상기 바닥패널, 상기 천장패널, 상기 내부 벽체패널, 및 상기 외부 벽체패널을 조립하여 복수의 실(rooms)을 구획하되, 상기 바닥패널, 상기 천장패널, 상기 내부 벽체패널, 및 상기 외부 벽체패널을 모듈로 구성하여서 조립과 분리(해체)를 반복적으로 실시할 수 있다.
이상에서 설명한 바와 같이, 본 발명은 다음과 같은 효과들이 있다.
첫째, 감염병 확산에 대비하는 신속한 설치는 물론 분리 가능한 음압격리 병실로, 기존 병원 내부 설치하는 음압격리 병실 대비 구축 비용이 저렴하며, 병원 내 2차 감염에 대한 우려가 낮다.
둘째, 일정 공간만 확보되면 설치 가능한 ‘이동형 모듈화 음압병실’로 인구 밀집도가 낮은 지역에 설치 및 해체가 용이하며, 기존 시설이 ‘코로나 지정 시설(병원)’로 확정되어 주민반발 등의 님비현상 발생을 최소화 할 수 있다.
셋째, 법규정 내 음압격리 병실 구축에 필요한 모든 주요 시설은, 모듈(module) 방식으로 공장에서 제작되어 생산공정이 신속하며, 평상시에 해체하여 물류창고 등에 보관하였다가, 비상 시에 주차장, 운동장, 공터 등의 야외 시설 등에 신속하고 용이하게 설치할 수 있다.
넷째, 해당 모듈은 철저히 관리(소독 및 방역 등)하면 설치/해체에 대해 사용 횟수 제약이 없으며, 만일에 오염 및 작동 불가 시 해당 모듈만 교체 가능하여 부가적인 비용이 발생하지 않는다.
다섯째, 2층, 3층 등의 복층 설치가 가능하여, 한정된 공간에 대규모 병실을 구축할 수 있다.
여섯째, 모든 급/배기 시설 및 음압 유지 관련 장비는 각각의 개별 밸브와 컨트롤러로 작동되어, 일개의 병실 이상 시에도 정상 작동된다.
일곱째, 모듈화된 방식으로 화물차 적재 가능하게 설계되어, 신속한 운반 및 이동이 가능하다.
여덟째, 기존 컨테이너, 텐트 등을 기반으로 하는 음압 격리시설에 비해서, 기밀성이 뛰어나고 냉/난방이 자유로우며, 외부 접촉 없는 오/폐수 분리배출이 용이하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템을 도시한 평면도
도 2는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 것으로, 천장패널을 제거한 후 실(room) 내부를 도시한 사시도
도 3은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 바닥패널의 베이스 플레이트 표면에 코팅한 코팅부 종류를 도시한 평면도
도 4는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 결합 사시도
도 5 내지 도 8은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 분리 사시도
도 9는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 정면도
도 10은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 평면도
도 11은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 벽체패널 보강 연결수단을 도시한 사시도
도 12는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 내부 벽체패널들 간의 연결 부분, 외부 벽체패널들 간의 연결 부분, 및 내부 벽체패널과 외부 벽체패널 간의 연결 부분에 형성된 시일재를 도시한 사시도
도 13 및 도 14는 본 발명의 제2실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 천장패널의 하부에 설치되는 천장 및 벽체패널 연결 브래킷을 도시한 사시도
도 15는 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 천장 및 벽체패널 연결 브래킷을 도시한 저면 사시도
도 16은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템 시공방법을 도시한 블록도
도 17은 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템 시공방법을 도시한 블록도
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.
본 실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려졌고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시한다.
또한, 각 구성 요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.
또한, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)") 등과 같은 용어들에 관하여 본원 발명에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다.
도 1은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템을 도시한 평면도, 도 2는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 것으로, 천장패널을 제거한 후 실(room) 내부를 도시한 사시도, 도 3은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 바닥패널의 베이스 플레이트 표면에 코팅한 코팅부 종류를 도시한 평면도, 도 4는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 결합 사시도, 도 5 내지 도 8은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 분리 사시도, 도 9는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 정면도, 도 10은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템의 일부를 도시한 평면도, 도 11은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 벽체패널 보강 연결수단을 도시한 사시도, 그리고 도 12는 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 내부 벽체패널들 간의 연결 부분, 외부 벽체패널들 간의 연결 부분, 및 내부 벽체패널과 외부 벽체패널 간의 연결 부분에 형성된 시일재를 도시한 사시도이다.
도 1 내지 도 12에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템은 바닥패널(110)과 천장패널(120) 사이에, 내부 벽체패널(130)과 외부 벽체패널(140)이 설치되어 복수의 실(rooms)을 구획하며, 바닥패널(110), 천장패널(120), 내부 벽체패널(130), 및 외부 벽체패널(140)이 모듈구조로 분리 가능하게 조립된다.
여기서, 모듈구조란, 의료규정에 적합하도록 각종 패널, 음압병실 구조물을 조립 및 분해할 수 있도록 생산공장에서 제작하여, 평상시에는 그 모듈 음압병실 구조물을 물류기지 등에 보관하였다가, 비상 시에 주차장 및 운동장, 공터 등의 야외 시설을 활용하여 조립 설치한 후, 음압격리 병실로 활용함은 물론, 철거 시 소독 후 철거하여 물류기지 등에 다시 보관하는 방식을 사용하도록 하는 구조를 말한다.
도 1을 참조하면, 상기 복수의 실(rooms)은 전실, 음압격리 병실, 화장실, 및 기계실 등을 형성할 수 있으며, 또는 복도용 전실, 의료진용 샤워 및 화장실, 오폐기물처리실, 유틸리티 및 장비보관실, 음압복도, 및 화상 면회실, 음압격리 병실, 병실용 전실, 환자용 화장실, 및 기계실 등을 형성할 수 있다.
도 1에 도시된 복수의 실(rooms)은 본 발명의 야전형 모듈화 음압격리 병실 시스템을 설명하기 위한 예시로, 이에 국한되는 것은 아니며 설치조건이나 설계조건에 따라 다양한 형태로 변경될 수 있다.
도 7 및 도 8을 참조하면, 본 발명에 따른 야전형 모듈화 음압격리 병실 시스템에서, 바닥패널(110), 내외 벽체 패널(130,140), 천장 패널(120)이 모두 별도의 고정장치 없이 천장패널(120)과 일체로 형성된 "∩"자 혹은 "∪"형태의 관로 구조(홈구조) 안에 삽입되어 체결하는 방식이며, 상기 내외 벽체 패널(130,140)에는 환자의 적극적인 치료와 치유를 위한 각종 의료장비와 기밀성 확보를 위한 도어 및 계측기 등이 일체로 구성될 수 있다. 그리고 천장 패널(120)에는 급배기(헤파필터 포함)(160) 그리고 음압유지장치(미도시)가 일체로 구성되어 있으며, 상기 패널들(110∼140)은 동일 규격으로 제작되어 병상의 크기 및 구조를 상황에 맞게 사이즈를 자유롭게 조절할 수 있는 기술적 특징이 있다.
우선, 도 7을 참조하면, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 바닥패널(110)은 복수의 베이스 플레이트(111), 복수의 바닥 플레이트(112), 및 고정홈부(113a)가 절곡 형성되는 하단부 고정 플레이트(113)를 포함한다.
부연 설명하면, 바닥패널(110)에서는, 베이스 플레이트(111)가 수평방향으로 서로 인접하여 조립된다. 베이스 플레이트(111)의 표면에는 코팅부(111a)(도 3 및 4 참조)가 형성되는데, 코팅부(111a)는 메탈형(a), 미러형(b), 필드블록형(c), 마블형(d) 등이 있다.
바닥 플레이트(112)는 베이스 플레이트(111)의 상부에 설치되며, 수평방향으로 서로 인접하여 조립된다.
상기 하단부 고정 플레이트(113)는 베이스 플레이트(111)와 바닥 플레이트(112) 사이에 설치되며, 테두리 부분에 내부 벽체패널(130)과 외부 벽체패널(140)의 하단부를 끼워 결합하기 위한 고정홈부(113a)가 절곡 형성된다.
절곡 형성된 고정홈부(113a)는 "∪"자 형태의 관로 구조로 형성되어 그 안에 내외 벽체(130,140)의 하단부가 삽입되어 체결하는 방식이다.
그리고, 도 8을 참조하면, 상기 천장 패널(120)은 최상면에 위치하며, 수평방향으로 서로 인접하여 조립되는 복수의 루프 플레이트(121); 상기 루프 플레이트(121)의 하부에 설치되며, 수평방향으로 서로 인접하여 조립되는 복수의 천장 플레이트(122); 및 상기 루프 플레이트(121)와 상기 천장 플레이트(122) 사이에 설치되며, 테두리 부분에 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 상단부를 끼워 결합하기 위한 고정홈부(123a)가 절곡 형성되는 상단부 고정 플레이트(123); 를 구비한다.
부연 설명하면, 상기 천장 패널(120)에서, 상기 루프 플레이트(121)는 최상면에 위치하며 수평방향으로 서로 인접하여 조립된다. 상기 천장 플레이트(122)는 루프 플레이트(121)의 하부에 설치되며, 수평방향으로 서로 인접하여 조립된다.
상기 상단부 고정 플레이트(123)는 루프 플레이트(121)와 천장 플레이트(122) 사이에 설치되며 테두리 부분에 내부 벽체패널(130)과 외부 벽체패널(140)의 상단부를 끼워 결합하기 위한 고정홈부(123a)가 절곡 형성된다.
절곡 형성된 고정홈부(123a)는 "∩"자 형태의 관로 구조로 형성되어 그 안에 내외 벽체(130,140)의 상단부가 삽입되어 체결하는 방식이다.
또한, 도 3, 도 5, 도 11을 참조하면, 상기 외부 벽체패널(140)의 외면에는 벽체패널 보강 연결수단(150)에 의해서 복수의 보강 벽체패널(145)이 더 설치될 수 있다.
상기 보강 벽체패널(145)을 더 설치하여 단열성 및 내구성을 높임으로써, 야전 설치에도 불구하고 겨울철에는 따듯하게 하고 여름철에는 시원하게 내부를 유지할 수 있다. 더 나아가, 매우 더운 지역이나 추운 지역에서도 주변 기후에 영향을 받지 않도록 설치할 수 있다.
상기 벽체패널 보강 연결수단(150)의 구성을 구체적으로 살펴보면, 상기 벽체패널 보강 연결수단(150)은 보강 벽체패널(145)의 양쪽 외면 중 어느 일면에 고정 설치되는 연결블록(151); 연결블록(151)과 결합하도록 상기 보강 벽체패널(145)의 양쪽 외면 중 다른 일면에 고정 설치되는 "ㄷ" 자형 연결 브래킷(152); 및 "ㄷ" 자형 연결 브래킷(152)의 결합홈(152a) 안에 연결블록(151)을 끼운 상태에서, "ㄷ" 자형 연결 브래킷(152)과 연결블록(151)을 관통하여 서로 체결하는 체결볼트(153); 를 포함한다.
또한, 도 8 내지 도 10을 참조하면, 상기 천장 패널(120)에는 급배기 설비(160)가 일체로 설치될 수 있는데, 천장 패널(120)의 상부에는 급배기 설비(160)가 서로 엇갈리게 지그재그 형태로 배치될 수 있으며, 급배기 설비(160)에는 헤파필터(F) 및 역류방지 댐퍼(미도시)가 설치된다.
상기 헤파필터(F)가 설치된 급배기 설비(160)는 천장 패널(120)에 일체로 설치되는 구조이다. 급배기 설비(160)와 상기 천장 패널(120)과 연결되는 위치에는 송풍팬(127)(도 8 참조)이 설치된다.
또한, 도 12를 참조하면, 상기 내부 벽체패널들(130)(130) 간의 연결 부분, 상기 외부 벽체패널들(140)(140) 간의 연결 부분, 및 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140) 간의 연결 부분에는 시일재(180)가 설치될 수 있다.
상기 시일재(180)는 실리콘 재질일 수 있으며, 상기 내부 벽체패널들(130)(130) 간의 연결 부분, 상기 외부 벽체패널들(140)(140) 간의 연결 부분, 및 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140) 간의 연결 부분에 밀착되어 기밀을 유지하는 역할을 한다.
한편, 도 13 및 도 14는 본 발명의 제2실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 천장패널의 하부에 설치되는 천장 및 벽체패널 연결 브래킷을 도시한 사시도이고, 도 15는 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 천장 및 벽체패널 연결 브래킷을 도시한 저면 사시도이다.
도 13 내지 도 15를 참조하면, 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템에서, 천장 패널(120)의 하부에 내부 벽체패널(130)과 외부 벽체패널(140)을 조립하기 위한 천장 및 벽체패널 연결 브래킷(170)이 설치될 수 있다.
상기 천장 및 벽체패널 연결 브래킷(170)은 외부 벽체패널(140)의 상단이 끼워지기 위한 제1 채널부(171); 천장 패널(120)의 결합홀(120a) 안에 결합하기 위하여 제1 채널부(171)의 상면에 연장 형성되는 결합 돌기(172); 및 내부 벽체패널(130)의 상단이 끼워지기 위하여 제1 채널부(171)에 직교하여 형성되는 제2 채널부(173); 를 포함한다. 상기 천장 및 벽체패널 연결 브래킷(170)은 "T"자 형상을 한다.
즉, 상기 제1 채널부(171)에는 외부 벽체패널(140)의 상단이 끼워지며, 결합 돌기(172)는 천장 패널(120)의 결합홀(120a) 안에 결합하기 위하여 제1 채널부(171)의 상면에 연장 형성된다. 상기 제2 채널부(173)는 내부 벽체패널(130)의 상단이 끼워지기 위하여 제1 채널부(171)에 직교하여 형성된다.
한편, 도 16은 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템 시공방법을 도시한 블록도이다.
위 도면을 참조하면, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실 시공방법은, 바닥면을 평탄화 작업하는 단계(S10); 바닥면에 베이스 트러스(B)를 설치하는 단계(S20); 베이스 트러스(B: 도 9 참조) 위에 바닥패널(110)을 설치하는 단계(S30); 바닥패널(110)의 하단부 고정 플레이트(113)에 형성된 고정홈부(113a) 안에 내부 벽체패널(130)과 외부 벽체패널(140)의 하단부를 결합하되, 내부 벽체패널(130)과 외부 벽체패널(140)을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계(S40); 및 내부 벽체패널(130)과 외부 벽체패널(140)의 상부에, 급배기설비(160)와 헤파필터(F)가 장착된 천장 패널(120)을 설치하되, 천장 패널(120)의 상단부 고정 플레이트(123)에 형성된 고정홈부(123a) 안에 내부 벽체패널(130)과 외부 벽체패널(140)의 상단부를 끼워 결합하는 단계(S50); 를 포함한다.
한편, 도 17은 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시스템 시공방법을 도시한 블록도이다.
위 도면을 참조하면, 본 발명의 제2 실시 예에 따른 야전형 모듈화 음압격리 병실 시공방법은, 바닥면을 평탄화 작업하는 단계(S110); 바닥면에 베이스 트러스(B)를 설치하는 단계(S120); 베이스 트러스(B: 도 9 참조) 위에 바닥패널(110)을 설치하는 단계(S130); 바닥패널(110)의 하단부 고정 플레이트(113)에 형성된 고정홈부(113a) 안에 내부 벽체패널(130)과 외부 벽체패널(140)의 하단부를 결합하되, 내부 벽체패널(130)과 외부 벽체패널(140)을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계(S140); 및 내부 벽체패널(130)과 외부 벽체패널(140)의 상부에, 급배기설비(160)와 헤파필터(F)가 장착된 천장 패널(120)을 설치하되, 천장 및 벽체패널 연결 브래킷(170)을 이용하여 내부 벽체패널(130)과 외부 벽체패널(140)의 상단부를 결합하는 단계(S150); 를 포함한다.
이상에서 설명한 바와 같이, 본 실시 예에서는, 바닥패널(110), 천장패널(120), 내부 벽체패널(130), 및 외부 벽체패널(140)을 조립하여 복수의 실(rooms)을 구획하되, 바닥패널(110), 천장패널(120), 내부 벽체패널(130), 및 외부 벽체패널(140)을 모듈로 구성하여서 조립과 분리(해체)를 반복적으로 실시할 수 있다.
또한, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실은, 베이스 트러스(B) 위에 바닥패널(110)을 설치하는 방법을 통해서 1층뿐만 아니라, 2층, 3층 등의 복층 설치가 가능하여, 한정된 공간에 대규모 병실을 구축할 수 있다.
또한, 모든 급/배기 시설 및 음압 유지 관련 장비는 각각의 개별 밸브와 컨트롤러로 작동되어, 일개의 병실 이상 시에도 정상적으로 작동한다.
또한, 모듈화된 방식으로 화물차 적재 가능하게 설계되어, 신속한 운반 및 이동이 가능하다.
또한, 본 발명의 제1 실시 예에 따른 야전형 모듈화 음압격리 병실은, 기존 컨테이너, 텐트 등을 기반으로 하는 음압 격리시설에 비해서, 기밀성이 뛰어나고 냉/난방이 자유로우며, 외부 접촉 없는 오/폐수 분리배출이 용이하다.
참고로, 본 발명의 야전형 모듈화 음압격리 병실에 적용되는 법규정 내의 설치기준을 살펴보면, ① 15㎡ 이상의 면적을 확보하고 그 면적에는 화장실 및 샤워실 면적은 포함하지 않도록 한다. ② 전실을 설치하고 음압병실의 출입문을 설치한다. ③ 음압병실과 전실의 출입문이 동시에 개폐되지 않도록 해야 한다. ④ 화장실은 음압병실 내부에 설치한다. ⑤ 급기시설은 각 실 별로 급기구에 헤파필터(HEPA Filter)를 설치하되 역류방지 댐퍼를 마련한다. ⑥ 배기시설은 헤파필터를 설치하고 역류로 인한 감염확산 방지를 위해 실별 배기 댐퍼를 설치하며, 공기 유입구 및 사람들이 밀집되는 지역과는 멀리 떨어진 외부로 배출한다. ⑦ 상시 음압을 확인할 수 있는 차압계와 차압 표시계를 설치하고 비정상 시 경보음이 울리도록 한다.
또한, 법규정 내의 음압격리 병실의 운영기준을 살펴보면, ① 음압 병상이 있는 공간과 전실 간, 음압구역과 비음압구역 간의 음압차를 각각 -2.5pa(-0.255mmAq)이상으로 유지한다. ② 음압 병상이 있는 공간과 전실의 환기 횟수는 6회/hr 이상으로 한다. ③ 음압구역으로부터 발생하는 오/배수는 별도 분리배출 혹은 소독, 멸균 후 방류한다.
또한, 음압격리 병실은 음압 차가 -25㎩(-0.255 ㎜Aq, 0.01 inch H20, 0.254926 ㎜H20, 0.018752 ㎜Hg) 이상이어야 하는바, 시간당 신선한 공기의 교환 횟수를 의미하는 공기순환(ACH: air change per hour)비 12 이상, 0.3㎛ 이상의 미립자를 99.97% 이상 회수할 수 있는 필터 성능, 병실 내의 환자 방향으로의 기류 흐름을 나타내도록 요구되고 있다.
또한, 법규정 내의 음압격리 병실의 공조설비는, ① 전용의 급/배기 설비를 구축하여 타 용도의 급/배기 설비와 구분한다. ② 정전, 기계고장 등으로 인해 공조시스템이 정지되는 경우에도 공기의 역류로 인한 감염 확산 및 교차오염이 발생하지 않는 시스템을 갖추어야 한다. ③ 창문을 열지 않고도 입원 생활을 할 수 있도록 적절한 온도, 습도 유지 시스템을 설비하되, 하절기 서식균이 발생할 수 있는 팬 코일, 시스템에어컨 등은 설치하지 않아야 한다. ④ 병실 내 소음은 50dB(A) 이하가 되도록 설계한다. ⑤ 공조기, 배기 팬(필터) 등의 공조설비는 예비 설비와 연동하도록 설계한다. ⑥ 음압 병상에 공급되는 공조시설은 정전이 발생하지 않는 구조로 설계한다.
또한, 상기 음압격리 병실의 급기 방식은, ① 전용의 급/배기 시스템을 갖추어야 하고, 급기는 전외기(열회수 공조기) 방식으로 한다. ② 병실과 전실에서 배출된 공기는 헤파필터(HEPA Filter)로 여과하여 다른 병상에 재순환 되지 않도록 외부로 배출되도록 한다. ③ 환기 횟수는 6~12회/hr가 되도록 한다. ④ 공조 정지등의 상황에 대비하여 오염된 공기가 역류하는 것을 방치하기 위하여 병실의 급/배기구 등에 헤파필터 및 역류방지댐퍼(Airtight Back Draft Damper)를 설치한다. ⑤ 급기시스템과 배기시스템을 상호 연동하여, 배기시스템 정지 시 급격한 압력 변화로 인해 병실에 인접한 ‘실’ 대비 양압이 되지 않도록 설비하여야 한다. ⑥ 배기시스템 고장 및 정지 시 급기시스템 동작이 자동으로 꺼지도록 하고, 예비 배기 팬이 작동되어 압력이 안정화되면 급기시스템이 재작동하도록 설비한다.
또한, 상기 음압격리 병실의 배기방식은, ① 배기구는 헤파필터 등급 이상의 필터를 통해서 외부로 전량 배출한다. ② 배기구는 환자의 호흡기관에 최대한 근접하도록 한다. ③ 배기구를 환자의 머리 근처 또는 벽 하단부에 설치하도록 한다. ④ 각 실(room)로부터 나오는 배기덕트는 단독으로 배기하고, 배기 팬은 말단에 설치한다. ⑤ 음압격리구역의 배기 팬은 예비 팬을 설치하고 고장 시 대비한다. ⑥ 건물 외부의 배기구는 지상에서 2m 이상에 설치하여 주변 사람에게 직접 배기되지 않도록 하고 2m 이내에는 타 시스템의 인입구가 없어야 한다. 배기구의 방향이 타 시스템의 인입구와 마주보지 않도록 설치하는 것을 권장한다. ⑦ 설정된 음압을 유지하기 위하여 필요한 양보다 충분한 용량을 갖춘 설비를 설치한다. ⑧ 음압격리구역 내 배기 팬은 UPS(무정전 전원장치)와 비상발전기에 연결되어 정전이 발생하더라도 배기가 이뤄질 수 있도록 한다.
또한, 상기 음압격리 병실의 음압제어 방식은, ① 오염도가 낮은 곳에서 높은 곳으로 공기가 흐르도록 실내의 공기압력을 조정한다. 예를 들어, 예시 1) 비음압격리구역 > 복도전실(탈의) > 음압복도 > 병실전실 > 병실 > 화장실로 한다. 예시 2) 샤워 후 착의실 > 샤워실 > 보호복 탈의실 > 제독실 > 장비보관실 > 내부복도로 한다.
② 음압병실 등의 실내 공기압력을 안정적으로 제어하기 위해서 음압 병상과 병실-전실 급기구 및 배기구를 설치하되, 별실 내 화장실의 경우 배기구만 설치한다. ③ 화장실, 병실, 병실-전실, 내부복도 등의 실간 차압은 각각 -2Pa 단위의 차압표시기를 설치한다. ④ 음압이 유지되는 실의 출구에는 소수점 한 자리(0.1Pa)까지 표시되는 차압표시기를 설치한다(단, 음압구역 내 실간 차압을 4Pa 이상 확보한 경우 1Pa 단위의 차압표시기 설치한다). ⑤ 음압격리구역의 음압이 적절히 유지되도록 공조 제어기는 중앙통제실 등에 설치한다. ⑥ 관리자 이외에는 공조 제어를 할 수 없도록 한다. 이상 발생 시 경보음을 통해 관리자 및 의료진이 바로 조치할 수 있도록 하여야 하며, 오작동 발생 시 자동으로 기록되도록 한다.
또한, 위생기구 설치는, ① 손 씻기 시설은 세면 등에도 사용 가능한 것으로 물이 튀지 않는 구조로 하고 손목까지 충분히 들어가는 크기로 한다. ② 위생기구의 수전은 손을 대지 않고 사용할 수 있는 구조(비접촉식 자동 수전)로 설치한다. ③ 급수관과 대변기의 접속은 급수관으로 역류가 일어나지 않도록 한다. ④ 세제나 소독약을 사용하는 경우, 카운터 세면대의 위판, 벽 등에 오염되지 않도록 세제와 소독약의 용기는 손 씻기 시설의 위쪽에 설치한다.
그리고 배수설비 방식은, ① 손 씻기 용기나 변기 등에 접속시킨 배수관, 통기관은 배수가 역류하지 않도록 설치한다. ② 음압격리구역의 배수관은 전용 폐수탱크까지 단독 설치하고 소독 또는 멸균을 한 다음 다른 폐수처리 설비로 합류시키도록 한다. ③ 폐수처리 시스템은 화학적 또는 열처리에 적합하도록 설치한다. ④ 폐수탱크에는 폐수의 역류방지를 위해 통기관 설치하고 통기관 말단은 제균필터를 설치한다. ⑤ 미생물의 생물학적 비활성화를 위한 설비 및 검증포트를 설치한다. ⑥ 음압격리 구역 내 전용 고온/고압 멸균 폐수 탱크는 비상시 넘침 방지 방지턱을 설치한다.
또한, 상기 음압격리 병실의 소방 설비는, ① 소화전, 소화기 등(청정소화약재)을 설치하여(음압병실 외부) 화재에 대비하도록 한다. ② 간이 스프링클러 설비를 설치하여 화재에 대비한다. ③ 화재 시 음압격리 병상과 격리구역의 모든 인터락을 해제 및 자동 수동으로 열릴 수 있도록 한다. ④ 각 병실의 전실에 소화기를 설치한다. 소방설비 장치는 간이형 소화 장치로 한다.
그리고 상기 음압격리 병실의 의료가스 설비는, ① 산소와 압축공기는 외부에서(간이유틸리티실) 배관을 통하여 공급할 수 있도록 한다. ② 의료가스의 출구 상자(Outlet box)를 벽면에 노출로 설치하는 구조로 한다. ③ 흡인기구를 통해 다른 환자가 감염되지 않는 구조(HEPA Filter 설치)로 한다. ④ 7개 병상을 기준으로 유틸리티 실에 진공펌프 2대(예비), 산소공급장치 등을 구비한다. ⑤ 의료가스공급 장치 및 진공펌프 등은 고장 시 처리가 가능하도록 예비를 설치한다. ⑥ 유틸리티 실(室)은 허가자 외는 출입을 할 수 없도록 장치를 갖춘다.
또한, 전기설비의 공급방식은, 한전의 전력을 이용하여 공급한다. 간이 스프링클러 설비를 설치하여 화재에 대비한다. 단전 시 UPS 전력을 공급한다. 단전 시 UPS와 병렬 연결된 비상발전 시스템으로 전력 공급한다. 발전기는 최소 2대 이상 구축하여 예비 전력 공급원을 확보한다.
또한, 전기설비의 시공은, ① 부하평형을 점검 가능할 수 있도록 부분적으로 색 구분 가능한 배선을 사용한다. ② 통신선과의 이격거리를 확보하여 각종 계측기 오류를 방지한다. ③ 전압 300V 미만 : 6cm 이상 이격(잘 보이지 않는 장소는 12cm 이상) ④ 전압 300V 이상 : 15cm 이상 이격(잘 보이지 않는 장소는 30cm 이상) ⑤ 강전류전선이 케이블일 경우에는 접촉되지 않도록 시설한다. ⑥ 외부 전력선 간의 체결은 방오/방수가 용이한 방우형 콘센트로 처리한다.
이상에서 설명한 바와 같이, 본 발명은 다음과 같은 효과들이 있다.
첫째, 감염병 확산에 대비하는 신속한 설치는 물론 분리 가능한 음압격리 병실로, 기존 병원 내부 설치하는 음압격리 병실 대비 구축 비용이 저렴하며, 병원 내 2차 감염에 대한 우려가 낮다.
둘째, 일정 공간만 확보되면 설치 가능한 ‘이동형 모듈화 음압병실’로 인구 밀집도가 낮은 지역에 설치 및 해체가 용이하며, 기존 시설이 ‘코로나 지정 시설(병원)’로 확정되어 주민반발 등의 님비현상 발생을 최소화 할 수 있다.
셋째, 법규정 내 음압격리 병실 구축에 필요한 모든 주요 시설은, 모듈(module) 방식으로 공장에서 제작되어 생산공정이 신속하며, 평상시에 해체하여 물류창고 등에 보관하였다가, 비상 시에 주차장, 운동장, 공터 등의 야외 시설 등에 신속하고 용이하게 설치할 수 있다.
넷째, 해당 모듈은 철저히 관리(소독 및 방역 등)하면 설치/해체에 대해 사용 횟수 제약이 없으며, 만일에 오염 및 작동 불가 시 해당 모듈만 교체 가능하여 부가적인 비용이 발생하지 않는다.
다섯째, 2층, 3층 등의 복층 설치가 가능하여, 한정된 공간에 대규모 병실을 구축할 수 있다.
여섯째, 모든 급/배기 시설 및 음압 유지 관련 장비는 각각의 개별 밸브와 컨트롤러로 작동되어, 일개의 병실 이상 시에도 정상 작동된다.
일곱째, 모듈화된 방식으로 화물차 적재 가능하게 설계되어, 신속한 운반 및 이동이 가능하다.
여덟째, 기존 컨테이너, 텐트 등을 기반으로 하는 음압 격리시설에 비해서, 기밀성이 뛰어나고 냉/난방이 자유로우며, 외부 접촉 없는 오/폐수 분리배출이 용이하다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있다. 하지만, 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체 물을 포함하는 것으로 이해되어야 한다.

Claims (15)

  1. 바닥패널(110)과 천장패널(120) 사이에, 내부 벽체패널(130)과 외부 벽체패널(140)이 설치되어 복수의 실(rooms)을 구획하며,
    상기 바닥패널(110), 상기 천장패널(120), 상기 내부 벽체패널(130), 및 상기 외부 벽체패널(140)이 모듈로 분리 가능하게 조립되는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시스템.
  2. 청구항 1에 있어서,
    상기 바닥패널(110)은,
    수평방향으로 서로 인접하여 조립되는 복수의 베이스 플레이트(111);
    상기 베이스 플레이트(111)의 상부에 설치되며, 수평방향으로 서로 인접하여 조립되는 복수의 바닥 플레이트(112); 및
    상기 베이스 플레이트(111)와 상기 바닥 플레이트(112) 사이에 설치되며, 테두리 부분에 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 하단부를 끼워 결합하기 위한 고정홈부(113a)가 절곡 형성되는 하단부 고정 플레이트(113); 를 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  3. 청구항 1에 있어서,
    상기 천장 패널(120)은,
    최상면에 위치하며, 수평방향으로 서로 인접하여 조립되는 복수의 루프 플레이트(121);
    상기 루프 플레이트(121)의 하부에 설치되며, 수평방향으로 서로 인접하여 조립되는 복수의 천장 플레이트(122); 및
    상기 루프 플레이트(121)와 상기 천장 플레이트(122) 사이에 설치되며, 테두리 부분에 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 상단부를 끼워 결합하기 위한 고정홈부(123a)가 절곡 형성되는 상단부 고정 플레이트(123); 를 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  4. 청구항 1에 있어서,
    상기 외부 벽체패널(140)의 외면에는 벽체패널 보강 연결수단(150)에 의해서 복수의 보강 벽체패널(145)이 설치되는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시스템.
  5. 청구항 4에 있어서,
    상기 벽체패널 보강 연결수단(150)은,
    상기 보강 벽체패널(145)의 양쪽 외면 중 어느 일면에 고정 설치되는 연결블록(151);
    상기 연결블록(151)과 결합하도록 상기 보강 벽체패널(145)의 양쪽 외면 중 다른 일면에 고정 설치되는 "ㄷ"자형 연결브래킷(152); 및
    상기 "ㄷ" 자형 연결 브래킷(152)의 결합홈(152a) 안에 상기 연결블록(151)을 끼운 상태에서, 상기 "ㄷ" 자형 연결 브래킷(152)과 상기 연결블록(151)을 관통하여 서로 체결하는 체결볼트(153); 를 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  6. 청구항 1 또는 청구항 5에 있어서,
    상기 천장 패널(120)의 상부에는 급배기 설비(160)가 서로 엇갈리게 지그재그 형태로 배치되는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시스템.
  7. 청구항 1에 있어서,
    상기 천장 패널(120)의 하부에 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)을 조립하기 위한 천장 및 벽체패널 연결 브래킷(170)을 더 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  8. 청구항 7에 있어서,
    상기 천장 및 벽체패널 연결 브래킷(170)은,
    상기 외부 벽체패널(140)의 상단이 끼워지기 위한 제1 채널부(171);
    상기 천장 패널(120)의 결합홀(120a) 안에 결합하기 위하여 상기 제1 채널부(171)의 상면에 연장 형성되는 결합돌기(172); 및
    상기 내부 벽체패널(130)의 상단이 끼워지기 위하여 상기 제1 채널부(171)에 직교하여 형성되는 제2 채널부(173); 를 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  9. 청구항 8에 있어서,
    상기 천장 및 벽체패널 연결 브래킷(170)은 "T"자 형상을 하는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시스템.
  10. 청구항 1에 있어서,
    상기 내부 벽체패널들(130)(130) 간의 연결 부분, 상기 외부 벽체패널들(140)(140) 간의 연결 부분, 및 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140) 간의 연결 부분에는 시일재(180)가 설치되는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시스템.
  11. 청구항 1에 있어서,
    상기 복수의 실(rooms)은, 전실, 음압격리 병실, 화장실, 및 기계실을 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  12. 청구항 2에 있어서,
    상기 실(rooms)은, 복도용 전실, 의료진용 샤워 및 화장실, 오폐기물처리실, 유틸리티 및 장비보관실, 음압복도, 및 화상 면회실, 음압격리 병실, 병실용 전실, 환자용 화장실, 및 기계실을 포함하는, 야전형 모듈화 음압격리 병실 시스템.
  13. 바닥면을 평탄화 작업하는 단계(S10);
    상기 바닥면에 베이스 트러스(B)를 설치하는 단계(S20);
    상기 베이스 트러스(B) 위에 바닥패널을 설치하는 단계(S30);
    상기 바닥패널(110)의 하단부 고정 플레이트(113)에 형성된 고정홈부(113a) 안에 내부 벽체패널(130)과 외부 벽체패널(140)의 하단부를 결합하되, 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계(S40); 및
    상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 상부에, 급배기설비(160)와 헤파필터(F)가 장착된 천장 패널(120)을 설치하되, 상기 천장 패널(120)의 상단부 고정 플레이트(123)에 형성된 고정홈부(123a) 안에 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 상단부를 결합하는 단계(S50); 를 포함하는, 야전형 모듈화 음압격리 병실 시공방법.
  14. 바닥면을 평탄화 작업하는 단계(S110);
    상기 바닥면에 베이스 트러스(B)를 설치하는 단계(S120);
    상기 베이스 트러스(B) 위에 바닥패널(110)을 설치하는 단계(S130);
    상기 바닥패널(110)의 하단부 고정 플레이트(113)에 형성된 고정홈부(113a) 안에 내부 벽체패널(130)과 외부 벽체패널(140)의 하단부를 결합하되, 상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)을 수직으로 설치하여 복수의 실(rooms)을 구획하는 단계(S140); 및
    상기 내부 벽체패널(130)과 상기 외부 벽체패널(140)의 상부에, 급배기설비(160)와 헤파필터(F)가 장착된 천장 패널(120)을 설치하되, 천장 및 벽체패널 연결 브래킷(170)을 이용하여 상기 내부 벽체패널(170)과 상기 외부 벽체패널(140)의 상단부를 결합하는 단계(S150); 를 포함하는, 야전형 모듈화 음압격리 병실 시공방법.
  15. 청구항 13 또는 청구항 14에 있어서,
    상기 바닥패널(110), 상기 천장패널(120), 상기 내부 벽체패널(130), 및 상기 외부 벽체패널(140)을 조립하여 복수의 실(rooms)을 구획하되,
    상기 바닥패널(110), 상기 천장패널(120), 상기 내부 벽체패널(130), 및 상기 외부 벽체패널(140)을 모듈로 구성하여서 조립과 분리를 반복적으로 실시할 수 있는 것을 특징으로 하는, 야전형 모듈화 음압격리 병실 시공방법.
PCT/KR2020/018775 2020-10-15 2020-12-21 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법 WO2022080589A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,357 US20220370274A1 (en) 2020-10-15 2020-12-21 Field-type modular negative pressure isolation room system and method for constructing field-type modular negative pressure isolation room system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0133249 2020-10-15
KR1020200133249A KR102188658B1 (ko) 2020-10-15 2020-10-15 야전형 모듈화 음압격리 병실 시스템

Publications (1)

Publication Number Publication Date
WO2022080589A1 true WO2022080589A1 (ko) 2022-04-21

Family

ID=73779289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018775 WO2022080589A1 (ko) 2020-10-15 2020-12-21 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법

Country Status (3)

Country Link
US (1) US20220370274A1 (ko)
KR (1) KR102188658B1 (ko)
WO (1) WO2022080589A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188658B1 (ko) * 2020-10-15 2020-12-08 박종진 야전형 모듈화 음압격리 병실 시스템
KR102377129B1 (ko) * 2021-02-23 2022-03-21 의료법인 명지의료재단 컨테이너를 이용한 병원시설물
WO2023146908A1 (en) * 2022-01-25 2023-08-03 Germfree Laboratories INC Field-changeable multi-mode cleanrooms and laboratories
CN114737797A (zh) * 2022-05-19 2022-07-12 中国铁建重工集团股份有限公司 一种承压建筑及其装配方法
JP7329763B1 (ja) * 2023-03-23 2023-08-21 パナソニックIpマネジメント株式会社 病院用の情報出力システム、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107554A (ja) * 1997-10-02 1999-04-20 Tanimoto:Kk シャワー室ユニット
JP2010047940A (ja) * 2008-08-20 2010-03-04 Ohbayashi Corp 感染症対応型施設
KR20160148183A (ko) * 2015-06-16 2016-12-26 장한 격리 모듈, 격리 시스템 및 치료 시스템
JP2019107425A (ja) * 2017-12-18 2019-07-04 株式会社セオコーポレーション 感染無菌システム
KR102164518B1 (ko) * 2020-07-03 2020-10-12 진우건철(주) 음압병동 컨테이너
KR102188658B1 (ko) * 2020-10-15 2020-12-08 박종진 야전형 모듈화 음압격리 병실 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406536B1 (ko) 2001-03-28 2003-11-20 주식회사 하이닉스반도체 산소확산방지막으로서 알루미늄 산화막을 구비하는강유전체 메모리 소자 및 그 제조 방법
JP5723471B1 (ja) * 2014-08-05 2015-05-27 株式会社丸高工業 板パネル固定構造物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107554A (ja) * 1997-10-02 1999-04-20 Tanimoto:Kk シャワー室ユニット
JP2010047940A (ja) * 2008-08-20 2010-03-04 Ohbayashi Corp 感染症対応型施設
KR20160148183A (ko) * 2015-06-16 2016-12-26 장한 격리 모듈, 격리 시스템 및 치료 시스템
JP2019107425A (ja) * 2017-12-18 2019-07-04 株式会社セオコーポレーション 感染無菌システム
KR102164518B1 (ko) * 2020-07-03 2020-10-12 진우건철(주) 음압병동 컨테이너
KR102188658B1 (ko) * 2020-10-15 2020-12-08 박종진 야전형 모듈화 음압격리 병실 시스템

Also Published As

Publication number Publication date
US20220370274A1 (en) 2022-11-24
KR102188658B1 (ko) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022080589A1 (ko) 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법
KR102254161B1 (ko) 음압 및 양압 겸용 포터블 병실 시스템
CN112065114B (zh) 模块化装配式医院负压隔离病房结构与施工方法
CN210508531U (zh) 一种集装箱式负压隔离病房
KR102236364B1 (ko) 야전형 모듈화 음압격리 병실 시스템 및 그 야전형 모듈화 음압격리 병실 시스템의 시공방법
KR102172044B1 (ko) 모듈러 건축공법을 이용한 모듈러 부스 및 이의 제조방법
KR102249264B1 (ko) 패시브 음압/양압 컨테이너
CN214835143U (zh) 传染病防治一体化方舱
CN213359524U (zh) 一种模块化隔离病房
WO2020189838A1 (ko) 환기장치용 온도조절장치
CN113445786A (zh) 一种模块拼装式隔离区进出通道
CN212897780U (zh) 二级负压防护舱以及方舱医院
CN113445629A (zh) 一种可拆装的隔离区进出通道模块
WO2022065822A1 (ko) 코로나바이러스 및 호흡기질병 확산 방지를 위한 소독기능이 포함된 환기시스템
CN111576937A (zh) 一种装配式自动控制多梯度负压隔离单元
Laufman Surgical hazard control: Effect of architecture and engineering
CN214406291U (zh) 一种平战快速转换的安全型空调排风节能系统
CN215368952U (zh) 一种医疗防疫用隔离方舱
WO2021210707A1 (ko) 개별 공간 멸균 제어 및 재사용이 가능한 이동식 격리시스템
JP2006000145A (ja) 病室ユニット
CN114439287A (zh) 双通道型模块化集成负压隔离病房
CN114412246A (zh) 单通道型模块化集成负压隔离病房
CN212535228U (zh) 隔离系统
CN212154273U (zh) 模块拼装式隔离区进出通道
KR20110008720A (ko) 감염방지시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957833

Country of ref document: EP

Kind code of ref document: A1