WO2022080206A1 - 蓄電デバイス電極用分散剤組成物 - Google Patents

蓄電デバイス電極用分散剤組成物 Download PDF

Info

Publication number
WO2022080206A1
WO2022080206A1 PCT/JP2021/036952 JP2021036952W WO2022080206A1 WO 2022080206 A1 WO2022080206 A1 WO 2022080206A1 JP 2021036952 W JP2021036952 W JP 2021036952W WO 2022080206 A1 WO2022080206 A1 WO 2022080206A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive material
positive electrode
present disclosure
acrylic polymer
Prior art date
Application number
PCT/JP2021/036952
Other languages
English (en)
French (fr)
Inventor
井樋昭人
隠岐一雄
代田協一
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202180069686.8A priority Critical patent/CN116390976A/zh
Priority to EP21879946.8A priority patent/EP4228035A1/en
Priority to KR1020237014311A priority patent/KR20230087513A/ko
Priority to US18/031,213 priority patent/US20230383135A1/en
Publication of WO2022080206A1 publication Critical patent/WO2022080206A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a dispersant composition for a power storage device electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-181140 (Patent Document 1) describes fine carbon fibers, a dispersion medium which is an amide-based organic solvent, a polymer-based dispersant, and an organic basicity having a pKa of 7.5 or more in water.
  • a fine carbon fiber dispersion composed of a compound is disclosed.
  • a nitrogen-containing organic compound having a primary to tertiary amino group is used as the organic basic compound having a pKa of 7.5 or more, and methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol and the like are used as the polymer-based dispersant.
  • Patent Document 2 discloses a carbon nanotube dispersion liquid for electrodes containing carbon nanotubes, polyvinylpyrrolidone, N-methyl-2-pyrrolidone, and an amine compound.
  • WO2013 / 151062 discloses an acrylic polymer containing a monomer having a hydrocarbon group having 8 to 30 carbon atoms as a copolymer contained in a positive electrode paste for a battery.
  • the present disclosure contains an acrylic polymer (A), a compound (B) represented by the following formula (1), and an organic solvent (C), and the acrylic polymer (A) is described below.
  • the present invention relates to a dispersant composition for a power storage device electrode, which comprises a structural unit a represented by the formula (3).
  • R 1 represents a group represented by the following formula (2)
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or -CH 2 CH 2 -OH.
  • R 3 , R 4 , R 5 and R 6 represent the same or different hydrogen atom, methyl group or -CH 2 OH.
  • R 7 , R 8 and R 9 indicate the same or different hydrogen atom, methyl group or ethyl group
  • R 10 indicates a hydrocarbon group having 1 to 30 carbon atoms
  • X 1 Indicates an oxygen atom or -NH-.
  • the present disclosure relates, in one aspect, to a carbon material-based conductive material slurry containing the carbon material-based conductive material (D) and the dispersant composition of the present disclosure.
  • the present disclosure relates, in one aspect, to a positive electrode paste for a power storage device containing the dispersant composition of the present disclosure.
  • the present disclosure relates to, in one aspect, a method for producing a positive electrode coating film using the positive electrode paste of the present disclosure.
  • the resistance value of the positive electrode coating film is high, and carbon nanotubes contained in the positive electrode paste or the carbon material dispersion liquid are used to form a positive electrode coating film having a higher quality conductive path and lower resistance. It is desired to provide a dispersant or an additive capable of lowering the viscosity of a slurry or paste containing a carbon material-based conductive material.
  • the present disclosure provides a dispersant composition for a power storage device electrode, which enables preparation of a carbon material-based conductive material slurry having a low viscosity and good handleability and a positive electrode paste.
  • Disposant composition for power storage device electrodes The present disclosure enables the preparation of carbon material-based conductive material slurry and positive electrode paste having low viscosity and good handleability by using a specific acrylic polymer (A) and a specific compound (B) in combination. Based on the finding that agent compositions can be provided.
  • the present disclosure contains an acrylic polymer (A), a compound (B) represented by the above formula (1), and an organic solvent (C), and the acrylic polymer (A) is described above.
  • the present invention relates to a dispersant composition for a power storage device electrode (hereinafter, also referred to as “dispersant composition of the present disclosure”), which comprises a structural unit a represented by the formula (3).
  • a dispersant composition for a power storage device electrode which enables preparation of a carbon material-based conductive material slurry and a positive electrode paste having low viscosity and good handleability.
  • a positive electrode paste having a low viscosity and good handleability and a carbon material-based conductive material slurry By using the positive electrode paste for a power storage device prepared by using the dispersant composition for a carbon material-based conductive material of the present disclosure, a low resistance positive electrode coating film can be produced.
  • the acrylic polymer (A) is adsorbed on the carbon material-based conductive material by the hydrocarbon group having 1 to 30 carbon atoms and exhibits dispersibility.
  • the acrylic polymer (A) does not cover the entire surface of the carbon material-based conductive material, and there are exposed portions on the surface of the carbon material-based conductive material. Adjacent carbon material-based conductive materials aggregate in an organic solvent due to ⁇ - ⁇ interaction and hydrogen bonds between polar groups partially present on the surface of the carbon material-based conductive material.
  • the amine compound (B) having a hydroxyl group interacts with the polar group (neutralization reaction or dipole interaction) to suppress hydrogen bonds between carbon material-based conductive materials.
  • the amine (cation) suppresses the ⁇ - ⁇ interaction between the carbon material-based conductive materials by the cation- ⁇ interaction with the ⁇ -electrons on the carbon material-based conductive material.
  • the dispersibility of the carbon material-based conductive material is improved, and as a result, the viscosity is lowered as compared with the case where the compound (B) is not added. It is inferred that.
  • the mechanism by which the resistance value of the positive electrode coating film is lowered is presumed as follows.
  • the acrylic polymer (A) and the compound (B) each interact with the carbon material-based conductive material, that is, both of them are adsorbed on the surface of the carbon material-based conductive material. It is presumed that the acrylic polymer (A) is adsorbed in a mottled manner on the surface of the carbon material-based conductive material, but when the acrylic polymer (A) and the compound (B) coexist, both carbon material-based conductivity Competitive adsorption to the surface of the material occurs, and the adsorbed acrylic polymer (A) and compound (B) are localized on the surface of the carbon material-based conductive material, respectively.
  • the area of the adsorbed portion of the acrylic polymer (A) is reduced. Since compound (B) is a low molecular weight compound in the process of applying and drying the positive electrode paste, the carbon material system in which compound (B) was adsorbed by volatilizing or moving from the surface of the conductive material together with the solvent. The surface portion of the conductive material is exposed, and this exposed portion serves as a conductive contact point between the carbon material-based conductive materials. In the present disclosure, it is presumed that the exposed portion is larger than that in the case where the compound (B) does not coexist, which facilitates the formation of the conductive path, and as a result, the resistance value of the positive electrode coating film can be lowered. Will be done. However, this disclosure is not construed as limiting to these mechanisms.
  • a dispersant composition for a power storage device electrode which enables preparation of a carbon material-based conductive material slurry and a positive electrode paste having low viscosity and good handleability.
  • the acrylic polymer (A) contained in the dispersant composition of the present disclosure contains a structural unit a described later.
  • the acrylic polymer of the present disclosure preferably further contains the structural unit b described later from the viewpoint of improving the dispersibility of the carbon material-based conductive material.
  • the acrylic polymer (A) of the present disclosure include a polymer containing a structural unit a described later, a copolymer containing a structural unit a described later and a structural unit b described later, and the like in one or a plurality of embodiments. Be done.
  • the acrylic polymer (A) of the present disclosure may be one kind or a combination of two or more kinds.
  • the structural unit a is a structural unit represented by the following equation (3).
  • the structural unit a may be one type or a combination of two or more types.
  • the constituent unit a is a component of the acrylic polymer (A) of the present disclosure that is adsorbed on the surface of the carbon material-based conductive material.
  • R 7 , R 8 and R 9 represent the same or different hydrogen atom, methyl group or ethyl group
  • R 10 represents a hydrocarbon group having 1 to 30 carbon atoms
  • X 1 represents a hydrocarbon group. Indicates an oxygen atom (-O-) or -NH-.
  • R 7 and R 8 are preferably a hydrogen atom, and R 9 is preferably a hydrogen atom or a methyl group.
  • X 1 is preferably an oxygen atom.
  • the hydrocarbon group of R 10 is preferably an alkyl group or an alkenyl group from the viewpoint of improving the adsorptivity to the surface of the carbon material-based conductive material.
  • the carbon number of R 10 is 1 or more, preferably 6 or more, more preferably 8 or more, further preferably 12 or more, further preferably 14 or more, and from the same viewpoint, 30 or less.
  • the carbon number of R 10 is preferably 6 to 30, more preferably 8 to 30, further preferably 12 to 24, and even more preferably 14 to 22.
  • R 10 include an octyl group, a 2-ethylhexyl group, a decyl group, a lauryl group, a myristyl group, a cetyl group, a stearyl group, an oleyl group, a behenyl group and the like from the same viewpoint.
  • Examples of the monomer (hereinafter, also referred to as “monomer a”) that give the structural unit a include 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) in one or more embodiments.
  • At least one selected from meth) acrylate is preferred, at least one selected from stearyl (meth) acrylate and behenyl (meth) acrylate is more preferred, and at least one selected from stearyl methacrylate (SMA) and behenyl acrylate (BeA). Is more preferable, and stearyl methacrylate is further preferable.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) of the present disclosure is preferably 10 mass by mass from the viewpoint of improving the adsorptivity to the surface of the carbon material-based conductive material and the dispersibility of the carbon material-based conductive material. % Or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and from the same viewpoint, preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 70% by mass or less. Is. From the same viewpoint, the content of the structural unit a in all the structural units of the acrylic polymer (A) is preferably 10 to 80% by mass, more preferably 15 to 75% by mass, and further preferably 20 to 70% by mass. Is.
  • the content of the constituent unit a is the total content thereof.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of the monomer a used to the total amount of the monomers used for the polymerization.
  • the structural unit b is at least one type of structural unit selected from the structural unit b1 represented by the following formula (4) and the structural unit b2 represented by the following formula (5).
  • the structural unit b may be one type or a combination of two or more types.
  • the structural unit b is a component of the acrylic polymer (A) of the present disclosure that does not adsorb to the surface of the carbon material-based conductive material and bears steric repulsion.
  • R 11 , R 12 and R 13 represent the same or different hydrogen atom, methyl group or ethyl group
  • X 2 represents an oxygen atom
  • R 14 is a direct chain having 2 to 4 carbon atoms. It indicates a chain or branched alkylene group
  • p indicates 1 to 8
  • R 15 indicates a hydrogen atom or a methyl group.
  • p is preferably 8 or less, more preferably 6 or less, still more preferably 4 or less, from the viewpoint of the surface coverage of the carbon material-based conductive material.
  • R 16 , R 17 and R 18 represent a hydrogen atom, a methyl group or an ethyl group, which are the same or different, and X 3 is an amide group or a hydrocarbon group having 1 to 4 carbon atoms. Indicates a pyridinyl group that may have.
  • the structural unit b1 represented by the above formula (4) may be one kind or a combination of two or more kinds.
  • the structural unit b1 include a structure derived from a nonionic monomer, a structure in which a nonionic group is introduced after polymerization, and the like.
  • the monomer giving the structural unit b1 include 2-hydroxyethyl methacrylate, methoxyethyl methacrylate, methoxypolyethylene glycol (meth) acrylate, and methoxypoly (ethylene glycol / propylene glycol) mono (meth) acrylate.
  • Ethoxypoly (ethylene glycol / propylene glycol) mono (meth) acrylate Ethoxypoly (ethylene glycol / propylene glycol) mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and the like.
  • HEMA 2-hydroxyethyl methacrylate
  • PEGMA methoxypolyethylene glycol (meth) acrylate
  • methoxyethyl methacrylate from the viewpoint of steric repulsion and solubility of the acrylic polymer in an organic solvent.
  • the monomer b1 may be one kind or a combination of two or more kinds.
  • the structural unit b2 represented by the above formula (5) may be one kind or a combination of two or more kinds.
  • the monomer giving the structural unit b2 (hereinafter, also referred to as “monomer b2”) is 4-vinylpyridine from the viewpoint of steric repulsion and solubility of the acrylic polymer in an organic solvent. At least one selected from (4-Vpy), 2-vinylpyridine (2-Vpy), acrylamide, and methacrylamide (MAAm) is preferred, from 4-vinylpyridine (4-Vpy), and methacrylamide (MAAm). At least one selected is more preferred.
  • the monomer b2 may be one kind or a combination of two or more kinds.
  • the content of the constituent unit b in all the constituent units of the acrylic polymer (A) of the present disclosure is determined from the viewpoint of improving the dispersibility by steric repulsion. 20% by mass or more is preferable, 25% by mass or more is more preferable, 30% by mass or more is further preferable, and from the same viewpoint, 90% by mass or less is preferable, 85% by mass or less is more preferable, and 80% by mass or less is more preferable. More preferred. From the same viewpoint, the content of the structural unit b in all the structural units of the acrylic polymer (A) of the present disclosure is preferably 20 to 90% by mass, more preferably 25 to 85% by mass, and 30 to 80% by mass.
  • the content of the constituent unit b is the total content thereof.
  • the content of the structural unit b in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of the monomer b used to the total amount of the monomers used for the polymerization.
  • the acrylic polymer (A) of the present disclosure may further contain structural units other than the structural unit a and the structural unit b as long as the effects of the present disclosure are exhibited.
  • the total content of the constituent unit a and the constituent unit b in all the constituent units of the acrylic polymer (A) of the present disclosure is preferably 30% by mass or more, preferably 50% by mass or more, from the viewpoint of improving the dispersibility of the carbon material-based conductive material. By mass or more is more preferable, substantially 100% by mass is further preferable, and 100% by mass is even more preferable.
  • the preferable combination of the constituent unit a and the constituent unit b is as follows from the viewpoint of improving the dispersibility of the carbon material-based conductive material. Can be mentioned.
  • the acrylic polymer (A) is a copolymer containing the structural unit a and the structural unit b
  • the arrangement of the structural unit a1 and the structural unit b may be random, block, or graft.
  • the method for synthesizing the acrylic polymer (A) of the present disclosure is not particularly limited, and the method used for the polymerization of ordinary (meth) acrylic acid esters and vinyl monomers is used.
  • Examples of the method for synthesizing the acrylic polymer (A) include a free radical polymerization method, a living radical polymerization method, an anion polymerization method, and a living anion polymerization method.
  • the free radical polymerization method when used, it can be obtained by a known method such as polymerizing a monomer component containing a monomer a and, if necessary, a monomer b by a solution polymerization method.
  • Examples of the solvent used for the polymerization include hydrocarbons (hexane, heptane), aromatic hydrocarbons (toluene, xylene, etc.), lower alcohols (ethanol, isopropanol, etc.), ketones (acetone, methylethylketone), ethers (tetratetra, etc.). Diethylene glycol dimethyl ether), organic solvents such as N-methylpyrrolidone can be used.
  • the amount of the solvent is preferably 0.5 to 10 times the mass ratio with respect to the total amount of the monomers.
  • a known radical polymerization initiator can be used, and for example, an azo-based polymerization initiator, hydroperoxides, dialkyl peroxides, diacyl peroxides, and ketone peroxides. And so on.
  • the amount of the polymerization initiator is preferably 0.01 to 5 mol%, more preferably 0.05 to 4 mol%, still more preferably 0.1 to 3 mol%, based on the total amount of the monomer components.
  • the polymerization reaction is preferably carried out in a temperature range of 40 to 180 ° C. under a nitrogen stream, and the reaction time is preferably 0.5 to 20 hours.
  • a known chain transfer agent can be used during the polymerization. Examples of the chain transfer agent include isopropyl alcohol and mercapto compounds such as mercaptoethanol.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of the monomer a used to the total amount of the monomers used for the polymerization.
  • the content of the structural unit b in the total structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of the monomer b used to the total amount of the monomers used for the polymerization.
  • the total content of the structural unit a and the structural unit b in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the total amount of the monomer a and the monomer b used to the total amount of the monomers used for the polymerization.
  • the weight average molecular weight of the acrylic polymer (A) of the present disclosure is preferably 5000 or more, more preferably 7000 or more, from the viewpoint of improving the dispersibility of the carbon material-based conductive material and the solubility of the acrylic polymer in an organic solvent. 10,000 or more is further preferable, and from the same viewpoint, 1 million or less is preferable, 500,000 or less is more preferable, 300,000 or less is further preferable, 100,000 or less is further preferable, and 60,000 or less is further preferable. From the same viewpoint, the weight average molecular weight of the acrylic polymer (A) of the present disclosure is preferably 5,000 to 1,000,000, more preferably 7,000 to 500,000, still more preferably 10,000 to 300,000, and preferably 10,000 to 100,000. Even more preferable, 10,000 to 60,000 is even more preferable. In the present disclosure, the weight average molecular weight is a value measured by GPC (gel permeation chromatography), and the details of the measurement conditions are as shown in Examples.
  • the content of the acrylic polymer (A) of the present disclosure in the dispersant composition of the present disclosure is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of improving the dispersibility of the carbon material-based conductive material. It is more preferably 15% by mass or more, and from the viewpoint of the solubility of the acrylic polymer in the organic solvent, it is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less. ..
  • the acrylic polymer (A) is a combination of two or more kinds, the content of the acrylic polymer (A) is the total content thereof.
  • Compound (B) The compound (B) contained in the dispersant composition of the present disclosure is a compound represented by the following formula (1) (hereinafter, also referred to as “compound (B) of the present disclosure”).
  • R 1 represents a group represented by the following formula (2)
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or -CH 2 CH 2 -OH.
  • R 3 , R 4 , R 5 and R 6 represent the same or different hydrogen atom, methyl group or -CH 2 OH.
  • the compound (primary or secondary amine) represented by the formula (1) of the present disclosure is superior to the tertiary amine in which H in the formula (1) is substituted with a carbon atom because the steric hindrance is small. It is considered that this is because the interaction between the ⁇ electron of the carbon material-based conductive material, that is, the interaction between the cation derived from the compound (B) and the ⁇ electron derived from the-carbon material-based conductive material becomes easy.
  • R 2 is a hydrogen atom (primary amine), an alkyl group having 1 to 4 carbon atoms (secondary amine) or -CH 2 CH from the viewpoint of reducing viscosity.
  • 2 -OH (secondary amine) is preferable, and a hydrogen atom, an alkyl group having 1 carbon atom or an alkyl group having 2 carbon atoms are more preferable.
  • a hydrogen atom, an alkyl group having 1 carbon atom or an alkyl group having 2 carbon atoms are more preferable.
  • the steric hindrance of the hydrogen atom, methyl group or ethyl group is small, and the interaction with the ⁇ electron of the carbon material-based conductive material, that is, the interaction between the cation derived from the compound (B) and the ⁇ electron derived from the carbon material-based conductive material. It is thought that this is because the interaction between the two is easy.
  • R 3 , R 4 , R 5 and R 6 are the same or different, and a hydrogen atom or a methyl group is preferable from the viewpoint of reducing the viscosity.
  • the hydrogen atom or methyl group has small steric hindrance, and the interaction with ⁇ electrons of the carbon material-based conductive material, that is, the interaction between the cation derived from compound (B) and the ⁇ electron derived from the carbon material-based conductive material (cation- It is thought that ⁇ interaction) will be easier.
  • the compound (B) of the present disclosure includes, in one or more embodiments, ethanolamine, N-methylethanolamine, N-ethylethanolamine, 2-amino-1-propanol, 2-amino-2-methyl-1.
  • ethanolamine N-methylethanolamine, N-ethylethanolamine, 2-amino-1-propanol, 2-amino-2-methyl-1.
  • propanol 1-amino-2-propanol, 2-amino 1,3, propanediol, and diethanolamine
  • the dispersibility of the conductive material is improved and the positive electrode paste is low.
  • At least one selected from ethanolamine, N-methylethanolamine, N-ethylethanolamine, 2-amino-2-methyl-1-propanol, 1-amino-2-propanol, and diethanolamine from the viewpoint of achieving both viscosity.
  • at least one selected from N-methylethanolamine, N-ethylethanolamine, and 2-amino-2-methyl-1-propanol
  • the content of the compound (B) of the present disclosure in the dispersant composition of the present disclosure is preferably 2.3 mass by mass from the viewpoint of the effect of reducing the viscosity of the conductive material slurry and the positive electrode paste in one or more embodiments. % Or more, more preferably 4% by mass, still more preferably 5% by mass or more, and from the viewpoint of uniform solubility of the acrylic polymer, preferably 43% by mass or less, more preferably 30% by mass or less, still more preferable. Is 20% by mass or less.
  • the compound (B) is a combination of two or more kinds, the content of the compound (B) is the total content thereof.
  • the content of the compound (B) of the present disclosure in the dispersant composition of the present disclosure is the acrylic polymer (A) from the viewpoint of the effect of reducing the viscosity of the conductive material slurry and the positive electrode paste in one or more embodiments. It is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more with respect to 100 parts by mass, and from the viewpoint of solubility of the acrylic polymer, the acrylic polymer (A). It is preferably 210 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 110 parts by mass or less with respect to 100 parts by mass.
  • the mass ratio A / B of the acrylic polymer (A) of the present disclosure and the compound (B) of the present disclosure in the dispersant composition of the present disclosure is 0.1 or more from the viewpoint of improving the dispersibility of the conductive material.
  • 0.3 or more is more preferable, 0.5 or more is further preferable, 0.8 or more is further preferable, and from the viewpoint of high conductivity, 10 or less is preferable, 5 or less is more preferable, and 3 or less is further preferable. preferable.
  • the dispersant composition of the present disclosure may further contain the organic solvent (C) in one or more embodiments.
  • the organic solvent (C) is preferably one that can dissolve the binder (binder resin) contained in the positive electrode paste.
  • Examples of the organic solvent (C) include amide-based polar organic solvents such as dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAc) and N-methylpyrrolidone (NMP); methanol, ethanol, 1-propanol and 2- Propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl-2-propanol (tert-butanol), pen Alcohols such as tanol, hexanol, heptanol, or octanol; ethylene glycol, diethylene glycol, triethylene glycol,
  • Glycols such as; polyhydric alcohols such as glycerin, trimethylolpropane, pentaerythritol, or sorbitol; ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Glycol ethers such as diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, or tetraethylene glycol monobutyl ether; acetone, methyl ethyl ketone, Examples include ketones such as methylpropyl ketone or cyclopentanone; esters such as ethyl acetate, ⁇ -butyl lactone, and ⁇ -
  • the content of the organic solvent (C) in the dispersant composition of the present disclosure is preferably 30% by mass or more, more preferably 30% by mass or more, from the viewpoint of the solubility of the acrylic polymer (A) in one or more embodiments. It is 50% by mass or more, more preferably 65% by mass or more, and from the viewpoint of uniform solubility of the acrylic polymer (A) and the compound (B), it is preferably 80% by mass or less, more preferably 78% by mass or less. It is more preferably 75% by mass or less.
  • the dispersant composition of the present disclosure may further contain other components as long as the effects of the present disclosure are not impaired.
  • Other components include, for example, antioxidants, neutralizers, defoamers, preservatives, dehydrators, rust inhibitors, plasticizers, binders (binders having a structure different from that of the acrylic polymer (A)). And so on.
  • the present disclosure relates to a conductive material slurry (hereinafter, also referred to as “the conductive material slurry of the present disclosure”) containing the carbon material-based conductive material (D) and the dispersant composition of the present disclosure in one embodiment.
  • the conductive material slurry of the present disclosure comprises the acrylic polymer (A) of the present disclosure, the compound (B) of the present disclosure, the organic solvent (C), and the carbon material-based conductive material (D) described later. )including.
  • Carbon material-based conductive material (D) examples include carbon nanotubes (hereinafter, may be referred to as “CNT”), carbon black, graphite, graphene, and the like in one or more embodiments, and among these, carbon nanotubes, graphite, graphene, and the like can be mentioned. From the viewpoint of achieving high conductivity, at least one selected from carbon black, carbon nanotubes, and graphene is preferable, and from the same viewpoint, carbon nanotubes or graphene are more preferable.
  • the carbon material-based conductive material (D) may be one kind or a combination of two or more kinds.
  • the average diameter of the carbon nanotubes (CNTs) that can be used as the carbon material-based conductive material (D) of the present disclosure is not particularly limited, but is preferably 2 nm or more, more preferably 3 nm or more, and further, from the viewpoint of improving the dispersibility of CNTs. It is preferably 5 nm or more, and from the viewpoint of improving conductivity, it is preferably 100 nm or less, more preferably 70 nm or less, and further preferably 50 nm or less. From the same viewpoint, the average diameter of CNTs is preferably 2 to 100 nm, more preferably 3 to 70 nm, still more preferably 5 to 50 nm. In the present disclosure, the average diameter of the CNT can be measured by a scanning electron microscope (SEM) or an atomic force microscope (AFM).
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the carbon nanotubes (CNTs) that can be used as the carbon material-based conductive material (D) of the present disclosure two or more types having different diameters may be used in order to achieve both conductivity and dispersibility.
  • the average diameter of the relatively thin CNTs is preferably 2 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, and from the viewpoint of dispersibility. From the viewpoint of conductivity, it is preferably 29 nm or less, more preferably 25 nm or less, still more preferably 20 nm or less.
  • the average diameter of the relatively thick CNTs is preferably 30 nm or more, more preferably 35 nm or more, still more preferably 40 nm or more from the viewpoint of dispersibility, and preferably 100 nm or less from the viewpoint of improving conductivity. , More preferably 70 nm or less, still more preferably 50 nm or less.
  • the carbon nanotube means a whole including a plurality of carbon nanotubes.
  • the form of the carbon nanotubes used for preparing the conductive material slurry is not particularly limited, but may be, for example, a plurality of carbon nanotubes independently of each other, or a form in which a plurality of carbon nanotubes are bundled or entangled. However, a form in which these forms are mixed may be used.
  • the carbon nanotubes may be carbon nanotubes having various layers or diameters. Carbon nanotubes may contain impurities derived from the process in the production of carbon nanotubes (eg, catalysts and amorphous carbon).
  • the carbon nanotube (CNT) that can be used as the carbon material-based conductive material (D) of the present disclosure has, in one or a plurality of embodiments, a shape in which one surface of graphite is wound into a tubular shape, and has one layer.
  • Single-walled carbon nanotubes (SW carbon nanotubes), double-walled carbon nanotubes (DW carbon nanotubes), and multi-walled carbon nanotubes (MW carbon nanotubes) that are wrapped in three or more layers are also called. ..
  • any single-walled, two-walled, or multi-walled carbon nanotubes and a mixture thereof can be used, and the positive electrode can be used.
  • the coating film is a film-like layer obtained by coating the electrode substrate (current collector).
  • Examples of the CNTs that can be used as the carbon material-based conductive material (D) of the present disclosure include NC-7000 (hereinafter, the numerical value is the average diameter, 9.5 nm) NX7100 (10 nm) of Nanocyl, FT6100 (9 nm) of Cnano, and FT.
  • HCNTs4 (4.5nm), CNTs5 (7.5nm), HCNTs5 (7.5nm), GCNTs5 ( 7.5nm), HCNTs10 (15nm), CNTs20 (25nm), CNTs40 (40nm), Korean CNT CTUBE170 (13.5nm), CTUBE199 (8nm), CTUBE298 (10nm), Kumho K-Nanos100P (11.5nm), Examples include CP-1001M (12.5nm) and BT-1003M (12.5nm) from LG Chem, 3003 (10nm) and 3021 (20nm) from Nano Tech Port.
  • the combination with BT-1003M (12.5nm) of the company can be mentioned.
  • Carbon black As the carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure, various materials such as furnace black, channel black, thermal black, acetylene black, and ketjen black can be used. In addition, normally oxidized carbon black, hollow carbon, and the like can also be used. Oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or secondarily treating it with nitric acid, nitrogen dioxide, ozone, etc., for example, phenol group, quinone group, carboxyl group, carbonyl group, etc. It is a process of directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since the conductivity of carbon generally decreases as the amount of the functional group introduced increases, it is preferable to use carbon that has not been oxidized.
  • the specific surface area of carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure increases, the contact points between the carbon black particles increase, which is advantageous in reducing the internal resistance of the electrode.
  • the specific surface area (BET) obtained from the amount of nitrogen adsorbed is preferably 20 m 2 / g or more and 1500 m 2 / g or less, more preferably 50 m 2 / g or more and 1000 m 2 / g or less, and further preferably 100 m. It is desirable to use 2 / g or more and 800 m 2 / g or less.
  • the primary particle diameter (diameter) of carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure is preferably 5 to 1000 nm, more preferably 10 to 200 nm, from the viewpoint of conductivity.
  • the primary particle size of carbon black is an average of the particle size measured by an electron microscope or the like.
  • Examples of the carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure include Talker Black # 4300, # 4400, # 4500, # 5500, etc. (Tokai Carbon Co., Ltd., Furness Black), Printex L, etc. ( Degusa, Furness Black), Raven7000, 5750, 5250, 5000ULTRAIII, 5000ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc. (Columbian, Furness Black), # 2350, # 2400B, # 30050B, # 3050B, # 30 , # 3350B, # 3400B, # 5400B, etc.
  • the graphene that can be used as the carbon material-based conductive material (D) of the present disclosure generally refers to a sheet of sp 2 -bonded carbon atoms (single-layer graphene) having a thickness of one atom, but in the present disclosure, the graphene is a single-layer graphene.
  • graphene including substances that have a flaky morphology that is laminated with graphene.
  • the thickness of graphene that can be used as the carbon material-based conductive material (D) of the present disclosure is not particularly limited, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 20 nm or less.
  • the size in the direction parallel to the graphene layer is not particularly limited, but if it is too small, the conductive path per graphene becomes short, and the conductivity deteriorates due to the influence of the contact resistance between graphenes. Therefore, it is preferable that graphene in the present disclosure is larger than a certain level.
  • the size in the direction parallel to the graphene layer is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, still more preferably 1 ⁇ m or more.
  • the size in the direction parallel to the graphene layer means the average of the maximum diameter and the minimum diameter when observed from the direction perpendicular to the plane direction of graphene.
  • the content of the carbon material-based conductive material (D) in the conductive material slurry of the present disclosure is preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of improving the convenience of adjusting the concentration of the positive electrode paste. It is more preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 7% by mass or less, from the viewpoint of making the conductive material slurry easy to handle. From the same viewpoint, the content of the carbon material-based conductive material (D) in the conductive material slurry of the present disclosure is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, and further preferably 3 to 7% by mass. preferable.
  • the content of the acrylic polymer (A) in the conductive material slurry of the present disclosure is based on 100 parts by mass of the carbon material-based conductive material (D) from the viewpoint of improving the dispersibility of the carbon material-based conductive material (D). It is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, further preferably 5 parts by mass or more, and from the viewpoint of high conductivity, preferably 200 parts by mass or less, more preferably 100 parts by mass. More preferably, it is 50 parts by mass or less.
  • the content of the acrylic polymer (A) in the conductive material slurry of the present disclosure is preferably 0.1 to 200 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the conductive material. More preferably, 5 to 50 parts by mass.
  • the content of the compound (B) in the conductive material slurry of the present disclosure is 0.5 parts by mass with respect to 100 parts by mass of the carbon material-based conductive material (D) from the viewpoint of improving the dispersibility of the carbon material-based conductive material.
  • the above is preferable, 1.0 part by mass or more is more preferable, 5 parts by mass or more is further preferable, 10 parts by mass or more is further preferable, 20 parts by mass or more is further preferable, and 30 parts by mass or more is further preferable.
  • the content of the compound (B) is preferably 0.5 to 2000 parts by mass, more preferably 1.0 to 1000 parts by mass with respect to 100 parts by mass of the carbon material-based conductive material (D). 5 to 500 parts by mass is even more preferable, 5 to 100 parts by mass is even more preferable, 10 to 70 parts by mass is even more preferable, 20 to 60 parts by mass is even more preferable, and 30 to 50 parts by mass is even more preferable.
  • the conductive material slurry of the present disclosure may be prepared by using a mixing disperser to prepare a mixture of the dispersant composition of the present disclosure, the carbon material-based conductive material (D), and, if necessary, a solvent.
  • a mixing disperser to prepare a mixture of the dispersant composition of the present disclosure, the carbon material-based conductive material (D), and, if necessary, a solvent.
  • the solvent include the same as the organic solvent (C) that can be used for preparing the above-mentioned dispersant composition of the present disclosure.
  • the mixing / dispersing machine is at least one selected from, for example, an ultrasonic homogenizer, a vibration mill, a jet mill, a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, a high-pressure homogenizer, an ultrasonic device, an attritor, a resolver, a paint shaker, and the like. Seeds are mentioned. It is also possible to mix some of the constituents of the conductive material slurry and then mix it with the residue, or to add each component in multiple batches instead of adding the entire amount at once. May be good.
  • the state of the carbon material-based conductive material (D) may be a dry state or a state containing a solvent. Examples of the solvent include the same as the above-mentioned organic solvent (C).
  • the viscosity of the conductive material slurry of the present disclosure at 25 ° C. is preferably low.
  • the content of the carbon material-based conductive material (D) is 5% by mass, for example, 0.02 Pa ⁇ s or more is preferable, 0.05 Pa ⁇ s or more is more preferable, and 0.2 Pa ⁇ s. More than s is more preferable.
  • the viscosity of the conductive material slurry at 25 ° C. is preferably 50 Pa ⁇ s or less, preferably 20 Pa ⁇ s, when the content of the carbon material-based conductive material (D) is 5% by mass from the viewpoint of improving the handleability at the time of preparing the positive electrode paste. -Preferably more than s or less, and even more preferably 10 Pa ⁇ s or less.
  • the present disclosure relates, in one aspect, to a positive electrode paste for a power storage device (hereinafter, also referred to as “positive electrode paste of the present disclosure”) containing the dispersant composition of the present disclosure.
  • the preferred form of the dispersant composition of the present disclosure in this embodiment is as described above. That is, in one or more embodiments, the positive electrode paste of the present disclosure comprises the acrylic polymer (A) of the present disclosure, the compound (B) of the present disclosure, the organic solvent (C), and the carbon material-based conductive material (D). including.
  • the positive electrode paste of the present disclosure may further contain a positive electrode active material and a binder in one or more embodiments.
  • the positive electrode paste of the present disclosure may further contain a conductive material other than the carbon material-based conductive material (D).
  • a conductive material other than the carbon material-based conductive material (D) include a conductive polymer such as polyaniline.
  • the positive electrode active material is not particularly limited as long as it is an inorganic compound, and for example, a compound having an olivine structure or a lithium transition metal composite oxide can be used.
  • a compound having an olivine structure a compound represented by the general formula Li x M1 s PO 4 (where M1 is a 3d transition metal, 0 ⁇ x ⁇ 2, 0.8 ⁇ s ⁇ 1.2) can be exemplified.
  • the compound having an olivine structure may be coated with amorphous carbon or the like.
  • lithium transition metal composite oxide a lithium manganese oxide having a spinel structure and a general formula Li x MO 2- ⁇ having a layered structure (where M is a transition metal, 0.4 ⁇ x ⁇ 1.2, 0). Examples thereof include a lithium transition metal composite oxide represented by ⁇ ⁇ ⁇ 0.5).
  • the transition metal M may contain Co, Ni or Mn.
  • the lithium transition metal composite oxide may further contain one or more elements selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P and B.
  • the content of the positive electrode active material in the positive electrode paste of the present disclosure is not particularly limited as long as it can be adjusted according to the viscosity suitable for the positive electrode paste to be applied to the current collector, but from the viewpoint of energy density. From the viewpoint of the stability of the positive electrode paste, it is preferably 40 to 90% by mass, more preferably 50 to 85% by mass, and further preferably 70 to 80% by mass.
  • the content of the positive electrode active material in the total solid content of the positive electrode paste disclosed in the present disclosure may be the same as that in the total solid content of the conventionally known positive electrode paste, and in order to maintain a high energy density of the battery, 90. It is preferably 0% by mass or more, and 99.9% by mass or less is preferable in order to ensure the conductivity and the coating property of the mixture layer. From the same viewpoint, 90.0 to 99.9% by mass is preferable.
  • Binder resin polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile and the like can be used alone or in combination.
  • PVDF polyvinylidene fluoride
  • vinylidene fluoride-hexafluoropropylene copolymer vinylidene fluoride-hexafluoropropylene copolymer
  • styrene-butadiene rubber polyacrylonitrile and the like
  • the content of the binder in the positive electrode paste of the present disclosure is preferably 0.05% by mass or more from the viewpoint of the coating property of the mixture layer and the binding property with the current collector, and the energy density of the battery is high. From the viewpoint of keeping the temperature at 9.95% by mass or less, it is preferable.
  • the content of the acrylic polymer (A) of the present disclosure in the positive electrode paste of the present disclosure is preferably 0.01 to 2.0% by mass, preferably 0.05 to 1.0% by mass, from the viewpoint of coating film resistance. More preferably, 0.07 to 0.5% by mass is further preferable.
  • the content of the compound (B) of the present disclosure in the positive electrode paste of the present disclosure is preferably 0.012% by mass or more, more preferably 0.012% by mass or more, from the viewpoint of increasing the solid content concentration of the positive electrode paste and reducing the viscosity. It is 0.02% by mass or more, and is preferably 0.191% by mass or less, more preferably 0.1% by mass or less, from the viewpoint of solubility in a solvent and stability of the positive electrode paste.
  • the content of the conductive material (D) in the positive electrode paste of the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass, still more preferably 0.1 from the viewpoint of the conductivity of the mixture layer. It is by mass%, and from the viewpoint of maintaining a high energy density of the battery, it is preferably 5% by mass or less, more preferably 3% by mass, and further preferably 2% by mass.
  • the positive electrode paste of the present disclosure contains a positive electrode active material, a conductive material slurry of the present disclosure, a binder (binder resin), a solvent (additional solvent) for adjusting the solid content, and the like. It can be produced by mixing and stirring. In addition, a dispersant, a functional material, or the like other than the acrylic polymer (A) disclosed in the present disclosure may be added.
  • a non-aqueous solvent such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), water, or the like can be used.
  • a non-aqueous solvent as the solvent (additional solvent), and it is more preferable to use NMP.
  • a planetary mixer, a bead mill, a jet mill or the like can be used for mixing and stirring, and these can also be used in combination.
  • the positive electrode paste of the present disclosure some components of all the components used in the preparation of the positive electrode paste can be premixed and then mixed with the residue.
  • each component may be added in a plurality of times instead of being added all at once. As a result, the mechanical load of the stirring device can be suppressed.
  • the solid content concentration of the positive electrode paste of the present disclosure, the amount of the positive electrode active material, the amount of the binder, the amount of the conductive material slurry, the amount of the additive component added, and the amount of the solvent are determined by the positive electrode paste applied to the current collector. It can be adjusted according to the viscosity suitable for. From the viewpoint of dryness, it is preferable that the amount of the solvent is small, but from the viewpoint of the uniformity of the positive electrode mixture layer and the smoothness of the surface, it is preferable that the viscosity of the positive electrode paste is not too high. On the other hand, it is preferable that the viscosity of the positive electrode paste is not too low from the viewpoint of suppressing drying and obtaining a sufficient film thickness of the mixture layer (positive electrode coating film).
  • the positive electrode paste of the present disclosure can be adjusted to a high concentration from the viewpoint of production efficiency, but a significant increase in viscosity is not preferable from the viewpoint of workability. Additives allow the preferred viscosity range to be maintained while maintaining high concentrations.
  • the method for producing a positive electrode paste of the present disclosure may include, in one or more embodiments, a step of mixing the carbon material-based conductive material slurry of the present disclosure, a binder, a solvent, and a positive electrode active material. Each component may be mixed in any order. Further, in one or more embodiments, the conductive material slurry of the present disclosure, the solvent and the binder are mixed, dispersed until they become homogeneous, and then the positive electrode active material is mixed until they become homogeneous.
  • a method of obtaining a positive electrode paste by stirring is mentioned, but the order of adding these components is not limited to this, and the compound (B) of the present disclosure is separately prepared from the acrylic polymer (A) of the present disclosure at the stage of preparing the positive electrode paste. May be added with.
  • the conductive material slurry and the positive electrode paste of the present disclosure may each further contain other components as long as the effects of the present disclosure are not impaired.
  • other components include antioxidants, neutralizers, defoamers, preservatives, dehydrators, rust inhibitors, plasticizers, binders and the like.
  • the present disclosure relates to, in one aspect, a method for manufacturing a positive electrode coating film or a positive electrode for a battery using the positive electrode paste of the present disclosure.
  • This aspect includes applying the positive electrode paste of the present disclosure to a current collector and then drying it.
  • the preferred form of the positive electrode paste of the present disclosure is as described above.
  • a positive electrode coating film or a positive electrode for a battery can be produced by a conventionally known method other than using the positive electrode paste of the present disclosure.
  • the positive electrode coating film or the positive electrode for a battery is produced, for example, by applying the above positive electrode paste to a current collector such as aluminum foil and drying it.
  • a current collector such as aluminum foil
  • consolidation can also be performed by a press machine.
  • a die head, a comma reverse roll, a direct roll, a gravure roll, or the like can be used for coating the positive electrode paste.
  • Drying after coating can be performed by heating, airflow, infrared irradiation, or the like alone or in combination. Drying after coating is performed at a temperature at which the compound (B) and the organic solvent (C) in the positive electrode paste cannot be present in the positive electrode paste after a drying time.
  • the drying temperature is not particularly limited as long as it is equal to or lower than the thermal decomposition temperature of the binder resin in an environment where drying is performed (under atmospheric pressure), but is preferably a temperature equal to or higher than the boiling point of compound (B), and more preferably an organic solvent (more preferably).
  • the temperature is equal to or higher than the boiling point of C). Specifically, it is preferably 60 to 220 ° C., more preferably 80 to 200 ° C. under normal pressure, and the drying time is preferably 10 to 90 minutes, more preferably 20 to 60 minutes.
  • the positive electrode can be pressed by a roll press machine or the like.
  • Viscosity measurement of conductive material slurry For the viscosity (25 ° C) of the conductive material slurry, a parallel plate PP50 was attached to the MCR302 reometer manufactured by Anton Paar, and the shear rate was measured from 0.1 to 1000 s -1 , and the viscosity at the shear rate 1 s -1 was measured. Recorded and shown in Tables 5, 7 and 9.
  • Viscosity measurement of positive electrode paste The viscosity of the positive paste (25 ° C) was measured by mounting a parallel plate (diameter 50 mm) on Anton Paar's MCR302 reometer and measuring at a shear rate of 0.1 to 1000 s -1 , and the viscosity at a shear rate of 1 s -1 . was recorded and shown in Tables 6, 8 and 10.
  • the inside of the separable flask equipped with a reflux tube, a stirrer, a thermometer, a nitrogen introduction tube, and a dropping funnel was replaced with nitrogen for 1 hour or more.
  • the dropping monomer solution 1, the dropping monomer solution 2, and the dropping initiator solution were each dropped into the tank at 65 ° C. for 160 minutes.
  • the mixture was further stirred for 1 hour while maintaining the inside of the tank at 65 ° C.
  • the temperature in the tank was raised to 80 ° C., and the mixture was further stirred for 2 hours.
  • 42.6 g of NMP (solvent) was added and diluted to obtain an acrylic polymer (A) solution of the dispersant composition 1.
  • the non-volatile content was 40% by mass, and the weight average molecular weight was 34,000.
  • the synthesis of the acrylic polymer (A) of the dispersant compositions 10 and 15 comprises a dropping monomer solution 1 containing SMA (monomer a 1 ) and PEGMA (EO2) (monomer b 13 ) and HEMA (monomer b 11 ).
  • the dropping monomer solution 1 containing SMA (monomer a 1 ) and 4-Vpy (monomer b 21 ) and MAAm are used.
  • a dropping monomer solution 2 containing (monomer b 23 ) was prepared.
  • a dropping monomer solution 1 containing SMA (monomer a 1 ) and PEGMA (EO2) (monomer b 13 ) and MAAm (monomer b 23 ) are used.
  • a dropping monomer solution 2 containing the mixture was prepared.
  • Dispersant Compositions 1 to 23 The acrylic polymer (A) or PVP shown in Table 3, the compound (B) shown in Tables 2 and 3, and the organic solvent (C) (NMP) shown in Table 3 are uniformly mixed to form the dispersant composition 1. I got ⁇ 23. The content (effective content, mass%) of each component in each dispersant composition is as shown in Table 3.
  • Conductive materials used for preparing the conductive material slurries 1 to 29 Details of the conductive materials used for preparing the conductive material slurries 1 to 29 shown in Tables 5, 7 and 9 are as shown in Table 4.
  • Conductive Material Slurries 1 to 25 (Examples 1 to 19, Comparative Examples 1 to 6) (Example 1)
  • Conductive material P MW carbon nanotubes as fibrous carbon nanostructures (multi-walled carbon nanotubes HCNTs10 manufactured by Cabot, average length 5 to 12 ⁇ m (catalog value)) 5 g, dispersant composition 1 5 g, and NMP (additional solvent). ) 90 g was mixed to obtain a crude dispersion.
  • the obtained crude dispersion is filled in a high-pressure homogenizer (manufactured by Bitsubu Co., Ltd., product name "BERYU MINI") having a multi-stage pressure control device (multi-stage step-down device) that applies back pressure during dispersion, and at a pressure of 100 MPa. Distributed processing was performed. Specifically, while applying back pressure, a shearing force is applied to the crude dispersion liquid to disperse the MW carbon nanotubes, and the conductive material slurry 1 (carbon nanotube dispersion) of Example 1 is used as the fibrous carbon nanostructure dispersion liquid. Liquid) was obtained.
  • the dispersion treatment was performed while circulating the dispersion liquid by discharging it from the high-pressure homogenizer and injecting it into the high-pressure homogenizer again, and the circulation was performed 20 times.
  • the discharge and injection rate of the dispersion was 30 g / min.
  • the viscosity of the obtained conductive material slurry 1 at a temperature of 25 ° C. was measured, the viscosity was 840 mPa ⁇ s.
  • Example 2 to 19 Comparative Examples 1 to 6 are the same as in Example 1 above, except that the types and contents of the dispersant composition, the conductive material, and the additional solvent are changed as shown in Tables 3 to 5.
  • 2 to 25 carbon nanotube dispersion liquid
  • the blending amount (effective content, mass%) of each component in each prepared conductive material slurry is as shown in Table 5.
  • the mixture was stirred with a rotation / revolution mixer (manufactured by Shinky Co., Ltd., AR-100) for 10 minutes to obtain a positive electrode paste (Example 20).
  • the mass ratio of the positive electrode active material, the binder (PVDF), the conductive material (carbon nanotube) and the dispersant was 97.24: 1.97: 0.66: 0.13 (solid content equivalent), and the positive electrode paste was used.
  • the solid content (mass%) of the above was 72.3% by mass.
  • the solid content of the positive electrode paste is the mass% of the solid content of the material composed of the copolymer (dispersant), the positive electrode active material, the conductive material and the binder contained in the positive electrode paste.
  • Positive electrode pastes (Examples 21 to 38, Comparative Examples 7 to 12) were prepared in the same manner as in Example 20 except that the type of the conductive material slurry was changed to the conductive material slurry shown in Table 6.
  • the blending amount (effective content, mass%) of each component in each prepared positive electrode paste is as shown in Table 6.
  • the viscosity of the conductive material slurries 1 to 19 (carbon nanotube dispersion liquid) of Examples 1 to 19 is higher than that of the conductive material slurries 20 to 23 (carbon nanotube dispersion liquid) of Comparative Examples 1 to 4. From the low value, it can be seen that in Examples 1 to 19, the dispersibility of the carbon nanotubes is improved by containing the compound (B).
  • the viscosities of the positive electrode pastes of Examples 20 to 38 containing the conductive material slurries 1 to 19 (carbon nanotube dispersion liquid) are Comparative Examples containing the conductive material slurry 20 to 25 (carbon nanotube dispersion liquid).
  • Example 40 Preparation of positive electrode paste (Example 40, Comparative Example 14) (Example 40) Weigh 2.06 g of the conductive material slurry 26 (Example 39) and 5.15 g of PVDF NMP solution (solid content 8%, KF polymer L # 7208, manufactured by Kureha Corporation, binder solution) in a container, and rotate and revolve. After mixing with a mixer for 5 minutes, 20 g of NMC532 (lithium nickel manganese cobalt oxide, manufactured by Nippon Chemical Co., Ltd.) was blended as a positive electrode active material. After stirring with a spatula, the mixture was mixed with a rotation / revolution mixer for 5 minutes to obtain a positive electrode paste having a solid content of 75.8% (Example 40).
  • NMC532 lithium nickel manganese cobalt oxide, manufactured by Nippon Chemical Co., Ltd.
  • a positive electrode paste (Comparative Example 14) was obtained in the same manner as in Example 40, except that the type of the conductive material slurry was changed to the conductive material slurry shown in Table 8.
  • the blending amount (effective content, mass%) of each component in each prepared positive electrode paste is as shown in Table 8.
  • the viscosity of the conductive material slurry 26 (acetylene black slurry) of Example 39 is lower than that of the conductive material slurry 27 (acetylene black slurry) of Comparative Example 13, the conductive material of Example 39 It can be seen that the slurry 26 contains the compound (B) to improve the dispersibility of the acetylene black.
  • the viscosity of the positive electrode paste of Example 40 containing the conductive material slurry 26 (acetylene black slurry) is higher than the viscosity of the positive electrode paste of Comparative Example 14 containing the conductive material slurry 27 (acetylene black slurry). It was low.
  • the resistance value of the positive electrode coating film prepared by using the positive electrode paste of Example 40 was lower than that of the positive electrode coating film prepared by using the positive electrode paste of Comparative Example 14.
  • a positive electrode paste (Comparative Example 16) was obtained in the same manner as in Example 42, except that the type of the conductive material slurry was changed to the conductive material slurry 29 (Comparative Example 15) shown in Table 10.
  • the blending amount (effective content, mass%) of each component in each prepared positive electrode paste is as shown in Table 10.
  • the dispersant composition of the present disclosure has good dispersibility of the carbon material-based conductive material, and as a result, the viscosity of the carbon material-based conductive material slurry can be reduced.
  • the viscosity of the positive electrode paste is also low, which can contribute to lowering the resistance of the positive electrode coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本開示は、一態様において、アクリル系ポリマー(A)と、下記式(1)で表される化合物(B)と、有機溶媒(C)とを含有し、アクリル系ポリマー(A)が、下記式(3)で表される構成単位aを含む、蓄電デバイス電極用分散剤組成物に関する。下記式(1)中、R1は下記式(2)で表される基を示し、R2は水素原子、炭素数1~4のアルキル基又は-CH2CH2-OHを示す。式(2)中、R3、R4、R5及びR6は、同一又は異なって、水素原子、メチル基又は-CH2OHを示す。

Description

蓄電デバイス電極用分散剤組成物
 本発明は、蓄電デバイス電極用分散剤組成物に関する。
 近年、地球温暖化抑制の観点から二酸化炭素を排出しない電気自動車の開発が盛んに行われている。電気自動車には、ガソリン車に比べて、走行距離が短く、バッテリーの充電に時間がかかるという課題がある。充電時間を短くするためには、正極中での電子の移動速度を速める必要がある。現在、非水電解質電池用の正極には、導電助剤(導電材)として、炭素材料が使用されているが、導電材スラリーや正極ペーストの粘度が高くなり、ハンドリング性に問題があり、スラリーやペーストの粘度低下化が望まれている。
 特開2014-181140号公報(特許文献1)には、微細炭素繊維と、アミド系有機溶媒である分散媒と、ポリマー系分散剤と、水中でのpKaが7.5以上である有機塩基性化合物からなる微細炭素繊維分散液が開示されている。pKaが7.5以上である有機塩基性化合物としては1~3級アミノ基を有する含窒素有機化合物が使用されており、ポリマー系分散剤としてはメチルセルロース、ポリビニルピロリドン、ポリビニルアルコールなどが使用されている。
 特許6531926号公報(特許文献2)には、カーボンナノチューブと、ポリビニルピロリドンと、N-メチル-2-ピロリドンと、アミン系化合物を含有する電極用カーボンナノチューブ分散液について開示されている。
 WO2013/151062号(特許文献3)では、電池用正極ペーストに含まれる共重合体として、炭素数8~30の炭化水素基を有するモノマーを含むアクリル系ポリマーが開示されている。
 本開示は、一態様において、アクリル系ポリマー(A)と、下記式(1)で表される化合物(B)と、有機溶媒(C)とを含有し、アクリル系ポリマー(A)が、下記式(3)で表される構成単位aを含む、蓄電デバイス電極用分散剤組成物に関する。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、R1は下記式(2)で表される基を示し、R2は水素原子、炭素数1~4のアルキル基又は-CH2CH2-OHを示す。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、R3、R4、R5及びR6は、同一又は異なって、水素原子、メチル基又は-CH2OHを示す。
Figure JPOXMLDOC01-appb-C000007
 上記式(3)中、R7、R8及びR9は、同一又は異なって、水素原子、メチル基又はエチル基を示し、R10は炭素数1~30の炭化水素基を示し、X1は酸素原子又は-NH-を示す。
 本開示は、一態様において、炭素材料系導電材(D)と、本開示の分散剤組成物とを含有する、炭素材料系導電材スラリーに関する。
 本開示は、一態様において、本開示の分散剤組成物を含有する、蓄電デバイス用正極ペーストに関する。
 本開示は、一態様において、本開示の正極ペーストを用いた正極塗膜の製造方法に関する。
 特許文献1や特許文献2の技術では、正極塗膜の抵抗値が高く、より良質な導電パス、低抵抗の正極塗膜形成のために、正極ペーストや炭素材料分散液に含まれるカーボンナノチューブ等の炭素材料系導電材料を含むスラリーやペーストを低粘度化できる分散剤や添加剤の提供が望まれている。
 そこで、本開示は、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストの調製を可能とする蓄電デバイス電極用分散剤組成物を提供する。
[蓄電デバイス電極用分散剤組成物]
 本開示は、特定のアクリル系ポリマー(A)と特定の化合物(B)とを併用することにより、低粘度でハンドリング性が良好な炭素材料系導電材スラリー及び正極ペーストの調製を可能とする分散剤組成物を提供できる、という知見に基づく。
 本開示は、一態様において、アクリル系ポリマー(A)と、上記式(1)で表される化合物(B)と、有機溶媒(C)とを含有し、アクリル系ポリマー(A)が、上記式(3)で表される構成単位aを含む、蓄電デバイス電極用分散剤組成物(以下、「本開示の分散剤組成物」ともいう)に関する。
 本開示によれば、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストの調製を可能とする蓄電デバイス電極用分散剤組成物を提供できる。また、本開示の蓄電デバイス電極分散剤組成物を用いることで、低粘度でハンドリング性が良好な正極ペーストおよび炭素材料系導電材スラリーを提供できる。本開示の炭素材料系導電材用分散剤組成物を用いて調製された蓄電デバイス用正極ペーストを用いることで、低抵抗の正極塗膜を製造できる。
 本開示の効果発現のメカニズムの詳細については明らかではないが、以下のように推察される。
 アクリル系ポリマー(A)は、炭素数1~30の炭化水素基により炭素材料系導電材に吸着し分散性を発現すると考えられる。しかしながら、アクリル系ポリマー(A)は炭素材料系導電材の表面全体を覆うことなく、炭素材料系導電材の表面には露出した部位が存在する。隣接する炭素材料系導電材は、π-π相互作用および炭素材料系導電材表面に一部存在する極性基同士の水素結合により、有機溶媒中において凝集する。しかし、本開示では、水酸基を有するアミン化合物(B)が前記極性基と相互作用(中和反応や双極子相互作用)することによって炭素材料系導電材間の水素結合を抑制する。さらに、アミン(カチオン)が炭素材料系導電材上のπ電子とカチオン-π相互作用することにより炭素材料系導電材間のπ-π相互作用を抑制する。前記水素結合の抑制と前記π-π相互作用の抑制によって、炭素材料系導電材の分散性が向上し、結果、化合物(B)を添加しない場合と比較して、粘度が低下しているものと推察される。
 また、正極塗膜の抵抗値が低くなるメカニズムとしては次のように推察される。アクリル系ポリマー(A)と化合物(B)がそれぞれ炭素材料系導電材と相互作用し、つまりは、これら両方が炭素材料系導電材の表面に吸着している。アクリル系ポリマー(A)は、炭素材料系導電材表面でまだら状に吸着していると推定されるが、アクリル系ポリマー(A)と化合物(B)とが併存すると、両者の炭素材料系導電材の表面に対する競争吸着が生じ、炭素材料系導電材の表面において、吸着したアクリル系ポリマー(A)と化合物(B)は、各々、局在する。化合物(B)が併存しない場合に比べ、アクリル系ポリマー(A)の吸着部面積は減少する。正極ペーストが塗布され乾燥される過程で、化合物(B)は低分子化合物であるため導電材表面から溶媒と一緒に揮発、或いは移動することで、化合物(B)が吸着していた炭素材料系導電材の表面部分が露出し、この露出部分が炭素材料系導電材同士の導電性接点となる。本開示では、化合物(B)が併存しない場合よりも当該露出部分が多く、そのため、導電パスの形成が容易化しており、その結果、正極塗膜の抵抗値を低化可能としているものと推察される。
 ただし、本開示はこれらのメカニズムに限定して解釈されない。
 本開示によれば、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストの調製を可能とする蓄電デバイス電極用分散剤組成物を提供できる。
<アクリル系ポリマー(A)>
 本開示の分散剤組成物に含まれるアクリル系ポリマー(A)(以下、「本開示のアクリル系ポリマー」ともいう)は、後述する構成単位aを含む。本開示のアクリル系ポリマーは、一又は複数の実施形態において、炭素材料系導電材の分散性向上の観点から、後述する構成単位bをさらに含有することが好ましい。本開示のアクリル系ポリマー(A)としては、一又は複数の実施形態において、後述する構成単位aを含む重合体、後述する構成単位aと後述する構成単位bとを含む共重合体等が挙げられる。本開示のアクリル系ポリマー(A)は、1種でもよいし、2種以上の組合せでもよい。
 (構成単位a)
 構成単位aは、下記式(3)で表される構成単位である。構成単位aは、1種でもよいし、2種以上の組合せでもよい。本開示において、構成単位aは、本開示のアクリル系ポリマー(A)のうちの、炭素材料系導電材表面に吸着する成分である。
Figure JPOXMLDOC01-appb-C000008
 式(3)中、R7、R8及びR9は、同一又は異なって、水素原子、メチル基又はエチル基を示し、R10は炭素数1~30の炭化水素基を示し、X1は酸素原子(-O-)又は-NH-を示す。
 式(3)において、炭素材料系導電材表面に対する吸着性向上の観点から、R7及びR8は、水素原子が好ましく、R9は水素原子又はメチル基が好ましい。同様の観点から、X1は酸素原子が好ましい。
 R10の炭化水素基は、炭素材料系導電材表面に対する吸着性向上の観点から、アルキル基又はアルケニル基が好ましい。同様の観点から、R10の炭素数は、1以上であり、6以上が好ましく、8以上がより好ましく、12以上が更に好ましく、14以上が更に好ましく、そして、同様の観点から、30以下が好ましく、24以下がより好ましく、22以下が更に好ましい。R10の炭素数は、同様の観点から、6~30が好ましく、8~30がより好ましく、12~24が更に好ましく、14~22が更に好ましい。R10としては、同様の観点から、オクチル基、2-エチルヘキシル基、デシル基、ラウリル基、ミリスチル基、セチル基、ステアリル基、オレイル基、ベヘニル基等が挙げられる。
 構成単位aを与えるモノマー(以下、「モノマーa」ともいう)としては、一又は複数の実施形態において、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のエステル化合物;2-エチルヘキシル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等のアミド化合物が挙げられる。なかでも、炭素材料系導電材の分散性向上の観点及びアクリル系ポリマーへの構成単位aの導入の容易性の観点から、モノマーaは、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート及びベヘニル(メタ)アクリレートから選ばれる少なくとも1種が好ましく、ステアリル(メタ)アクリレート及びベヘニル(メタ)アクリレートから選ばれる少なくとも1種がより好ましく、ステアリルメタクリレート(SMA)及びベヘニルアクリレート(BeA)から選ばれる少なくとも1種が更に好ましく、ステアリルメタクリレートが更に好ましい。
 本開示のアクリル系ポリマー(A)の全構成単位中における構成単位aの含有量は、炭素材料系導電材表面に対する吸着性及び炭素材料系導電材の分散性向上の観点から、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、そして、同様の観点から、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下である。アクリル系ポリマー(A)の全構成単位中における構成単位aの含有量は、同様の観点から、好ましくは10~80質量%、より好ましくは15~75質量%、更に好ましくは20~70質量%である。構成単位aが2種以上の組合せである場合、構成単位aの含有量はそれらの合計含有量である。
 本開示において、アクリル系ポリマー(A)の全構成単位中における構成単位aの含有量は、重合に用いるモノマー全量に対するモノマーaの使用量の割合とみなすことができる。
 (構成単位b)
 構成単位bは、下記式(4)で表される構成単位b1及び下記式(5)で表される構成単位b2から選ばれる少なくとも1種の構成単位である。構成単位bは、1種でもよいし、2種以上の組合せでもよい。本開示において、構成単位bは、本開示のアクリル系ポリマー(A)のうちの炭素材料系導電材表面に吸着せず、立体反発を担う成分である。
Figure JPOXMLDOC01-appb-C000009
 式(4)中、R11、R12及びR13は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X2は酸素原子を示し、R14は炭素数2~4の直鎖又は分岐のアルキレン基を示し、pは1~8を示し、R15は水素原子又はメチル基を示す。式(4)において、炭素材料系導電材表面被覆率の観点から、pは8以下が好ましく、6以下がより好ましく、4以下が更に好ましい。
 式(5)中、R16、R17及びR18は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、アミド基、又は炭素数1~4の炭化水素基を有していてもよいピリジニル基を示す。
 (構成単位b1)
 前記式(4)で表される構成単位b1は、1種でもよいし、2種以上の組合せでもよい。
 構成単位b1としては、非イオン性モノマー由来の構造、又は重合後に非イオン性基を導入した構造等が挙げられる。
 構成単位b1を与えるモノマー(以下、「モノマーb1」ともいう)としては、2-ヒドロキシエチルメタクリレート、メトキシエチルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、エトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等が挙げられる。これらの中でも、立体反発と有機溶媒に対するアクリル系ポリマーの溶解性の観点から、2-ヒドロキシエチルメタクリレート(HEMA)、メトキシポリエチレングリコール(メタ)アクリレート(PEGMA)、及びメトキシエチルメタクリレートから選ばれる少なくとも1種が好ましい。モノマーb1は、1種でもよいし、2種以上の組合せでもよい。
 (構成単位b2)
 前記式(5)で表される構成単位b2は、1種でもよいし、2種以上の組合せでもよい。
 アクリル系ポリマー(A)を合成するにあたり、構成単位b2を与えるモノマー(以下、「モノマーb2」ともいう)としては、立体反発と有機溶媒に対するアクリル系ポリマーの溶解性の観点から、4-ビニルピリジン(4-Vpy)、2-ビニルピリジン(2-Vpy)、アクリルアミド、及びメタクリルアミド(MAAm)から選ばれる少なくとも1種が好ましく、4-ビニルピリジン(4-Vpy)、及びメタクリルアミド(MAAm)から選ばれる少なくとも1種がより好ましい。モノマーb2は、1種でもよいし、2種以上の組合せでもよい。
 本開示のアクリル系ポリマー(A)が構成単位bを含む場合、本開示のアクリル系ポリマー(A)の全構成単位中における構成単位bの含有量は、立体反発による分散性向上の観点から、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が更に好ましく、そして、同様の観点から、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。本開示のアクリル系ポリマー(A)の全構成単位中における構成単位bの含有量は、同様の観点から、20~90質量%が好ましく、25~85質量%がより好ましく、30~80質量%が更に好ましい。構成単位bが2種以上の組合せである場合、構成単位bの含有量は、それらの合計含有量である。 本開示において、アクリル系ポリマー(A)の全構成単位中における構成単位bの含有量は、重合に用いるモノマー全量に対するモノマーbの使用量の割合とみなすことができる。
 本開示のアクリル系ポリマー(A)は、本開示の効果が奏される限り、構成単位a及び構成単位b以外の構成単位を更に含んでいてもよい。本開示のアクリル系ポリマー(A)の全構成単位中における構成単位aと構成単位bとの合計含有量は、炭素材料系導電材の分散性向上の観点から、30質量%以上が好ましく、50質量%以上がより好ましく、実質的に100質量%が更に好ましく、100質量%が更により好ましい。
 アクリル系ポリマー(A)が構成単位a及び構成単位bを含む共重合体である場合、構成単位aと構成単位bの好ましい組み合わせは、炭素材料系導電材の分散性向上の観点から、下記が挙げられる。
・SMA/HEMA
・SMA/HEMA/PEGMA(EO2)
・SMA/PEGMA(EO1)/MAAm
・SMA/PEGMA(EO2)/MAAm
・SMA/2-Vpy
・SMA/4-Vpy
・SMA/4-Vpy/MAAm
・SMA/HEMA/MAAm
・BeA/HEMA/MAAm
 アクリル系ポリマー(A)が構成単位a及び構成単位bを含む共重合体である場合、構成単位a1及び構成単位bの配列は、ランダム、ブロック、又はグラフトのいずれでも良い。
 <アクリル系ポリマーの製造方法>
 本開示のアクリル系ポリマー(A)の合成方法は特に限定されず、通常の(メタ)アクリル酸エステル類、及びビニルモノマーの重合に使用される方法が用いられる。アクリル系ポリマー(A)の合成方法としては、例えば、フリーラジカル重合法、リビングラジカル重合法、アニオン重合法、リビングアニオン重合法等が挙げられる。例えば、フリーラジカル重合法を用いる場合は、モノマーa及び必要に応じてモノマーbを含むモノマー成分を溶液重合法で重合させる等の公知の方法で得ることができる。
 前記重合に用いられる溶媒としては、例えば炭化水素(ヘキサン、ヘプタン)、芳香族系炭化水素(トルエン、キシレン等)、低級アルコール(エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン)、エーテル(テトラヒドロフラン、ジエチレングリコールジメチルエーテル)、N-メチルピロリドン等の有機溶媒を使用することができる。溶媒量は、モノマー全量に対する質量比で、0.5~10倍量が好ましい。 前記重合に用いられる重合開始剤としては、公知のラジカル重合開始剤を用いることができ、例えばアゾ系重合開始剤、ヒドロ過酸化物類、過酸化ジアルキル類、過酸化ジアシル類、ケトンぺルオキシド類等が挙げられる。重合開始剤量は、モノマー成分全量に対し、0.01~5モル%が好ましく、0.05~4モル%がより好ましく、0.1~3モル%が更に好ましい。重合反応は、窒素気流下、40~180℃の温度範囲で行うのが好ましく、反応時間は0.5~20時間が好ましい。
 また、前記重合の際、公知の連鎖移動剤を用いることができる。連鎖移動剤としては、例えば、イソプロピルアルコールや、メルカプトエタノール等のメルカプト化合物が挙げられる。
 本開示において、アクリル系ポリマー(A)の全構成単位中の構成単位aの含有量は、重合に用いるモノマー全量に対する、モノマーaの使用量の比と見なすことができる。アクリル系ポリマー(A)の全構成単位中の構成単位bの含有量は、重合に用いるモノマー全量に対する、モノマーbの使用量の比と見なすことができる。アクリル系ポリマー(A)の全構成単位中の構成単位a及び構成単位bの合計含有量は、重合に用いるモノマー全量に対する、モノマーa及びモノマーbの合計使用量の比と見なすことができる。
 本開示のアクリル系ポリマー(A)の重量平均分子量は、炭素材料系導電材の分散性向上と有機溶媒に対するアクリル系ポリマーの溶解性の観点から、5000以上が好ましく、7000以上がより好ましく、1万以上が更に好ましく、そして、同様の観点から、100万以下が好ましく、50万以下がより好ましく、30万以下が更に好ましく、10万以下が更により好ましく、6万以下が更により好ましい。同様の観点から、本開示のアクリル系ポリマー(A)の重量平均分子量は、5000~100万が好ましく、7000~50万がより好ましく、1万~30万が更に好ましく、1万~10万が更により好ましく、1万~6万が更により好ましい。本開示において、重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)により測定した値であり、測定条件の詳細は実施例に示す通りである。
 本開示の分散剤組成物中の本開示のアクリル系ポリマー(A)の含有量は、炭素材料系導電材の分散性向上の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、有機溶媒に対するアクリル系ポリマーの溶解性の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。アクリル系ポリマー(A)が2種以上の組合せである場合、アクリル系ポリマー(A)の含有量はそれらの合計含有量である。
<化合物(B)>
 本開示の分散剤組成物に含まれる化合物(B)は、下記式(1)で表される化合物(以下、「本開示の化合物(B)」ともいう)である。
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、R1は下記式(2)で表される基を示し、R2は水素原子、炭素数1~4のアルキル基又は-CH2CH2-OHを示す。
Figure JPOXMLDOC01-appb-C000011
 上記式(2)中、R3、R4、R5及びR6は、同一又は異なって、水素原子、メチル基又は-CH2OHを示す。
 本開示の式(1)で表される化合物(1級又は2級アミン)が、式(1)中のHが炭素原子に置換された3級アミンに比べ優れるのは、立体障害が小さく、炭素材料系導電材のπ電子との相互作用、つまり化合物(B)に由来するカチオンと-炭素材料系導電材由来のπ電子間の相互作用がしやすくなるという理由によると考えられる。1級又は2級アミンを示す式(1)において、R2は、粘度低下の観点から、水素原子(1級アミン)、炭素数1~4のアルキル基(2級アミン)又は-CH2CH2-OH(2級アミン)が好ましく、水素原子、炭素数1のアルキル基又は炭素数2のアルキル基がより好ましい。これは水素原子、メチル基又はエチル基の立体障害は小さく、炭素材料系導電材のπ電子との相互作用、つまり化合物(B)に由来するカチオンと-炭素材料系導電材由来のπ電子間の相互作用がしやすくなるという理由によると考えられる。
 式(2)において、R3、R4、R5及びR6は、同一又は異なって、粘度低下の点から、水素原子又はメチル基が好ましい。水素原子又はメチル基は立体障害が小さく、炭素材料系導電材のπ電子との相互作用、つまり化合物(B)に由来するカチオンと炭素材料系導電材由来のπ電子間の相互作用(カチオン-π相互作用)がしやすくなると考えられる。
 本開示の化合物(B)としては、一又は複数の実施形態において、エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、2-アミノ-1-プロパノール、2-アミノ-2-メチル-1-プロパノール、1-アミノ-2ープロパノール、2-アミノ1,3、プロパンジオール、及びジエタノールアミンから選ばれる1種以上の化合物が挙げられ、これらのなかでも、導電材の分散性向上と正極ペーストの低粘度を両立する観点から、エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、2-アミノ-2-メチル-1-プロパノール、1-アミノ-2ープロパノール、及びジエタノールアミンから選ばれる少なくとも1種が好ましく、N-メチルエタノールアミン、N-エチルエタノールアミン、及び2-アミノ-2-メチル-1-プロパノールから選ばれる少なくとも1種がより好ましい。
 本開示の分散剤組成物中の本開示の化合物(B)の含有量は、一又は複数の実施形態において、導電材スラリー、正極ペーストの粘度低下の効果の観点から、好ましくは2.3質量%以上、より好ましくは4質量%、更に好ましくは5質量%以上であり、そして、アクリル系ポリマーの均一溶解性の観点から、好ましくは43質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。化合物(B)が2種以上の組合せである場合、化合物(B)の含有量はそれらの合計含有量である。
 本開示の分散剤組成物中の本開示の化合物(B)の含有量は、一又は複数の実施形態において、導電材スラリー及び正極ペーストの粘度低下の効果の観点から、アクリル系ポリマー(A)100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上であり、そして、アクリル系ポリマーの溶解性の観点から、アクリル系ポリマー(A)100質量部に対して、好ましくは210質量部以下、より好ましくは150質量部以下、更に好ましくは110質量部以下である。
 本開示の分散剤組成物中における本開示のアクリル系ポリマー(A)と本開示の化合物(B)との質量比A/Bは、導電材の分散性向上の観点から、0.1以上が好ましく、0.3以上がより好ましく、0.5以上が更に好ましく、0.8以上が更に好ましく、そして、高導電性の観点から、10以下が好ましく、5以下がより好ましく、3以下が更に好ましい。
<有機溶媒(C)>
 本開示の分散剤組成物は、一又は複数の実施形態において、有機溶媒(C)を更に含有することができる。有機溶媒(C)としては、正極ペーストに含まれる結着剤(バインダー樹脂)を溶解できるものが好ましい。有機溶媒(C)としては、例えば、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)などのアミド系極性有機溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール)、1-ブタノール(n-ブタノール)、2-メチル-1-プロパノール(イソブタノール)、2-ブタノール(sec-ブタノール)、1-メチル-2-プロパノール(tert-ブタノール)、ペンタノール、ヘキサノール、ヘプタノール、またはオクタノールなどのアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、またはヘキシレングリコールなどのグリコール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール、またはソルビトールなどの多価アルコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、またはテトラエチレングリコールモノブチルエーテルなどのグリコールエーテル類;アセトン、メチルエチルケトン、メチルプロピルケトン、またはシクロペンタノンなどのケトン類;酢酸エチル、γ-ブチルラクトン、およびε-プロピオラクトンなどのエステル類等が挙げられる。有機溶媒(C)は1種でもよいし、2種以上の組合せでもよい。
 本開示の分散剤組成物中の有機溶媒(C)の含有量は、一又は複数の実施形態において、アクリル系ポリマー(A)の溶解性の観点から、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは65質量%以上であり、そして、アクリル系ポリマー(A)と化合物(B)の均一溶解性の観点から、好ましくは80質量%以下、より好ましくは78質量%以下、更に好ましくは75質量%以下である。
 本開示の分散剤組成物は、本開示の効果が妨げられない範囲で、その他の成分を更に含んでもよい。その他の成分としては、例えば、酸化防止剤、中和剤、消泡剤、防腐剤、脱水剤、防錆剤、可塑剤、結着剤(アクリル系ポリマー(A)とは異なる構造のバインダー)等が挙げられる。
[導電材スラリー]
 本開示は、一態様において、炭素材料系導電材(D)と、本開示の分散剤組成物とを含有する、導電材スラリー(以下、「本開示の導電材スラリー」ともいう)に関する。本態様における本開示の分散剤組成物の好ましい形態は上述のとおりである。本開示の導電材スラリーは、一又は複数の実施形態において、本開示のアクリル系ポリマー(A)、本開示の化合物(B)、有機溶媒(C)、及び後述する炭素材料系導電材(D)を含む。
 <炭素材料系導電材(D)>
 炭素材料系導電材(D)としては、一又は複数の実施形態において、カーボンナノチューブ(以下、「CNT」と表記することもある)、カーボンブラック、グラファイト、グラフェン等が挙げられ、これらの中でも、高い導電性を実現する観点から、カーボンブラック、カーボンナノチューブ、及びグラフェンから選ばれる少なくとも1種が好ましく、同様の観点から、カーボンナノチューブ又はグラフェンがより好ましい。炭素材料系導電材(D)は、1種でもよいし、2種以上の組合せでもよい。
 (カーボンナノチューブ)
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)の平均直径は、特に限定されないが、CNTの分散性向上の観点から、好ましくは2nm以上、より好ましくは3nm以上、更に好ましくは5nm以上であり、そして、導電性向上の観点から、好ましくは100nm以下が好ましく、より好ましくは70nm以下、更に好ましくは50nm以下である。同様の観点から、CNTの平均直径は、好ましくは2~100nm、より好ましくは3~70nmがより好ましく、更に好ましくは5~50nmである。本開示において、CNTの平均直径は、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)により測定できる。
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)は、導電性と分散性を両立するために2種以上の直径の異なるものを使用してもよい。2種以上の直径の異なるCNTを使用する場合、相対的に細いCNTの平均直径は、分散性の観点から、好ましくは2nm以上、より好ましくは3nm以上、更に好ましくは5nm以上であり、そして、導電性の観点から、好ましくは29nm以下、より好ましくは25nm、更に好ましくは20nm以下である。相対的に太いCNTの平均直径は、分散性の観点から、好まししくは30nm以上、より好ましくは35nm以上、更に好ましくは40nm以上であり、そして、導電性向上の観点から、好ましくは100nm以下、より好ましくは70nm以下、更に好ましくは50nm以下である。
 本開示において、カーボンナノチューブ(CNT)とは、複数のカーボンナノチューブを含む総体を意味する。導電材スラリーの調製に用いられるカーボンナノチューブの形態は、特に限定されないが、例えば、複数のカーボンナノチューブがそれぞれ独立していてもよいし、複数のカーボンナノチューブが束状あるいは絡まり合うなどの形態でもよいし、これらの形態が混合した形態でもよい。カーボンナノチューブは、種々の層数または直径のカーボンナノチューブであってもよい。カーボンナノチューブは、カーボンナノチューブの製造におけるプロセス由来の不純物(例えば、触媒やアモルファスカーボン)を含み得る。
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)は、一又は複数の実施形態において、グラファイトの1枚面を巻いて筒状にした形状を有するものであり、1層に巻いたものを単層カーボンナノチューブ(SWカーボンナノチューブ)、2層に巻いたものを2層カーボンナノチューブ(DWカーボンナノチューブ)、3層以上に巻いたものを多層カーボンナノチューブ(MWカーボンナノチューブ)ともいう。カーボンナノチューブ分散液を含む電池用正極ペーストを用いて形成される正極塗膜に求められる特性に応じて、単層、2層、多層のいずれのカーボンナノチューブ及びそれらの混合物を用いることができ、正極塗膜は、電極基板(集電体)に塗工して得られた膜状の層である。
 本開示の炭素材料系導電材(D)として使用できるCNTとしては、例えば、Nanocyl社のNC-7000(以下数値は平均直径、9.5nm)NX7100(10nm)、Cnano社のFT6100(9nm)、FT-6110(9nm)、FT-6120(9nm)、FT-7000(9nm)、FT-7010(9nm)、FT-7320(9nm)、FT-9000(12.5nm)、FT-9100(12.5nm)、FT-9110(12.5nm)、FT-9200(19nm)、FT-9220(19nm)、Cabot Performance material(Shenzhen)社のHCNTs4(4.5nm)、CNTs5(7.5nm)、HCNTs5(7.5nm)、GCNTs5(7.5nm)、HCNTs10(15nm)、CNTs20(25nm)、CNTs40(40nm)、韓国CNT社のCTUBE170(13.5nm)、CTUBE199(8nm)、CTUBE298(10nm)、Kumho社のK-Nanos100P(11.5nm)、LG Chem社のCP-1001M(12.5nm)、BT-1003M(12.5nm)、Nano Tech Port社の3003(10nm)、3021(20nm)等が挙げられる。
 カーボンナノチューブを2種類組み合わせて使用する場合のCNTとしては、例えば、Cabot Performance material(Shenzhen)社のCNTs40(40nm)とHCNTs4(4.5nm)又はHCNTs5(7.5nm)との組合せ、CNTs40(40nm)とGCNTs5(7.5nm)との組合せ、CNTs40(40nm)とCnano社のFT-7010(9nm)との組合せ、CNTs40(40nm)とFT-9100(12.5nm)との組合せ、CNTs40(40nm)とLG Chem社BT-1003M(12.5nm)との組合せ等が挙げられる。
 (カーボンブラック)
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックとしては、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなど各種のものを用いることができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、好ましくは20m2/g以上1500m2/g以下、より好ましくは50m2/g以上1000m2/g以下、更に好ましくは100m2/g以上800m2/g以下のものを使用することが望ましい。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックの一次粒子径(直径)は、導電性の観点から、5~1000nmが好ましく、10~200nmがより好ましい。本開示において、カーボンブラックの一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35、Li-100、Li-250、Li-400、Li-435(デンカ株式会社製、アセチレンブラック)等が挙げられるが、これらに限定されるものではない。
 (グラフェン)
 本開示の炭素材料系導電材(D)として使用できるグラフェンとは、一般には1原子の厚さのsp2結合炭素原子のシート(単層グラフェン)を指すが、本開示においては、単層グラフェンが積層した薄片状の形態を持つ物質も含めてグラフェンと呼ぶことにする。
 本開示の炭素材料系導電材(D)として使用できるグラフェンの厚みには特に制限は無いが、好ましくは100nm以下、より好ましくは50nm以下、更に好ましくは20nm以下である。グラフェン層に平行な方向の大きさには特に制限は無いが、小さすぎるとグラフェン一個あたりの導電パスが短くなるため、グラフェン間の接触抵抗の影響で導電性が悪くなる。そのため、本開示におけるグラフェンはある程度以上大きいことが好ましい。グラフェン層に平行な方向の大きさは、好ましくは0.5μm以上、より好ましくは0.7μm以上、更に好ましくは1μm以上である。ここで、グラフェン層に平行な方向の大きさとは、グラフェンの面方向に垂直な方向から観察したときの最大径と最小径の平均を言う。
 本開示の導電材スラリー中の炭素材料系導電材(D)の含有量は、正極ペーストの濃度調整の利便性向上の観点から、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、そして、導電材スラリーを取り扱いやすい粘度とする観点から、10質量%以下が好ましく、8質量%以下がより好ましく、7質量%以下が更に好ましい。本開示の導電材スラリー中の炭素材料系導電材(D)の含有量は、同様の観点から、1~10質量%が好ましく、2~8質量%がより好ましく、3~7質量%が更に好ましい。
 <導電材スラリー中のアクリル系ポリマー(A)>
 本開示の導電材スラリー中のアクリル系ポリマー(A)の含有量は、炭素材料系導電材(D)の分散性向上の観点から、炭素材料系導電材(D)を100質量部に対し、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは5質量部以上であり、そして、高導電性の観点から、好ましくは200質量部以下、より好ましくは100質量部、更に好ましくは50質量部以下である。本開示の導電材スラリー中のアクリル系ポリマー(A)の含有量は、同様の観点から、導電材100質量部に対し、0.1~200質量部が好ましく、1~100質量部がより好ましく、5~50質量部が更に好ましい。
 <導電材スラリー中の化合物(B)>
 本開示の導電材スラリー中の化合物(B)の含有量は、炭素材料系導電材の分散性向上の観点から、炭素材料系導電材(D)100質量部に対して、0.5質量部以上が好ましく、1.0質量部以上がより好ましく、5質量部以上が更に好ましく、10質量部以上が更により好ましく、20質量部以上が更により好ましく、30質量部以上が更により好ましい。そして、高導電性の観点から、2000質量部以下が好ましく、1000質量部以下がより好ましく、500質量部以下が更に好ましく、100質量部以下が更により好ましく、70質量部以下が更により好ましく、60質量部以下が更により好ましく、50質量部以下が更により好ましい。同様の観点から、化合物(B)の含有量は、炭素材料系導電材(D)100質量部に対して、0.5~2000質量部が好ましく、1.0~1000質量部がより好ましく、5~500質量部が更に好ましく、5~100質量部が更により好ましく、10~70質量部が更により好ましく、20~60質量部が更により好ましく、30~50質量部が更により好ましい。
 <導電材スラリーの製造方法>
 本開示の導電材スラリーは、一又は複数の実施形態において、本開示の分散剤組成物と炭素材料系導電材(D)、及び必要に応じて溶媒の混合物を混合分散機で調製することができる。前記溶媒としては、上述した本開示の分散剤組成物の調製に用いることができる有機溶媒(C)と同様のものが挙げられる。前記混合分散機としては、例えば、超音波ホモジナイザー、振動ミル、ジェットミル、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、高圧ホモジナイザー、超音波装置、アトライター、デゾルバー、及びペイントシェーカー等から選ばれる少なくとも1種が挙げられる。導電材スラリーの構成成分のうちの一部成分を混合してから、それを残余と混合することもできるし、各成分は、全量を一度に投入せずに、複数回に分けて投入してもよい。炭素材料系導電材(D)の状態は、乾燥状態でもよいし、溶媒を含んだ状態であってもよい。当該溶媒は、上述した有機溶媒(C)と同じものが挙げられる。
 本開示の導電材スラリーの25℃における粘度は、低い方が好ましい。沈降性などの観点から、炭素材料系導電材(D)の含有量が5質量%の場合、例えば、0.02Pa・s以上が好ましく、0.05Pa・s以上がより好ましく、0.2Pa・s以上が更に好ましい。また、導電材スラリーの25℃における粘度は、正極ペースト調製時のハンドリング性向上の観点から、炭素材料系導電材(D)の含有量が5質量%の場合、50Pa・s以下が好ましく、20Pa・s以下より好ましく、10Pa・s以下が更に好ましい。
[正極ペースト]
 本開示は、一態様において、本開示の分散剤組成物を含有する、蓄電デバイス用正極ペースト(以下、「本開示の正極ペースト」ともいう)に関する。本態様における本開示の分散剤組成物の好ましい形態は上述のとおりである。すなわち、本開示の正極ペーストは、一又は複数の実施形態において、本開示のアクリル系ポリマー(A)、本開示の化合物(B)、有機溶媒(C)、及び炭素材料系導電材(D)を含む。
 本開示の正極ペーストは、一又は複数の実施形態において、正極活物質及び結着剤をさらに含むことができる。
 本開示の正極ペーストは、一又は複数の実施形態において、炭素材料系導電材(D)以外の導電材が更に含まれていてもよい。炭素材料系導電材(D)以外の導電材としては、ポリアニリン等の導電性ポリマー等が挙げられる。
 <正極活物質>
 正極活物質としては、無機化合物であれば特に制限はなく、例えば、オリビン構造を有する化合物やリチウム遷移金属複合酸化物を用いることができる。オリビン構造を有する化合物としては、一般式LixM1sPO4(但し、M1は3d遷移金属、0≦x≦2、0.8≦s≦1.2)で表される化合物を例示できる。オリビン構造を有する化合物には、非晶質炭素等を被覆して用いてもよい。リチウム遷移金属複合酸化物としては、スピネル構造を有するリチウムマンガン酸化物、層状構造を有し一般式LixMO2-δ(但し、Mは遷移金属、0.4≦x≦1.2、0≦δ≦0.5)で表されるリチウム遷移金属複合酸化物等が挙げられる。前記遷移金属Mとしては、Co、Ni又はMnを含むものとすることができる。前記リチウム遷移金属複合酸化物は、さらに、Al、Mn、Fe、Ni、Co、Cr、Ti、Zn、P、Bから選ばれる一種又は二種以上の元素を含有していてもよい。
 本開示の正極ペースト中の正極活物質の含有量は、正極ペーストが集電体に塗布するのに適した粘度に応じて調整することができる限り、特に制限はないが、エネルギー密度の観点と正極ペーストの安定性の観点から、好ましくは40~90質量%、より好ましくは50~85質量%、さらに好ましくは70~80質量%である。
 本開示の正極ペーストの全固形分における正極活物質の含有量について、特に制限はない。本開示の正極ペーストの全固形分における正極活物質の含有量は、従来公知の正極ペーストの全固形分におけるそれと同じであってもよく、電池のエネルギー密度を高度に保つためには、90.0質量%以上が好ましく、合材層の導電性や塗膜性を担保するためには、99.9質量%以下が好ましい。同様の観点から、90.0~99.9質量%が好ましい。
 <結着剤(バインダー樹脂)>
 結着剤(バインダー樹脂)としては、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレン-ブタジエンゴム、ポリアクリロニトリル等単独で、あるいは混合して用いることができる。
 本開示の正極ペースト中の結着剤の含有量は、合材層の塗膜性や集電体との結着性の観点から、0.05質量%以上が好ましく、電池のエネルギー密度を高度に保つ観点からは9.95質量%以下が好ましい。
 <正極ペースト中のアクリル系ポリマー(A)>
 本開示の正極ペースト中の本開示のアクリル系ポリマー(A)の含有量は、塗膜抵抗の観点から、0.01~2.0質量%が好ましく、0.05~1.0質量%がより好ましく、0.07~0.5質量%がさらに好ましい。
 <正極ペースト中の化合物(B)>
 本開示の正極ペースト中の本開示の化合物(B)の含有量は、正極ペーストの固形分濃度を高くする観点、及び、粘度低下の観点から、好ましくは0.012質量%以上、より好ましくは0.02質量%以上であり、そして、溶媒への溶解性と正極ペーストの安定性の観点から、好ましくは0.191質量%以下、より好ましくは0.1質量%以下である。
 <正極ペースト中の炭素材料系導電材(D)>
 本開示の正極ペーストの導電材(D)の含有量は、合材層の導電性の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%、更に好ましくは0.1質量%であり、そして、電池のエネルギー密度を高度に保つ観点から、好ましくは5質量%以下、より好ましくは3質量%、更に好ましくは2質量%である。
 本開示の正極ペーストは、一又は複数の実施形態において、正極活物質、本開示の導電材スラリー、結着剤(バインダー樹脂)、及び固形分調整等のための溶媒(追加溶媒)等を、混合及び攪拌して、作製することができる。このほか本開示のアクリル系ポリマー(A)以外の分散剤や機能性材料等を添加しても良い。上記溶媒(追加溶媒)としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の非水系溶媒あるいは水等が使用できる。また、本開示の正極ペーストの調製においては、上記溶媒(追加溶媒)としては非水系溶媒を使用することが好ましく、なかでも、NMPを使用することがより好ましい。混合や攪拌にはプラネタリミキサー、ビーズミル、ジェットミル等を用いることができ、また、これらを併用することもできる。
 本開示の正極ペーストは、正極ペーストの調製に用いる全成分のうちの一部成分をプレミックスしてから、それを残余と混合することもできる。また、各成分は、全量を一度に投入せずに、複数回に分けて投入しても良い。これにより、攪拌装置の機械的な負荷を抑えることができる。
 本開示の正極ペーストの固形分濃度や、正極活物質の量、結着剤の量、導電材スラリーの量、添加剤成分の添加量、溶媒の量は、正極ペーストが集電体に塗布するのに適した粘度に応じて調整することができる。乾燥性の観点からは溶媒の量が小さいほうが好ましいが、正極合材層の均一性や表面の平滑性の観点から、正極ペーストの粘度が高すぎないことが好ましい。一方で、乾燥抑制の観点、及び合材層(正極塗膜)の充分な膜厚を得る観点から、正極ペーストの粘度が低すぎないことが好ましい。
 本開示の正極ペーストは、製造効率の観点からは高濃度に調整できることが好ましいが、著しい粘度の増加は作業性の観点から好ましくない。添加剤により、高濃度を保ちつつ、好ましい粘度範囲を保つことができる。
 <正極ペーストの製造方法>
 本開示の正極ペーストの製造方法は、一又は複数の実施形態において、本開示の炭素材料系導電材スラリーと結着剤と溶媒と正極活物質とを混合する工程を含むことができる。各成分は任意の順に混合してもよい。また、一又は複数の実施形態において、本開示の導電材スラリーと溶媒と結着剤とを混合し、これらが均質になるまで分散したのち、正極活物質を混合し、これらが均質になるまで攪拌することにより正極ペーストを得る方法が挙げられるが、これら成分の添加順序はこの限りではなく、本開示の化合物(B)を本開示のアクリル系ポリマー(A)とは別に正極ペースト調製の段階で添加してもよい。
 尚、本開示の導電材スラリー及び正極ペーストは、各々、本開示の効果が妨げられない範囲で、その他の成分を更に含んでもよい。その他の成分としては、例えば、酸化防止剤、中和剤、消泡剤、防腐剤、脱水剤、防錆剤、可塑剤、結着剤等が挙げられる。
[正極塗膜又は電池用正極の製造方法]
 本開示は、一態様において、本開示の正極ペーストを用いた正極塗膜又は電池用正極の製造方法に関する。本態様は、本開示の正極ペーストを、集電体に塗工した後、乾燥することを含む。本態様において、本開示の正極ペーストの好ましい形態は上述のとおりである。本開示の正極塗膜の製造方法において、本開示の正極ペーストを用いること以外は、従来から公知の方法により正極塗膜又は電池用正極を製造できる。
 正極塗膜又は電池用正極は、例えば、上記の正極ペーストをアルミニウム箔等の集電体に塗工し、これを乾燥して作製する。正極塗膜の密度を上げるために、プレス機により圧密化を行うこともできる。正極ペーストの塗工には、ダイヘッド、コンマリバース ロール、ダイレクトロール、グラビアロール等を用いることができる。塗工後の乾燥は、加温、エアフロー、赤外線照射等を単独あるいは組み合わせて行うことができる。塗工後の乾燥は、乾燥時間を経ることにより、正極ペースト中の化合物(B)および有機溶媒(C)が正極ペースト中に存在できなくなる温度で行う。乾燥温度は、乾燥が行われる環境下(気圧下)において、バインダー樹脂の熱分解温度以下であれば特に制限はないが、好ましくは化合物(B)の沸点以上の温度、より好ましくは有機溶媒(C)の沸点以上の温度である。具体的には、常圧下で、好ましくは60~220℃、より好ましくは80~200℃であり、乾燥時間は、好ましくは10~90分、より好ましくは20~60分である。正極のプレスは、ロールプレス機等により、行うことができる。
 以下、本開示の実施例及び比較例を示すが、本開示はこれに限定されるものではない。
1.各パラメータの測定方法
[ポリマーの重量平均分子量の測定]
 ポリマーの重量平均分子量は、GPC法により測定した。詳細な条件は以下の通りである。
測定装置:HLC-8320GPC(東ソー社製)
カラム :α-M + α-M(東ソー社製)
カラム温度 :40℃
検出器 :示差屈折率
溶離液 :60mmol/LのH3PO4及び50mmol/LのLiBrのN,N-ジメチルホルムアミド(DMF)溶液
流速 :1mL/min
検量線に用いる標準試料  :ポリスチレン
試料溶液:共重合体の固形分を0.5wt%含有するDMF溶液
試料溶液の注入量 :100μL
[導電材スラリーの粘度測定]
 導電材スラリーの粘度(25℃)はそれぞれ、Anton  Paar社のMCR302レオメーターに、パラレルプレートPP50を装着し、せん断速度0.1~1000 s-1まで測定し、せん断速度1s-1における粘度を記録し、表5、7、9に示した。
[正極ペーストの粘度測定]
 正極ペースト(25℃)の粘度は、Anton  Paar社のMCR302レオメーターに、パラレルプレート(直径50mm)を装着し、せん断速度0.1~1000 s-1まで測定し、せん断速度1s-1における粘度を記録し、表6、8、10に示した。
[正極塗膜抵抗値の測定]
 正極ペーストを、ポリエステルフィルムに垂らし、100μmのアプリケータで均一に塗工した。この塗工したポリエステルフィルムを100℃で1時間乾燥し厚み40μmの正極塗膜を得た。
 PSPプローブを装着したLoresta-GP(三菱ケミカルアナリテック製)にて限界電圧10vにて体積抵抗値を測定した。その結果は表6、8、10に示した。
2.分散剤組成物の調製
[使用原料]
 表3に示す分散剤組成物1~23の調製に用いたアクリル系ポリマー(A)及びその原料、化合物(B)等の詳細は、表1、表2及び下記の通りである。
(モノマーa)
SMA:ステアリルメタクリレート(新中村化学工業社製、品番:NK-エステルS)
BeA:ベヘニルアクリレート(新中村化学工業社製、品番:NK-エステルA-BH)
(モノマーb)
HEMA:2-ヒドロキシエチルメタクリレート(富士フイルム和光純薬株式会社製)
PEGMA(EO2):メトキシポリエチレングリコールメタクリレート(新中村化学工業社製、品番:NK-エステルM-20G、エチレンオキサイドの平均付加モル数=2)4-VPy:4-ビニルピリジン(東京化成工業製)
MAAm:メタクリルアミド(東京化成工業社製)
(ホモポリマー)
PVP:ポリビニルピロリドン(富士フイルム和光純薬株式会社製、K-30)
(溶媒)
NMP:N-メチル-2-ピロリドン(富士フイルム和光純薬株式会社製)
(重合開始剤)
V-65B:2,2'-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬株式会社製)
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
[分散剤組成物1のアクリル系ポリマー(A)の合成例]
 滴下用モノマー溶液1として、33.9gのSMA(モノマーa1)、及び27.7gのHEMA(モノマーb11)、25.2gのNMP(溶媒)からなる混合溶液、滴下用モノマー溶液2として、15.4gのMAAm(モノマーb23)、及び34.3gのNMPからなる混合溶液、滴下用開始剤溶液として1.28gのV-65B(重合開始剤)及び12.8gのNMP(溶媒)からなる混合溶液を作製した。
 還流管、攪拌機、温度計、窒素導入管、及び滴下漏斗を取り付けたセパラブルフラスコ内を1時間以上窒素置換した。滴下用モノマー溶液1、滴下用モノマー溶液2、及び滴下用開始剤溶液を、各々、65℃の槽内に160分かけて槽内に滴下した。滴下終了後、更に槽内を65℃に維持しながら1時間撹拌した。その後、槽内を80℃まで昇温し、更に2時間撹拌した。次いで、42.6gのNMP(溶媒)を追加し、希釈を行うことで、分散剤組成物1のアクリル系ポリマー(A)溶液を得た。その不揮発分は40質量%で、重量平均分子量は3.4万であった。
[分散剤組成物2~22のアクリル系ポリマー(A)の合成例]
 滴下用モノマー溶液の調製において、分散剤組成物2~22のアクリル系ポリマー(A)の合成に使用される各モノマーの質量比を、各々、表3に記載の値としたこと以外は、[分散剤組成物1のアクリル系ポリマー(A)の合成例]と同様にして、分散剤組成物2~22のアクリル系ポリマー(A)溶液を得た。
 尚、モノマーが2成分の場合は、滴下用モノマー溶液2の作製は省略した。分散剤組成物10、15のアクリル系ポリマー(A)の合成では、SMA(モノマーa1)とPEGMA(EO2)(モノマーb13)を含む滴下用モノマー溶液1とHEMA(モノマーb11)を含む滴下用モノマー溶液2を調製し、分散剤組成物11のアクリル系ポリマー(A)の合成では、SMA(モノマーa1)と4-Vpy(モノマーb21)を含む滴下用モノマー溶液1と、MAAm(モノマーb23)を含む滴下用モノマー溶液2を調製した。分散剤組成物12、14のアクリル系ポリマー(A)の合成では、SMA(モノマーa1)とPEGMA(EO2)(モノマーb13)を含む滴下用モノマー溶液1と、MAAm(モノマーb23)を含む滴下用モノマー溶液2を調製した。
[分散剤組成物1~23の調製例]
 表3に示すアクリル系ポリマー(A)又はPVPと、表2及び3に示す化合物(B)と、表3に示す有機溶媒(C)(NMP)とを均一に混合し、分散剤組成物1~23を得た。各分散剤組成物中の各成分の含有量(有効分、質量%)は、表3に示すとおりである。
Figure JPOXMLDOC01-appb-T000014
3.導電材スラリー1~29の調製に用いた導電材
 表5、7及び9に示す導電材スラリー1~29の調製に用いた導電材の詳細は、表4に示す通りである。
Figure JPOXMLDOC01-appb-T000015
4.導電材スラリー1~25の調製(実施例1~19、比較例1~6)
(実施例1)
 導電材P:繊維状炭素ナノ構造体としてのMWカーボンナノチューブ(Cabot社製多層カーボンナノチューブHCNTs10、平均長さ5~12μm(カタログ値)) 5gと分散剤組成物1を5gと、NMP(追加溶媒) 90gを混合し、粗分散液を得た。得られた粗分散液を、分散時に背圧を負荷する多段圧力制御装置(多段降圧器)を有する高圧ホモジナイザー(株式会社美粒製、製品名「BERYU MINI」)に充填し、100MPaの圧力で分散処理を行った。具体的には、背圧を負荷しつつ、粗分散液にせん断力を与えてMWカーボンナノチューブを分散させ、繊維状炭素ナノ構造体分散液として、実施例1の導電材スラリー1(カーボンナノチューブ分散液)を得た。なお、分散処理は、分散液を高圧ホモジナイザーから排出させて再び高圧ホモジナイザーに注入するという循環をさせながら行い、当該循環は20回行った。分散液の排出及び注入速度は30g/分とした。
 得られた導電材スラリー1の温度25℃における粘度を測定したところ、粘度は840mPa・sであった。
(実施例2~19、比較例1~6)
 分散剤組成物、導電材、追加溶媒の種類及び含有量を表3~表5に示すとおり変更したこと以外は、上記実施例1と同様にして、実施例2~19及び比較例1~6の導電材スラリー2~25(カーボンナノチューブ分散液)を調製した。
 調製した各導電材スラリー中の各成分の配合量(有効分、質量%)は、表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000016
5.正極ペースト(実施例20~38、比較例7~12)の調製
(実施例20)
 上記導電材スラリー1(実施例1) 2.04gと、NMP(追加溶媒) 0.50gと、PVDFのNMP溶液(固形分8% KFポリマーL#7208、株式会社クレハ製、バインダー溶液) 3.8gとを50mlのサンプルビンに秤取り、スパーテルで均一にかき混ぜた。その後、正極活物質としてNMC532(ニッケルマンガンコバルト酸リチウム、日本化学製) 15gを添加し、再度スパーテルで均一になるまでかき混ぜた。さらに自転公転ミキサー(AR-100 株式会社 シンキー製)にて10分間撹拌し、正極ペースト(実施例20)を得た。なお、正極活物質、結着剤(PVDF)、導電材(カーボンナノチューブ)及び分散剤の質量比率は97.24:1.97:0.66:0.13(固形分換算)とし、正極ペーストの固形分量(質量%)は、72.3質量%とした。ここで、正極ペーストの固形分量とは、正極ペーストが含有する、共重合体(分散剤)、正極活物質、導電材及び結着剤からなる材料の固形分の質量%である。得られた正極ペーストの温度25℃における粘度を測定したところ、粘度は5.4Pa・sであった。
(実施例21~38、比較例7~12)
 導電材スラリーの種類を表6に示す導電材スラリーに変更したこと以外は、上記実施例20と同様にして、正極ペースト(実施例21~38、比較例7~12)を調製した。調製した各正極ペースト中の各成分の配合量(有効分、質量%)は、表6に示すとおりである。
Figure JPOXMLDOC01-appb-T000017
 表5に示されるように、実施例1~19の導電材スラリー1~19(カーボンナノチューブ分散液)の粘度は、比較例1~4の導電材スラリー20~23(カーボンナノチューブ分散液)よりも低いことから、実施例1~19では、化合物(B)を含むことで、カーボンナノチューブの分散性が向上していることがわかる。
 表6に示されるように、導電材スラリー1~19(カーボンナノチューブ分散液)を含む実施例20~38の正極ペーストの粘度は、導電材スラリー20~25(カーボンナノチューブ分散液)を含む比較例7~12の正極ペーストの粘度よりも低かった。実施例20~38の正極ペーストを用いて作製された正極塗膜の抵抗値は、比較例7~12の正極ペーストを用いて作製された正極塗膜のそれよりも低かった。
6.導電材スラリー26~27(実施例39、比較例13)の調製
(実施例39)
 容器に分散剤組成物3を1.5gと、NMP(追加溶媒) 25.5gとを測りとり、均一に混合した後、導電材S 3gをかき混ぜながら徐々に添加した。更に自転公転ミキサーで5分混合した後、スパーテルで混合物をかき混ぜた。この操作を3回繰り返し均一なアセチレンブラックスラリー(導電材スラリー26、実施例39)を調製した。
(比較例13)
 分散剤組成物として分散剤組成物19を用いたこと以外は、実施例39と同様にして、アセチレンブラックスラリー(導電材スラリー27、比較例13)を調製した。
 調製した導電材スラリー中の各成分(分散剤組成物、導電材及び溶媒)の含有量(有効分、質量%)は表7に示すとおりである。
Figure JPOXMLDOC01-appb-T000018
7.正極ペースト(実施例40、比較例14)の調製
(実施例40)
 上記導電材スラリー26(実施例39) 2.06gとPVDFのNMP溶液(固形分8%、KFポリマーL#7208、株式会社クレハ製、バインダー溶液) 5.15gとを容器に測りとり、自転公転ミキサーで5分混合した後、正極活物質としてNMC532(ニッケルマンガンコバルト酸リチウム、日本化学製) 20gを配合した。スパーテルでかき混ぜた後、自転公転ミキサーで5分混合し、固形分75.8%の正極ペースト(実施例40)を得た。
(比較例14)
 導電材スラリーの種類を表8に示す導電材スラリーに変更したこと以外は、上記実施例40と同様にして、正極ペースト(比較例14)を得た。
 調製した各正極ペースト中の各成分の配合量(有効分、質量%)は、表8に示すとおりである。
Figure JPOXMLDOC01-appb-T000019
 表7に示されるように、実施例39の導電材スラリー26(アセチレンブラックスラリー)の粘度は、比較例13の導電材スラリー27(アセチレンブラックスラリー)よりも低いことから、実施例39の導電材スラリー26は、化合物(B)を含むことで、アセチレンブラックの分散性が向上していることがわかる。
 表8に示されるように、導電材スラリー26(アセチレンブラックスラリー)を含む実施例40の正極ペーストの粘度は、導電材スラリー27(アセチレンブラックスラリー)を含む比較例14の正極ペーストの粘度よりも低かった。実施例40の正極ペーストを用いて作製された正極塗膜の抵抗値は、比較例14の正極ペーストを用いて作製された正極塗膜のそれよりも低かった。
8.導電材スラリー28~29の調製(実施例41、比較例15)
(実施例41)
 60mLスクリュー管にグラフェン(Cabot performance material(Shenzhen) Co.Ltd製のグラフェンナノシート(GNS))4.50g、分散剤組成物3を2.25g測り取った。全量30.0gとなるように、更にNMPを追加し、長さ2cmスターラーチップを入れ、300rpm、15分間撹拌した。その後、氷浴中で、スターラー撹拌しながら超音波ホモジナイザー(日本精機製作所社製US-300AT)で、Amplitude30μmで20分間分散し、グラフェンスラリー(導電材スラリー28、実施例41)を得た。
(比較例15)
 分散剤組成物として分散剤組成物19を用いたこと以外は、実施例41と同様にして、グラフェンスラリー(導電材スラリー29、比較例15)を得た。
 調製した導電材スラリー中の各成分(分散剤組成物、導電材及び溶媒)の含有量(有効分、質量%)は表9に示すとおりである。
[グラフェンスラリーの粘度測定]
 グラフェンスラリーの見掛け粘度は、レオメーター(アントン・パール社MCR302)を用いて測定した。剪断速度0.1~100s-1で測定後、更に剪断速度100~0.1s-1で測定を行った。測定温度は25℃で、ローターはパラレルプレート(直径50mm)を用いた。剪断速度100~0.1s-1での測定時の剪断速度10s-1における見掛け粘度をグラフェンスラリーの粘度とした。
Figure JPOXMLDOC01-appb-T000020
9.正極ペースト(実施例42、比較例16)の調製
(実施例42)
 上記導電材スラリー28(実施例41) 2.06gとPVDFのNMP溶液(固形分8%、KFポリマーL#7208、株式会社クレハ製、バインダー溶液) 5.15gとを容器に測りとり、自転公転ミキサーで5分混合した後、正極活物質としてNMC532(ニッケルマンガンコバルト酸リチウム、日本化学製) 20gを配合した。スパーテルでかき混ぜた後、自転公転ミキサーで5分混合し、固形分75.8%の正極ペースト(実施例42)を得た。
 (比較例16)
 導電材スラリーの種類を表10に示す導電材スラリー29(比較例15)に変更したこと以外は、上記実施例42と同様にして、正極ペースト(比較例16)を得た。
 調製した各正極ペースト中の各成分の配合量(有効分、質量%)は、表10に示すとおりである。
Figure JPOXMLDOC01-appb-T000021
 表9に示されるように、実施例41の導電材スラリー28(グラフェンスラリー)の粘度は、比較例15の導電材スラリー29(グラフェンスラリー)よりも低いことから、実施例41の導電材スラリー28は、化合物(B)を含むことで、グラフェンの分散性が向上していることがわかる。
 表10に示されるように、導電材スラリー28(グラフェンスラリー)を含む実施例42の正極ペーストの粘度は、導電材スラリー29(グラフェンスラリー)を含む比較例16の正極ペーストの粘度よりも低かった。実施例42の正極ペーストを用いて作製された正極塗膜の抵抗値は、比較例16の正極ペーストを用いて作製された正極塗膜の抵抗値よりも低かった。
 本開示の分散剤組成物は、炭素材料系導電材の分散性が良好であり、結果、炭素材料系導電材スラリーの低粘度化が可能である。そして、本開示の分散剤組成物を正極ペーストの調製に用いれば、正極ペーストの粘度も低く、正極塗膜の低抵抗化に寄与しうる。

Claims (9)

  1.  アクリル系ポリマー(A)と、下記式(1)で表される化合物(B)と、有機溶媒(C)とを含有し、
     アクリル系ポリマー(A)が、下記式(3)で表される構成単位aを含む、蓄電デバイス電極用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000001
     上記式(1)中、R1は下記式(2)で表される基を示し、R2は水素原子、炭素数1~4のアルキル基又は-CH2CH2-OHを示す。
    Figure JPOXMLDOC01-appb-C000002
     上記式(2)中、R3、R4、R5及びR6は、同一又は異なって、水素原子、メチル基又は-CH2OHを示す。
    Figure JPOXMLDOC01-appb-C000003
     上記式(3)中、R7、R8及びR9は、同一又は異なって、水素原子、メチル基又はエチル基を示し、R10は炭素数1~30の炭化水素基を示し、X1は酸素原子又は-NH-を示す。
  2.  アクリル系ポリマー(A)の全構成単位中の式(3)で表される構成単位aの含有量が、10質量%以上80質量%以下である、請求項1に記載の蓄電デバイス電極用分散剤組成物。
  3.  アクリル系ポリマー(A)は、下記式(4)で表される構成単位b1及び下記式(5)で表される構成単位b2から選ばれる少なくとも1種の構成単位bをさらに含む、請求項1又は2に記載の蓄電デバイス電極用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000004
     上記式(4)中、R11、R12及びR13は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X2は酸素原子を示し、R14は炭素数2~4の直鎖又は分岐のアルキレン基を示し、pは1~8を示し、R15は水素原子又はメチル基を示す。
     上記式(5)中、R16、R17及びR18は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、アミド基、又は炭素数1~4の炭化水素基を有していてもよいピリジニル基を示す。
  4.  アクリル系ポリマー(A)の重量平均分子量が10000以上300000以下である、請求項1から3のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  5.  化合物(B)の含有量が、アクリル系ポリマー(A)100質量部に対して10質量部以上210質量部以下である、請求項1から4のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  6.  炭素材料系導電材(D)と、請求項1から5のいずれかに記載の蓄電デバイス電極用分散剤組成物とを含有する、炭素材料系導電材スラリー。
  7.  炭素材料系導電材(D)が、カーボンブラック、カーボンナノチューブ及びグラフェンから選ばれる少なくとも1種である、請求項6に記載の炭素材料系導電材スラリー。
  8.  請求項1から5のいずれかに記載の蓄電デバイス電極用分散剤組成物を含有する、蓄電デバイス用正極ペースト。
  9.  請求項8に記載の蓄電デバイス用正極ペーストを用いた正極塗膜の製造方法。
PCT/JP2021/036952 2020-10-12 2021-10-06 蓄電デバイス電極用分散剤組成物 WO2022080206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180069686.8A CN116390976A (zh) 2020-10-12 2021-10-06 蓄电设备电极用分散剂组合物
EP21879946.8A EP4228035A1 (en) 2020-10-12 2021-10-06 Dispersant composition for electricity storage device electrodes
KR1020237014311A KR20230087513A (ko) 2020-10-12 2021-10-06 축전 디바이스 전극용 분산제 조성물
US18/031,213 US20230383135A1 (en) 2020-10-12 2021-10-06 Dispersant composition for electricity storage device electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172197 2020-10-12
JP2020-172197 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022080206A1 true WO2022080206A1 (ja) 2022-04-21

Family

ID=80624121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036952 WO2022080206A1 (ja) 2020-10-12 2021-10-06 蓄電デバイス電極用分散剤組成物

Country Status (6)

Country Link
US (1) US20230383135A1 (ja)
EP (1) EP4228035A1 (ja)
JP (1) JP7005811B1 (ja)
KR (1) KR20230087513A (ja)
CN (1) CN116390976A (ja)
WO (1) WO2022080206A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265581B2 (ja) * 2021-05-06 2023-04-26 花王株式会社 蓄電デバイス電極用分散剤
JP7339311B2 (ja) * 2021-11-08 2023-09-05 花王株式会社 蓄電デバイス電極用分散剤組成物
CN115975104A (zh) * 2022-11-16 2023-04-18 瑞固新能(上海)材料科技有限公司 一种丙烯酸酯梳状物分散剂及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231926B2 (ja) 1982-11-15 1990-07-17 Mitsubishi Agricult Mach
JP2001213671A (ja) * 2000-01-31 2001-08-07 Taiheiyo Cement Corp 不定形耐火物用粉末分散剤及びこれを用いた不定形耐火物
WO2013151062A1 (ja) 2012-04-03 2013-10-10 株式会社Gsユアサ 電池用正極ペースト
JP2014181140A (ja) 2013-03-18 2014-09-29 Ube Ind Ltd 微細炭素繊維分散液およびその製造方法
JP2015128006A (ja) * 2013-12-27 2015-07-09 花王株式会社 水性導電性ペースト

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231926B2 (ja) 1982-11-15 1990-07-17 Mitsubishi Agricult Mach
JP2001213671A (ja) * 2000-01-31 2001-08-07 Taiheiyo Cement Corp 不定形耐火物用粉末分散剤及びこれを用いた不定形耐火物
WO2013151062A1 (ja) 2012-04-03 2013-10-10 株式会社Gsユアサ 電池用正極ペースト
JP2014181140A (ja) 2013-03-18 2014-09-29 Ube Ind Ltd 微細炭素繊維分散液およびその製造方法
JP2015128006A (ja) * 2013-12-27 2015-07-09 花王株式会社 水性導電性ペースト

Also Published As

Publication number Publication date
EP4228035A1 (en) 2023-08-16
US20230383135A1 (en) 2023-11-30
KR20230087513A (ko) 2023-06-16
JP2022063854A (ja) 2022-04-22
JP7005811B1 (ja) 2022-01-24
CN116390976A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
JP7005811B1 (ja) 蓄電デバイス電極用分散剤組成物
JP6765685B2 (ja) カーボンナノチューブ分散液およびその製造方法
KR102022399B1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
JP2021175699A (ja) カーボンナノチューブ分散液、それを用いた二次電池電極用組成物、電極膜、および二次電池。
WO2013081152A1 (ja) 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
JP2022527707A (ja) 電池用途向けのアノード電極組成物および水性分散液
JP2020194625A (ja) 電池用カーボンナノチューブ分散組成物の製造方法
CN113748143B (zh) 碳纳米管用分散剂组合物
WO2021201003A1 (ja) 正極組成物
WO2020208799A1 (ja) 蓄電デバイス正極用分散剤
JP7339311B2 (ja) 蓄電デバイス電極用分散剤組成物
JP2022181696A (ja) 導電材スラリー
JP2024067508A (ja) 蓄電デバイス電極用分散剤組成物
JP7265581B2 (ja) 蓄電デバイス電極用分散剤
KR20240095236A (ko) 축전 디바이스 전극용 분산제 조성물
JP7339422B2 (ja) 蓄電デバイス電極用分散剤
KR102590699B1 (ko) 기계적 함침을 이용한 비산화 탄소나노튜브 분산용액의 제조방법, 이로부터 제조되는 비산화 탄소나노튜브 분산용액
US20230352660A1 (en) Electrodes for energy storage devices
WO2023127917A1 (ja) 蓄電デバイス電極用分散剤組成物
JP7390516B1 (ja) 二次電池電極用複合物
US20230197937A1 (en) Electrodes for energy storage devices
JP2023097329A (ja) 蓄電デバイス電極用分散剤組成物
JP2023093009A (ja) 蓄電デバイス用導電材スラリー
WO2023167889A1 (en) Energy storage device
JP2021111567A (ja) 非水電解質二次電池用導電材分散体およびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18031213

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237014311

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879946

Country of ref document: EP

Effective date: 20230512