WO2022078370A1 - 含烃混合物的处理方法和系统 - Google Patents

含烃混合物的处理方法和系统 Download PDF

Info

Publication number
WO2022078370A1
WO2022078370A1 PCT/CN2021/123475 CN2021123475W WO2022078370A1 WO 2022078370 A1 WO2022078370 A1 WO 2022078370A1 CN 2021123475 W CN2021123475 W CN 2021123475W WO 2022078370 A1 WO2022078370 A1 WO 2022078370A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
components
unit
aromatics
catalyst
Prior art date
Application number
PCT/CN2021/123475
Other languages
English (en)
French (fr)
Inventor
李经球
孔德金
李旭光
王宗霜
李华英
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP21879413.9A priority Critical patent/EP4230604A4/en
Priority to JP2023522822A priority patent/JP2023545175A/ja
Priority to US18/248,664 priority patent/US20230392086A1/en
Priority to KR1020237015614A priority patent/KR20230085164A/ko
Publication of WO2022078370A1 publication Critical patent/WO2022078370A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7869MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7876MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the processing of hydrocarbons, and in particular to a method and system for processing hydrocarbon-containing mixtures.
  • Aromatic hydrocarbons and olefins are the basic raw materials of petrochemical industry, and paraxylene is the most important aromatic hydrocarbon product.
  • the domestic supply gap is more than 10 million tons/year, and there is also a huge supply and demand gap for ethylene and propylene. Accelerating the development of aromatics and olefins industry is crucial to the development of my country's basic chemical industry.
  • the industrial plant mainly uses naphtha as raw material, produces aromatics through catalytic reforming process, and then converts toluene/benzene and C9 + A to xylene through isomerization and transalkylation unit.
  • Citride CN101767035B discloses a catalyst for catalytically cracking gasoline to produce BTX aromatics and a preparation method thereof.
  • the weight percentages of the catalyst components are 0.05-2.0% of Group VIII noble metals, 0.2-5.0% of Zn, and 0.2-5.0% of Sn. %, the content of ZSM-5/ZSM-11 co-crystal molecular sieve is 5.0-80%, it has good aromatization activity, BTX selectivity, sulfur resistance and olefin resistance, and can be used for catalytic cracking gasoline or straight-run gasoline or blending Coking, cracking and other gasoline components to produce aromatics.
  • Chinese Patent Application Publication CN1923965A discloses a method for preparing ethylene, propylene and aromatic hydrocarbons by catalytic cracking gasoline.
  • the raw material is converted into a mixture of ethylene, propylene and aromatic hydrocarbons by one-time contact with a catalyst.
  • the purpose of the present application is to provide a novel hydrocarbon mixture processing method and system, which can realize the efficient and comprehensive utilization of the hydrocarbon mixture and improve the product value.
  • the present application provides a method for treating a hydrocarbon-containing mixture, comprising the following steps:
  • step II reacting the light components obtained in step I) in an aromatization unit, and separating the reaction product into C5- components and C6 + components, wherein the reactions taking place in the aromatization unit include aromatic structural reaction;
  • step III reacting the heavy components obtained in step I) and optionally the C6 + components obtained in step II) in an aromatics conversion unit and separating the reaction product into C5- components, C6 - C7 components , a C8 component, and a C9 + component, wherein the reaction occurring in the aromatics conversion unit comprises a transalkylation reaction;
  • catalytic cracking of at least a portion of one or both of the C5 - component obtained in step II) and the C5 - component obtained in step III), or, alternatively, during hydrogenation After saturation, steam cracking is performed.
  • the method further comprises one or both of the following steps:
  • step V) Purify the C8 components obtained in step III) to obtain C8 aromatic hydrocarbons and non-aromatic components, and optionally combine at least a part of the obtained non-aromatic components with the C5 components in step IV) - the components are cracked together;
  • the application provides a kind of processing method of hydrocarbon-containing mixture, comprising the following steps:
  • step 2) reacting the light fraction obtained in step 1) in the presence of an aromatization catalyst, and separating the reaction product into a C 5 -component and a C 6 + component;
  • step 3 react the heavy components obtained in step 1) and optionally the C 6 + components obtained in step 2) in the presence of an aromatic hydrocarbon conversion catalyst, and separate the reaction product into C 5 -components , C 6 -C 7 groups fractions, C8 components, and C9 + components; and
  • catalytic cracking is carried out on at least a part of one or both of the C 5 -component obtained in step 2) and the C 5 -component obtained in step 3), or, optionally, in hydrogenation. After saturation, steam cracking is performed.
  • the method further comprises one or both of the following steps:
  • step 5 Purify the C 8 components obtained in step 3) to obtain C 8 aromatic hydrocarbons and non-aromatic components, and optionally combine at least a part of the obtained non-aromatic components with the C 5 components in step 4). - the components are cracked together; and
  • step 6) Recycle at least a portion of one or more of the C6 - C7 components and C9 + components obtained in step 3) to step 3) for further reaction in the presence of the aromatics conversion catalyst.
  • the present application provides a system for implementing the method for treating a hydrocarbon-containing mixture of the present application, comprising:
  • a separation unit for separating the hydrocarbon-containing mixture into the light and heavy components
  • an aromatization unit for reacting the light components obtained by the separation unit therein, and separating the reaction product to obtain a C 5 -component and a C 6 + component;
  • Aromatics conversion unit for reacting the heavy components obtained by the separation unit and optionally the C6 + components obtained by the aromatization unit, and separating the reaction products to obtain C5 - components, C6- components C7 component, C8 component and C9 + component;
  • a hydrosaturation unit for hydrosaturating at least a portion of one or both of the C5 - component obtained from the aromatization unit and the C5 - component obtained from the aromatics conversion unit.
  • the system further comprises: an aromatics purification unit for purifying the C8 components obtained by the aromatics conversion unit to obtain C8 aromatics and non-aromatic components.
  • an aromatics purification unit for purifying the C8 components obtained by the aromatics conversion unit to obtain C8 aromatics and non-aromatic components.
  • the light components rich in alkanes and olefins are subjected to an aromatization reaction, and the non-aromatic components are converted into aromatic products.
  • the low-value hydrocarbon mixture can be converted into C8 aromatic hydrocarbons and cracking raw materials, and the product value can be improved.
  • the content of aromatic hydrocarbons in the reaction product of the aromatization unit is increased by more than 15%, preferably more than 20%, in terms of weight percentage, compared with the raw material; the content of C8 aromatics in the reaction product of the aromatic hydrocarbon conversion unit is increased compared with the raw material. At least 20%, preferably at least 30%; the purity of the C8 aromatics product of the aromatics purification unit can reach more than 99%; the obtained C5 - light hydrocarbon components can be directly used as cracking raw materials or after hydrogenation and saturation as steam cracking raw materials.
  • Fig. 2 is a schematic flow chart of another preferred embodiment of the method of the present application.
  • FIG. 3 is a schematic flow chart of another preferred embodiment of the method of the present application.
  • Figure 4 shows the NH 3 -TPD spectrum of the catalyst obtained in Preparation Example 1 of the present application.
  • FIG. 5 shows the TEM image of the catalyst obtained in Preparation Example 1 of the present application.
  • any specific numerical value disclosed herein, including the endpoints of a numerical range, is not limited to the precise value of the numerical value, but is to be understood to encompass values approximating the precise value, such as within ⁇ 5% of the precise value. all possible values. And, for the disclosed numerical range, between the endpoint values of the range, between the endpoint values and the specific point values in the range, and between the specific point values, one or more new values can be obtained in any combination. Numerical ranges, these new numerical ranges should also be considered to be specifically disclosed herein.
  • C 5 -components refer to hydrocarbon components whose boiling point is lower than that of benzene
  • C 6 + components refer to hydrocarbon components whose boiling point is not lower than that of benzene
  • C 7 -components are refers to hydrocarbon components with a boiling point not higher than that of toluene
  • C 8 + components refer to hydrocarbon components with a boiling point higher than that of toluene.
  • C 6 -C 7 components refer to hydrocarbon components with boiling points between the boiling points of benzene and xylene; while C 8 components refer to boiling points near the boiling point of xylene (eg ⁇ 10°C) while C9 + components refer to hydrocarbon components with a boiling point higher than that of xylene.
  • high-purity C8 aromatic hydrocarbons refer to C8 aromatic hydrocarbons that meet the purity required for the adsorption separation or crystallization separation of p-xylene, and usually the purity requirement is higher than 99%.
  • the medium and strong acid content of the catalyst is calculated according to the peak area of the NH 3 -TPD spectrum in the range of 200-400°C ; The ratio of the peak area in the °C interval to the total peak area in the 100-600 °C interval.
  • any matter or matter not mentioned is directly applicable to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of this application, and should not be It is considered to be new content not disclosed or anticipated herein, unless a person skilled in the art considers that the combination is obviously unreasonable.
  • the present application provides a method for treating a hydrocarbon-containing mixture, comprising the following steps:
  • step II reacting the light components obtained in step I) in an aromatization unit, and separating the reaction product into C5- components and C6 + components, wherein the reactions taking place in the aromatization unit include aromatic structural reaction;
  • step III reacting the heavy components obtained in step I) and optionally the C6 + components obtained in step II) in an aromatics conversion unit and separating the reaction product into C5- components, C6 - C7 components , a C8 component, and a C9 + component, wherein the reaction occurring in the aromatics conversion unit comprises a transalkylation reaction;
  • catalytic cracking of at least a portion of one or both of the C5 - component obtained in step II) and the C5 - component obtained in step III), or, alternatively, during hydrogenation After saturation, steam cracking is performed.
  • the method further comprises one or both of the following steps:
  • step V) Purify the C8 components obtained in step III) to obtain C8 aromatic hydrocarbons and non-aromatic components, and optionally combine at least a part of the obtained non-aromatic components with the C5 components in step IV) - the components are cracked together;
  • the application provides a method for treating a hydrocarbon-containing mixture, comprising the steps of:
  • step 2) reacting the light fraction obtained in step 1) in the presence of an aromatization catalyst, and separating the reaction product into a C 5 -component and a C 6 + component;
  • step 3 react the heavy components obtained in step 1) and optionally the C 6 + components obtained in step 2) in the presence of an aromatic hydrocarbon conversion catalyst, and separate the reaction product into C 5 -components , C 6 -C 7 groups fractions, C8 components, and C9 + components; and
  • catalytic cracking is carried out on at least a part of one or both of the C 5 -component obtained in step 2) and the C 5 -component obtained in step 3), or, optionally, in hydrogenation. After saturation, steam cracking is performed.
  • the method further comprises one or both of the following steps:
  • step 5 Purify the C 8 components obtained in step 3) to obtain C 8 aromatic hydrocarbons and non-aromatic components, and optionally combine at least a part of the obtained non-aromatic components with the C 5 components in step 4). - the components are cracked together; and
  • step 6) Recycle at least a portion of one or more of the C6 - C7 components and C9 + components obtained in step 3) to step 3) for further reaction in the presence of the aromatics conversion catalyst.
  • the separations carried out in step I)/step 1), step II)/step 2) and step III)/step 3) are based on boiling points by distillation, rectification or fractionation to separate mixtures into those with corresponding boiling points
  • the components of the distillation range for example in step 1)/step 1 ) can be separated in a rectification column by separating the hydrocarbon - containing mixture into C7- and C8 + components, or in a distillation column
  • the hydrocarbon-containing mixture is separated into C5- and C6 + components.
  • the specific separation conditions used in step II)/step 2) and step III)/step 3) can be easily determined by those skilled in the art according to the target components to be separated, and will not be repeated here.
  • Hydrocarbon-containing mixtures suitable for use in the present application may be various hydrocarbon mixtures containing C3-C12 hydrocarbons, but may also lack one or more of the C3-C12 hydrocarbons, as long as it does not affect the passage of step 1) or step 1 ) can be separated into the light component and the heavy component.
  • the distillation range of the hydrocarbon-containing mixture is 40-300°C, more preferably 50-250°C.
  • the hydrocarbon-containing mixture is selected from the group consisting of catalytically cracked gasoline, hydrocracked gasoline, ethylene pyrolysis gasoline, straight-run naphtha, catalytic reformate, LPG, any mixture thereof, or other similar Composition of fractions, such as catalytic diesel or its hydrocracked products, etc.
  • the hydrocarbon-containing mixture has one or more of the following characteristics:
  • the sulfur content is 0.5-4 ppm by weight
  • the nitrogen content is 0-2 ppm by weight
  • the aromatic content is 15-45% by weight
  • the olefin content is 20-45% by weight by weight
  • the alkane content is 20-40% by weight by weight.
  • hydrocarbon-containing mixture according to the above-described preferred embodiments can be treated more efficiently by the method of the present application.
  • the light components rich in alkanes and olefins are subjected to an aromatization reaction, the non-aromatic components are converted into aromatic products, and light hydrocarbons are by-produced as high-quality low-carbon olefin production raw materials
  • the heavy components rich in aromatics are subjected to hydrocracking and transalkylation reactions to convert benzene, toluene and heavy aromatics into C8 aromatics, and by-produce light hydrocarbons as high-quality low-carbon olefins production raw materials.
  • the C8 aromatics can be purified, for example, in an aromatics purification unit to obtain high-purity C8 aromatics.
  • the method of the invention can convert low-value hydrocarbon mixtures into C8 aromatic hydrocarbons and low-carbon olefin cracking raw materials through the above-mentioned process, so as to improve the product value.
  • the content of aromatic hydrocarbons in the reaction product of step II) and step 2) is increased by more than 15% compared with the raw material, more preferably, the content of aromatic hydrocarbons in the reaction product is increased by more than 20% compared with the raw material.
  • the content of C8 aromatics in the reaction products of step III) and step 3) is increased by at least 20% compared with the raw material, more preferably, the content of C8 aromatics in the reaction product is increased by at least 20 % compared with the raw material 30%.
  • the purity of the C8 aromatic products obtained in steps V) and 5) is higher than 99% by weight.
  • the aromatization catalyst used in the aromatization unit catalyst of step II) and the aromatization catalyst used in step 2) can be conventionally selected, for example comprising 50-90 wt% molecular sieve and 0.5-10 wt% % modified metal
  • the molecular sieve can be selected from aluminosilicates with a ten-membered ring or twelve-membered ring pore structure, silicon-alumino-gallium salts, silicon-phosphorus-aluminium salts, silicon-aluminum-iron salts, or a combination thereof
  • the The modifying metal component may be selected from Group IB, Group IIB, Group VIB, Group VIIB, Group VIII metals, or combinations thereof.
  • reaction conditions in step II) and step 2) include: reaction temperature of 400-600° C., reaction pressure of 0.2-3MPa, and feed space velocity of 0.5-5h ⁇ 1 .
  • the aromatics conversion catalyst used in the aromatics conversion unit of step III) and the aromatics conversion catalyst used in step 3) can be conventional aromatics conversion catalysts, for example, containing 50-90 wt% molecular sieve and 0.05-10 wt%
  • the modified metal, the molecular sieve can be selected from aluminosilicates with ten-membered ring or twelve-membered ring pore structure, etc., such as ZSM-5 molecular sieve, ZSM-12 molecular sieve, MCM-22 molecular sieve, MOR molecular sieve and ⁇ molecular sieve
  • the modified metal component can be selected from the group VB, VIB, VIIB, VIII metals or their metal oxides, preferably selected from Pt, Mo and Re.
  • the aromatics conversion catalyst contains a molecular sieve component, an active metal component and an oxide auxiliary, and the active metal component is immobilized on the molecular sieve component and may be a metal element and/or Metal oxide form, wherein the active metal in the active metal component is selected from one or more of VB group metals, VIB group metals and VIIB group metals, and the molecular sieve component is selected from MCM-22 molecular sieve, MOR At least one of molecular sieves and ZSM-12 molecular sieves, the medium and strong acid content of the catalyst is 0.05-2.0 mmol/g catalyst, and the proportion of the medium and strong acid in the total acid amount is 60-99%.
  • the amount of medium and strong acid in the catalyst is 0.1-1 mmol/g, and the proportion of medium and strong acid in the total acid amount is 68-92%.
  • the metal components immobilized on the surface of the molecular sieve can preferentially cover or weaken some of the strong acid centers, and synergize with the nearby acid sites of the molecular sieve to play a role in Promotes transalkylation and isomerization reactions and reduces the effect of deep hydrocracking side reactions.
  • the active metal component is immobilized on the molecular sieve component by physical mixing and/or chemical bonding.
  • the content of the molecular sieve component is 50-90% by weight, preferably 60-80% by weight, and the content of the oxide auxiliary agent is 5-40% by weight , preferably 20-40% by weight, based on metal elements, the content of active metal components is 0.01-10% by weight, preferably 0.1-8% by weight.
  • the active metals can be selected from one or more of the VB group metals, VIB group metals and VIIB group metals, preferably Mo, One or more of W and Re; more preferably at least two of Mo, Re and W, and based on the metal element, the mixed weight ratio of the two is 0.1-10:1; or Mo, Re and The combination of the three W, and in terms of metal elements, the weight ratio of Mo, Re and W is 1:0.1-0.4:0.1-0.6.
  • oxide auxiliary agents can be used in this application, preferably selected from alumina, silica, magnesia, titania, zirconia and One or more of kaolin.
  • the aromatic hydrocarbon conversion catalyst preferably further comprises a phosphorus-containing component, more preferably, the phosphorus-containing component is immobilized on the molecular sieve component through physical mixing and/or chemical bonding, in terms of P 2 0 5 , phosphorus
  • the content is preferably 0.1-5% by weight.
  • the aromatics conversion catalyst can be prepared by the following steps: a) immobilizing active metals and/or active metal oxides on molecular sieves; and b) combining the products obtained in step a) with oxide promoters
  • the catalyst is obtained by kneading and molding.
  • the active metal and/or active metal oxide is immobilized on the molecular sieve and then kneaded with the oxide auxiliary agent, based on the synergistic effect of the metal and the acid center of the molecular sieve and the modulation of the acidity by the metal
  • the strong acid centers of the molecular sieve are effectively reduced and the medium and strong acid centers are increased, thereby promoting the conversion efficiency of aromatics, improving the xylene selectivity and inhibiting the side reactions of deep hydrocracking.
  • the aromatics conversion catalyst can be prepared by a method comprising the following steps: a) impregnating a molecular sieve component source with an active metal source solution, and heat-treating to obtain a modified molecular sieve; b) mixing the modified molecular sieve with The oxide auxiliary source is kneaded and shaped.
  • the impregnation may be equal volume impregnation, supersaturated impregnation, etc., preferably supersaturated impregnation.
  • the heat treatment includes roasting or a combination of drying and roasting, preferably a combination of drying and roasting.
  • the optional range of the drying conditions is wide, and common drying conditions can be used in this application.
  • the preferred drying conditions include: the temperature is 50-200°C, and the drying time can be adjusted according to the temperature. 1-30h.
  • the optional range of the calcination conditions is wide, and the commonly used calcination conditions can be used in this application.
  • the preferred calcination conditions include: the temperature is 300-700° C. The time is 1-30 hours. More preferably, the calcination is carried out in an oxygen-containing atmosphere, such as an air atmosphere, particularly preferably, the oxygen-containing atmosphere is a mixed gas of air and water vapor, and the volume ratio of the two is 5-100. : 1.
  • the types of the active metal sources can be selected in a wide range, for example, active metal soluble compounds, preferably soluble compounds containing VB, VIB and VIIB metals. Such as nitrates, chlorides, sulfates, and ammonium salts, which will not be repeated here.
  • the oxide auxiliary source may be selected from, for example, alumina, silica, magnesia, titania and kaolin, or one or more of their precursors.
  • step a) is performed in the presence of a phosphorus source, and more preferably, the phosphorus source is a soluble compound, and the type of soluble compound has no special requirements, such as phosphoric acid, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate, which will not be repeated here.
  • the aromatic hydrocarbon conversion catalyst of the present application has the advantages of high reaction activity and low aromatic hydrocarbon loss when used for aromatic hydrocarbon conversion.
  • the aromatic hydrocarbon conversion catalyst of the present application before being used, is reduced as required, and the reduction step has no special requirements, such as introducing hydrogen for reduction or performing a reduction reaction by using other reducing agents, which will not be repeated in this application.
  • the reaction conditions in step III) and step 3) include: the reaction temperature is 250-500° C., the reaction pressure is 1.5-6.5 MPa, the molar ratio of hydrogen to hydrocarbon is 1-10, and the feed weight hourly space velocity is is 0.5-5h -1 .
  • the steam cracking and catalytic cracking of step IV) and step 4) can be carried out in a conventional manner, which is not specially required by the present application.
  • the operating conditions of steam cracking in steps IV) and 4) include: the cracking reaction temperature is 600-1000° C., the residence time is 0.01-0.8 seconds, and the reaction pressure is 0.1-0.3 MPa (G ).
  • the catalytic cracking of step IV) and step 4) is carried out in the presence of a catalyst, and the catalyst comprises USY molecular sieve, ZSM-5 molecular sieve or ⁇ molecular sieve; more preferably, the operation of the catalytic cracking
  • the conditions include: the reaction temperature is 450-650°C, the weight hourly space velocity is 0.5-20h -1 , the reaction pressure is 0.05-0.5MPa, and the mass ratio of the agent to oil is 0.1-10, preferably: the reaction temperature is 500-600°C, the weight The hourly space velocity is 1-10h -1 , the reaction pressure is 0.1-0.3MPa, and the agent-oil ratio is 0.3-6.
  • the cracked feedstock is hydrosaturated in steps IV) and 4) prior to steam cracking.
  • the optional range of the hydrosaturation operation conditions is wide, the main purpose of which is to saturate the olefin component in the raw material to increase the alkane ratio in the product, which is beneficial to improve the yield of the olefin product of the subsequent steam cracking.
  • the operating conditions for hydrogenation saturation include: reaction temperature 150-600° C., reaction pressure 0.5-6 MPa, feed weight hourly space velocity 0.5-10 h -1 , and volume ratio of hydrogen to hydrocarbon 200-2000.
  • the catalyst used for hydrogenation saturation can be selected with reference to conventional ones, for example, the catalyst can contain 0.1-20% by weight of one or more metal components selected from Ni, Mo, Co, Pt, and Pd. , and 80-99.9% by weight of one or more carrier components selected from alumina, kaolin, magnesia, silica, titania, calcium oxide, and amorphous silica-alumina.
  • the purification treatment in step V) and step 5) is extraction and separation of aromatic hydrocarbons, selective cracking of non-aromatic hydrocarbons, or a combination thereof.
  • the aromatic hydrocarbon extraction and separation can be implemented in a conventional manner, and the present application has no special requirements.
  • the aromatics extractive separation is performed using sulfolane solvent-based extractive distillation.
  • the selective cracking of non-aromatic hydrocarbons can be implemented in a conventional manner, and the present application has no special requirements.
  • the selective cracking of non-aromatic hydrocarbons is carried out in the presence of a catalyst containing 50-80% by weight of at least one of ZSM-5 molecular sieve, MCM-22 molecular sieve, MOR molecular sieve and beta molecular sieve , optionally containing 0.1-10% by weight of a metal component comprising a metal selected from Group VIB, VIIB and VIII.
  • the operating conditions for the selective cracking of non-aromatic hydrocarbons include: the reaction temperature is 300-600° C., the reaction pressure is 0.5-3.0 MPa, the molar ratio of hydrogen to hydrocarbon is 1-10, and the feed weight hourly space velocity is 1- 15h -1 .
  • the present application provides a system for implementing the method for treating a hydrocarbon-containing mixture of the present application, comprising:
  • a separation unit for separating the hydrocarbon-containing mixture into the light and heavy components
  • an aromatization unit for reacting the light components obtained by the separation unit therein, and separating the reaction product to obtain a C 5 -component and a C 6 + component;
  • Aromatics conversion unit for reacting the heavy components obtained by the separation unit and optionally the C6 + components obtained by the aromatization unit, and separating the reaction products to obtain C5 - components, C6- components C7 component, C8 component and C9 + component;
  • a hydrosaturation unit for hydrosaturating at least a portion of one or both of the C5 - component obtained from the aromatization unit and the C5 - component obtained from the aromatics conversion unit.
  • the separation unit is provided with a hydrocarbon-containing mixture inlet, a light components outlet, and a heavy components outlet;
  • the aromatization unit is provided with an inlet, a C5 - component outlet, and a C6 + component outlet;
  • the aromatics conversion unit is provided with an inlet, a C 5 -component outlet, a C 6 -C 7 component outlet, a C 8 component outlet and a C 9 + component outlet;
  • the cracking unit is provided with an inlet and a cracking A product outlet; wherein the light components outlet of the separation unit is in communication with the inlet of the aromatization unit, the heavy components outlet of the separation unit is in communication with the inlet of the aromatics conversion unit, and the aromatization unit's outlet One or both of the C5 - component outlet and the C5 - component outlet of the aromatics conversion unit, optionally via the hydrosaturation unit, communicate with the inlet of the cracking unit.
  • system further comprises:
  • An aromatics purification unit which is used for purifying the C8 components obtained by the aromatics conversion unit to obtain C8 aromatics and non-aromatic components
  • the aromatics purification unit is provided with an inlet, a C8 aromatics outlet and a non-aromatic component outlet, the C8 component outlet of the aromatics conversion unit communicates with the inlet of the aromatics purification unit, and the aromatics purification unit
  • the outlet of the non-aromatic components optionally via the hydrosaturation unit, communicates with the inlet of the cracking unit.
  • the cracking unit may be a steam cracking unit, a catalytic cracking unit, or a combination thereof.
  • the aromatics purification unit may be an aromatics extraction separation unit, a non-aromatics selective cracking unit, or a combination thereof.
  • the separation unit may be in the form of a distillation, rectification or fractionation column commonly used in the art, such as a vacuum rectification column, an atmospheric rectification column or a pressurized rectification column.
  • the aromatization unit may be in the form of an aromatization reactor commonly used in the art, such as a fixed bed reactor, a moving bed reactor.
  • the aromatics conversion unit may be in the form of a fixed bed reactor commonly used in the art, such as an axial fixed bed reactor.
  • the steam cracking unit can be in the form of a millisecond furnace or a normal cracking furnace commonly used in the art, such as an ultra-short residence time cracking furnace and a short residence time cracking furnace.
  • the catalytic cracking unit may be in the form of a catalytic cracking reactor commonly used in the art, such as a fixed bed reactor, a fluidized bed reactor or a riser reactor.
  • the hydrosaturation unit may be in the form of a fixed bed reactor commonly used in the art, such as an axial fixed bed reactor.
  • the aromatic hydrocarbon extraction and separation unit can be in the form of a liquid-liquid extractor or an extractive distillation column commonly used in the art, such as an extractive distillation column using sulfolane as a solvent.
  • the non-aromatic hydrocarbon selective cracking unit may be in the form of a fixed bed reactor commonly used in the art, such as an axial fixed bed reactor and a radial fixed bed reactor.
  • the feeding port and the discharging port of each unit are connected with the feeding port and the discharging port of the relevant unit using a communication pipe, and further preferably, on each of the communication pipes Valves are set independently for flow regulation.
  • processing and utilization of the hydrocarbon-containing mixture can realize the efficient comprehensive utilization of the hydrocarbon mixture and improve the product value.
  • the reagents used in the following preparation examples are all commercially available reagents, and the purity is reagent pure.
  • the NH 3 -TPD spectrum of the obtained catalyst was measured by the following method: Weigh 100 mg of a sample that was crushed into 20-40 mesh, and heated up to 10°C/min at a heating rate of 10°C/min under flowing nitrogen (30ml/min). 500 °C and constant temperature purging for 30 minutes, after the heat treatment was completed, the temperature was lowered to 100 °C, NH 3 gas was introduced for adsorption and the ammonia gas was kept for 10 minutes, and then switched to helium gas (30ml/min) after purging for 1 hour, with 10 The temperature was programmed to 600°C at a heating rate of °C/min, and the NH3 concentration signal in the effluent was detected by TCD.
  • the medium-strong acid amount of the obtained catalyst is calculated according to the peak area of the NH 3 -TPD spectrum in the interval of 200-400° C.
  • the ratio of the medium-strong acid amount to the total acid amount is that the NH 3 -TPD spectrum is in The ratio of the peak area in the 200-400°C interval to the total peak area in the 100-600°C interval.
  • the TEM pictures of the obtained catalysts were characterized by high-resolution field emission transmission electron microscopy, and the working voltage was 200 kV, and elemental analysis was performed using an energy scattering X-ray analyzer equipped with the transmission electron microscope.
  • the TEM elemental analysis of the obtained catalyst is shown in Fig. 5, in which the upper left image shows the TEM phase diagram of the combination of molecular sieve and alumina, the upper right image shows the Mo elemental distribution, the lower left image shows the silicon element distribution, and the lower right image shows the aluminum element distributed.
  • the silicon-rich part corresponds to the mordenite
  • the aluminum-rich part corresponds to the alumina promoter. From the distribution of Mo element (see the upper right figure), it can be seen that , Mo element is mainly distributed on the surface of mordenite in the catalyst.
  • Aromatization catalyst Zn and Mo modified ZSM-5 molecular sieve, wherein the Zn content (calculated as metal element) is 5 wt%, the Mo content (calculated as metal element) is 2 wt%, and the ZSM-5 molecular sieve content is 70 wt% , the weight is alumina;
  • Aromatic hydrocarbon conversion catalyst Re-modified MOR zeolite, wherein the content of Re (calculated as metal element) is 0.5% by weight, the content of mordenite is 70% by weight, and the amount of She is alumina;
  • Hydrogenation saturated catalyst a catalyst with Pt and Ni supported on an alumina carrier, wherein the Pt content is 0.1 wt%, the Ni content (calculated as metal element) is 8 wt%, and the amount is an alumina carrier;
  • Non-aromatic cracking catalyst Mo-loaded catalyst on ZSM-5/beta molecular sieve mixture, wherein ZSM-5 molecular sieve content is 60wt%, beta molecular sieve content is 34wt%, and Mo content (calculated as metal element) is 6wt%.
  • 100 t/ h of catalytically cracked gasoline is pretreated by desulfurization and denitrification, and then separated into C7- light components and C8 + heavy components after passing through an atmospheric rectification column.
  • the C 7 -light components enter the aromatization unit to undergo aromatization reaction, and the C 5 -light hydrocarbons in the product are used as cracking raw materials, and the C 6 + components are further converted by the dearomatic hydrocarbon conversion unit.
  • the C 8 + heavy components enter the aromatics conversion unit, and reactions such as aromatic hydrocarbon transalkylation and non-aromatic hydrocarbon hydrocracking occur, the C 8 components generated by the reaction are purified by the aromatic hydrocarbon extraction unit, and the by-product C 5 - light hydrocarbons are recovered as The raw material is cracked, and the remaining unreacted components are recycled back to the aromatics conversion unit.
  • the C8 aromatic hydrocarbons obtained by the extraction of aromatic hydrocarbons are extracted as products with a purity of 99.8%, and non-aromatic hydrocarbons are extracted as raw materials for cracking.
  • the raw material composition is shown in Table 2, the reaction conditions of each unit are shown in Table 3, and the product yield of the combined device is shown in Table 4.
  • the mixture of 100 t/h catalytically cracked gasoline and pyrolysis gasoline is subjected to desulfurization and denitrification, and is separated into C 5 -light components and C 6 + heavy components through an atmospheric distillation column.
  • the C 5 -light components enter the aromatization unit to undergo aromatization reaction, the C 5 - components in the product are further hydrogenated and saturated as cracking raw materials, and the C 6 + components in the product are further converted by the aromatics conversion unit.
  • the separated C 6 + heavy components enter the aromatics conversion unit, and undergo transalkylation reaction and mild hydrocracking reaction of non-aromatic hydrocarbons.
  • the generated C 8 components go to the non-aromatic cracking unit for further purification, and the by-product C 5 -light hydrocarbons are The raw materials are cracked, and the remaining unreacted components are recycled back to the aromatics conversion unit.
  • the non-aromatic cracking unit undergoes selective cracking of non-aromatic hydrocarbons, and the generated C8 aromatics are extracted as products with a purity of 99.9%.
  • the raw material composition is shown in Table 2, the reaction conditions of each unit are shown in Table 3, and the product yield of the combined device is shown in Table 4.
  • the mixture of 100 t/h catalytically cracked gasoline and pyrolysis gasoline is subjected to desulfurization and denitrification, and is separated into C 5 -light components and C 6 + heavy components through an atmospheric distillation column.
  • the C 5 -light components enter the aromatization unit to undergo aromatization reaction, the C 5 - components in the product are further hydrogenated and saturated as cracking raw materials, and the C 6 + components in the product are further converted by the aromatics conversion unit.
  • the separated C 6 + heavy components enter the aromatics conversion unit, and undergo transalkylation reaction and mild hydrocracking reaction of non-aromatic hydrocarbons.
  • the generated C 8 components go to the non-aromatic cracking unit for further purification, and the by-product C 5 -light hydrocarbons are further purified. After being saturated with hydrogen, it is used as a cracking raw material, and the remaining unreacted components are recycled back to the aromatics conversion unit.
  • the non-aromatic cracking unit undergoes selective cracking of non-aromatic hydrocarbons, and the generated C8 aromatics are extracted as products with a purity of 99.9%.
  • the raw material composition is shown in Table 2, the reaction conditions of each unit are shown in Table 3, and the product yield of the combined device is shown in Table 4.
  • Example 1 Example 2
  • Example 3 product Output, t/h Output, t/h Output, t/h vinyl twenty two twenty one twenty two acrylic 16 10 9 C8 Aromatics 51 61 60 other 11 8 9
  • the treatment method of the present application can flexibly process a variety of hydrocarbon-containing mixtures, and the products are mainly C8 aromatics, ethylene and propylene, and the total yield can reach more than 85%.
  • the total yield of ethylene + propylene) can reach 92%.
  • the catalysts A-O obtained in the preparation examples 1-13 were placed in the reactor respectively, and the hydrogen was passed through for reduction at 450 ° C for 3 hours, and then the gasoline feedstock was treated according to the method of Example 1.
  • the aromatic hydrocarbon conversion catalyst was replaced by catalyst A-O, and the other operating conditions remained unchanged. The results are shown in Table 5.
  • the gasoline feedstock was treated according to the method of Example 16, except that the steam cracking unit was replaced by a catalytic cracking unit (fluidized bed reactor), the reaction temperature was 500° C., the weight hourly space velocity was 5h ⁇ 1 , the agent-oil ratio was 1, and the pressure is 0.2MPa, and other operating conditions remain unchanged.
  • the results are shown in Table 5.
  • the use of the aromatics conversion catalyst of the present application can further improve the yield of C8 aromatics, and in the preferred scheme, the total yield of (C8 aromatics+ethylene+propylene) can be further improved to reach 93wt %above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

公开了一种含烃混合物的处理方法和系统,所述方法包括以下步骤:I)将所述含烃混合物分离为轻组分与重组分;II)使步骤I)得到的轻组分在芳构化单元中反应,并将反应产物分离成C5 -组分和C6 +组分;III)使步骤I)得到的重组分以及可选地步骤II)得到的C6 +组分在芳烃转化单元中反应,并将反应产物分离成C5 -组分、C6-C7组分、C8组分和C9 +组分;以及IV)可选地,对步骤II)所得的C5 -组分和步骤III)所得的C5 -组分中的一者或两者进行蒸汽裂解或催化裂解。所述方法和系统可以将低价值的烃类混合物转化为C8芳烃及裂解原料,提高产品价值。

Description

含烃混合物的处理方法和系统
相关申请的交叉引用
本申请要求2020年10月15日提交的、申请号为202011104622.0、名称为“含烃混合物的利用系统和方法”的专利申请的优先权,其内容经此引用全文并入本文。
技术领域
本申请涉及烃类的加工,具体涉及一种含烃混合物的处理方法和系统。
背景技术
芳烃、烯烃是石油化工的基础原料,对二甲苯是最主要的芳烃产品,国内供应缺口达1000多万吨/年,乙烯丙烯也存在巨大供求缺口。加快芳烃和烯烃产业的发展对我国基础化工产业的发展至关重要。工业装置中主要是以石脑油为原料,通过催化重整过程生产芳烃,然后再通过异构化及烷基转移单元将甲苯/苯与C9 +A转化为二甲苯。此外,我国生产低碳烯烃的蒸汽裂解装置同样主要以石脑油为原料,导致芳烃烯烃生产原料相互竞争,芳烃、烯烃原料成本居高不下。因此,寻找更低成本及多样化的芳烃、烯烃生产原料是未来解决芳烃、烯烃瓶颈的关键因素。
随着来我国新能源技术的应用推广及汽油的升级,未来车用汽油需求量将呈下降趋势,汽油中芳烃、烯烃含量要求将进一步降低。因此,将部分劣质汽油定向转化为高价值的C8芳烃同时联产烯烃是拓宽汽油利用的有效途径,同时可缓解对二甲苯生产原料紧张的局面。
中国专利公开CN101767035B公开了一种用于催化裂化汽油生产BTX芳烃的催化剂及其制备方法,该催化剂成分的重量百分比为VIII族贵金属0.05-2.0%,Zn含量0.2-5.0%,Sn含量0.2-5.0%,ZSM-5/ZSM-11共结晶分子筛含量5.0-80%,具有很好的芳构化活性和BTX选择性及耐硫抗烯烃性能,可用于催化裂化汽油或和直馏汽油或掺和焦化、裂化等汽油组分制芳烃。
中国专利申请公开CN1923965A公开了一种催化裂化汽油制取乙烯、丙烯和芳烃的方法,将原料与催化剂一次接触转化为乙烯、丙烯和芳烃的混合物。
然而,现有技术的方法仍然存在烃类混合物综合利用程度和产品价值不高的问题。
发明内容
本申请的目的是提供一种新颖的烃类混合物处理方法和系统,该方法和系统可实现烃类混合物的高效综合利用,提高产品价值。
为实现前述目的,一方面,本申请提供了一种含烃混合物的处理方法,包括以下步骤:
I)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
II)使步骤I)得到的轻组分在芳构化单元中反应,并将反应产物分离成C 5 -组分和C 6 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
III)使步骤I)得到的重组分以及可选地步骤II)得到的C 6 +组分在芳烃转化单元中反应,并将反应产物分离成C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分,其中所述芳烃转化单元中发生的反应包括烷基转移反应;以及
IV)可选地,对步骤II)所得的C 5 -组分和步骤III)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
优选地,所述方法进一步包括以下步骤中的一个或两个:
V)对步骤III)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤IV)中与所述C 5 -组分一起进行裂解;以及
VI)将步骤III)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤III)的芳烃转化单元中进一步反应。
另一方面,本申请提供了一种含烃混合物的处理方法,包括以下 步骤:
1)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
2)使步骤1)得到的轻组分在芳构化催化剂存在下反应,并将反应产物分离成C 5 -组分和C 6 +组分;
3)使步骤1)得到的重组分以及可选地步骤2)得到的C 6 +组分在芳烃转化催化剂存在下反应,并将反应产物分离成C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分;以及
4)可选地,对步骤2)所得的C 5 -组分和步骤3)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
优选地,所述方法进一步包括以下步骤中的一个或两个:
5)对步骤3)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤4)中与所述C 5 -组分一起进行裂解;以及
6)将步骤3)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤3)中在所述芳烃转化催化剂存在下进一步反应。
再一方面,本申请提供了一种用于实施本申请的含烃混合物处理方法的系统,包括:
分离单元,其用于将所述含烃混合物分离为所述轻组分和重组分;
芳构化单元,其用于使分离单元获得的所述轻组分在其中反应,并对反应产物进行分离,得到C 5 -组分和C 6 +组分;
芳烃转化单元,其用于使分离单元获得的重组分以及可选地芳构化单元获得的C 6 +组分在其中反应,并对反应产物进行分离,得到C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分;
可选地,裂解单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,在可选地经过加氢饱和之后,进行蒸汽裂解;以及
可选地,加氢饱和单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行加氢饱 和。
优选地,所述系统进一步包括:芳烃提纯单元,其用于对芳烃转化单元获得的C 8组分进行提纯处理,得到C 8芳烃和非芳组分。
本申请的方法和系统中,烃类混合物经分离后,将富含烷烃、烯烃的轻组分进行芳构化反应,将非芳烃组分转化为芳烃产物,同时副产轻烃作为优质的低碳烯烃生产原料;而富含芳烃的重组分进行加氢裂解及烷基转移等反应,将苯、甲苯及重芳烃转化为C8芳烃,同时副产轻烃作为优质的低碳烯烃生产原料;最后,可以通过芳烃提纯单元进行C8芳烃提纯。通过上述流程可以将低价值的烃类混合物转化为C8芳烃及裂解原料,提高产品价值。
通过本申请的方法,以重量百分含量计,所述芳构化单元反应产物中芳烃含量较原料提高15%以上,优选20%以上;所述芳烃转化单元反应产物中C8芳烃含量较原料提高至少20%,优选至少30%;所述芳烃提纯单元的C8芳烃产物纯度可达99%以上;所得C 5 -轻烃组分可直接作为裂解原料或者经加氢饱和后作为蒸汽裂解原料。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请方法的一种优选实施方式的流程示意图;
图2是本申请方法的另一种优选实施方式的流程示意图;
图3是本申请方法的另一种优选实施方式的流程示意图;
图4显示了本申请制备实施例1所得催化剂的NH 3-TPD谱图;以及
图5显示了本申请制备实施例1所得催化剂的TEM图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解 的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,C 5 -组分是指沸点低于苯的沸点的烃类组分;C 6 +组分是指沸点不低于苯的沸点的烃类组分;C 7 -组分是指沸点不高于甲苯的沸点的烃类组分;C 8 +组分是指沸点高于甲苯的沸点的烃类组分。
在本申请中,C 6-C 7组分是指沸点在苯和二甲苯的沸点之间的烃类组分;而C 8组分是指沸点在二甲苯的沸点附近(例如±10℃)的烃类组分,而C 9 +组分是指沸点高于二甲苯的沸点的烃类组分。
在本申请中,高纯C8芳烃指的是满足对二甲苯吸附分离或结晶分离所需纯度的C8芳烃,通常纯度要求高于99%。
在本申请中,催化剂的中强酸量按照NH 3-TPD谱图在200-400℃区间内的峰面积计算得到;中强酸量占总酸量的比例为NH 3-TPD谱图在200-400℃区间内的峰面积与100-600℃区间内的总峰面积的比值。
在本申请中,如无相反表示,所给压力均为表压。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种含烃混合物的处理方法,包括以下步骤:
I)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
II)使步骤I)得到的轻组分在芳构化单元中反应,并将反应产物分离成C 5 -组分和C 6 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
III)使步骤I)得到的重组分以及可选地步骤II)得到的C 6 +组分在芳烃转化单元中反应,并将反应产物分离成C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分,其中所述芳烃转化单元中发生的反应包括烷基转移反应;以及
IV)可选地,对步骤II)所得的C 5 -组分和步骤III)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
在优选的实施方式中,所述方法进一步包括以下步骤中的一个或两个:
V)对步骤III)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤IV)中与所述C 5 -组分一起进行裂解;以及
VI)将步骤III)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤III)的芳烃转化单元中进一步反应。
在第二方面,本申请提供了一种含烃混合物的处理方法,包括以下步骤:
1)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
2)使步骤1)得到的轻组分在芳构化催化剂存在下反应,并将反应产物分离成C 5 -组分和C 6 +组分;
3)使步骤1)得到的重组分以及可选地步骤2)得到的C 6 +组分在芳烃转化催化剂存在下反应,并将反应产物分离成C 5 -组分、C 6-C 7组 分、C 8组分和C 9 +组分;以及
4)可选地,对步骤2)所得的C 5 -组分和步骤3)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
在优选的实施方式种,所述方法进一步包括以下步骤中的一个或两个:
5)对步骤3)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤4)中与所述C 5-组分一起进行裂解;以及
6)将步骤3)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤3)中在所述芳烃转化催化剂存在下进一步反应。
根据本申请,在步骤I)/步骤1)、步骤II)/步骤2)和步骤III)/步骤3)中进行的分离都是按照沸点通过蒸馏、精馏或者分馏将混合物分离成具有相应沸点或者馏程的组分,例如步骤I)/步骤1)中可以通过在精馏塔中进行分离,将所述含烃混合物分离为C 7 -组分和C 8 +组分,或者在蒸馏塔中进行分离,将所述含烃混合物分离为C 5 -组分和C 6 +组分。至于步骤II)/步骤2)和步骤III)/步骤3)中所用的具体分离条件是本领域技术人员根据所需分离的目标组分容易确定的,在此不再赘述。
适用于本申请的含烃混合物可以是各种包含C3-C12烃类的烃类混合物,但是也可以缺少C3-C12烃类中的一种或多种,只要不影响通过步骤I)或步骤1)分离为所述轻组分和重组分即可。在优选的实施方式中,所述含烃混合物的馏程为40-300℃,更优选为50-250℃。在更优选的实施方式中,所述含烃混合物选自催化裂化汽油、加氢裂化汽油、乙烯裂解汽油、直馏石脑油、催化重整产物、LPG、它们的任意混合物,或者其他具有类似组成的馏分,如催化柴油或其加氢裂化产物等。
在优选的实施方式中,所述含烃混合物具有以下特征中的一个或多个:
以重量计,硫含量为0.5-4ppm;
以重量计,氮含量为0-2ppm;
以重量计,芳烃含量为15-45重量%;
以重量计,烯烃含量为20-45重量%;以及
以重量计,烷烃含量为20-40重量%。
根据上述优选实施方式的含烃混合物采用本申请的方法处理能够得到更高效的利用。
根据本申请,烃类混合物经过分离后,将富含烷烃、烯烃的轻组分进行芳构化反应,将非芳烃组分转化为芳烃产物,并副产轻烃作为优质的低碳烯烃生产原料;同时,将富含芳烃的重组分进行加氢裂解及烷基转移等反应,将苯、甲苯及重芳烃转化为C8芳烃,并副产轻烃作为优质的低碳烯烃生产原料。所述C8芳烃可以进行提纯处理,例如在芳烃提纯单元中,得到高纯C8芳烃。本发明方法可以通过上述流程将低价值的烃类混合物转化为C8芳烃及低碳烯烃裂解原料,提高产品价值。
在优选的实施方式中,以重量百分含量计,步骤II)和步骤2)的反应产物中芳烃含量较原料提高15%以上,更优选地,反应产物中芳烃含量较原料提高20%以上。
在优选的实施方式中,以重量百分含量计,步骤III)和步骤3)的反应产物中C 8芳烃含量较原料提高至少20%,更优选地,反应产物中C8芳烃含量较原料提高至少30%。
在优选的实施方式中,步骤V)和步骤5)得到的C8芳烃产物纯度高于99%(重量)。
本申请中,步骤II)的芳构化单元催化剂中所用的芳构化催化剂和步骤2)中所用的芳构化催化剂可以为常规选择,例如包含50-90重量%的分子筛和0.5-10重量%的改性金属,所述分子筛可以选自具有十元环或十二元环孔结构的硅铝酸盐,硅铝镓盐,硅磷铝,硅铝铁盐,或者它们的组合,所述改性金属组分可以选自IB族、IIB族、VIB族、VIIB族、VIII族金属,或者它们的组合。
在优选的实施方式中,步骤II)和步骤2)中的反应条件包括:反应温度400-600℃、反应压力0.2-3MPa、进料空速0.5-5h -1
本申请中,步骤III)的芳烃转化单元中所用的芳烃转化催化剂和步骤3)中所用的芳烃转化催化剂可以为常规的芳烃转化催化剂,例如 包含50-90重量%的分子筛和0.05-10重量%的改性金属,所述分子筛可以选自具有十元环或十二元环孔结构的硅铝酸盐等,如ZSM-5分子筛,ZSM-12分子筛、MCM-22分子筛、MOR分子筛和β分子筛,所述改性金属组分可以选自VB族、VIB族、VIIB族、VIII族金属或其金属氧化物,优选选自Pt、Mo和Re。
在优选的实施方式中,所述芳烃转化催化剂含有分子筛组分、活性金属组分和氧化物助剂,所述活性金属组分固载在所述分子筛组分上并且可以为金属元素和/或金属氧化物形式,其中所述活性金属组分中的活性金属选自VB族金属、VIB族金属和VIIB族金属中的一种或多种,所述分子筛组分选自MCM-22分子筛、MOR分子筛和ZSM-12分子筛中的至少一种,所述催化剂的中强酸酸量为0.05-2.0mmol/g催化剂,中强酸酸量占总酸量的比例为60-99%。
在优选的实施方式中,所述催化剂的中强酸酸量为0.1-1mmol/g,中强酸酸量占总酸量的比例为68-92%。
本申请中,基于金属表面氢迁移作用及与分子筛酸性位的协同作用,固载在分子筛表面的金属组分能优先覆盖或弱化部分强酸中心,并与附近的分子筛酸性位进行协同作用,起到促进烷基转移与异构化反应、降低深度加氢裂解副反应的作用。
在优选的实施方式中,所述活性金属组分通过物理混合和/或化学键作用固载在所述分子筛组分上。
在优选的实施方式中,以催化剂总重量为100%计,所述分子筛组分的含量为50-90重量%,优选为60-80重量%,氧化物助剂的含量为5-40重量%,优选为20-40重量%,以金属元素计,活性金属组分的含量为0.01-10重量%,优选为0.1-8重量%。
根据本申请,满足本申请前述要求的活性金属均可以用于本申请,例如所述活性金属可以选自VB族金属、VIB族金属和VIIB族金属中的一种或多种,优选为Mo、W和Re中的一种或多种;更优选为Mo、Re和W中的至少两种,且以金属元素计,二者的混合重量比例为0.1-10∶1;或者为Mo、Re和W三者的组合,且以金属元素计,Mo、Re与W的重量比为1∶0.1-0.4∶0.1-0.6。
根据本申请,所述氧化物助剂的种类的可选范围较宽,常用的氧 化物助剂均可以用于本申请,优选选自氧化铝、氧化硅、氧化镁、氧化钛、氧化锆和高岭土中的一种或多种。
根据本申请,所述芳烃转化催化剂优选还包含含磷组分,更优选该含磷组分通过物理混合和/或化学键作用固载在所述分子筛组分上,以P 20 5计,磷的含量优选为0.1-5重量%。
满足本申请前述要求的芳烃转化催化剂均可以用于本申请,对其制备方法无特殊要求。在优选的实施方式中,所述芳烃转化催化剂可通过如下步骤制备:a)将活性金属和/或活性金属氧化物固载在分子筛上;以及b)将步骤a)所得产物与氧化物助剂捏合成型得到所述催化剂。本申请中,通过将活性金属和/或活性金属氧化物固载在所述分子筛上后再与所述氧化物助剂捏合成型,基于金属与分子筛酸中心的协同作用及金属对酸性的调变作用,借助活性金属在催化剂上的特定分布,有效减少了分子筛强酸中心而增加中强酸中心,从而起到促进芳烃转化效率、提高二甲苯选择性及抑制深度加氢裂解副反应的作用。
在进一步优选的实施方式中,所述芳烃转化催化剂可通过包括如下步骤的方法制备:a)用活性金属源溶液浸渍分子筛组分源,热处理得到改性分子筛;b)将所述改性分子筛与氧化物助剂源捏合、成型。在本申请中,所述浸渍可以是等体积浸渍、过饱和浸渍等方式,优选为过饱和浸渍。
在更进一步优选的实施方式中,步骤a)中,所述热处理包括焙烧或者干燥与焙烧的组合,优选包括干燥和焙烧的组合。
本申请中,所述干燥的条件的可选范围较宽,常用干燥条件均可以用于本申请,优选干燥的条件包括:温度为50-200℃,干燥的时间可以依据温度进行调整,优选时间为1-30h。
本申请中,所述焙烧的条件的可选范围较宽,常用焙烧条件均可以用于本申请,优选焙烧的条件包括:温度为300-700℃,焙烧的时间可以依据温度进行调整,优选焙烧时间为1-30小时。更优选地,所述焙烧在含氧气氛中进行,所述含氧气氛例如为空气气氛,特别优选地,所述含氧气氛为空气与水蒸气的混合气体,二者体积比为5-100∶1。
根据本申请,所述活性金属源的种类可选范围较宽,例如为活性金属可溶性化合物,优选为含VB、VIB和VIIB族金属的可溶性化合 物。如硝酸盐、氯化盐、硫酸盐、铵盐,在此不赘述。
本申请中,所述氧化物助剂源例如可以选自氧化铝、氧化硅、氧化镁、氧化钛和高岭土,或其前驱体中的一种或多种。
根据本申请,优选步骤a)在磷源存在下进行,更优选所述磷源为可溶性化合物,可溶性化合物种类无特殊要求,如磷酸、磷酸氢铵、磷酸二氢铵,在此不再赘述。
本申请的芳烃转化催化剂用于芳烃转化具有反应活性高、芳烃损失低等优势。
本申请的芳烃转化催化剂,在进行使用前,根据需要进行还原,还原的步骤无特殊要求,如通入氢气进行还原或通过其他还原剂进行还原反应,本申请在此不进行赘述。
在优选的实施方式中,步骤III)和步骤3)中的反应条件包括:反应温度为250-500℃,反应压力为1.5-6.5MPa,氢烃摩尔比为1-10,进料重时空速为0.5-5h -1
根据本申请,步骤IV)和步骤4)的蒸汽裂解和催化裂解可以常规方式进行,本申请对此没有特殊要求。在某些优选的实施方式中,步骤IV)和步骤4)中蒸汽裂解的操作条件包括:裂解反应温度为600-1000℃,停留时间为0.01-0.8秒,反应压力为0.1-0.3MPa(G)。在另一些优选的实施方式中,步骤IV)和步骤4)的催化裂解在催化剂存在下进行,所述催化剂包含USY分子筛、ZSM-5分子筛或β分子筛;更优选地,所述催化裂解的操作条件包括:反应温度为450-650℃,重时空速为0.5-20h -1,反应压力为0.05-0.5MPa,剂油质量比为0.1-10,优选包括:反应温度为500-600℃,重时空速为1-10h -1,反应压力0.1-0.3MPa,剂油比为0.3-6。
在优选的实施方式中,步骤IV)和步骤4)中在进行蒸汽裂解之前,对裂解原料进行加氢饱和。所述加氢饱和的操作条件可选范围较宽,其主要目的在于饱和原料中的烯烃组分提高产物中烷烃比例,有利于提高后续蒸汽裂解的烯烃产物的收率。
在优选的实施方式中,所述加氢饱和的操作条件包括:反应温度150-600℃、反应压力0.5-6MPa、进料重时空速0.5-10h -1,氢烃体积比200-2000。
根据本申请,加氢饱和所用的催化剂可以参照常规的选择,例如所述催化剂可以含有0.1-20重量%的选自Ni、Mo、Co、Pt、Pd中的一种或多种的金属组分,及80-99.9重量%的选自氧化铝、高岭土、氧化镁、氧化硅、氧化钛、氧化钙、无定形硅铝中的一种或多种的载体组分。
在优选的实施方式中,步骤V)和步骤5)中的提纯处理为芳烃萃取分离、非芳烃选择性裂解或者它们的组合。
根据本申请,所述芳烃萃取分离可以采用常规方式实施,本申请并没有特殊要求。在优选的实施方式中,所述芳烃萃取分离采用基于环丁砜溶剂的抽提蒸馏来进行。
根据本申请,所述非芳烃选择性裂解可以采用常规方式实施,本申请并没有特殊要求。在优选的实施方式中,所述非芳烃选择性裂解在催化剂存在下进行,所述催化剂含有50-80重量%的ZSM-5分子筛、MCM-22分子筛、MOR分子筛及β分子筛中的至少一种,可选地含有0.1-10重量%的包含选自VIB、VIIB及VIII族金属的金属组分。更进一步优选地,所述非芳烃选择性裂解的操作条件包括:反应温度为300-600℃,反应压力为0.5-3.0MPa,氢烃摩尔比为1-10,进料重时空速为1-15h -1
在第二方面,本申请提供了一种实施本申请的含烃混合物处理方法的系统,包括:
分离单元,其用于将所述含烃混合物分离为所述轻组分和重组分;
芳构化单元,其用于使分离单元获得的所述轻组分在其中反应,并对反应产物进行分离,得到C 5 -组分和C 6 +组分;
芳烃转化单元,其用于使分离单元获得的重组分以及可选地芳构化单元获得的C 6 +组分在其中反应,并对反应产物进行分离,得到C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分;
可选地,裂解单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,在可选地经过加氢饱和之后,进行蒸汽裂解;以及
可选地,加氢饱和单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行加氢饱 和。
在某些具体实施方式中,所述分离单元设有含烃混合物入口、轻组分出口和重组分出口;所述芳构化单元设有入口、C 5 -组分出口和C 6 +组分出口;所述芳烃转化单元设有入口、C 5 -组分出口、C 6-C 7组分出口、C 8组分出口和C 9 +组分出口;以及所述裂解单元设有入口和裂解产物出口;其中所述分离单元的轻组分出口与所述芳构化单元的入口连通,所述分离单元的重组分出口与所述芳烃转化单元的入口连通,并且所述芳构化单元的C 5 -组分出口和所述芳烃转化单元的C 5 -组分出口中的一者或两者,任选地经由所述加氢饱和单元,与所述裂解单元的入口连通。
在优选的实施方式中,所述系统进一步包括:
芳烃提纯单元,其用于对芳烃转化单元获得的C 8组分进行提纯处理,得到C 8芳烃和非芳组分;
优选地,所述芳烃提纯单元设有入口、C 8芳烃出口和非芳组分出口,所述芳烃转化单元的C 8组分出口与所述芳烃提纯单元的入口连通,并且所述芳烃提纯单元的非芳组分出口,任选地经由所述加氢饱和单元,与所述裂解单元的入口连通。
在优选的实施方式中,所述裂解单元可以是蒸汽裂解单元、催化裂解单元或者它们的组合。
在优选的实施方式中,所述芳烃提纯单元可以是芳烃萃取分离单元、非芳烃选择性裂解单元或者它们的组合。
根据本申请,所述分离单元可以是本领域常用的蒸馏、精馏或分馏塔的形式,例如减压精馏塔、常压精馏塔或加压精馏塔。
根据本申请,所述的芳构化单元可以是本领域常用的芳构化反应器的形式,例如固定床反应器、移动床反应器。
根据本申请,所述的芳烃转化单元可以是本领域常用的固定床反应器的形式,例如轴向固定床反应器。
根据本申请,所述的蒸汽裂解单元可以是本领域常用的毫秒炉或正常裂解炉的形式,例如超短停留时间裂解炉,短停留时间裂解炉。
根据本申请,所述的催化裂解单元可以是本领域常用的催化裂解反应器的形式,例如固定床反应器、流化床反应器或提升管反应器。
根据本申请,所述的加氢饱和单元可以是本领域常用的固定床反应器的形式,例如轴向固定床反应器。
根据本申请,所述的芳烃萃取分离单元可以是本领域常用的液-液抽提器或抽提蒸馏塔等的形式,例如以环丁砜为溶剂的抽提蒸馏塔。
根据本申请,所述的非芳烃选择性裂解单元可以是本领域常用的固定床反应器的形式,例如轴向固定床反应器、径向固定床反应器。
在优选的实施方式中,依据需要,将各个单元的进料口、出料口与相关单元的进料口、出料口采用连通管道进行连通,并且进一步优选地,在各个所述连通管线上各自独立设置阀门用于调节流量。
采用本申请的系统用于含烃混合物的处理加工利用,能够实现烃类混合物的高效综合利用,提高产品价值。
实施例
下面通过具体实施例对本申请做进一步说明,但并不构成对本申请的限制。
本申请的芳烃转化催化剂的制备实施例
以下制备实施例中所用试剂均为市售试剂,纯度为试剂纯。
以下制备实施例中,所得催化剂的NH 3-TPD谱图通过如下方法测量:称取100mg破碎为20-40目的样品,在流通氮气下(30ml/min)以10℃/min的加热速率升温至500℃并恒温吹扫30分钟,热处理完成后降温至100℃,通入NH 3气进行吸附并保持氨气吸附10分钟,再切换至氦气(30ml/min)吹扫1小时后,以10℃/min的升温速率程序升温至600℃,用TCD检测流出物中NH 3浓度信号。
以下制备实施例中,所得催化剂的中强酸量按照NH 3-TPD谱图在200-400℃区间内的峰面积计算而得,中强酸量占总酸量的比例为NH 3-TPD谱图在200-400℃区间内的峰面积与100-600℃区间内的总峰面积的比值。
以下制备实施例中,所得催化剂的TEM照片通过高分辨场发射透射电子显微镜表征,工作电压为200kV,元素分析利用该透射电镜装备的能量散射X射线分析仪进行检测。
制备实施例1
取20g丝光沸石,过饱和浸渍钼酸铵溶液,然后于空气气氛下经400℃预焙烧3小时得到改性分子筛。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得钼含量为3%(wt)催化剂A,所得催化剂组成和性质见表1,所得催化剂的NH 3-TPD谱图如图4所示。
所得催化剂的TEM元素分析如图5所示,其中左上图显示了分子筛与氧化铝结合的TEM相图,右上图显示了Mo元素分布,左下图显示了硅元素分布,右下图显示了铝元素分布。根据所得催化剂的组成可知,富含硅的部分(见左下图)对应丝光沸石,而富含铝的部分(见右下图)对应氧化铝助剂,从Mo元素的分布(见右上图)可知,Mo元素主要分布于催化剂中丝光沸石的表面。
制备实施例2
取20g丝光沸石过饱和浸渍高铼酸铵溶液,然后于空气气氛经400℃预焙烧3小时得到改性分子筛。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得铼含量为0.5wt%的催化剂B,所得催化剂组成和性质见表1。
制备实施例3
取20g丝光沸石过饱和浸渍钼酸铵溶液,然后于空气气氛经400℃预焙烧3小时得到改性分子筛。取改性分子筛与7.7克高岭土捏合成型,空气气氛下550℃焙烧2小时制得钼含量为1%(wt)催化剂C,所得催化剂组成和性质见表1。
制备实施例4
取20g MCM-22分子筛过饱和浸渍钼酸铵溶液,然后于空气气氛经400℃预焙烧3小时得到改性分子筛。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得钼含量为3%(wt)的催化剂D,所得催化剂组成和性质见表1。
制备实施例5
取20g MCM-22过饱和浸渍钼酸铵溶液,然后于空气气氛再经400℃预焙烧3小时。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得钼含量为6%(wt)的催化剂E,所得催化剂组成和性质见表1。
制备实施例6
取20g丝光沸石过饱和浸渍含磷酸二氢铵及钼酸铵的溶液,然后于空气气氛再经400℃预焙烧3小时。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得磷含量为0.5%(wt)、钼含量为3%(wt)的催化剂F,所得催化剂组成和性质见表1。
制备实施例7
取20g ZSM-12过饱和浸渍钼酸铵溶液,然后于空气气氛再经300℃预焙烧3小时。取改性分子筛与7.7克氧化铝捏合成型,空气气氛下550℃焙烧2小时制得钼含量为4%(wt)的催化剂G,所得催化剂组成和性质见表1。
制备实施例8
按照制备实施例1的方法制备,不同的是,取一定量丝光沸石浸渍钼酸铵和钨酸铵溶液,其余条件均相同,制得Mo含量1.5wt%和W含量1.5wt%的催化剂H,所得催化剂组成和性质见表1。
制备实施例9
按照制备实施例1的方法制备,不同的是,取一定量丝光沸石浸渍一定钼酸铵、钨酸铵和高铼酸铵溶液,其余条件均相同,制得Mo含量2wt%和W含量0.4wt%和Re含量0.6wt%的催化剂I,所得催化剂组成和性质见表1。
制备实施例10
按照制备实施例1所述的方法制备,不同的是,取一定量丝光沸 石浸渍钼酸铵溶液,制得改性分子筛粉,改性分子筛在空气和水蒸气的混合气氛(空气与水蒸气的体积比20∶1)经400℃预焙烧3小时。其余催化剂制备条件均相同,得到催化剂J,所得催化剂组成和性质见表1。
制备实施例11
按照制备实施例1所述的方法制备,不同的是,取一定量丝光沸石浸渍钼酸铵溶液,制得改性分子筛粉,改性分子筛在空气和水蒸气的混合气氛(空气与水蒸气的体积比5∶1)及400℃下焙烧3小时,其余催化剂制备条件均相同,得到催化剂M,所得催化剂组成和性质见表1。
制备实施例12
按照制备实施例1所述的方法制备,不同的是,取一定量丝光沸石浸渍钼酸铵溶液,制得改性分子筛粉,于120℃干燥后得到改性分子筛。取20克改性分子筛与7.7克氧化铝捏合成型,550℃焙烧2小时制得催化剂N,所得催化剂组成和性质见表1。
制备实施例13
按照制备实施例9所述的方法制备,不同的是,取一定量丝光沸石浸渍一定钼酸铵、钨酸铵和高铼酸铵溶液,制得改性分子筛粉,且改性分子筛在空气和水蒸气的混合气氛(空气与水蒸气的体积比20 1)经400℃预焙烧3小时,其余条件均相同,得到催化剂O,所得催化剂组成和性质见表1。
Figure PCTCN2021123475-appb-000001
含烃混合物处理方法实施例
以下实施例1-3说明了采用常规催化剂实施本申请的处理方法,其中:
芳构化催化剂:Zn和Mo改性的ZSM-5分子筛,其中Zn含量(以金属元素计)5重量%,Mo含量(以金属元素计)2重量%,ZSM-5分子筛含量为70重量%,佘量为氧化铝;
芳烃转化催化剂:Re改性的MOR沸石,其中Re含量(以金属元素计)0.5wt%,丝光沸石含量为70重量%,佘量为氧化铝;
加氢饱和催化剂:在氧化铝载体上负载Pt和Ni的催化剂,其中Pt含量0.1wt%,Ni含量(以金属元素计)8wt%,佘量为氧化铝载体;
非芳裂解催化剂:在ZSM-5/β分子筛混合物上负载Mo的催化剂,其中ZSM-5分子筛含量60wt%,β分子筛含量34wt%,Mo含量(以金属元素计)6wt%。
如未做特别说明,所用各催化剂均采用现有技术中已知的常规方法制备得到。
实施例1
参照图1所示的流程,100吨/小时的催化裂化汽油经脱硫脱氮预处理,通过常压精馏塔后分离为C 7 -轻组分、C 8 +重组分。其中C 7 -轻组分进入芳构化单元发生芳构化反应,产物中C 5 -轻烃作为裂解原料,C 6 +组分去芳烃转化单元进一步转化。C 8 +重组分进入芳烃转化单元,发生芳烃烷基转移反应及非芳烃加氢裂解等反应,反应生成的C 8组分去芳烃抽提单元进行提纯,副产C 5 -轻烃采出作为裂解原料,其余未反应组分循环回芳烃转化单元。芳烃抽提所得的C8芳烃作为产物采出,其纯度达99.8%,抽佘非芳烃作为裂解原料。
原料组成如表2所示,各单元反应条件如表3所示,联合装置产品收率如表4所示。
实施例2
参照图2所示的流程,100吨/小时的催化裂化汽油与裂解汽油的混合物经脱硫脱氮后,通过常压精馏塔分离为C 5 -轻组分、C 6 +重组分。其中C 5 -轻组分进入芳构化单元发生芳构化反应,产物中C 5 -组分进一 步加氢饱和后作为裂解原料,产物中C 6 +组分去芳烃转化单元进一步转化。分离出的C 6 +重组分进入芳烃转化单元,发生烷基转移反应及非芳烃轻度加氢裂解反应,生成的C 8组分去非芳裂解单元进一步提纯,副产C 5 -轻烃作为裂解原料,其余未反应完的组分循环回芳烃转化单元。非芳裂解单元发生非芳烃的选择性裂解,生成的C8芳烃作为产物采出,其纯度达99.9%,非芳裂解单元副产的轻质烃(即非芳组分)作为裂解原料。
原料组成如表2所示,各单元反应条件如表3所示,联合装置产品收率如表4所示。
实施例3
参照图3所示的流程,100吨/小时的催化裂化汽油与裂解汽油的混合物经脱硫脱氮后,通过常压精馏塔分离为C 5 -轻组分、C 6 +重组分。其中C 5 -轻组分进入芳构化单元发生芳构化反应,产物中C 5 -组分进一步加氢饱和后作为裂解原料,产物中C 6 +组分去芳烃转化单元进一步转化。分离出的C 6 +重组分进入芳烃转化单元,发生烷基转移反应及非芳烃轻度加氢裂解反应,生成的C 8组分去非芳裂解单元进一步提纯,副产C 5 -轻烃进一步加氢饱和后作为裂解原料,其余未反应完的组分循环回芳烃转化单元。非芳裂解单元发生非芳烃的选择性裂解,生成的C8芳烃作为产物采出,其纯度达99.9%,非芳裂解单元副产的轻质烃进一步加氢饱和后作为裂解原料。
原料组成如表2所示,各单元反应条件如表3所示,联合装置产品收率如表4所示。
表2各实施例所用原料的组成
Figure PCTCN2021123475-appb-000002
表3实施例1-3的操作条件
Figure PCTCN2021123475-appb-000003
Figure PCTCN2021123475-appb-000004
表4实施例1-3的试验结果
  实施例1 实施例2 实施例3
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 22 21 22
丙烯 16 10 9
C8芳烃 51 61 60
其他 11 8 9
如表4的试验结果所示,本申请的处理方法可灵活处理多种含烃混合物,产品以C8芳烃、乙烯及丙烯为主,总收率可达85%以上,优选方案中(C8芳烃+乙烯+丙烯)总收率可达92%。
以下实施例4-17说明了采用本申请的芳烃转化催化剂实施本申请的处理方法。
实施例4-16
使用前将制备实施例1-13中得到的催化剂A-O分别置于反应器中,通氢气于450℃下还原3小时,然后按照实施例1的方法处理汽油原料,不同的是,实施例1的芳烃转化催化剂采用催化剂A-O代替,其余操作条件不变,结果见表5。
实施例17
按照实施例16的方法处理汽油原料,不同的是蒸汽裂解单元采用催化裂解单元(流化床反应器)代替,反应温度为500℃,重时空速为5h -1,剂油比为1,压力为0.2MPa,其余操作条件不变,结果见表5。
表5实施例4-17的试验结果
Figure PCTCN2021123475-appb-000005
Figure PCTCN2021123475-appb-000006
如表5的试验结果所示,采用本申请的芳烃转化催化剂可以进一步提高C8芳烃的收率,并且在优选方案中可以进一步提高(C8芳烃+乙烯+丙烯)的总收率,使其达到93wt%以上。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (16)

  1. 一种含烃混合物的处理方法,包括以下步骤:
    I)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
    II)使步骤I)得到的轻组分在芳构化单元中反应,并将反应产物分离成C 5 -组分和C 6 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
    III)使步骤I)得到的重组分以及可选地步骤II)得到的C 6 +组分在芳烃转化单元中反应,并将反应产物分离成C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分,其中所述芳烃转化单元中发生的反应包括烷基转移反应;以及
    IV)可选地,对步骤II)所得的C 5 -组分和步骤III)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
  2. 根据权利要求1所述的方法,进一步包括以下步骤中的一个或两个:
    V)对步骤III)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤IV)中与所述C 5 -组分一起进行裂解;以及
    VI)将步骤III)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤III)的芳烃转化单元中进一步反应。
  3. 一种含烃混合物的处理方法,包括以下步骤:
    1)将所述含烃混合物分离为轻组分与重组分,其中所述轻组分为C 7 -组分且所述重组分为C 8 +组分,或者所述轻组分为C 5 -组分且所述重组分为C 6 +组分;
    2)使步骤1)得到的轻组分在芳构化催化剂存在下反应,并将反应产物分离成C 5 -组分和C 6 +组分;
    3)使步骤1)得到的重组分以及可选地步骤2)得到的C 6 +组分在芳烃转化催化剂存在下反应,并将反应产物分离成C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分;以及
    4)可选地,对步骤2)所得的C 5 -组分和步骤3)所得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,可选地在加氢饱和之后,进行蒸汽裂解。
  4. 根据权利要求3所述的方法,进一步包括以下步骤中的一个或两个:
    5)对步骤3)得到的C 8组分进行提纯处理,得到C 8芳烃和非芳组分,并且,可选地将所得非芳组分的至少一部分在步骤4)中与所述C 5 -组分一起进行裂解;以及
    6)将步骤3)所得的C 6-C 7组分和C 9 +组分中的一者或多者的至少一部分再循环到步骤3)中在所述芳烃转化催化剂存在下进一步反应。
  5. 根据权利要求1-4中任一项所述的方法,其中:
    所述含烃混合物包含C3-C12烃类,且馏程为40-300℃,优选为50-250℃;
    优选地,所述含烃混合物选自催化柴油或其加氢产物、催化裂化汽油、加氢裂化汽油、乙烯裂解汽油、直馏石脑油、催化重整产物、LPG,或者它们的任意混合物。
  6. 根据权利要求1-5中任一项所述的方法,其中:
    步骤II)的芳构化单元中所用的芳构化催化剂或者步骤2)中所用的芳构化催化剂包含50-90重量%的分子筛和0.5-10重量%的改性金属,所述分子筛选自具有十元环或十二元环孔结构的硅铝酸盐,硅铝镓盐,硅磷铝,硅铝铁盐,或它们的组合,所述改性金属选自IB族、IIB族、VIB族、VIIB族和VIII族金属,
    优选地,步骤II)或者步骤2)的反应条件包括:反应温度为400-600℃,反应压力为0.2-3MPa,进料重时空速为0.5-5h -1
  7. 根据权利要求1-6中任一项所述的方法,其中,步骤III)的芳烃转化单元中所用的芳烃转化催化剂或者步骤3)中所用的芳烃转化催化剂包含分子筛组分、固载在所述分子筛组分上的活性金属组分,和氧化物助剂,所述催化剂的中强酸酸量为0.05-2.0mmol/g催化剂,中强酸酸量占总酸量的比例为60-99%,其中所述分子筛组分选自MCM-22分子筛、MOR分子筛、ZSM-12分子筛,或者它们的组合;所述活性金属组分中的活性金属选自VB族金属、VIB族金属、VIIB族金属,或者它们的组合;所述氧化物助剂选自氧化铝、氧化硅、氧 化镁、氧化钛、氧化锆、高岭土,或者它们的组合;
    优选地,以催化剂的总重量计,所述芳烃转化催化剂包含50-90重量%的分子筛组分,5-40重量%的氧化物助剂,和0.01-10重量%的活性金属组分。
  8. 根据权利要求7所述的方法,其中所述芳烃转化催化剂还包含固载在所述分子筛组分上的含磷组分,
    优选地,以P 2O 5计,所述芳烃转化催化剂的磷含量为0.1-5重量%。
  9. 根据权利要求7或8所述的方法,其中,所述活性金属以金属元素、金属氧化物或两者组合的形式存在于所述芳烃转化催化剂中,且所述活性金属为Mo、W和Re中的一种或多种;
    优选地,所述活性金属为Mo、Re和W中的两种的组合,其中以金属元素计二者的混合重量比例为0.1-10∶1;或者所述活性金属为Mo、Re和W三者的组合,其中以金属元素计Mo、Re与W的重量比为1∶0.1-0.4∶0.1-0.6。
  10. 根据权利要求1-9中任一项所述的方法,其中,步骤III)或步骤3)的反应条件包括:反应温度为250-500℃,反应压力为1.5-6.5MPa,氢烃摩尔比为1-10,进料重时空速为0.5-5h -1
  11. 根据权利要求1-10中任一项所述的方法,其中,步骤IV)或步骤4)中所述的加氢饱和在催化剂存在下进行,所述催化剂含有选自Ni、Mo、Co、Pt、Pd,或者它们的组合的金属组分,以及选自氧化铝、高岭土、氧化镁、氧化硅、氧化钛、氧化钙、无定形硅铝,或者它们的组合的载体组分,
    优选地,所述加氢饱和的操作条件包括:反应温度为150-600℃、反应压力为0.5-6MPa、进料重时空速为0.5-10h -1,氢烃体积比为200-2000。
  12. 根据权利要求1-11中任一项所述的方法,其中:
    步骤IV)或步骤4)中的蒸汽裂解的操作条件包括:裂解反应温度为600-1000℃,停留时间为0.01-0.8秒,反应压力为0.1-0.3MPa;或者
    步骤IV)或步骤4)中的催化裂解的操作条件包括:反应温度为450-650℃,重时空速为0.5-20h -1,反应压力为0.05-0.5MPa,剂油质量比为0.1-10。
  13. 根据权利要求2或4所述的方法,其中,步骤V)或步骤5)中所述的提纯处理包括对所述C 8组分进行芳烃萃取分离、非芳烃选择性裂解或者它们的组合,
    优选地,所述提纯处理包括对所述C 8组分采用基于环丁砜溶剂的抽提蒸馏进行萃取分离;或者
    优选地,所述提纯处理包括使所述C 8组分在催化剂存在下进行非芳烃选择性裂解,所述催化剂含有选自ZSM-5分子筛、MCM-22分子筛、MOR分子筛、β分子筛,或者它们的组合的分子筛,且可选地含有选自VIB族金属、VIIB族金属及VIII族金属的金属组分;进一步优选地,所述非芳烃选择性裂解的操作条件包括:反应温度为300-600℃,反应压力为0.5-3.0MPa,氢烃摩尔比为1-10,进料重时空速为1-15h -1
  14. 用于实施权利要求1-13中任一项所述的含烃混合物处理方法的系统,包括:
    分离单元,其用于将所述含烃混合物分离为所述轻组分和重组分;
    芳构化单元,其用于使分离单元获得的所述轻组分在其中反应,并对反应产物进行分离,得到C 5 -组分和C 6 +组分;
    芳烃转化单元,其用于使分离单元获得的重组分以及可选地芳构化单元获得的C 6 +组分在其中反应,并对反应产物进行分离,得到C 5 -组分、C 6-C 7组分、C 8组分和C 9 +组分;
    可选地,裂解单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行催化裂解,或者,在可选地经过加氢饱和之后,进行蒸汽裂解;以及
    可选地,加氢饱和单元,其用于对芳构化单元获得的C 5 -组分和芳烃转化单元获得的C 5 -组分中的一者或两者的至少一部分进行加氢饱和。
  15. 根据权利要求14所述的系统,其中,
    所述分离单元设有含烃混合物入口、轻组分出口和重组分出口;
    所述芳构化单元设有入口、C 5 -组分出口和C 6 +组分出口;
    所述芳烃转化单元设有入口、C 5 -组分出口、C 6-C 7组分出口、C 8组分出口和C 9 +组分出口;以及
    所述裂解单元设有入口和裂解产物出口;
    其中所述分离单元的轻组分出口与所述芳构化单元的入口连通, 所述分离单元的重组分出口与所述芳烃转化单元的入口连通,并且所述芳构化单元的C 5 -组分出口和所述芳烃转化单元的C 5 -组分出口中的一者或两者,任选地经由所述加氢饱和单元,与所述裂解单元的入口连通。
  16. 根据权利要求15所述的系统,进一步包括:
    芳烃提纯单元,其用于对芳烃转化单元获得的C 8组分进行提纯处理,得到C 8芳烃和非芳组分;
    优选地,所述芳烃提纯单元设有入口、C 8芳烃出口和非芳组分出口,所述芳烃转化单元的C 8组分出口与所述芳烃提纯单元的入口连通,并且所述芳烃提纯单元的非芳组分出口,任选地经由所述加氢饱和单元,与所述裂解单元的入口连通。
PCT/CN2021/123475 2020-10-15 2021-10-13 含烃混合物的处理方法和系统 WO2022078370A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21879413.9A EP4230604A4 (en) 2020-10-15 2021-10-13 METHOD AND SYSTEM FOR TREATMENT OF A MIXTURE CONTAINING HYDROCARBONS
JP2023522822A JP2023545175A (ja) 2020-10-15 2021-10-13 炭化水素含有混合物を処理するための方法およびシステム
US18/248,664 US20230392086A1 (en) 2020-10-15 2021-10-13 Method and system for treating hydrocarbon-containing mixture
KR1020237015614A KR20230085164A (ko) 2020-10-15 2021-10-13 탄화수소-함유 혼합물의 처리 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011104622.0 2020-10-15
CN202011104622.0A CN114426879B (zh) 2020-10-15 2020-10-15 含烃混合物的利用系统和方法

Publications (1)

Publication Number Publication Date
WO2022078370A1 true WO2022078370A1 (zh) 2022-04-21

Family

ID=81207664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123475 WO2022078370A1 (zh) 2020-10-15 2021-10-13 含烃混合物的处理方法和系统

Country Status (6)

Country Link
US (1) US20230392086A1 (zh)
EP (1) EP4230604A4 (zh)
JP (1) JP2023545175A (zh)
KR (1) KR20230085164A (zh)
CN (1) CN114426879B (zh)
WO (1) WO2022078370A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141652A (zh) * 2022-06-20 2022-10-04 中海油天津化工研究设计院有限公司 一种富芳馏分油轻质化生产苯的方法
CN115261057A (zh) * 2022-07-17 2022-11-01 中国石油化工股份有限公司 一种催化裂化汽油直接生产烯烃和芳烃的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622406A (zh) * 2022-07-17 2023-08-22 中国石油化工股份有限公司 催化裂化汽油生产烯烃和芳烃的工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923965A (zh) 2005-08-31 2007-03-07 中国科学院大连化学物理研究所 催化裂化汽油制取乙烯、丙烯和芳烃的方法
CN101767035A (zh) 2009-01-06 2010-07-07 中国科学院大连化学物理研究所 用于催化裂化汽油生产btx芳烃的催化剂及其制备方法
US20120149958A1 (en) * 2010-12-10 2012-06-14 Ellrich Justin M Method and Apparatus for Obtaining Aromatics from Diverse Feedstock
US20140100398A1 (en) * 2012-10-10 2014-04-10 Gtc Technology Us Llc Processes and systems for obtaining aromatics from catalytic cracking hydrocarbons
CN104557431A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 原料多样化的对二甲苯生产方法
US20160362618A1 (en) * 2014-02-25 2016-12-15 Saudi Basic Industries Corporation Process for upgrading refinery heavy hydrocarbons to petrochemicals
WO2020159512A1 (en) * 2019-01-31 2020-08-06 Sabic Global Technologies B.V. Processes for producing aromatic and olefinic compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734986A (zh) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 利用裂解汽油加氢裂解多产苯和二甲苯的方法
US9365468B2 (en) * 2014-05-06 2016-06-14 Uop Llc Methods and systems for reforming and transalkylating hydrocarbons
US9302953B2 (en) * 2014-06-30 2016-04-05 Exxonmobil Chemicals Patents Inc. Process for the production of xylenes
CN104357083B (zh) * 2014-11-11 2016-08-17 中国海洋石油总公司 一种c10+重芳烃加氢轻质化方法
US10975313B2 (en) * 2017-01-05 2021-04-13 Sabic Global Technologies B.V. Conversion of waste plastic through pyrolysis to high value products like benzene and xylenes
CN110938464B (zh) * 2019-11-19 2021-08-10 中海油天津化工研究设计院有限公司 一种由瓦斯油生产低碳芳烃及烯烃的集成工艺方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923965A (zh) 2005-08-31 2007-03-07 中国科学院大连化学物理研究所 催化裂化汽油制取乙烯、丙烯和芳烃的方法
CN101767035A (zh) 2009-01-06 2010-07-07 中国科学院大连化学物理研究所 用于催化裂化汽油生产btx芳烃的催化剂及其制备方法
US20120149958A1 (en) * 2010-12-10 2012-06-14 Ellrich Justin M Method and Apparatus for Obtaining Aromatics from Diverse Feedstock
US20140100398A1 (en) * 2012-10-10 2014-04-10 Gtc Technology Us Llc Processes and systems for obtaining aromatics from catalytic cracking hydrocarbons
CN104557431A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 原料多样化的对二甲苯生产方法
US20160362618A1 (en) * 2014-02-25 2016-12-15 Saudi Basic Industries Corporation Process for upgrading refinery heavy hydrocarbons to petrochemicals
WO2020159512A1 (en) * 2019-01-31 2020-08-06 Sabic Global Technologies B.V. Processes for producing aromatic and olefinic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230604A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141652A (zh) * 2022-06-20 2022-10-04 中海油天津化工研究设计院有限公司 一种富芳馏分油轻质化生产苯的方法
CN115141652B (zh) * 2022-06-20 2024-04-12 中海油天津化工研究设计院有限公司 一种富芳馏分油轻质化生产苯的方法
CN115261057A (zh) * 2022-07-17 2022-11-01 中国石油化工股份有限公司 一种催化裂化汽油直接生产烯烃和芳烃的方法

Also Published As

Publication number Publication date
US20230392086A1 (en) 2023-12-07
KR20230085164A (ko) 2023-06-13
CN114426879B (zh) 2023-08-08
EP4230604A4 (en) 2024-04-03
CN114426879A (zh) 2022-05-03
EP4230604A1 (en) 2023-08-23
JP2023545175A (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022078370A1 (zh) 含烃混合物的处理方法和系统
TWI478768B (zh) Catalysts and methods for the production of light aromatics and light alkanes from hydrocarbon feedstocks
US8962901B2 (en) Method of producing valuable aromatics and olefins from hydrocarbonaceous oils derived from coal or wood
CN103328416A (zh) 由含有芳族化合物的油馏分制备高附加值芳族产品和烯烃产品的方法
US10899685B1 (en) Catalytic hydrodearylation of heavy aromatic stream containing dissolved hydrogen
CN106661465B (zh) 由c5-c12烃混合物生产苯的方法
CN113881457A (zh) 一种处理富含芳烃馏分油的方法
JP2017511829A (ja) 高沸点炭化水素供給原料をより軽沸点の炭化水素生成物へ転換する方法
US20160176778A1 (en) Process for conversion of light aliphatic hydrocarbons to aromatics
CN114426886B (zh) 一种烃类混合物的整体加工方法
US11267769B2 (en) Catalytic hydrodearylation of heavy aromatic streams containing dissolved hydrogen with fractionation
WO2022083725A1 (zh) 一种汽油组分的处理方法和系统
CN114426882B (zh) 一种汽油升级方法
CN114426873B (zh) 一种汽油组分生产碳八芳烃的方法
CN114456036B (zh) 一种生产芳烃及烯烃的方法
CN112646598A (zh) 一种低碳烷烃转化为芳烃的方法
CN115595175B (zh) 一种高效生产轻质烃的方法和装置及其应用
CN114426447B (zh) 一种以富含碳四碳五的烷烃为原料生产芳烃的工艺
US20170002276A1 (en) Process for conversion of hydrocarbons integrating reforming and dehydrocyclodimerization
CN112679300B (zh) 从碳四原料制备丙烯的方法
CN117138832A (zh) 一种加氢裂化催化剂及其从催化柴油生产芳烃的转化方法及系统和应用
KR20090020776A (ko) 유동층 접촉 분해 유분으로부터 청정 석유제품 및 방향족제품을 제조하는 방법
CN115594556A (zh) 提高抽余油中低碳烷烃附加值的方法和系统
CA1199647A (en) Conversion of certain hydrocarbons using calcined teasilicate catalyst
CN115261057A (zh) 一种催化裂化汽油直接生产烯烃和芳烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18248664

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023522822

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237015614

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879413

Country of ref document: EP

Effective date: 20230515

WWE Wipo information: entry into national phase

Ref document number: 523440368

Country of ref document: SA