WO2022078109A1 - 一种中框及电子设备 - Google Patents

一种中框及电子设备 Download PDF

Info

Publication number
WO2022078109A1
WO2022078109A1 PCT/CN2021/116743 CN2021116743W WO2022078109A1 WO 2022078109 A1 WO2022078109 A1 WO 2022078109A1 CN 2021116743 W CN2021116743 W CN 2021116743W WO 2022078109 A1 WO2022078109 A1 WO 2022078109A1
Authority
WO
WIPO (PCT)
Prior art keywords
middle frame
base
composite material
present application
metal
Prior art date
Application number
PCT/CN2021/116743
Other languages
English (en)
French (fr)
Inventor
黄宇
刘佳驹
靳林芳
李奋英
陈丘
王榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022078109A1 publication Critical patent/WO2022078109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/18Construction of rack or frame
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to a middle frame and electronic equipment.
  • the middle frame of the mobile phone can play a supporting role for components such as batteries or circuit boards in the mobile phone. In this way, the heat generated by the main heating elements such as batteries or circuit boards is directly transferred to the middle frame.
  • the improvement of the thermal conductivity of the middle frame has a very significant benefit on the heat dissipation capacity of the whole machine.
  • the present application provides a middle frame and an electronic device, so as to realize a thin and light design of the middle frame on the basis of improving the thermal conductivity of the middle frame.
  • the present application provides a middle frame, the middle frame includes a composite material body, the composite material body includes a metal matrix, and a reinforcement body. Among them, there are a plurality of reinforcements, and they are distributed in the metal matrix in the form of doped particles.
  • the thermal conductivity of the reinforcing body is greater than that of the metal matrix, so that the component design of the reinforcing body can be carried out according to the specific thermal conductivity requirements of the middle frame.
  • the middle frame of the present application by adding a reinforcing body with a large thermal conductivity in the metal matrix, the thermal conductivity of the entire middle frame can be effectively improved, and at the same time, the thickness of the middle frame can be avoided to be increased, thereby facilitating the realization of the lightness and thinness of the middle frame. design.
  • the material of the metal matrix may be, but not limited to, metal or alloy, for example, aluminum, copper, magnesium, titanium, iron, etc., or aluminum alloy, Copper alloy, magnesium alloy, titanium alloy or iron alloy, etc. In order to make the metal matrix have better structural strength and thermal conductivity.
  • the material of the reinforcement may be, but not limited to, non-metals such as diamond, graphite, carbon nanotube, silicon, silicon carbide, alumina, carbon fiber, or graphene.
  • the maximum length of the reinforcing body can be made less than or equal to 1 mm, so that the plurality of reinforcing bodies are dispersed in the metal matrix, which can effectively reduce the influence of the addition of the reinforcing body on the strength of the metal matrix, so that in the use of While the thermal conductivity of the frame is effectively improved, a more reliable structural strength is obtained.
  • the shape of the reinforcing body can be various, and an exemplary shape can be granular fiber shape, flake shape, layer shape or whisker shape, etc.
  • a variety of shape-promiscuous enhancers can be included in a midframe to tune the performance of the midframe.
  • only a single-shaped reinforcement may be provided in the middle frame to simplify the structure of the middle frame.
  • the volume fraction of the reinforcement at different positions of the metal matrix can be different.
  • the volume fraction of the reinforcement in the metal matrix can be distributed in a gradient.
  • the volume fraction of the reinforcement can be distributed in an increasing gradient from two opposite edges of the middle frame to the middle region. In this way, the volume fraction of the reinforcement at the position corresponding to the heat source of the middle frame can be high, while the volume fraction of the reinforcement at the edge of the middle frame is low, so that the volume fraction of the reinforcement can be reasonably designed to reduce the edge of the middle frame.
  • the thermal conductivity is parallel to the direction of the edge that the user often touches, and the thermal resistance of the middle frame from the middle area to the edge direction is increased, so that the heat is more uniform in the direction parallel to the edge that the user often touches.
  • their own strength is relatively low, by designing their volume fraction in the metal matrix with a gradient, and making the volume fraction of the reinforcement located at the edge of the middle frame smaller, or setting it as Zero, so that the strength support requirements can be met at the edge of the middle frame. In this way, on the basis of avoiding increasing the thickness of the middle frame, it can have relatively reliable structural stability, thereby facilitating the realization of a thin and light design of the middle frame.
  • the volume fraction of the reinforcement may also be distributed in a decreasing gradient.
  • the volume fraction of the reinforcement may be distributed with a gradually decreasing or gradually increasing gradient along the direction from one edge of the middle frame to the other edge.
  • one edge and the other edge may be, but not limited to, two opposite edges of the middle frame.
  • the reinforcements are uniformly distributed in the metal matrix, so that the heat flux of the composite body can be larger.
  • the heat flux of the middle frame can be made larger, so as to effectively improve the heat dissipation capacity.
  • the lightness and strength of the entire middle frame can be improved.
  • the middle frame may also include a base, and the metal matrix added with the reinforcing body may be embedded in the base, and the two may be joined by bonding, welding, riveting, etc. to be fixed.
  • the material of the base and the material of the metal base may be the same or different.
  • the metal base and the base may be formed into an integrated structure through a process such as melting and casting.
  • the base can be made of metal or metal alloy, by embedding the composite material body in the base, it is beneficial to realize the thinning and light-weight design of the middle frame.
  • the strength and processing performance of the entire middle frame can be effectively improved, and the edge of the base can be used as the appearance surface of the middle frame for conventional coloring treatment, thereby saving costs and improving product yield.
  • the shape and size of the composite material body, as well as its specific setting position on the base can be adjusted according to the heat dissipation needs of the heat source.
  • an accommodating groove may be provided on the base, so that the composite material body can be accommodated in the accommodating groove, which is beneficial to realize the thin design of the middle frame.
  • the base is provided with a through hole, and the composite material body fills the through hole.
  • the composite material body fills the through hole.
  • the through hole can be a stepped hole, and a stepped surface is provided on the metal matrix of the composite material body, and the composite material body is overlapped with the stepped hole through the stepped surface of the metal matrix.
  • the present application further provides an electronic device, the electronic device includes a display screen, a rear case, a printed circuit board, a battery, and the middle frame of the first aspect.
  • the printed circuit board and the display screen are located on both sides of the middle frame, the battery and the printed circuit board are arranged on the same side of the middle frame; the rear shell is located on the side of the printed circuit board away from the middle frame.
  • the frame since the frame has good thermal conductivity, light weight and small volume, the heat dissipation capability and reliability of the entire electronic device can be effectively improved. In addition, it can meet users' requirements for light, thin and portable electronic devices, thereby improving user experience.
  • the present application further provides an electronic device, the electronic device includes a display screen, a rear case, a printed circuit board, a battery, and the middle frame of the first aspect.
  • the printed circuit board, the battery and the display screen are located on the same side of the middle frame, the printed circuit board and the battery are arranged between the display screen and the middle frame; the rear shell is located on the side of the middle frame away from the display screen.
  • the frame since the frame has good thermal conductivity, light weight and small volume, the heat dissipation capability and reliability of the entire electronic device can be effectively improved. In addition, it can meet users' requirements for light, thin and portable electronic devices, thereby improving user experience.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a middle frame provided by an embodiment of the present application.
  • FIG. 4 is a schematic view of the microstructure of a cross-section of a middle frame provided by an embodiment of the present application.
  • 5a is a schematic structural diagram of a reinforcement provided by an embodiment of the application.
  • FIG. 5b is a schematic structural diagram of a reinforcing body provided by another embodiment of the present application.
  • FIG. 5c is a schematic structural diagram of a reinforcing body provided by another embodiment of the present application.
  • FIG. 5d is a schematic structural diagram of a reinforcing body provided by another embodiment of the present application.
  • 6a to 6c are schematic microstructure diagrams of cross-sections of a middle frame according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a middle frame provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a middle frame provided by another embodiment of the present application.
  • 9a to 9c are B-B cross-sectional views of the middle frame provided in FIG. 8 according to an embodiment
  • Figures 10a to 10c are B-B cross-sectional views of the middle frame provided in Figure 8 of another embodiment.
  • the middle frame In equipment, it can be used to support some key components in electronic equipment.
  • the middle frame can also be used as a main component for heat dissipation of the electronic device to conduct heat to the heating elements in the electronic device.
  • the specific arrangement of the middle frame in the electronic device will be described in detail below with reference to the accompanying drawings, so as to facilitate the understanding of the supporting function of the middle frame to the key components and the process of heat conduction to the heating element.
  • an electronic device may include a display screen 1 , a middle frame 2 , a rear case 3 , a printed circuit board (printed circuit board, PCB 4 ), and a battery 5 .
  • the middle frame 2 can be used to carry the PCB 4, the battery 5 and the display screen 1, the display screen 1 and the PCB 4 are located on both sides of the middle frame, and the rear shell 3 is located on the side of the PCB 4 away from the middle frame 2.
  • Components to be radiated may be provided on the PCB 4, such as various circuit components, etc.
  • the components to be radiated may be, but not limited to, a central processing unit (CPU), artificial intelligence (artificial intelligence) , AI) processor, system on chip (SoC), power management unit, etc.
  • CPU central processing unit
  • AI artificial intelligence
  • SoC system on chip
  • the components to be radiated on the PCB 4 can be arranged on the side surface of the PCB 4 toward the middle frame 2, or can be arranged on the side surface away from the middle frame 2.
  • the heat generated by the components to be radiated disposed on the side of the PCB 4 facing the middle frame 2 can be directly conducted to the middle frame 2, and the heat generated by the components to be radiated disposed on the side of the PCB 4 away from the middle frame 2 can be conducted to The rear shell 3, or indirectly conducted to the middle frame 2 through the PCB 4.
  • the battery 5 and the PCB 4 can be arranged on the same side of the middle frame 2, and the heat generated by the battery 5 can also be directly conducted to the middle frame 2.
  • the heat of each part is conducted to the middle frame 2, it can be transferred to the rear case 3 and the display screen 1 through the conduction convection radiation of the middle frame 2, and then dissipated to the outside of the electronic device through the rear case 3 and the display screen 1.
  • the electronic device of this embodiment of the present application may further include a cover plate 6 , and the cover plate 6 is disposed on the side of the display screen 1 away from the middle frame 2 , so as to cover the display screen 1 . play a protective role.
  • an electronic device is also provided.
  • the difference lies in the arrangement of the PCB 4 and the battery 5 in the electronic device.
  • the PCB 4 and the display screen 1 are located on the same side of the middle frame 2, and the PCB 4 is arranged between the display screen 1 and the middle frame 2.
  • the components to be radiated on the PCB 4 can be arranged on the side surface of the PCB 4 facing the middle frame 2, or on the side surface away from the middle frame 2.
  • the heat generated by the components to be radiated disposed on the side of the PCB 4 facing the middle frame 2 can be directly conducted to the middle frame 2, while the heat generated by the components to be radiated disposed on the side of the PCB 4 away from the middle frame 2 can be conducted to Display screen 1, or indirectly conducted to middle frame 2 through PCB 4.
  • the battery 5 and the PCB 4 can be arranged on the same side of the middle frame 2, and the battery 5 is arranged between the display screen 1 and the middle frame 2.
  • the heat generated by the battery 5 can also be directly conducted to the middle frame 2 .
  • the heat of each part is conducted to the middle frame 2, it can be transferred to the rear case 3 and the display screen 1 through the conduction convection radiation of the middle frame 2, and then dissipated to the outside of the electronic device through the rear case 3 and the display screen 1.
  • the middle frame of electronic equipment is the main component of its heat dissipation, and the improvement of its thermal conductivity has a very significant benefit on the heat dissipation capacity of the whole machine.
  • the performance improvement of electronic devices and the increase of battery capacity sometimes inevitably lead to the increase in weight and thickness of electronic devices, which is contrary to the requirement of light, thin and portable electronic devices.
  • the middle frame has a very important influence on the weight and thickness of the electronic device.
  • the material of the middle frame commonly used in electronic devices is mostly metal alloys, for example, aluminum alloys, magnesium alloys, copper alloys, or stainless steels.
  • the aluminum alloy middle frame is the most common middle frame at present.
  • the commonly used aluminum alloys are Al-Si series and 6xxx aluminum alloys.
  • the thermal conductivity of Al-Si series aluminum alloys is 90-180W/(mK), and 6xxx aluminum alloys
  • the thermal conductivity of the alloy is 150-210W/(mK). Due to the influence of alloying elements, the thermal conductivity of the aluminum alloy middle frame generally does not exceed the thermal conductivity of pure aluminum (237W/(mK).
  • the thermal conductivity of the middle frame is required to be 300W/(mK) or more. Therefore, neither the aluminum middle frame nor the aluminum alloy middle frame can meet the heat dissipation requirements of electronic equipment.
  • the thermal conductivity of the magnesium alloy middle frame is generally 50-133W/(mK), and the commonly used is about 50-70W/(mK), which belongs to the lower thermal conductivity middle frame. Similarly, its thermal conductivity will not exceed the thermal conductivity of pure magnesium 155W/(mK).
  • the stainless steel middle frame also belongs to the middle frame with low thermal conductivity.
  • the thermal conductivity of the stainless steel middle frame is only 14W/(mK), and due to the high density of stainless steel (the density of stainless steel is 7.9g/cm3, and the density of aluminum and aluminum alloys is 2.7g/cm3), the weight of the stainless steel middle frame is relatively large. , which is not conducive to the weight reduction and lightweight design of electronic equipment.
  • the copper alloy middle frame has higher thermal conductivity, generally 260-350W/(mK), and commonly used around 260W/(mK). It can be understood that the thermal conductivity of copper alloy will not exceed the thermal conductivity of pure copper 398W/(mK). However, pure copper has low strength and cannot be used as a middle frame material. In addition, the density of copper alloy is as high as 8.9g/cm3, which is about 3.3 times that of aluminum alloy, 4.9 times that of magnesium alloy, and 1.1 times that of stainless steel, which is also not conducive to the weight reduction and lightweight design of electronic equipment.
  • the middle frame provided by the present application aims to solve the above problems, so as to realize the light and thin design of the middle frame on the basis of improving the thermal conductivity of the middle frame.
  • the metal matrix composite material is a composite material prepared from the second phase as the reinforcing material and the metal or alloy as the matrix material.
  • material composite technology can be used to add high-performance reinforcement materials to the metal or alloy matrix, so as to achieve the purpose of significantly improving the performance of certain desired characteristics of the metal or alloy material. , such as thermal conductivity and mechanical properties.
  • adding a high thermal conductivity diamond reinforcement to the aluminum alloy matrix can increase the thermal conductivity of the aluminum alloy from 100-210W/(mK) to 400-600W/(mK). Therefore, in the embodiment of the present application, when the middle frame is specifically arranged, the middle frame may include a metal matrix composite material structure.
  • FIG. 3 shows a top view of the middle frame 2 according to an embodiment of the present application along the direction from the display screen in FIG. 1 or FIG. 2 to the rear case.
  • the middle frame 2 may include a composite material body, and the composite material body includes a metal base body 201 and a reinforcing body 202 disposed on the metal base body 201 .
  • the material of the metal base 201 may be, but not limited to, metals or alloys, for example, aluminum, copper, magnesium, titanium, iron, etc., or aluminum alloys, copper alloys, magnesium alloys, titanium alloys, or iron alloys.
  • the material of the reinforcing body 202 can be, but is not limited to, diamond, graphite, carbon nanotubes, silicon, silicon carbide, alumina, carbon fiber, graphene and other materials whose thermal conductivity is greater than that of the metal matrix 201 .
  • FIG. 4 is a schematic partial structure diagram of a middle frame 2 according to an embodiment of the present application.
  • the reinforcements 202 may be provided in a plurality of discontinuous shapes, which facilitates the design of the distribution of the reinforcements 202 according to specific heat dissipation requirements.
  • the particle size of the reinforcements 202 can be made less than or equal to 1 mm, so that the reinforcements 202 are dispersed in the metal matrix 201, which can effectively reduce the influence of the addition of the reinforcements 202 on the strength of the metal matrix 201. Therefore, while the thermal conductivity of the middle frame 2 is effectively improved, a relatively reliable structural strength is obtained.
  • the reinforcement body 202 may have many forms. Taking the form of the reinforcing body 202 shown in FIG. 4 as an example, the projected shape of each reinforcing body 202 on the metal base 201 is the same.
  • FIG. 5 a shows a schematic three-dimensional structure of a single reinforcing body 202 , in which the form of the reinforcing body 202 may be fibrous.
  • FIG. 5 b shows a schematic three-dimensional structure diagram of a single reinforcing body 202 in another embodiment, and the shape of the reinforcing body 202 may be a cube at this time.
  • the reinforcing body 202 may also be in the form of particles. Or flakes or layers as shown in Figure 5d.
  • the reinforcing body 202 can also be set in a whisker shape or the like in some possible embodiments of the present application.
  • reinforcements 202 of various shapes can be arranged in the same middle frame 2 at the same time, so as to form a structure of reinforcements 202 of various shapes mixed with reinforcement of the middle frame 2, for example, the same middle frame 2 can be arranged simultaneously in FIGS.
  • At least two of the reinforcing bodies 202 in the shape shown in 5d; or, a reinforcing body 202 in a single shape can also be provided, so that the structure of the middle frame 2 is relatively simple.
  • the reinforcements 202 may be distributed at any position of the metal base 201 .
  • the volume fraction of the reinforcements 202 at different positions of the metal matrix 201 may be different. Illustrated in FIG. 3 is that from the two opposite edges of the middle frame 2 to the middle area, the volume fraction of the reinforcement 202 is distributed in an increasing gradient. It can be understood that, in the embodiment shown in FIG. 3 , the main part of the middle frame 2 may be composed of a composite material body.
  • the two opposite edges of the middle frame 2 shown in FIG. 3 can be, for example, two borders that the user often touches.
  • the volume fraction of the reinforcing body 202 at the position corresponding to the heat source can be high, while the reinforcing body at the edge of the middle frame 2 can have a high volume fraction.
  • the volume fraction of 202 is low, so that the thermal resistance of the middle frame 2 in the direction parallel to the two frames can be reduced, and the thermal resistance of the middle frame 2 from the middle area to the frame direction can be increased, so as to allow more heat along the parallel direction.
  • the heat is soaked in the direction of the frame to improve the thermal experience of the whole machine.
  • the gradient of the volume fraction of the reinforcing body 202 may be designed for gradient distribution along various directions according to specific heat dissipation requirements.
  • the volume fraction of the reinforcement 202 may also be distributed with a gradually decreasing gradient from the periphery (edge) to the middle region.
  • the distribution is carried out with a gradually increasing or decreasing gradient.
  • the distribution is performed along the y-direction (direction from one edge to the other edge) of the middle frame 2 shown in FIG. 3 with a gradually increasing or decreasing gradient.
  • the distribution is carried out in a gradually increasing or decreasing gradient along the thickness direction of the middle frame 2 .
  • the reinforcements 202 may be provided only in parts of the metal matrix 201, and the volume fraction of the reinforcements 202 may also be distributed in a gradient, which For a specific distribution manner, reference may be made to the foregoing embodiments, which will not be repeated here.
  • the sparse and dense arrangement of the reinforcements 202 can be adjusted (for example, the reinforcements 202 in the same volume space) The higher the density of , the higher the volume fraction it occupies), so that the volume fraction of the reinforcement 202 is distributed in a gradient.
  • FIG. 6a illustrates that the density of the reinforcements 202 gradually increases from the two opposite edges of the middle frame 2 to the middle area.
  • the volume fraction of the reinforcements 202 may be distributed in a gradient by adjusting the particle size of the reinforcements 202 .
  • FIG. 6b shows that from the two opposite edges of the middle frame 2 to the middle area, the particle size of the reinforcing body 202 gradually increases.
  • the volume fraction of 202 is distributed in a gradient.
  • the volume fraction of the reinforcement 202 in the metal matrix 201 can change in a gradient, and the volume fraction value and the gradient change direction can be designed according to the distribution of the heat source.
  • the volume fraction of the reinforcing body 202 at the position corresponding to the heat source of the middle frame 2 can be high, while the volume fraction of the reinforcing body 202 at the edge of the middle frame 2 is low.
  • Reduce the thermal resistance of the middle frame 2 in the direction parallel to the frame that the user often touches and increase the thermal resistance of the middle frame 2 from the middle area to the frame, so that more heat is parallel to the frame that the user often touches.
  • the direction of the frame is uniformly heated, thereby improving the thermal experience of the whole machine.
  • the reinforcements 202 with high thermal conductivity such as graphite
  • their own strength is relatively low. If the volume fraction is small and set to zero, the edge of the middle frame 2 can meet the strength support requirements. In this way, on the basis of avoiding increasing the thickness of the middle frame 2 , it can have relatively reliable structural stability, thereby facilitating the realization of the light and thin design of the middle frame 2 .
  • the reinforcement 202 in the metal matrix composite material often affects the surface color. Therefore, using the middle frame 2 of the embodiment of the present application, by designing the volume fraction of the reinforcing body 202 in the metal matrix 201 to be a gradient, the volume fraction of the reinforcing body 202 at the frame can be set to be small and set to zero, so that the frame
  • the appearance surface of the product is conventionally colored, and the processing technology is easier to control, the processing cost is lower, and the product yield is higher.
  • the volume fraction of the reinforcing body 202 can be set according to the gradient in the above embodiment. Referring to FIG. 7, in other embodiments of the present application, the reinforcing body can also be set as a gradient. 202 are evenly distributed in the metal matrix 201 .
  • the material of the metal base 201 can also be, but is not limited to, a metal or an alloy, exemplarily, can be aluminum, copper, magnesium, titanium, iron, etc., or aluminum alloy, copper alloy, magnesium alloy, titanium alloy or ferroalloy, etc.
  • the material of the reinforcing body 202 can be, but not limited to, diamond, graphite, carbon nanotubes, silicon, silicon carbide, alumina, carbon fiber, graphene and other materials whose thermal conductivity is greater than that of the metal matrix 201 .
  • a single reinforcing body 202 material may be included, or a plurality of mixed reinforcing body 202 materials may be included.
  • the shape of the reinforcements 202 can be exemplified by particles, fibers, sheets, etc., and the particle size of the reinforcements 202 is within 1 mm, so that a plurality of non-continuous reinforcements 202 are distributed in the matrix, so that in the On the basis that the thermal conductivity of the frame 2 is effectively improved, the middle frame 2 can meet the strength requirements.
  • the middle frame 2 of the embodiment of the present application since the reinforcements 202 are uniformly distributed in the metal matrix 201 of the entire composite body, the heat flux of the composite body can be increased.
  • the heat flux of the middle frame 2 can be made larger, so as to effectively improve the heat dissipation capacity thereof.
  • the metal base 201 is made of a light-weight and high-strength metal or metal alloy material, the lightness and strength of the entire middle frame 2 can be improved.
  • the middle frame 2 when the middle frame 2 is specifically arranged, the middle frame 2 includes a base 203 in addition to a metal base 201 and reinforcements 202 distributed in the metal base 201 .
  • the material of the base 203 may be, but not limited to, metal or metal alloy.
  • the material of the base 203 may be the same as or different from the material of the metal base 201 .
  • the material of the metal base 201 can also be, but is not limited to, a metal or an alloy, exemplarily, can be aluminum, copper, magnesium, titanium, iron, etc., or an aluminum alloy, a copper alloy, a magnesium alloy, a titanium alloy or Ferroalloys, etc.
  • the material of the reinforcing body 202 can be, but not limited to, diamond, graphite, carbon nanotubes, silicon, silicon carbide, alumina, carbon fiber, graphene and other materials whose thermal conductivity is greater than that of the metal matrix 201 .
  • a single reinforcing body 202 material may be included, or a plurality of mixed reinforcing body 202 materials may be included.
  • the reinforcements 202 may be uniformly distributed in the metal matrix 201 , or the volume fraction of the reinforcements 202 in the metal matrix 201 may be arranged in a gradient.
  • the shape of the reinforcements 202 can be exemplified by particles, fibers, sheets, etc., and the particle size of the reinforcements 202 is within 1 mm, so that a plurality of non-continuous reinforcements 202 are distributed in the matrix, so that in the On the basis that the thermal conductivity of the frame 2 is effectively improved, the middle frame 2 can meet the strength requirements.
  • the composite material body is embedded in the base 203, wherein, the metal matrix 201 of the composite material body and the base 203 can be, but not limited to, through bonding (dispensing or back glue) etc.), welding or riveting for fixing.
  • the metal base 201 and the base 203 may also be formed into an integrated structure through a process such as melting and casting, so as to make the connection between the two more reliable.
  • the shape, size, thermal conductivity of the composite material body, and its setting position on the base 203 can be adjusted according to the distribution of heat sources in the electronic device and specific heat dissipation needs to enhance the heat uniformity effect.
  • the metal matrix 201 of the composite body is embedded in the base 203 from the first side surface of the base 203, and the first side surface can be, for example, the middle frame 2 The surface used to support the PCB.
  • the metal matrix 201 of the composite body can also be embedded in the base 203 from the second side surface of the base 203, which can be, for example, the surface of the middle frame 2 away from the PCB.
  • the metal matrix 201 of the composite material body can also be embedded in the interior of the base 203 . It can be understood that in this embodiment, the metal matrix 201 and the base 203 can pass through Processes such as melting and casting form an integrated structure.
  • the metal matrix 201 of the composite body is In the scenario where the side surface or the second side surface is embedded in the base 203 , an accommodating groove 2031 may be provided at a corresponding position of the base 203 , and the metal base 201 of the composite body can be completely accommodated in the accommodating groove 2031 .
  • the composite material body can be embedded in the base 203, so that there is a large interface thermal resistance between the metal matrix 201 and the base 203, thereby increasing the heat
  • the thermal resistance in the direction of the edge of the middle frame 2 is beneficial to the heat insulation of the edge of the middle frame 2 to improve the thermal experience of the whole machine.
  • the base 203 can be made of metal or metal alloy, by embedding the composite material body in the base 203 , it is beneficial to realize the thinning and lightweight design of the middle frame 2 .
  • the strength and processing performance of the entire middle frame 2 can be effectively improved, and the edge of the base 203 can be used as the appearance surface of the middle frame 2 for conventional coloring treatment, thereby saving costs and improving product yield.
  • Fig. 10a shows the arrangement of the composite material body on the base 203 according to another embodiment of the present application.
  • a through hole 2032 is partially opened in the base 203 of the middle frame 2 , and the metal base 201 of the composite material body fills the through hole 2032 .
  • the metal matrix 201 of the composite material body and the base 203 may be fixed by, but not limited to, bonding (gluing or back glue, etc.), welding or riveting.
  • the metal base 201 and the base 203 may also be formed into an integrated structure through a process such as melting and casting, so as to make the connection between the two more reliable.
  • the through hole 2032 in order to facilitate the fixing between the metal base 201 of the composite body and the base 203, the through hole 2032 can be set as a stepped hole, and a stepped surface is set on the metal base 201 to allow the composite body to pass through. After the stepped surface of the metal base 201 is overlapped with the stepped hole, the two are fixed. 10b and 10c together, when the through hole 2032 is a stepped hole, the side with the larger diameter of the through hole 2032 can be made to be close to the heat source with greater heat dissipation requirements, which is beneficial to improve the heat dissipation effect.
  • middle frame 2 of the embodiment of the present application by opening a through hole 2032 in a part of the base 203 and filling the through hole 2032 with a composite material body, there is a large interface thermal resistance between the metal base 201 and the base 203 , thereby Increasing the thermal resistance of the heat toward the edge of the middle frame 2 is beneficial to the heat insulation of the edge of the middle frame 2, so as to improve the thermal experience of the whole machine.
  • the base 203 can be made of metal or metal alloy, a through hole 2032 is opened in the base 203, and the through hole 2032 is filled with a composite material body, which can be beneficial to realize the thinning and lightweight design of the middle frame 2.
  • the strength and processing performance of the entire middle frame 2 can be effectively improved, and the edge of the base 203 can be used as the appearance surface of the middle frame 2 for conventional coloring treatment, thereby saving costs and improving product yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请提供了一种中框及电子设备。涉及电子设备技术领域。该中框包括复合材料体,复合材料体包括金属基体,以及增强体。其中,增强体为多个,且分布于金属基体内。另外,增强体的导热系数大于金属基体的导热系数,这样可根据中框的具体导热需求,进行增强体的组分设计。采用本申请实施例的中框,通过在金属基体内添加导热系数较大的增强体,可在有效的提升中框的导热性能的同时,避免增加中框的厚度,从而有利于实现中框的轻薄化设计。

Description

一种中框及电子设备
相关申请的交叉引用
本申请要求在2020年10月16日提交中国专利局、申请号为202011111724.5、申请名称为“一种中框及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到电子设备技术领域,尤其涉及到一种中框及电子设备。
背景技术
随着手机智能化程度越来越高,其性能升级产生更多的热量,过多的热量造成手机温升过高则会影响其正常工作。因此,提升手机整机的散热能力,是提升手机整机可靠性,以及用户体验的重要手段。
手机的中框作为手机的主要结构件,其可起到对手机中的电池或者电路板等元件的支撑作用。这样,电池或电路板等主要发热元件产生的热量会直接传输给中框。而中框作为手机散热的主要部件,其热导率的提升对整机散热能力的收益是十分显著的。
目前,如何在提高中框的导热性能的基础上,使其能够满足支撑强度要求,已成为本领域技术人员亟待解决的难题。
发明内容
本申请提供了一种中框及电子设备,以在提高中框的导热性能的基础上,实现中框的轻薄化设计。
第一方面,本申请提供了一种中框,该中框包括复合材料体,该复合材料体包括金属基体,以及增强体。其中,增强体为多个,且以掺杂颗粒的形式分布于金属基体内。另外,增强体的导热系数大于金属基体的导热系数,这样可根据中框的具体导热需求,进行增强体的组分设计。采用本申请的中框,通过在金属基体内添加导热系数较大的增强体,可在有效的提升整个中框的导热性能的同时,避免增加中框的厚度,从而有利于实现中框的轻薄化设计。
在本申请一个可能的实现方式中,在具体设置金属基体时,金属基体的材料可以但不限于为金属或者合金,示例性的可为铝、铜、镁、钛、铁等,或者铝合金、铜合金、镁合金、钛合金或铁合金等。以使该金属基体具有较好的结构强度以及导热性能。
在本申请一个可能的实现方式中,在具体设置增强体时,增强体的材料可以但不限于为金刚石、石墨、碳纳米管、硅、碳化硅、氧化铝、碳纤维或石墨烯等非金属。另外,还可使增强体的最大长度小于或等于1mm,从而使该多个增强体分散在金属基体内,其可有效的减小增强体的添加对金属基体的强度的影响,从而在使中框的热导率得到有效提升的同时,获得较为可靠的结构强度。
在本申请另一个可能的实现方式中,增强体的形状可以有很多种,示例性的可为颗粒 状纤维状、片状、层状或者晶须状等。在一个中框中可以包括多种形状混杂的增强体,以调控中框的性能。或者,也可以在中框中仅设置单一形状的增强体,以简化中框的结构。
在具体将增强体设置于金属基体中时,可使金属基体的不同位置处的增强体的体积分数不同。示例性的,可使增强体在金属基体内的体积分数呈梯度进行分布,具体实施时,可由中框的两个相对的边缘到中间区域,增强体的体积分数呈不断增加的梯度进行分布。这样,可以使得中框对应热源位置处的增强体的体积分数高,而中框边缘处的增强体的体积分数低,从而可以通过对增强体的体积分数的合理设计,来降低中框的沿平行于用户常接触到的边缘的方向的导热热阻,而增加中框从中间区域到边缘方向的热阻,从而让热量更多的沿平行于用户常接触到的边缘的方向进行均热,进而改善整机热体验。另外,由于一些高导热的增强体,其本身的强度较低,通过将其在金属基体内的体积分数呈梯度设计,并使位于中框边缘处的增强体的体积分数较小,或设置为零,可使中框边缘处能够满足强度支撑要求。这样可在避免增加中框的厚度的基础上,使其具有较为可靠的结构稳定性,从而有利于实现中框的轻薄化设计。
在另一个可能的实现方式中,由中框的两个相对的边缘到中间区域,增强体的体积分数还可呈不断减小的梯度进行分布。或者,增强体的体积分数,可沿中框的一个边缘到另一个边缘的方向呈逐渐减小或者逐渐增大的梯度进行分布。其中,一个边缘与另一个边缘可以但不限于为中框的相对设置的两个边缘。以满足热源的均热要求。
在一个可能的实现方式中,增强体在金属基体内均匀分布,可使复合材料体的热通量较大。当中框的主体部分或者整个中框均由复合材料体形成时,可使中框的热通量较大,以有效的提升其散热能力。另外,在该实现方式中,若金属基体选用轻质高强的金属或金属合金材料,可使整个中框的轻质性和强度均得到改善。
除了上述结构外,在本申请一个可能的实现方式中,中框还可以包括底座,添加有增强体的金属基体可以嵌设于该底座,并可通过粘接、焊接、铆接等方式将两者进行固定。另外,底座的材料与金属基体的材料可以相同或者不同,示例性的,当底座的材料与金属基体的材料相同时,还可通过熔铸等工艺使金属基体与底座形成一体结构。通过将复合材料体嵌设于底座,这样复合材料体的金属基体与底座之间存在较大的界面热阻,从而增大热量往中框的边缘方向的热阻,其有利于中框边缘隔热,以改善整机热体验。另外,由于底座可由金属或者金属合金制成,通过将复合材料体嵌入于底座,可有利于实现中框的减薄以及轻质化设计。另外,可有效的提高整个中框的强度以及加工性能,并且该底座的边缘可作为中框的外观面进行常规的着色处理,从而可节约成本,提升产品良率。
在本申请一个可能的实现方式中,复合材料体的形状、大小,以及其在底座上的具体设置位置,可以根据热源的散热需要进行调整。为了便于将复合材料体嵌设于底座,在底座上还可以设置有容置槽,这样可使复合材料体容置于该容置槽内,其有利于实现中框的薄型化设计。
在本申请另一个可能的实现方式中,底座开设有通孔,复合材料体填补于该通孔。这样金属基体与底座之间存在较大的界面热阻,从而增大热量往中框的边缘方向的热阻,其有利于中框边缘隔热,以改善整机热体验。另外,还可有利于实现中框的减薄以及轻质化设计,并可有效的提高整个中框的强度以及加工性能,且该底座的边缘可作为中框的外观面进行常规的着色处理,从而可节约成本,提升产品良率。
另外,为了便于金属基体与底座的固定,可使通孔为阶梯孔,并在复合材料体的金属 基体上设置有台阶面,复合材料体通过金属基体的台阶面搭接于阶梯孔。
第二方面,本申请还提供一种电子设备,该电子设备包括显示屏、后壳、印制电路板、电池以及第一方面的中框。其中,印制电路板和显示屏位于中框的两侧,电池与印制电路板设置于中框的同一侧;后壳位于印制电路板的远离中框的一侧。
本申请提供的电子设备,由于其中框具有较好的导热性能,并且其重量较轻,体积较小,从而使该电子设备整机的散热能力,以及整机可靠性均可得到有效提升。另外,其可满足用户对电子设备轻薄便携的要求,从而提升用户体验。
第三方面,本申请还提供一种电子设备,该电子设备包括显示屏、后壳、印制电路板、电池以及第一方面的中框。其中,印制电路板、电池和显示屏位于中框的同一侧,印制电路板和电池设置于显示屏与中框之间;后壳位于中框的远离显示屏的一侧。
本申请提供的电子设备,由于其中框具有较好的导热性能,并且其重量较轻,体积较小,从而使该电子设备整机的散热能力,以及整机可靠性均可得到有效提升。另外,其可满足用户对电子设备轻薄便携的要求,从而提升用户体验。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请另一实施例提供的电子设备的结构示意图;
图3为本申请一实施例提供的中框的结构示意图;
图4为本申请一实施例提供的中框的剖面的微观组织示意图;
图5a为本申请一实施例提供的增强体的结构示意图;
图5b为本申请另一实施例提供的增强体的结构示意图;
图5c为本申请另一实施例提供的增强体的结构示意图;
图5d为本申请另一实施例提供的增强体的结构示意图;
图6a至图6c为本申请另一实施例提供的中框的剖面的微观组织示意图;
图7为本申请另一实施例提供的中框的结构示意图;
图8为本申请另一实施例提供的中框的结构示意图;
图9a至图9c为一实施例的图8中提供的中框的B-B剖视图;
图10a至图10c为另一实施例的图8中提供的中框的B-B剖视图。
附图标记:
1-显示屏;2-中框;201-金属基体;202-增强体;203-底座;2031-容置槽;
2032-通孔;3-后壳;4-PCB;5-电池;6-盖板。
具体实施方式
为了方便理解本申请实施例提供的中框,下面首先说明一下本申请实施例提供的中框的应用场景,该中框可设置于手机、平板电脑、掌上电脑(personal digital assistant,PDA)等电子设备中,其可用于对电子设备中的一些关键部件起到支撑的作用。另外,中框还可以作为电子设备散热的主要部件,以用于对电子设备中的发热元件进行导热。下面结合附图对该中框在电子设备中的具体设置方式进行详细的说明,以便于对该中框对关键部件的支撑作用,以及其对发热元件进行导热的过程进行理解。
参照图1,在本申请一个实施例中,电子设备可以包括显示屏1、中框2、后壳3、印制电路板(printed circuit board,PCB 4)以及电池5。其中,中框2可以用来承载PCB 4、电池5和显示屏1,显示屏1和PCB 4位于中框的两侧,后壳3位于PCB 4的远离中框2的一侧。在PCB 4上可以设置有待散热器件(图中未示出),比如各种电路元器件等,该待散热器件可以但不限于为中央处理器(central processing unit,CPU)、人工智能(artificial intelligence,AI)处理器、片上系统(system on chip,SoC)、电源管理单元等。在对PCB 4上的待散热器件进行设置时,可以将其设置于PCB 4朝向中框2的一侧表面,也可以设置于背离中框2的一侧表面。这样,设置于PCB 4朝向中框2的一侧的待散热器件产生的热量可以直接传导至中框2,而设置于PCB 4上背离中框2一侧的待散热器件产生的热量可以传导至后壳3,或者通过PCB 4间接传导至中框2。
可继续参照图1,在本申请该实施例中,具体设置电池5时,可将电池5与PCB 4设置于中框2的同一侧,电池5产生的热量也可以直接传导至中框2。这样,各部分的热量传导至中框2后,可以通过中框2的传导对流辐射,传递到后壳3和显示屏1,并通过后壳3和显示屏1散到电子设备外部。
另外,参照图1,本申请该实施例的电子设备除了包括上述结构外,还可以包括盖板6,该盖板6设置于显示屏1的背离中框2的一侧,以对显示屏1起到保护的作用。
参照图2,在一个可能的实施例中,还提供了一种电子设备,该电子设备与图1中所示的电子设备相比,不同点在于PCB 4与电池5在电子设备中的设置方式不同。继续参照图2,在本申请该实施例中,PCB 4与显示屏1位于中框2的同一侧,并且PCB 4设置于显示屏1与中框2之间。此时,PCB 4上的待散热器件可以设置于PCB 4朝向中框2的一侧表面,或者设置于背离中框2的一侧表面。这样,设置于PCB 4的朝向中框2一侧的待散热器件产生的热量可以直接传导至中框2,而设置于PCB 4的背离中框2一侧的待散热器件产生的热量可以传导至显示屏1,或者通过PCB 4间接传导至中框2。
另外,继续参照图2,在本申请该实施例中,具体设置电池5时,可将电池5与PCB 4设置于中框2的同一侧,且电池5设置于显示屏1与中框2之间,电池5产生的热量也可以直接传导至中框2。这样,各部分的热量传导至中框2后,可以通过中框2的传导对流辐射,传递到后壳3和显示屏1,并通过后壳3和显示屏1散到电子设备外部。
可以理解的是,上述对于中框在电子设备中的具体设置方式的介绍,只是本申请的一些示例性的说明,其具体设置方式不限于此,在此不进行一一介绍。
随着智能电子设备的功能的不断增加,其通信性能(5G)和计算性能(游戏、拍照等能力)不断提升,使得其整机功率与热耗进一步提高,这使得整机的发热也会大幅提升,从而对电子设备的散热能力要求越来越高。因此,提升电子设备整机散热能力,是提升整机可靠性以及用户体验的重要手段。
电子设备的中框作为其散热的主要部件,其热导率的提升对整机散热能力的收益是十分显著的。但是,电子设备的性能提升、电池容量增大有时会不可避免的导致电子设备的增重和增厚,这与电子设备的轻薄便携性的要求是相悖的。而中框作为电子设备中主要的结构件,其对电子设备的重量和厚度的影响至关重要。
目前,电子设备中常用的中框的材质多为金属合金,示例性的,可为铝合金、镁合金、铜合金或者不锈钢。其中,铝合金中框是目前最常见的中框,常用的铝合金是Al-Si系和6xxx铝合金,一般Al-Si系铝合金的热导率在90-180W/(mK),6xxx铝合金的热导率在 150-210W/(mK)。由于受到合金元素的影响,铝合金中框的热导率一般不会超过纯铝的热导率(237W/(mK)。而为了满足电子设备的散热需求,则要求中框的热导率在300W/(mK)以上。因此,铝中框或者铝合金中框均不能满足电子设备的散热需求。
镁合金中框的热导率一般在50-133W/(mK),常用的约50-70W/(mK),属于较低热导率的中框。相类似的,其导热率也不会超过纯镁的热导率155W/(mK)。另外,不锈钢中框也属于较低导热的中框。不锈钢中框的热导率只有14W/(mK),并且由于不锈钢的密度较高(不锈钢密度为7.9g/cm3,铝及铝合金密度为2.7g/cm3),使得不锈钢中框的重量较大,其不利于电子设备的减重和轻便设计。
铜合金中框相对上述铝合金、不锈钢和镁合金具有更高的热导率,一般在260-350W/(mK),常用的在260W/(mK)左右。可以理解的是,铜合金的热导率也不会超过纯铜的热导率398W/(mK)。但是,纯铜强度低,无法作为中框材料。另外,铜合金的密度高达8.9g/cm3,约为铝合金的密度的3.3倍,镁合金的密度的4.9倍,不锈钢的密度的1.1倍,其同样不利于电子设备的减重和轻便设计。
本申请提供的中框旨在解决上述问题,以在提高中框的导热性能的基础上,实现中框的轻薄化设计。
金属基复合材料是以第二相为增强材料,金属或合金为基体材料制备而成的复合材料。在具体制备金属基复合材料时,可根据具体需要,利用材料复合技术往金属或合金基体中添加高性能的增强体材料,以达到显著提高金属或合金材料的某种所需特性的性能的目的,例如导热性能和力学性能等。示例性的,往铝合金基体中添加高导热的金刚石增强体,可以将铝合金的导热系数由100-210W/(mK)提升至400-600W/(mK)。因此,在本申请实施例中,在具体设置中框时,可使中框包括金属基复合材料结构。接下来结合附图,对本申请提供的中框的具体设置方式进行详细的说明。
参照图3,图3展示了本申请一个实施例的中框2沿图1或者图2中的显示屏到后壳方向上的俯视图。在该实施例中,中框2可以包括复合材料体,该复合材料体包括金属基体201,以及设置于金属基体201的增强体202。其中,金属基体201的材料可以但不限于为金属或者合金,示例性的,可为铝、铜、镁、钛、铁等,或者铝合金、铜合金、镁合金、钛合金或铁合金等。
在本申请该实施例中,增强体202的材料可以但不限于为金刚石、石墨、碳纳米管、硅、碳化硅、氧化铝、碳纤维、石墨烯等导热系数大于金属基体201的导热系数的材料。
参照图4,图4为本申请一个实施例的中框2的局部结构示意图。在本申请实施例中,可以将增强体202设置为非连续的多个,这样便于根据具体散热需求对增强体202的分布进行设计。另外,还可使增强体202的粒径小于或等于1mm,从而使该多个增强体202分散在金属基体201内,其可有效的减小增强体202的添加对金属基体201强度的影响,从而在使中框2的热导率得到有效提升的同时,获得较为可靠的结构强度。
在本申请各实施例中,增强体202的形态可以有很多种。以图4所示的增强体202的形态为例,各个增强体202在金属基体201上的投影形状相同。其中,参照图5a,图5a展示了单个增强体202的立体结构示意图,此时增强体202的形态可为纤维状。又如在图5b中,图5b展示了另外一个实施例中单个增强体202的立体结构示意图,此时增强体202的形态可为立方体状。又如图5c所示的实施例中,增强体202还可以为颗粒状。或者如图5d中所示的片状或者层状。
增强体202除了可为上述形状以外,在本申请一些可能的实施例中,还可以设置为晶须状等。另外,在同一中框2中可以同时设置多种形状的增强体202,以形成多种形状的增强体202混杂增强的中框2结构,比如在同一中框2中可以同时设置图5a至图5d所示形状的增强体202中的至少两种;或者,也可以设置单一形状的增强体202,以使中框2的结构较为简单。
在具体将增强体202设置于金属基体201时,增强体202可以分布于金属基体201的任意位置。在本申请一些实施例中,可使金属基体201的不同位置处的增强体202的体积分数不同。图3中示意的是由中框2的两个相对的边缘到中间区域,增强体202的体积分数呈不断增加的梯度进行分布。可以理解的是,在图3所示的实施例中,中框2的主体部分可由复合材料体组成。
在一个可能的实施例中,图3中所示的中框2的两个相对的边缘例如可为用户经常接触的两个边框。通过使增强体202的体积分数由该两个边框向中间区域不断增加的梯度进行设置,可以使中框2对应热源位置处的增强体202的体积分数高,而中框2边缘处的增强体202的体积分数低,从而可以降低中框2沿与该两个边框平行的方向进行导热的热阻,并增加中框2从中间区域到边框方向的热阻,以让热量更多的沿平行于边框的方向进行均热,从而改善整机热体验。
在本申请另外一些实施例中,增强体202的体积分数的梯度可以根据具体的散热需求沿各个方向进行梯度分布设计。示例性的,增强体202的体积分数还可由四周(边缘)到中间区域呈逐渐减小的梯度进行分布。或者,沿图3中所示的中框2的x方向(由一个边缘到另一个边缘的方向)呈逐渐增大或者逐渐减小的梯度进行分布。又或者,沿图3中所示的中框2的y方向(由一个边缘到另一个边缘的方向)呈逐渐增大或者逐渐减小的梯度进行分布。又或者,沿中框2的厚度方向呈逐渐增大或者逐渐减小的梯度进行分布。
另外,除了可使增强体202分布于金属基体201的各个部分,在一些实施例中,还可以仅在金属基体201的局部设置有增强体202,且其体积分数也可呈梯度进行分布,其具体分布方式可参照上述实施例,在此不进行赘述。
在具体实现增强体202在金属基体201内的梯度分布时,参照图6a,在一些实施例中,可通过对增强体202的疏密排布进行调整(例如在相同的体积空间内增强体202的密度越大,其所占的体积分数越高),来实现增强体202的体积分数呈梯度进行分布。图6a示意的是由中框2的两个相对的边缘到中间区域,增强体202的密度逐渐增大。
在另外一些实施例中,可参照图6b,还可通过对增强体202的粒径大小进行调整,来实现增强体202的体积分数呈梯度进行分布。图6b示意的是由中框2的两个相对的边缘到中间区域,增强体202的粒径逐渐增大。
除了上述可以实现增强体202的体积分数在金属基体201内的梯度分布的方式外,在本申请一些实施例中,参照图6c,还可以通过对增强体202的形状进行调整,来实现增强体202的体积分数呈梯度进行分布。
可以理解的是,上述对增强体202的体积分数在金属基体201内呈梯度分布的具体设置方式的介绍,只是本申请的一些示例性的说明。在此基础上,本领域技术人员可以采用各种用于实现增强体202在金属基体201内呈梯度分布的方案,其均在本申请的保护范围之内。
采用本申请实施例的中框2,增强体202在金属基体201内的体积分数可呈梯度变化, 并且体积分数值以及梯度变化方向可以根据热源的分布进行设计。这样,可以使得中框2对应热源位置处的增强体202的体积分数高,而中框2边缘处的增强体202的体积分数低,从而可以通过对增强体202的体积分数的合理设计,来降低中框2的沿平行于用户常接触到的边框的方向的导热热阻,而增加中框2从中间区域到边框方向的热阻,从而让热量更多的沿平行于用户常接触到的边框的方向进行均热,进而改善整机热体验。
另外,由于一些高导热的增强体202(如石墨),其本身的强度较低,通过将其在金属基体201内的体积分数呈梯度设计,并使位于中框2边缘处的增强体202的体积分数较小设置为零,可使中框2边缘处能够满足强度支撑要求。这样可在避免增加中框2的厚度的基础上,使其具有较为可靠的结构稳定性,从而有利于实现中框2的轻薄化设计。
对于中框2的边缘作为边框的设计,由于边框需要作为外观面进行着色处理,而金属基复合材料中的增强体202往往会影响表面颜色。因此,采用本申请实施例的中框2,通过将增强体202在金属基体201内的体积分数呈梯度设计,可使边框处的增强体202的体积分数较小设置为零,从而可对边框的外观面进行常规的着色处理,其加工工艺较容易管控,加工成本较低,且产品良率较高。
在具体将增强体202设置于金属基体201时,增强体202的体积分数除了可按照上述实施例中呈梯度进行设置外,参照图7,在本申请另外一些实施例中,还可以使增强体202均匀的分布于金属基体201中。
在该实施例中,金属基体201的材料也可以但不限于为金属或者合金,示例性的,可为铝、铜、镁、钛、铁等,或者铝合金、铜合金、镁合金、钛合金或铁合金等。增强体202的材料可以但不限于为金刚石、石墨、碳纳米管、硅、碳化硅、氧化铝、碳纤维、石墨烯等导热系数大于金属基体201的导热系数的材料。另外,在同一个中框2中,可以包括单一的增强体202材料,也可以包括多种混杂的增强体202材料。而增强体202的形状示例性的可为颗粒状、纤维状、片状等,增强体202的粒径在1mm以内,从而使非连续的多个增强体202分布在基体中,以在使中框2的导热性能得到有效提升的基础上,使中框2能够满足强度要求。
采用本申请实施例的中框2,由于增强体202在整个复合材料体的金属基体201中均匀分布,可使复合材料体的热通量较大。尤其当中框2的主体部分由复合材料体组成时,可使中框2的热通量较大,以有效的提升其散热能力。另外,在该实施例中,若金属基体201选用轻质高强的金属或金属合金材料,可使整个中框2的轻质性和强度均得到改善。
参照图8,在本申请另外一些实施例中,在具体设置中框2时,该中框2除了包括金属基体201,以及分布于金属基体201内的增强体202外,还包括底座203。该底座203的材料可以但不限于为金属或金属合金,另外,该底座203的材料可以与金属基体201的材料相同,或者不同。
在该实施例中,金属基体201材料也可以但不限于为金属或者合金,示例性的,可为铝、铜、镁、钛、铁等,或者铝合金、铜合金、镁合金、钛合金或铁合金等。增强体202的材料可以但不限于为金刚石、石墨、碳纳米管、硅、碳化硅、氧化铝、碳纤维、石墨烯等导热系数大于金属基体201的导热系数的材料。在同一个中框2中,可以包括单一的增强体202材料,也可以包括多种混杂的增强体202材料。另外,增强体202可以均匀的分布于金属基体201,或者增强体202在金属基体201内的体积分数呈梯度设置。而增强体202的形状示例性的可为颗粒状、纤维状、片状等,增强体202的粒径在1mm以内,从而 使非连续的多个增强体202分布在基体中,以在使中框2的导热性能得到有效提升的基础上,使中框2能够满足强度要求。
可继续参照图8,在本申请该实施例中,复合材料体嵌设于底座203,其中,复合材料体的金属基体201与底座203之间可以但不限于通过粘接(点胶或者背胶等)、焊接或者铆接进行固定。在本申请一些实施例中,还可以使金属基体201与底座203通过熔铸等工艺形成一体结构,以使二者之间的连接较为可靠。
另外,复合材料体的形状、大小、导热能力,以及其在底座203上的设置位置均可根据电子设备内热源的分布以及具体散热需要进行调整,以增强均热效果。示例性的,参照图9a,在本申请一个可能的实施例中,复合材料体的金属基体201从底座203的第一侧表面嵌设于底座203,该第一侧表面例如可为中框2的用于支撑PCB的表面。另外,参照图9b,复合材料体的金属基体201还可从底座203的第二侧表面嵌设于底座203,该第二侧表面例如可为中框2远离PCB的表面。在本申请一些实施例中,参照图9c,还可以将复合材料体的金属基体201嵌设于底座203的内部,可以理解的是,在该实施例中,可使金属基体201与底座203通过熔铸等工艺形成一体结构。
在本申请一些实施例中,为了便于将复合材料体的金属基体201嵌设于底座203,尤其是如图9a和图9b中所示,将复合材料体的金属基体201从底座203的第一侧表面或者第二侧表面嵌设于底座203的场景下,可以在底座203的对应位置处设置有容置槽2031,复合材料体的金属基体201可完全容置于该容置槽2031。
采用本申请实施例的中框2,通过设置底座203,可将复合材料体的嵌设于底座203,这样可使金属基体201与底座203之间存在较大的界面热阻,从而增大热量往中框2的边缘方向的热阻,其有利于中框2边缘隔热,以改善整机热体验。
另外,由于底座203可由金属或者金属合金制成,通过将复合材料体嵌入于底座203,可有利于实现中框2的减薄以及轻质化设计。另外,可有效的提高整个中框2的强度以及加工性能,并且该底座203的边缘可作为中框2的外观面进行常规的着色处理,从而可节约成本,提升产品良率。
参照图10a,图10a展示了本申请另一实施例的复合材料体在底座203上的设置方式。与上述实施例不同的是,在图10a所示的实施例中,中框2的底座203的局部开设有通孔2032,复合材料体的金属基体201填补于该通孔2032。其中,复合材料体的金属基体201与底座203之间可以但不限于通过粘接(点胶或者背胶等)、焊接或者铆接进行固定。在本申请一些实施例中,还可以使金属基体201与底座203通过熔铸等工艺形成一体结构,以使二者之间的连接较为可靠。
另外,可参照图10b,为便于复合材料体的金属基体201与底座203之间的固定,可以将通孔2032设置为阶梯孔,同时在金属基体201上设置台阶面,以使复合材料体通过金属基体201的台阶面搭接于阶梯孔后,再将二者进行固定。一并参照图10b和图10c,在通孔2032为阶梯孔时,可使通孔2032的孔径较大的一侧靠近散热需求较大的热源,从而有利于提高均热效果。
采用本申请实施例的中框2,通过在底座203的局部开设通孔2032,并将复合材料体填补该通孔2032,这样金属基体201与底座203之间存在较大的界面热阻,从而增大热量往中框2的边缘方向的热阻,其有利于中框2边缘隔热,以改善整机热体验。
由于底座203可由金属或者金属合金制成,在底座203开设通孔2032,并将复合材料 体填补该通孔2032,可有利于实现中框2的减薄以及轻质化设计。另外,还可有效的提高整个中框2的强度以及加工性能,并且该底座203的边缘可作为中框2的外观面进行常规的着色处理,从而可节约成本,提升产品良率。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种中框,其特征在于,包括复合材料体,所述复合材料体包括金属基体以及多个增强体,其中:
    所述多个增强体分布于所述金属基体内,所述增强体的导热系数大于所述金属基体的导热系数。
  2. 如权利要求1所述的中框,其特征在于,所述金属基体的材料为金属或者合金。
  3. 如权利要求1或2所述的中框,其特征在于,所述增强体的最大长度小于或等于1mm。
  4. 如权利要求1~3任一项所述的中框,其特征在于,所述增强体在所述金属基体内的体积分数呈梯度分布。
  5. 如权利要求1~3任一项所述的中框,其特征在于,所述增强体在所述金属基体内均匀分布。
  6. 如权利要求1~5任一项所述的中框,其特征在于,所述增强体的材料为金刚石、石墨、碳纳米管、硅、碳化硅、氧化铝、碳纤维或石墨烯。
  7. 如权利要求1~6任一项所述的中框,其特征在于,所述复合材料体中分布有多种形状的所述增强体,或者分布有单一形状的所述增强体。
  8. 如权利要求7所述的中框,其特征在于,所述增强体为颗粒状、纤维状、片状、层状或者晶须状。
  9. 如权利要求1~8任一项所述的中框,其特征在于,所述中框还包括底座,所述复合材料体嵌设于所述底座。
  10. 如权利要求9所述的中框,其特征在于,所述底座设置有容置槽,所述复合材料体容置于所述容置槽,且与所述底座固定连接。
  11. 如权利要求9所述的中框,其特征在于,所述底座开设有通孔,所述复合材料体填补于所述通孔。
  12. 如权利要求11所述的中框,其特征在于,所述通孔为阶梯孔,所述金属基体设置有台阶面,所述复合材料体通过所述台阶面搭接于所述阶梯孔。
  13. 一种电子设备,其特征在于,包括显示屏、后壳、印制电路板、电池以及如权利要求1~12任一项所述的中框,其中:
    所述印制电路板和所述显示屏位于所述中框的两侧,所述电池与所述印制电路板设置于所述中框的同一侧;
    所述后壳,位于所述印制电路板的远离所述中框的一侧。
  14. 一种电子设备,其特征在于,包括显示屏、后壳、印制电路板、电池以及如权利要求1~12任一项所述的中框,其中:
    所述印制电路板、所述电池和所述显示屏位于所述中框的同一侧,所述印制电路板和所述电池设置于所述显示屏与所述中框之间;
    所述后壳,位于所述中框的远离所述显示屏的一侧。
PCT/CN2021/116743 2020-10-16 2021-09-06 一种中框及电子设备 WO2022078109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011111724.5 2020-10-16
CN202011111724.5A CN114375130B (zh) 2020-10-16 2020-10-16 一种中框及电子设备

Publications (1)

Publication Number Publication Date
WO2022078109A1 true WO2022078109A1 (zh) 2022-04-21

Family

ID=81138807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116743 WO2022078109A1 (zh) 2020-10-16 2021-09-06 一种中框及电子设备

Country Status (2)

Country Link
CN (1) CN114375130B (zh)
WO (1) WO2022078109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782551A (zh) * 2023-06-06 2023-09-19 荣耀终端有限公司 用于电子设备的壳体、电子设备及可折叠电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841784A (zh) * 2014-03-18 2014-06-04 亚超特工业有限公司 电子装置的内部中框板的成型方法及其该内部中框板
US20140192468A1 (en) * 2013-01-04 2014-07-10 Sony Corporation Frame structure of electronic device
CN104883859A (zh) * 2015-05-29 2015-09-02 联想(北京)有限公司 一种电子设备和壳体
CN105188302A (zh) * 2014-06-17 2015-12-23 奇鋐科技股份有限公司 手持电子装置散热结构
CN106714507A (zh) * 2015-11-16 2017-05-24 华为技术有限公司 中框件及其生产方法
CN108099324A (zh) * 2017-12-29 2018-06-01 新奥石墨烯技术有限公司 移动终端背板及其制备方法以及移动终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189647A1 (en) * 2002-10-11 2005-09-01 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US9064852B1 (en) * 2011-12-05 2015-06-23 The Peregrine Falcon Corporation Thermal pyrolytic graphite enhanced components
CN104046823A (zh) * 2014-06-13 2014-09-17 上海和辉光电有限公司 梯度金属陶瓷复合材料及其制备方法
CN105803242B (zh) * 2016-03-21 2017-10-31 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法
CN110191626B (zh) * 2019-06-28 2021-03-02 Oppo广东移动通信有限公司 壳体组件、其制备方法以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192468A1 (en) * 2013-01-04 2014-07-10 Sony Corporation Frame structure of electronic device
CN103841784A (zh) * 2014-03-18 2014-06-04 亚超特工业有限公司 电子装置的内部中框板的成型方法及其该内部中框板
CN105188302A (zh) * 2014-06-17 2015-12-23 奇鋐科技股份有限公司 手持电子装置散热结构
CN104883859A (zh) * 2015-05-29 2015-09-02 联想(北京)有限公司 一种电子设备和壳体
CN106714507A (zh) * 2015-11-16 2017-05-24 华为技术有限公司 中框件及其生产方法
CN108099324A (zh) * 2017-12-29 2018-06-01 新奥石墨烯技术有限公司 移动终端背板及其制备方法以及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782551A (zh) * 2023-06-06 2023-09-19 荣耀终端有限公司 用于电子设备的壳体、电子设备及可折叠电子设备

Also Published As

Publication number Publication date
CN114375130A (zh) 2022-04-19
CN114375130B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021143674A1 (zh) 移动终端、均热板及其制备方法、电子设备
WO2021013160A1 (zh) 一种复合结构、柔性屏组件及折叠显示终端
CN101529359B (zh) 薄的被动冷却系统
US9049801B2 (en) Internal frame optimized for stiffness and heat transfer
WO2022078109A1 (zh) 一种中框及电子设备
TW200923619A (en) Mobile communication device, housing structure and manufacturing method of housing structure
EP2023388B1 (en) Semiconductor package
TW201236539A (en) Shell structure and electronic device having the same
TWI689580B (zh) 導熱性複合材料及其製造方法
CN107219711A (zh) 摄像头模组及移动终端
US20130050953A1 (en) Electronic device and method of radiating heat from electronic device
US20180309469A1 (en) Electronic Device Housing Utilizing A Metal Matrix Composite
WO2023179665A1 (zh) 散热模组和电子设备
US20220100237A1 (en) Ultra thin information handling system housing with hybrid assembly
CN207476080U (zh) 一种手机主板散热结构
WO2017045232A1 (zh) 一种天然石墨/铝复合散热片
CN207133751U (zh) 一种平板电脑的散热结构
CN209120267U (zh) 散热手机壳
CN210137565U (zh) 散热板、散热组件以及电子装置
US20240130084A1 (en) Housing and Electronic Device
CN111372173A (zh) 音圈和扬声器
CN104883859A (zh) 一种电子设备和壳体
CN204697157U (zh) 一种运动相机的散热结构
CN204578942U (zh) 散热组件
CN107306489A (zh) 散热片及散热片的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879155

Country of ref document: EP

Kind code of ref document: A1