WO2022077853A1 - Procédé pour l'extraction de polysaccharides actifs de grifola frondosa et polysaccharides actifs extraits et leur utilisation - Google Patents

Procédé pour l'extraction de polysaccharides actifs de grifola frondosa et polysaccharides actifs extraits et leur utilisation Download PDF

Info

Publication number
WO2022077853A1
WO2022077853A1 PCT/CN2021/080132 CN2021080132W WO2022077853A1 WO 2022077853 A1 WO2022077853 A1 WO 2022077853A1 CN 2021080132 W CN2021080132 W CN 2021080132W WO 2022077853 A1 WO2022077853 A1 WO 2022077853A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafiltration
grifola frondosa
permeate
extract
microfiltration
Prior art date
Application number
PCT/CN2021/080132
Other languages
English (en)
Chinese (zh)
Inventor
焦春伟
谢意珍
李舜贤
何春艳
马晓伟
陈家明
李洁仪
Original Assignee
广东粤微生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤微生物科技有限公司 filed Critical 广东粤微生物科技有限公司
Publication of WO2022077853A1 publication Critical patent/WO2022077853A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof

Definitions

  • the invention relates to a method for extracting polysaccharide, in particular to a method for extracting active polysaccharide from Grifola frondosa based on membrane filtration technology, and the active polysaccharide from Grifola frondosa extracted by the method and its application.
  • Grifola frondosa is a traditional edible and medicinal fungus in my country, which has good health care function and high medicinal value. Research results at home and abroad show that Grifola has the effects of reducing insulin resistance, controlling blood sugar, inhibiting the accumulation of fat cells, lowering blood pressure, enhancing immunity and anti-cancer.
  • Grifola frondosa polysaccharide is an extract from Grifola frondosa. It is composed of glucan, small molecule monosaccharide and a small amount of protein heterosaccharide complexes. Animal experiments and clinical experiments have shown that it can activate phagocytes, induce Apoptosis of cancer cells to play anti-cancer and anti-cancer effects.
  • the extraction and preparation of Grifola frondosa polysaccharides generally adopts water extraction and alcohol precipitation.
  • ethanol is added to remove water-soluble small molecular impurities such as water-soluble proteins and monosaccharides, and crude polysaccharides are precipitated.
  • the purification efficiency of alcohol precipitation is low, the composition in the precipitate is complex, the polysaccharide content is reduced, the efficacy and activity is affected, and the amount of ethanol used is large, resulting in high polysaccharide preparation and production cost, and causing a certain degree of environmental pollution.
  • the present invention provides a method for extracting Grifola frondosa active polysaccharide based on membrane filtration technology, which can greatly simplify the preparation process of Grifola frondosa polysaccharide, the extracted polysaccharide has high purity, and the extraction is performed in reverse according to the effect of the active polysaccharide. Screening of method parameters, such as ultrafiltration parameters, can make the extracted active polysaccharide have a significant effect, and also realize the industrial application of the extraction method.
  • the present invention achieves the above object through the following schemes:
  • a first aspect a method for extracting active polysaccharide from Grifola frondosa, comprising:
  • Microfiltration pretreatment is carried out on the extract of Grifola frondosa, the pore size of the microfiltration membrane is 100-400nm, the temperature is controlled at 25-60°C, and the operating pressure is within 1MPa, the microfiltration permeate is collected, and the microfiltration unpermeable liquid is discarded. liquid;
  • the microfiltration permeate is subjected to ultrafiltration treatment.
  • the pore size of the ultrafiltration membrane corresponds to the intercepted molecular weight of 1-18KDa, the operating pressure is 0.3-1MPa, and the temperature is controlled at 25-40°C.
  • the volume of the permeate is 40% of the total volume Stop the ultrafiltration when -75%, keep the ultrafiltration retentate that does not permeate the membrane, and discard the ultrafiltration permeate;
  • the obtained dry powder is the Grifola frondosa polysaccharide.
  • the invention further optimizes the parameters of the above extraction method to obtain a method with higher extraction efficiency and better purity: a method for extracting active polysaccharide from Grifola frondosa, comprising:
  • Microfiltration pretreatment is carried out on the extract of Grifola frondosa, the pore size of the microfiltration membrane is 100-200 nm, the temperature is controlled at 25-55 °C, and the operating pressure is within 0.8 MPa, the microfiltration permeate is collected, and the microfiltration unfiltered liquid is discarded. permeate;
  • the microfiltration permeate is subjected to ultrafiltration treatment, the pore size of the ultrafiltration membrane corresponds to the intercepted molecular weight of 2-15KDa, the operating pressure is 0.3-0.6MPa, and the temperature is controlled at 25-35°C.
  • the volume of the permeate is 55% of the total volume %-75%, stop the ultrafiltration, keep the ultrafiltration retentate that does not pass through the membrane, and discard the ultrafiltration permeate;
  • the obtained dry powder is the Grifola frondosa polysaccharide.
  • the separation process is equivalent to one-time pre-concentration, and then the microfiltration and ultrafiltration technologies are used in combination, which has the advantages of simple operation, low energy consumption, short production cycle, the filter membrane can be used multiple times, and the whole process of filtration is low temperature. There is no solvent residue in the operation, which can prevent the destruction of the active components in the Grifola frondosa extract to the greatest extent.
  • the inventor continuously adjusted the laboratory-scale extraction method to obtain an industrialized extraction method for Grifola frondosa active polysaccharide, including:
  • the microfiltration permeate is introduced into the ultrafiltration equipment, and the polysaccharides of different molecular weights are intercepted and purified with an ultrafiltration membrane.
  • the pore size of the ultrafiltration membrane corresponds to the intercepted molecular weight of 1-18KDa, the operating pressure is 0.3-1MPa, and the temperature is controlled at 25-40 °C, when the volume of the permeate is controlled at 40%-75% of the total volume, the ultrafiltration is stopped, the ultrafiltration retentate that does not permeate the membrane is retained, and the ultrafiltration permeate is discarded;
  • the obtained dry powder is the finished product of Grifola frondosa polysaccharide.
  • the inventor has successfully optimized the extraction method of the industrialized Grifola frondosa active polysaccharide in the laboratory-scale extraction method in combination with the above-mentioned research on extraction efficiency and purity, including:
  • the microfiltration membrane pore size is 100-200nm, the temperature is controlled at 25-55°C, and the operating pressure is within 0.8MPa, the microfiltration permeate is collected, and the microfiltration permeate is discarded. Filter the permeate;
  • the microfiltration permeate is introduced into the ultrafiltration equipment, and the polysaccharides of different molecular weights are intercepted and purified by the ultrafiltration membrane.
  • the pore size of the ultrafiltration membrane corresponds to the intercepted molecular weight of 2-15KDa, the operating pressure is 0.3-0.6MPa, and the temperature is controlled at 25-35 °C, when the volume of the permeate is controlled at 55%-75% of the total volume, the ultrafiltration is stopped, the ultrafiltration retentate that does not permeate the membrane is retained, and the ultrafiltration permeate is discarded;
  • the obtained dry powder is the finished product of Grifola frondosa polysaccharide.
  • the drying of the ultrafiltration retentate includes: one or more of spray drying, freeze drying, vacuum drying or normal pressure drying.
  • the microfiltration membrane material is one or more of ceramic membranes, organic polymer membranes, and metal membranes.
  • the pore size of the ultrafiltration membrane is less than 100 nm, the molecular weight cutoff is in the range of 1-18KDa, and the ultrafiltration membrane material is one or more of ceramic membranes, organic polymer membranes, and metal membranes.
  • the microfiltration operation belongs to a physical extraction liquid pretreatment method, and similar pretreatments such as vacuum filtration, activated carbon decolorization, low-speed centrifugation, and high-speed centrifugation can also be used. method; however, the inventor found that the combination of microfiltration and ultrafiltration is more conducive to the extraction of Grifola frondosa active polysaccharide and the life of the ultrafiltration membrane, and the extraction cost is saved.
  • the second method, the present invention provides a Grifola frondosa polysaccharide extracted by the above extraction method.
  • the molecular weight distribution of the Grifola frondosa active polysaccharide is more concentrated and the purity is higher.
  • the present invention provides the use of the Grifola frondosa active polysaccharide obtained by the above extraction in hypoglycemic.
  • the present invention provides the use of the Grifola frondosa active polysaccharide obtained by the above extraction in preparing a hypoglycemic drug.
  • the present invention has the following beneficial effects:
  • microfiltration and ultrafiltration technology has the advantages of simple operation, low energy consumption, short production cycle, and the filter membrane can be used multiple times. Active ingredients, while the separation process is equivalent to a pre-concentration;
  • the extraction solution is treated by microfiltration before ultrafiltration to remove larger suspended particles or colloidal substances in the extraction solution, thereby improving the ultrafiltration effect, reducing membrane pollution, helping to improve production efficiency and prolonging the service life of ultrafiltration membranes ,cut costs;
  • the method of the present invention is suitable for industrialization and has good economic prospects.
  • the Grifola frondosa polysaccharide extracted by the present invention has higher purity, more concentrated molecular weight distribution, and more significant hypoglycemic effect.
  • FIG. 1 is a molecular weight distribution diagram of Grifola frondosa polysaccharide (GFE) in Test Example 1.
  • GFE Grifola frondosa polysaccharide
  • FIG. 2 is a molecular weight distribution diagram of the Grifola frondosa active polysaccharide (GFH5) of the present invention in Test Example 1.
  • FIG. 2 is a molecular weight distribution diagram of the Grifola frondosa active polysaccharide (GFH5) of the present invention in Test Example 1.
  • the microfiltration permeate is introduced into the ultrafiltration equipment.
  • the pore size of the ultrafiltration membrane corresponds to the molecular weight of 5KDa or more, the operating pressure is 0.5MPa, and the temperature is controlled at 35°C.
  • the ultrafiltration is stopped. , retaining the ultrafiltration retentate that did not permeate the membrane to obtain 170L of the retentate;
  • Grifola frondosa polysaccharide in Example 1 was prepared as a control.
  • Grifola frondosa polysaccharide refers to the method of Test Example 1.
  • Healthy male SD rats weighing 160-180 g, with 111 rats, were purchased from the Guangdong Provincial Medical Laboratory Animal Center. The rats were housed in the SPF animal room of the Guangdong Provincial Laboratory Animal Monitoring Institute at a temperature of 22-23°C and a relative humidity of 50-60%.
  • Modeling method Feeding animals with high-sugar and high-fat diet can form an animal model of glucose metabolism disorder, and then intraperitoneal injection of alloxan can form insulin resistance, induce experimental diabetes, and form a type 2 diabetes rat model.
  • Dosing method The recommended dose of human body (1.8g/d) was set as 112.5, 225, 675 mg/kg ⁇ BW for low, medium and high dose groups, which is equivalent to 5 times, 10 times and 30 times of the recommended dose of human body.
  • the GFE group was given 675 mg/kg ⁇ BW by intragastric administration, which was equivalent to 30 times the recommended human dose.
  • a normal control group and a negative control group were set up, and the same amount of vehicle was administered orally, and the positive control group was administered with metformin hydrochloride tablets 200 mg/kg by intragastric administration.
  • the body weight was weighed every 3 days, and the amount of gavage was adjusted accordingly.
  • the test samples were continuously gavaged for 48 days.
  • Test method After the adaptation period, the rats were randomly divided into groups according to their body weight, with 15 rats in each of the normal group, model group and positive group, and 16 rats in each of the three dose groups of GFE and GFH5. The test samples of different concentrations were given to the stomach, the model control group was given the same volume of solvent, and the normal group was left untreated. After 3 consecutive weeks, the model control group and the sample group were fasted for 24 hours (without water), and given alloxan 103 mg/kg.BW intraperitoneal injection, the injection volume was 1 mL/100 g body weight. Continue to give high-calorie feed for 20 days after injection. On the 20th day after injection, the rats in each group were fasted for 4 hours, and fasting blood glucose and glucose tolerance were detected.
  • the GFH5 low-dose and middle-dose administration groups had fasting blood glucose, blood glucose at 0.5, 2 hours after glucose administration, and 0, 0.5, and 2 hours.
  • the reduction of the area under the blood glucose curve was statistically significant, so the results of fasting blood glucose and glucose tolerance indexes in the low-dose and middle-dose groups of GFH5 were determined to be positive.
  • the model group there was no significant difference in the decrease of fasting blood glucose at high dose of GFH5, but the decrease of blood glucose and the area under the curve of blood glucose at 0.5 and 2 hours after glucose administration was statistically significant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

La présente invention concerne un procédé pour l'extraction de polysaccharides actifs de Grifola frondosa sur la base d'une technologie de filtration sur membrane et des polysaccharides actifs de Grifola frondosa extraits par le procédé et une utilisation de ceux-ci. Le procédé comprend : (1) l'ajout d'eau à une matière première à base de sporocarpes de Grifola frondosa et la mise en œuvre d'une combinaison et d'une concentration sous vide pour obtenir un concentré d'extrait de Grifola frondosa ; (2) la mise en œuvre d'un prétraitement de microfiltration sur le concentré d'extrait de grifola frondosa ; (3) la mise en œuvre d'un traitement d'ultrafiltration sur le perméat de microfiltration ; et (4) le séchage du rétentat d'ultrafiltration pour obtenir des polysaccharides de Grifola frondosa. La présente invention présente les effets avantageux suivants : (1) l'endommagement de composants actifs présents dans l'extrait de Grifola frondosa est évité au maximum et un processus de séparation est équivalent à une préconcentration primaire ; la technologie d'ultrafiltration utilisée selon la présente invention convient tout à fait à la séparation de composants efficaces présents dans l'extrait et l'élimination de composants dont l'efficacité est médiocre ou nulle ; la pureté des polysaccharides de Grifola frondosa préparés est supérieure à celle des polysaccharides préparés au moyen d'un processus classique ; l'effet de l'ultrafiltration est amélioré, la pollution de la membrane est réduite, l'efficacité de la production est améliorée, la durée de vie de la membrane d'ultrafiltration est prolongée et les coûts sont réduits ; et la présente invention convient à une industrialisation et présente de bonnes perspectives économiques.
PCT/CN2021/080132 2020-10-15 2021-03-11 Procédé pour l'extraction de polysaccharides actifs de grifola frondosa et polysaccharides actifs extraits et leur utilisation WO2022077853A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011101483.6A CN112225827A (zh) 2020-10-15 2020-10-15 一种灰树花活性多糖的提取方法及提取的活性多糖和用途
CN202011101483.6 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022077853A1 true WO2022077853A1 (fr) 2022-04-21

Family

ID=74113140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080132 WO2022077853A1 (fr) 2020-10-15 2021-03-11 Procédé pour l'extraction de polysaccharides actifs de grifola frondosa et polysaccharides actifs extraits et leur utilisation

Country Status (2)

Country Link
CN (1) CN112225827A (fr)
WO (1) WO2022077853A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225827A (zh) * 2020-10-15 2021-01-15 广东粤微生物科技有限公司 一种灰树花活性多糖的提取方法及提取的活性多糖和用途
CN113968919A (zh) * 2021-11-25 2022-01-25 浙江百山祖生物科技有限公司 一种不含辅料的食用菌提取物及其制备方法
CN114149514B (zh) * 2022-01-05 2022-12-06 江苏华骏生物科技有限公司 一种舞茸提取物的提取方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736053A (zh) * 2010-02-01 2010-06-16 南京泽朗医药科技有限公司 一种提取灰树花水溶性多糖的工艺
CN102408494A (zh) * 2011-11-30 2012-04-11 杭州众芝康菇生物技术有限公司 一种灰树花多糖zzk组分及其制备方法
CN103724445A (zh) * 2013-12-25 2014-04-16 广东省微生物研究所 灰树花多糖f2的制备方法及其降血糖功能
CN104262501A (zh) * 2014-09-30 2015-01-07 天津生机集团股份有限公司 双膜法提取灰树花发酵液多糖的方法
JP5882635B2 (ja) * 2011-08-22 2016-03-09 株式会社雪国まいたけ マイタケ由来の高分子α−グルカン
CN105732250A (zh) * 2016-02-06 2016-07-06 福建农林大学 一种高纯度灰树花多酚组分的制备方法
CN112225827A (zh) * 2020-10-15 2021-01-15 广东粤微生物科技有限公司 一种灰树花活性多糖的提取方法及提取的活性多糖和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102972213B (zh) * 2012-12-31 2014-04-09 黄河三角洲京博化工研究院有限公司 一株灰树花菌株及利用该菌株进行液体发酵联产漆酶和β-葡聚糖的方法
CN110559332A (zh) * 2019-10-11 2019-12-13 广东粤微生物科技有限公司 一种灵芝灰树花降血糖组合物及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736053A (zh) * 2010-02-01 2010-06-16 南京泽朗医药科技有限公司 一种提取灰树花水溶性多糖的工艺
JP5882635B2 (ja) * 2011-08-22 2016-03-09 株式会社雪国まいたけ マイタケ由来の高分子α−グルカン
CN102408494A (zh) * 2011-11-30 2012-04-11 杭州众芝康菇生物技术有限公司 一种灰树花多糖zzk组分及其制备方法
CN103724445A (zh) * 2013-12-25 2014-04-16 广东省微生物研究所 灰树花多糖f2的制备方法及其降血糖功能
CN104262501A (zh) * 2014-09-30 2015-01-07 天津生机集团股份有限公司 双膜法提取灰树花发酵液多糖的方法
CN105732250A (zh) * 2016-02-06 2016-07-06 福建农林大学 一种高纯度灰树花多酚组分的制备方法
CN112225827A (zh) * 2020-10-15 2021-01-15 广东粤微生物科技有限公司 一种灰树花活性多糖的提取方法及提取的活性多糖和用途

Also Published As

Publication number Publication date
CN112225827A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022077853A1 (fr) Procédé pour l'extraction de polysaccharides actifs de grifola frondosa et polysaccharides actifs extraits et leur utilisation
CN106366136A (zh) 一种唾液酸及其制备方法、用途
CN101961371B (zh) 从甜味绞股蓝中提取分离人参皂苷、黄酮、多糖的方法
US10835552B2 (en) Method for preparing linseed polysaccharide having antiviral activity and immunological activity, and use of the linseed polysaccharide
CN102838686B (zh) 一种制备高纯度姬松茸多糖的方法
CN108047343B (zh) 伊贝母总多糖的制备方法及其应用
CN106279461B (zh) 一种硒化玛咖多糖及其制备方法和用途
CN104926954A (zh) 一种从肉苁蓉中分离制备多糖、低聚糖及甘露醇的方法
CN1814166A (zh) 注射用生脉粉针制剂及其制备方法
CN101084945A (zh) 油橄榄叶提取物及其制备方法
CN102108352A (zh) 一种菠萝蛋白酶的固定化方法
WO2021042700A1 (fr) Procédé d'extraction de polysaccharides de chanvre, produit ainsi obtenu et son utilisation
CN110772630A (zh) 活化胰岛素受体及调控血糖的复合苦瓜肽口服液及制备方法
US20220370541A1 (en) Activated insulin, compound momordica charantia peptide oral medicine for treatment of diabetes, and preparation method
CN111248440B (zh) 一种功能性茉莉花低聚糖口服液及其应用
US3856945A (en) Method of reducing serum cholesterol level with extract of konjac mannan
CN109806285B (zh) 一种具有降尿酸活性的辣木叶提取物及其制备方法与应用
CN101036631A (zh) 一种银杏叶纯化冻干粉制备工艺
CN113100320B (zh) 一种具有缓解亚健康疲劳功能的核桃低聚肽糖果及其制备方法
CN108969580B (zh) 蓝布正总鞣质的制备方法及应用
CN103705907B (zh) 一种鳖甲活性多肽提取物的制备方法及应用
CN113061199A (zh) 一种纳滤膜浓缩提取粗品肝素钠的工艺
CN116622002B (zh) 一种辣木叶提取物的制备方法
CN107982303B (zh) 大株红景天注射液的醇沉方法
CN109259165A (zh) 一种澄清蜂蜜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878909

Country of ref document: EP

Kind code of ref document: A1