WO2022077812A1 - 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用 - Google Patents

十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用 Download PDF

Info

Publication number
WO2022077812A1
WO2022077812A1 PCT/CN2021/074976 CN2021074976W WO2022077812A1 WO 2022077812 A1 WO2022077812 A1 WO 2022077812A1 CN 2021074976 W CN2021074976 W CN 2021074976W WO 2022077812 A1 WO2022077812 A1 WO 2022077812A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc phthalocyanine
phthalocyanine
phenoxy
preparation
zinc
Prior art date
Application number
PCT/CN2021/074976
Other languages
English (en)
French (fr)
Inventor
黄剑东
郑秉得
柯美荣
郑碧远
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to AU2021362841A priority Critical patent/AU2021362841B2/en
Priority to US18/246,979 priority patent/US20230374043A1/en
Publication of WO2022077812A1 publication Critical patent/WO2022077812A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the invention relates to the technical field of preparation of photodynamic drugs or photosensitizers, in particular to a phthalocyanine modified by a hexadecylammonium group, a preparation method thereof, and an application as a photodynamic drug.
  • Photodynamic therapy is a newly developed highly effective and palliative anti-cancer approach, which has attracted great research interest in the past decade. Compared with traditional cancer treatments (eg, surgery, chemotherapy, radiotherapy), it is a It is non-invasive, has almost no side effects and drug resistance, and has the advantages of low systemic toxicity, high therapeutic efficiency, good tumor targeting and broad anti-cancer properties. At present, fungal infections, drug-resistant fungal diseases, and bacterial infections have become widespread and increasingly become a serious threat to public health. This situation has prompted the development of novel antifungal/bacterial drugs and treatment strategies. Photodynamic antibacterial is a new method for the treatment of pathogenic fungi/bacteria. Compared with traditional drug treatment, photodynamic antibacterial has the advantages of wide range of action, no drug resistance and less damage to host tissue.
  • Phthalocyanine is an aromatic heterocycle with 18 ⁇ electrons composed of four nitrogen atoms bridged by isoindole ring, which simulates the biological value of the precursor molecule porphyrin, and improves the spectral and photochemical properties of porphyrin. specificity to tumor targets.
  • the phthalocyanine molecule has a cavity in the center, which can chelate 63 different element ions, and has a strong absorption band in the near-infrared region, which enhances the tissue penetration ability of light.
  • Phthalocyanine as a second-generation photosensitizer, has many advantages in the field of photodynamic therapy. For example: (1) Compared with porphyrin (400-600nm), the maximum absorption wavelength of phthalocyanine is greater than 670nm, and the extinction coefficient is high (more than 10 5 M -1 cm -1 ), and the photosensitization ability is strong. (2) The structure is easy to modify and the stability is good. (3) The dark toxicity is low, the radiation can penetrate the tissue to a greater extent, and the visible light region of 400-600nm is avoided as much as possible. Therefore, the photosensitivity toxicity of sunlight to the skin can be significantly reduced. (4) No drug resistance.
  • phthalocyanine has been widely used in the field of photodynamic therapy.
  • the currently reported biologically active phthalocyanine complexes still have shortcomings, such as easy aggregation in water, or complex synthetic routes, or poor targeting, or the therapeutic window is not in the near-infrared region, or the metabolism is slow, Or more liver retention, etc., need to be further improved.
  • the great application range and the refinement of the treatment lesions it is also necessary to prepare more advantageous phthalocyanine complexes as drug candidates.
  • the purpose of the present invention is to provide a zinc phthalocyanine modified with a hexadecylamino group or a hexadecylammonium group, a preparation method thereof, and an application as a photodynamic drug.
  • the zinc phthalocyanine complex provided by the invention has high photodynamic activity, readily available raw materials, simple preparation, and is not easy to aggregate in a physiological system, has high stability, has a significant red-shift of the spectrum to the near-infrared region, has good targeting properties, and has a rapid in vivo metabolism. Fast, can be applied to photodynamic therapy or photodynamic antibacterial.
  • the invention provides a hexadecylamino modified zinc phthalocyanine, which is a tetra-substituted zinc phthalocyanine complex at peripheral ⁇ and ⁇ positions, the structure of which contains 3-(dimethylamino)phenoxy substitution group, the substituent group is located in the peripheral ⁇ and ⁇ positions of the phthalocyanine ring, namely 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25 position, can be named 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-hexadeca[3-(dimethylamino)benzene Oxy] zinc phthalocyanine complex, or hexadeca-[3-(dimethylamino) phenoxy] zinc phthalocyanine complex; its specific structural formula is as follows:
  • the preparation method of the above-mentioned hexadecylamino modified zinc phthalocyanine comprises the following steps:
  • the molar ratio of 3,4,5,6-tetrachlorophthalonitrile and N,N-dimethyl-3-aminophenol in step 1) is 1:5.5 ⁇ 6.0, N,N-di
  • the amount of methylformamide is 5-6 mL per mmol of 3,4,5,6-tetrachlorophthalonitrile, and the amount of potassium carbonate is per mmol of 3,4,5,6-tetrachlorophthalonitrile Use 7.5 to 8 mmol;
  • the molar ratio of 3,4,5,6-tetra[3-(dimethylamino)phenoxy]phthalonitrile and zinc acetate used in step 2) is 2 ⁇ 4:1, and the amount of methanol is per mmol 3,4,5,6-Tetra[3-(dimethylamino)phenoxy]phthalonitrile, 10-15mL, 1,8-diazabicyclo[5.4.0]undec-7 -The amount of alkene is 3 to 4 mL per mmol of 3,4,5,6-tetrakis[3-(dimethylamino)phenoxy]phthalonitrile.
  • the present invention also claims a zinc phthalocyanine modified with hexadecylammonium group, which is also a tetra-substituted zinc phthalocyanine complex at peripheral ⁇ and ⁇ positions, and its structure contains 3-(trimethylammonium)phenoxy
  • the substituent groups are located in the peripheral ⁇ and ⁇ positions of the phthalocyanine ring, namely 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24 , 25 position, can be named 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-hexadeca[3-(trimethylammonium)benzene Oxy] zinc phthalocyanine complex, or hexadeca-[3-(trimethylammonio) phenoxy] zinc phthalocyanine complex; its specific structural formula is as follows:
  • X is I or Br.
  • the preparation method of the above-mentioned hexadecylammonium group-modified zinc phthalocyanine comprises the following steps:
  • the molar ratio of 3,4,5,6-tetrachlorophthalonitrile and N,N-dimethyl-3-aminophenol in step 1) is 1:5.5 ⁇ 6.0, N,N-di
  • the amount of methylformamide is 5-6 mL per mmol of 3,4,5,6-tetrachlorophthalonitrile, and the amount of potassium carbonate is per mmol of 3,4,5,6-tetrachlorophthalonitrile Use 7.5 to 8 mmol;
  • the molar ratio of 3,4,5,6-tetra[3-(dimethylamino)phenoxy]phthalonitrile and zinc acetate used in step 2) is 2 ⁇ 4:1, and the amount of methanol is per mmol 3,4,5,6-Tetra[3-(dimethylamino)phenoxy]phthalonitrile, 10-15mL, 1,8-diazabicyclo[5.4.0]undec-7 -The amount of alkene is 3 to 4 mL per mmol 3,4,5,6-tetra[3-(dimethylamino)phenoxy]phthalonitrile;
  • step 3 the amount of methyl iodide or methyl bromide used is 0.8-2 mL per 0.1 mmol of hexadecylamino-modified zinc phthalocyanine, and the amount of solvent is 1.0-2.0 mL per 0.1 mmol of hexadecylamino-modified zinc phthalocyanine N,N - Dimethylformamide or 1.0 to 2.0 mL of chloroform.
  • the hexadecylamino group-modified zinc phthalocyanine and the hexadecylamino group-modified zinc phthalocyanine provided by the present invention can be used for preparing photosensitizers or photodynamic drugs or photosensitizers.
  • Said photosensitizer, or photosensitizer for short, or photosensitizer preparation, also known as photodynamic agent, can be used for photodynamic therapy, photodynamic diagnosis or photodynamic disinfection.
  • the photodynamic therapy can be the photodynamic therapy of malignant tumors, or the extracorporeal photodynamic purification therapy of leukemia, or the photodynamic therapy of non-cancer diseases, such as fungal infection, bacterial infection, oral disease, macular degeneration, eye disease, arteriosclerosis. , trauma infection, skin disease, viral infection.
  • the photodynamic disinfection can be photodynamic sterilization and purification of blood or blood derivatives, or photodynamic sterilization and disinfection of water, or photodynamic disinfection of medical or domestic appliances
  • the application of the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention in photodynamic therapy, photodynamic diagnosis and photodynamic disinfection requires a suitable light source, and the suitable light source can be It is provided by a common light source connected with a suitable filter or provided by a laser with a specific wavelength. The wavelength of the light source is 680-730nm.
  • the method for preparing a photosensitizer by using the zinc phthalocyanine of the present invention is as follows: after dissolving the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention with water or a mixed solution of water and other substances , is formulated to contain a certain concentration of photosensitizers (the concentration of zinc phthalocyanine complex is not higher than the concentration in its saturated solution); add antioxidants, buffers, isotonic agents and other additives to the prepared solution to maintain photosensitivity Chemical stability and biocompatibility of pharmaceutical agents.
  • the mass fraction of other substances in the mixed solution is not higher than 10%; the other substances are castor oil derivatives, dimethyl sulfoxide, ethanol, glycerol, N,N-dimethylformamide, polyethylene glycol 300 -3000, one or more mixtures of cyclodextrin, glucose, Tween, and polyethylene glycol monostearate.
  • the cetylamino-modified zinc phthalocyanine or cetylamino-modified zinc phthalocyanine of the present invention may be dissolved in an osmotic solvent, or injected into an ointment, lotion or gel
  • the osmotic solvent is preferably an aqueous solution with a mass fraction of 5-35 wt % dimethyl sulfoxide.
  • the hexadecylamino group-modified zinc phthalocyanine or the hexadecylamino group-modified zinc phthalocyanine provided by the present invention the ⁇ -position and the ⁇ -position around the phthalocyanine ring are simultaneously substituted by an amino group or an ammonium group, and its structure Unambiguous, free of positional isomers, and easy to prepare.
  • the maximum absorption wavelength of the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention is red-shifted to 720 nm, and the molar absorption coefficient is large (up to the order of 10 5 ), and the effect spectrum is The tissue penetration ability is further improved, which is very beneficial for photodynamic therapy and photodynamic diagnosis.
  • the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention does not require any surfactant or organic solvent to assist in solubilization, and can be used as a monomer in an aqueous system exist, so that the photodynamic activity can be greatly improved, showing the potential advantages as a photodynamic drug.
  • the photodynamic activity of the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention is significantly higher than that of other similar compounds, for example, tetra- ⁇ -(2,4, 6-Tris(N,N,N-trimethylammoniomethyl)-phenoxy) phthalocyanine zinc dodecaidonium salt.
  • the hexadecylamino-modified zinc phthalocyanine or the hexadecylamino-modified zinc phthalocyanine provided by the present invention has good tumor targeting. At the same time, its clearance rate in the body is fast (faster than other phthalocyanine photosensitizers), and its biological safety is high.
  • the hexadecylamino-modified zinc phthalocyanine or the hexadecylammonium-modified zinc phthalocyanine provided by the present invention has a high photodynamic tumor-inhibiting effect, and the tumor-inhibiting rate is over 90%.
  • the hexadecylamine group-modified zinc phthalocyanine or the hexadecylamine group-modified zinc phthalocyanine provided by the present invention has good photodynamic antibacterial activity, and its IC 90 has reached the nM level, compared with the commonly used photosensitizer MB The IC 90 value (5.9 ⁇ M) was increased 86-fold.
  • Figure 1 is the UV-Vis absorption spectrum (4 ⁇ M) of the zinc phthalocyanine complexes obtained in Examples 1-8 in water.
  • X is I.
  • the characterization data of the product are as follows: 1 H NMR (400 MHz, DMSO-d6, ppm): ⁇ 9.57-8.81 (m, 8H, Pc-H ⁇ ), 8.40-8.00 (m, 7H, Pc-H ⁇ , Ar- H), 7.97-7.55 (m, 7H, Ar-H), 3.74 (s, 18H, CH3 ).
  • the characterization data of the product are as follows: 1 H NMR (400 MHz, DMSO-d6, ppm): ⁇ 9.26 (s, 3H, Pc-H ⁇ ), 8.95 (s, 1H, Pc-H ⁇ ), 8.19-7.94 (m ,6H,Pc-H ⁇ ,Pc-H ⁇ ),7.23-6.90(m,8H,Pc-H ⁇ ,Ar-H),6.62-6.34(m,8H,Ar-H),6.27(s,2H , Ar-H), 3.13-2.61 (m, 24H, CH 3 ).
  • X is I.
  • Dissolved with a small amount of dichloromethane precipitated with a large amount of methanol, filtered with suction, washed with methanol, water and saturated brine respectively, and dried under vacuum. It was dissolved with a small amount of N,N-dimethylformamide, washed with a large amount of water to separate out, washed with suction filtration, and dried under vacuum.
  • the characterization data of the product are as follows: 1 H NMR (400 MHz, CDCl 3 -d+a drop pyridine-d5, ppm): ⁇ 9.00 (s, 8H, Pc-H ⁇ ), 8.02 (s, 2H, Ar-H) , 7.22 (s, 6H, Ar-H), 6.81-6.28 (m, 24H, Ar-H), 3.10-2.76 (m, 48H, CH3 ).
  • X is I.
  • synthesis of hexadeca-[3-(dimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt comprises the following steps:
  • X is I.
  • the characterization data of the product are as follows: 1 HNMR (400MHz, DMSO-d6, ppm): ⁇ 8.02 (s, 8H, Ar-H), 7.70-6.99 (m, 56H, Ar-H), 3.50 (s, 82H, CH3 ), 3.47 (s, 62H, CH3 ).
  • Example 1 The product obtained in Example 1 is 2,3-bis[3-(dimethylamino)phenoxy] phthalocyanine zinc complex, and the product obtained in Example 2 is 2,3-bis[3-(trimethylamino)phenoxy] ] Zinc phthalocyanine diiodide salt, 1,2,3,4-bis[3-(dimethylamino)phenoxy] phthalocyanine zinc complex, product obtained in Example 3, 1,2, product obtained in Example 4, 3,4-bis[3-(trimethylamino)phenoxy]phthalocyanine zinc tetraiodide salt, product obtained in Example 5, octa- ⁇ -[3-(dimethylamino)phenoxy]phthalocyanine zinc complex compound, the product obtained in Example 6, octa- ⁇ -[3-(trimethylamino)phenoxy] phthalocyanine zinc octaiodo salt, the product obtained in Example 7, hexadeca-[3-(dimethylamino)phenoxy]
  • the band is a strong and sharp peak, indicating that the product obtained in Example 7, hexadeca-[3-(dimethylamino)phenoxy] phthalocyanine zinc complex, and the product obtained in Example 8, hexadeca-[3-(trimethylammonium)
  • the hexadecyl iodide salt of zinc phthalocyanine is a monomer in water, and its maximum absorption wavelengths are 727nm and 714nm, respectively, which is favorable for photodynamic therapy.
  • Example 8 the singlet oxygen of hexadeca-[3-(trimethylammonium)phenoxy]phthalocyanine zinc hexadeciodonium salt obtained in Example 8 was measured in water The yield was 0.44, while the ability of the products obtained in Example 2, Example 4 and Example 6 to photosensitize to singlet oxygen in water were 0.42, 0.19 and 0.14, respectively.
  • the method for preparing the photosensitizer by using the zinc phthalocyanine complex of the present invention is as follows: after dissolving the zinc phthalocyanine complex in water or a mixed solution of water and other substances, preparing a photosensitizer containing a certain concentration (the zinc phthalocyanine complex) The concentration is not higher than that in its saturated solution); additives such as antioxidants, buffers, isotonic agents, etc. are added to the prepared pharmaceutical solution to maintain the chemical stability and biocompatibility of the photosensitizer.
  • the mass fraction of other substances in the mixed solution is not higher than 10%; the other substances are castor oil derivatives (Cremophor EL), dimethyl sulfoxide, ethanol, glycerol, N,N-dimethylformamide, polyamide One or more mixtures of ethylene glycol 300-3000, cyclodextrin, glucose, Tween, and polyethylene glycol monostearate.
  • castor oil derivatives Cosmetic EL
  • dimethyl sulfoxide ethanol
  • glycerol glycerol
  • N,N-dimethylformamide polyamide
  • the zinc phthalocyanine complex of the present invention is dissolved in an aqueous solution of 5-35wt% dimethyl sulfoxide, and can be used as a topical medicinal preparation.
  • the preparation of photodynamic drugs, photosensitizers or photosensitizers by using the zinc phthalocyanine complex of the present invention and its use in photodynamic therapy, photodynamic diagnosis or photodynamic disinfection are different from those in the prior art using phthalocyanines other than those described in the present invention.
  • the preparation method of the zinc complex or the porphyrin compound is the same as the use method, but it needs to be matched with a suitable light source.
  • the suitable light source can be provided by a common light source connected to a suitable filter or by a laser with a specific wavelength.
  • the wavelength range of the light source It is 300-800 nm, preferably 680-730 nm.
  • the main steps are as follows: dissolving the above photosensitizer in water to prepare a 1mM photosensitizer, and then diluting it into a cell culture solution to prepare a cell culture solution containing different concentrations of zinc phthalocyanine complexes.
  • Human hepatoma cells HepG2 were cultured in culture medium containing different concentrations of zinc phthalocyanine complexes for 2 hours, then the culture medium was discarded, cells were washed with PBS, and new culture medium (without zinc phthalocyanine complexes) was added. .
  • the excitation light source used was red light with a wavelength greater than 600 nm, irradiated for 30 minutes, and the power of the irradiated light was 15 mW ⁇ cm -2 ); in the no light group, the cells were placed in the dark for 30 minutes minute. After light or no light, the viability of cells was examined by MTT colorimetry.
  • the above-mentioned red light with a wavelength greater than 610nm is provided by connecting a 500W halogen lamp to a heat-insulating water tank and adding a filter greater than 610nm.
  • Example 2 Example 4, Example 6 or Example 8 had no killing and growth inhibitory effects on HepG2 cells, indicating no dark toxicity; Both the zinc phthalocyanine complexes obtained in Example 2 and Example 4 showed high photodynamic anticancer activity.
  • the half-lethal concentration that is, killing The drug concentration required for 50% cancer cells
  • IC 50 The drug concentration required for 50% cancer cells
  • Example 4 The 1,2,3,4-bis[3-(trimethylammonio)phenoxy] phthalocyanine zinc tetraiodide salt
  • 60nM the octa- ⁇ -[3-(trimethylammonio) described in Example 6) phenoxy] phthalocyanine zinc octaiodo salt
  • 40nM hexadeca-[3-(trimethylammonio) phenoxy] phthalocyanine zinc octaiodide salt described in Example 8
  • hexadecyl-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt showed the lowest IC 50 value, indicating that the hexadecylammonium phthalocyanine of the present invention has higher photodynamic activity.
  • a tumor-bearing (hepatocellular carcinoma H22) mouse model was established, and 100 ⁇ L of phthalocyanine solution (administration dose: 0.8 mol ⁇ Kg -1 ) was injected through the tail vein. Small animal live imaging was performed over the next 24 hours.
  • the zinc phthalocyanine complex of Example 4 has poor enrichment ability at tumor sites.
  • Example 2 and Example 6 show that the zinc phthalocyanine complexes obtained in Example 2 and Example 6 are enriched to different degrees in organs such as liver and spleen, and the metabolism is slow; Ammonium) phenoxy] phthalocyanine zinc hexadeciodonium salt showed excellent targeting and fast metabolism in vivo.
  • the zinc phthalocyanine complex obtained in Example 8 was dissolved in physiological saline and diluted to obtain a solution to be tested.
  • 6 KM mice with subcutaneous tumors were taken, and each drug was divided into 4 groups (administration + laser group, medication group, normal saline group and normal saline + laser group), 5 mice in each group;
  • the size is 60-100 mm 3
  • 100 ⁇ L of phthalocyanine aqueous solution is intravenously injected, and the dosage is 0.8 mol ⁇ Kg -1 .
  • the mice were anesthetized and irradiated with 685 ⁇ 5 nm laser light (light intensity 9.4 mW ⁇ cm ⁇ 2 , light time 10 minutes).
  • 685 ⁇ 5 nm laser light light intensity 9.4 mW ⁇ cm ⁇ 2 , light time 10 minutes.
  • mice in the normal saline group increased by about 18 times, and the hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt administration + laser group had no effect on the tumor.
  • the tumor inhibition rate in mice was up to 98.7% (p ⁇ 0.001), which indicated that hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt had good antitumor activity.
  • mice in the treatment group increased within 14 days, indicating that hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt had no obvious toxicity to mice and had good biocompatibility. sex.
  • 1 mM photosensitizer was diluted into PBS to prepare PBS solutions containing different concentrations of zinc phthalocyanine complexes, and then Staphylococcus aureus was cultured in PBS containing different concentrations of zinc phthalocyanine complexes for 4 hours.
  • the cells were irradiated with red light.
  • the excitation light source used was red light with a wavelength greater than 610 nm for 30 minutes.
  • the power of the light was 15 mW ⁇ cm -2 ; the cells in the no light group were placed in the dark for 30 minutes.
  • the cell suspension was inoculated on the surface of Luria-Bertani medium, and after 48 hours of culture, the dark toxicity and photodynamic activity of the photosensitizer to Staphylococcus aureus were examined by the number of colonies.
  • the above-mentioned red light with a wavelength greater than 610nm is provided by connecting a 500W halogen lamp to a heat-insulating water tank and adding a filter greater than 610nm.
  • Example 2 Example 4, Example 6 or Example 8 have no killing and growth inhibitory effect on Staphylococcus aureus, indicating that there is no dark toxicity; After that, the zinc phthalocyanine complexes obtained in Example 2 and Example 4 both showed high photodynamic antibacterial activity.
  • the IC 90 that is, killing 90% of golden yellow
  • Staphylococcus required drug concentration respectively 85nM (2,3-bis[3-(trimethylammonio)phenoxy]phthalocyanine zinc diiodide salt described in Example 2), 74nM (described in Example 4) 1,2,3,4-bis[3-(trimethylammonio)phenoxy] phthalocyanine zinc tetraiodide), 71nM (octa- ⁇ -[3-(trimethylammonio)phenoxy described in Example 6) [methyl] phthalocyanine zinc octaiodide) and 69 nM (hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc octaiodide as described in Example 8), compared to the IC 90 of the commonly used photosensitizer MB value (5.9 ⁇ M), which were increased by 69 times, 80 times, 83 times and 86 times, respectively, indicating that hexadeca-[3-(trimethylammonium)
  • a depilated common-grade KM female mouse (about 20 g) was subcutaneously inoculated with 0.1 mL of PBS solution of Staphylococcus aureus colonies in the right abdomen, and the bacterial concentration was 1-2 ⁇ 10 6 CFU ⁇ mL -1 , and the treatment was ready after two days of inoculation.
  • Set up 4 groups respectively, namely hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt + laser group, hexadeca-[3-(trimethylammonio)phenoxy]phthalocyanine Zinc hexadecyl iodide group, blank+laser group and blank group.
  • a sterile absorbent pad for wound dressing was infiltrated with 100 ⁇ L of phthalocyanine aqueous solution (containing 1% CEL), applied to the wound of the administration group, and fixed with zinc oxide tape. Apply for 2 hours each time, then change the dressing once, and continue to apply for 2 hours.
  • the blank group was given saline dressing. After 4 hours, the light group was given laser 685 ⁇ 5nm (light intensity 9.4mW ⁇ cm -2 , light time 5 minutes) for treatment. Observation was recorded for 15 days.
  • the tissue at the infection site was cut, ground and extracted into bacterial suspension with 1 mL of sterile PBS, diluted 50 times, and spread on the surface of the corresponding Luria-Bertani medium. Cultivated in an incubator, and counted after 24 hours.
  • the treated site was sheared, and the sheared tissue was ground and cultured in Luria-Bertani medium for an additional 24 hours.
  • the hexadeca-[3-(trimethylammonio)phenoxy] phthalocyanine zinc hexadeciodonium salt+laser group could hardly see the Staphylococcus aureus colony with a 98% inhibition rate, while the other three groups showed a large amount of gold Colony of Staphylococcus aureus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及骨移植技术领域,提供了一种十六胺基或十六铵基修饰的酞菁锌及其制备方法与应用,酞菁锌结构中3-(二甲胺基)苯氧基取代基团或3-(三甲铵基)苯氧基取代基团存在于酞菁环周边的α和β位。所得酞菁锌配合物具有高光敏活性、高水溶性的特点,其在水中以单体形式存在,有利于在水体中发挥光动力活性,且其吸收光谱红移至720nm,位于更加有利于穿透人体组织的近红外区,因此其具有较高的肿瘤靶向性和光动力抑制肿瘤效果,且体内清除快,可用于制备光敏剂或光动力药物或光敏药剂。同时,本发明所得酞菁锌配合物具有较高的光动力抗真菌活性。

Description

十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用
本申请要求于2020年10月16日提交中国专利局、申请号为202011112741.0、发明名称为“十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光动力药物或光敏剂制备技术领域,特别涉及十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用。
背景技术
光动力治疗是新发展起来的一种高效的可姑息的抗癌手段,在过去的十年中引起了巨大的研究兴趣,与传统的癌症治疗相比(如手术、化疗、放疗),它是无创的、几乎没有副作用和耐药性,并且具全身毒性低、治疗效率高、肿瘤靶向性好和抗癌广谱性等优势。目前,真菌感染、耐药真菌病以及细菌感染已广泛出现,并日益成为严重威胁公众健康的疾病,这一形势促使人们开发新型的抗真菌/细菌药物和治疗策略。光动力抗菌是一种新的治疗病原真菌/细菌的方法,与传统药物治疗相比,光动力抗菌具有作用范围广、无耐药性和对宿主组织损伤小等优点。
酞菁是由四个氮原子桥连异吲哚环组成具18个π电子的芳香杂环,其模拟了前体分子卟啉的生物学价值,并改善了卟啉的光谱和光化学性质,增加了对肿瘤靶点的特异性。酞菁分子中心具有一个空腔,能够螯合63种不同的元素离子,且在近红外区域有强烈的吸收带,增强了光的组织穿透能力。此外,酞菁上有许多取代位置,一方面可以在酞菁大分子的非外围(α位)或外围(β位)位置取代,另一方面也可以通过中心金属进行轴向取代,这有助于这些分子适用于各种不同的科学领域。
无论是光动力治疗还是光动力抗菌,其关键在于光敏剂。酞菁作为第二代光敏剂,在光动力治疗领域具有很多的优势。比如:(1)相比卟啉(400-600nm),酞菁的最大吸收波长大于670nm,且消光系数高(大于10 5M -1cm -1),光敏化能力强。(2)结构易于修饰,稳定性好。(3) 暗毒性低、可使辐射更大程度地穿透组织,且尽可能避开400-600nm的可见光区。因此,可以显著降低太阳光对皮肤的光敏毒性。(4)不具有耐药性。
因此,基于酞菁的这些优异性质,使得酞菁在光动力治疗领域得到广泛的应用。但目前所报道的具有生物活性的酞菁配合物仍存在不足之处,如在水中易聚集、或合成路线复杂、或靶向性不佳、或治疗窗口不在近红外区、或代谢速度慢、或肝滞留较多等等,需要进一步改善。另一方面,由于光敏剂和光动力治疗潜在的巨大的经济社会价值、极大的应用范围以及治疗病灶的细化,制备出更多具有优势的酞菁配合物作为候选药物也是十分必要的。
发明内容
本发明目的在于提供一种十六胺基或十六铵基修饰的酞菁锌及其制备方法与作为光动力药物的应用。本发明提供的酞菁锌配合物光动力活性高、原料易得、制备简便,且在生理体系中不易聚集、稳定性高、光谱显著红移到近红外区、靶向性好、体内代谢速度快,可应用于光动力治疗或光动力抗菌。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种十六胺基修饰的酞菁锌,其为一种周边α和β位四取代的酞菁锌配合物,其结构中含有3-(二甲胺基)苯氧基取代基团,该取代基团分别处于酞菁环的周边α和β位,即1、2、3、4、8、9、10、11、15、16、17、18、22、23、24、25位置,可命名为1、2、3、4、8、9、10、11、15、16、17、18、22、23、24、25-十六[3-(二甲胺基)苯氧基]酞菁锌配合物,或十六-[3-(二甲胺基)苯氧基]酞菁锌配合物;其具体结构式如下:
Figure PCTCN2021074976-appb-000001
式中,
Figure PCTCN2021074976-appb-000002
上述十六胺基修饰的酞菁锌的制备方法包括以下步骤:
1)3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈的制备:以3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚为反应物,以N,N-二甲基甲酰胺为溶剂,在碳酸钾存在和氮气保护下,110℃下搅拌反应18~20小时,利用薄层色谱进行监控,当3,4,5,6-四氯邻苯二甲腈消耗完毕时终止反应,通过萃取法、色谱法或重结晶法进行纯化,得到3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈;
2)十六胺基修饰的酞菁锌的制备:以所得3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈为原料,以甲醇为溶剂,加入醋酸锌,然后以1,8-二氮杂二环[5.4.0]十一碳-7-烯为催化剂,65~85℃下搅拌反应5~6小时,利用薄层色谱监控反应终点,生成十六胺基修饰的酞菁锌,进而通过溶剂法或色谱法纯化得到目标产物。
其中,步骤1)中3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚的投料摩尔比为1:5.5~6.0,N,N-二甲基甲酰胺用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用5~6mL,碳酸钾的用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用7.5~8mmol;
步骤2)中所用3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈和醋酸锌的投料摩尔比为2~4:1,甲醇用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用10~15mL,1,8-二氮杂二环[5.4.0]十一碳-7-烯用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用3~4mL。
本发明还要求保护一种十六铵基修饰的酞菁锌,其也为一种周边α和 β位四取代的酞菁锌配合物,其结构中含有3-(三甲铵基)苯氧基取代基团,该取代基团分别处于酞菁环的周边α和β位,即1、2、3、4、8、9、10、11、15、16、17、18、22、23、24、25位置,可命名为1、2、3、4、8、9、10、11、15、16、17、18、22、23、24、25-十六[3-(三甲铵基)苯氧基]酞菁锌配合物,或十六-[3-(三甲铵基)苯氧基]酞菁锌配合物;其具体结构式如下:
Figure PCTCN2021074976-appb-000003
式中,
Figure PCTCN2021074976-appb-000004
X为I或Br。
上述十六铵基修饰的酞菁锌的制备方法包括以下步骤:
1)3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈的制备:以3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚为反应物,以N,N-二甲基甲酰胺为溶剂,在碳酸钾存在和氮气保护下,110℃下搅拌反应18~20小时,利用薄层色谱进行监控,当3,4,5,6-四氯邻苯二甲腈消耗完毕时终止反应,通过萃取法、色谱法或重结晶法进行纯化,得到3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈;
2)十六胺基修饰的的酞菁锌的制备:以所得3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈为原料,以甲醇为溶剂,加入醋酸锌,然后以1,8-二氮杂二环[5.4.0]十一碳-7-烯为催化剂,65~85℃下搅拌反应5~6小时,利用薄层色谱监控反应终点,再通过溶剂法或色谱法纯化得到十六胺基修饰的的酞菁锌;
3)十六铵基修饰的的酞菁锌的制备:以步骤2)制备的十六胺基修 饰的酞菁锌为原料,以三氯甲烷或N,N-二甲基甲酰胺为溶剂,加入碘甲烷或溴甲烷,15~35℃下搅拌反应6~12小时,生成十六铵基修饰的酞菁锌,进而通过溶剂法或色谱法纯化得到目标产物。
其中,步骤1)中3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚的投料摩尔比为1:5.5~6.0,N,N-二甲基甲酰胺用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用5~6mL,碳酸钾的用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用7.5~8mmol;
步骤2)中所用3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈和醋酸锌的投料摩尔比为2~4:1,甲醇用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用10~15mL,1,8-二氮杂二环[5.4.0]十一碳-7-烯用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用3~4mL;
步骤3)中碘甲烷或溴甲烷用量为每0.1mmol十六胺基修饰的酞菁锌使用0.8~2mL,溶剂用量为每0.1mmol十六胺基修饰的酞菁锌使用1.0~2.0mL N,N-二甲基甲酰胺或1.0~2.0mL三氯甲烷。
本发明提供的十六胺基修饰的酞菁锌和十六铵基修饰的酞菁锌可用于制备光敏剂或光动力药物或光敏药剂。所述光敏药剂,或简称光敏剂,或称光敏药物制剂,又称为光动力药剂,可用于光动力治疗、光动力诊断或光动力消毒。所述光动力治疗可以是恶性肿瘤的光动力治疗,或是白血病的骨髓体外光动力净化治疗,或是非癌症疾病的光动力治疗,如真菌感染、细菌感染、口腔疾病、黄斑变性眼病、动脉硬化、创伤感染、皮肤病、病毒感染。所述光动力消毒可以是血液或血液衍生物的光动力灭菌净化,或是水的光动力灭菌消毒,或是医用或生活用器具的光动力消毒。
本发明提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌在光动力治疗、光动力诊断和光动力消毒中的应用,需配套适宜的光源,所述适宜的光源可以由普通光源连接合适的滤光片来提供或由特定波长的激光来提供,光源的波长范围为680~730nm。
利用本发明所述酞菁锌制备光敏药剂的方法是:将本发明提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌用水或水和其他物质的混合溶液溶解后,配制成含一定浓度的光敏药剂(酞菁锌配合物的浓度不高于其饱和溶液中的浓度);在制成的药剂溶液中加入抗氧化剂、缓冲剂、等 渗剂等添加剂以保持光敏药剂的化学稳定性和生物相容性。
其中,混合溶液中其它物质的质量分数不高于10%;所述其它物质为蓖麻油衍生物、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000、环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯中的一种或几种的混和物。
对于局部给药的药用制剂,可以将本发明的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌溶解在渗透性溶剂中,或注入到软膏、洗液或凝胶中搅匀后应用;所述渗透性溶剂优选质量分数为5-35wt%二甲亚砜的水溶液。
本发明的有益效果和突出优势是:
(1)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌,酞菁环周边的α位和β位同时被胺基或铵基所取代,其结构明确、不存在位置异构体,且易于制备。
(2)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌的制备路线合理可行,合成原料易得,易产业化。
(3)本发明所提供十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌的最大吸收波长红移至720nm,且摩尔吸收系数大(达10 5数量级),作用光谱的组织穿透能力得到进一步提高,这对于光动力治疗和光动力诊断是十分有利的。
(4)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌不需要任何的表面活性剂或有机溶剂助溶,即可在水体系中以单体形式存在,从而可大幅度地提高光动力活性,显示了作为光动力药物的潜在优势。本发明提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌对于人肝癌细胞HepG2的光动力活性显著高于其他类似化合物,例如,四-α-(2,4,6-三(N,N,N-三甲铵基甲基)-苯氧基)酞菁锌十二碘盐。
(5)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌具有良好的肿瘤靶向性。同时,其在体内的清除速度快(快于其他酞菁类光敏剂),生物安全性高。
(6)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌具有高的光动力抑制肿瘤效应,抑瘤率达90%以上。
(7)本发明所提供的十六胺基修饰的酞菁锌或十六铵基修饰的酞菁锌具有良好的光动力抗菌活性,其IC 90均达到了nM级别,相比常用光敏剂MB的IC 90值(5.9μM)提高了86倍。
说明书附图
图1为实施例1-8所得酞菁锌配合物在水中的紫外-可见吸收光谱图(4μM)。
具体实施方式
下面结合实施例和附图对本发明进行进一步说明。
实施例1
2,3-二[3-(二甲胺基)苯氧基]酞菁锌配合物的合成,包括以下步骤:
1)分别称取5.08mmol 4,5-二氯邻苯二甲腈,15.23mmol N,N-二甲基-3-氨基苯酚,20.3mmol碳酸钾,于100mL双颈瓶中,用20mL无水N,N-二甲基甲酰胺溶解充分,在氮气保护下90℃搅拌反应约18小时。反应结束后,抽滤除去碳酸钾,稍微浓缩后将反应液倒入300mL冰水中,用乙酸乙酯萃取3次,收集有机层。有机层分别用1M氢氧化钠溶液和饱和氯化钠洗涤3次,收集有机层。用无水硫酸钠干燥,抽滤,收集滤液旋蒸至干。用乙酸乙酯溶解,以二氯甲烷:乙酸乙酯=100:1为洗脱剂,过硅胶柱,收集第一亮黄色带,旋蒸至干。用甲醇重结晶,抽滤,真空下干燥,得橙红色产物4,5-二[3-(二甲胺基)-苯氧基]邻苯二腈,其产率为93%。
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ7.61(s,2H,Ar-H),7.23(t,J=8.0Hz,2H,Ar-H),6.59(dd,J=8.4,2.0Hz,2H,Ar-H),6.41(s,2H,Ar-H),6.35(d,J=8.0Hz,2H,Ar-H),2.90(s,12H,CH 3)。
HRMS(ESI):m/z calcd for C 24H 23N 4O 2[M+H] +,399.1816;found 399.1814.calcd for C 24H 22N 4O 2Na[M+Na] +,421.1635;found 421.1633。
2)分别称取1mmol 4,5-二[3-(二甲胺基)-苯氧基]邻苯二腈,6mmol邻苯二腈,0.5mmol无水乙酸锌于100mL双颈瓶中,加入20mL正戊醇,在氮气保护下逐渐升温至90℃,搅拌使其溶解充分,再加入0.5mL 1,8-二氮杂二环[5.4.0]十一碳-7-烯,135℃反应约12小时。反应结束后,旋蒸至干。用少量N,N-二甲基甲酰胺溶解过硅胶柱,以二氯甲烷为洗脱剂收集绿色酞菁带,旋蒸至干。用少量四氢呋喃溶解过X3型凝胶,收集第一 带绿色酞菁带,旋蒸至干。用少量二氯甲烷溶解过硅胶柱,用二氯甲烷:甲醇=20:1收集绿色酞菁带,旋蒸至干。最后分别用正己烷反复冲洗除去黄色杂质,于真空下干燥得220mg目标酞菁锌配合物,产率26%;其结构式如下:
Figure PCTCN2021074976-appb-000005
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ9.38-9.00(m,6H,Pc-H α),8.79-8.60(m,3H,Pc-H α,Pc-H β),8.30-8.06(m,5H,Pc-H β),7.45-7.29(m,3H,Ar-H),6.72(d,J=16Hz,5H,Ar-H),3.01(s,12H,CH 3)。
HRMS(ESI):m/z calcd for C 48H 35N 10O 2Zn[M+H] +,847.2230;found 847.2237。
IR(KBr,cm -1):3432.25(Ar-H);2925.07(-CH 3);1653.88,1524.30,1498.40,1430.17(C=C,C=N-);1242.47(Ar-O-Ar);1080.81,1000.97,911.99,760.79,732.88(Ar-H)。
实施例2
2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐的合成,包括以下步骤:
1)按照实施例1所述方法制备2,3-二[3-(二甲胺基)苯氧基]酞菁锌配合物;
2)将0.3mmol 2,3-二[3-(二甲胺基)苯氧基]酞菁锌配合物和2mL碘甲烷加入到5mL三氯甲烷中,25℃下搅拌反应6小时,反应结束后,抽滤,用氯仿洗至滤液无色,收集滤饼于真空下干燥,得到25.6mg目标产物,产率77%;其结构式如下:
Figure PCTCN2021074976-appb-000006
式中,X为I。
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ9.57-8.81(m,8H,Pc-H α),8.40-8.00(m,7H,Pc-H β,Ar-H),7.97-7.55(m,7H,Ar-H),3.74(s,18H,CH 3)。
HRMS(ESI):m/z calcd for C 50H 40N 10O 2Zn[M-2I] 2+,438.1308;found 438.1314。
IR(KBr,cm -1):3423.70(Ar-H);2923.91,2853.19(-CH 3);1605.35,1560.45,1459.15,1405.90(C=C,C=N-);1223.16(Ar-O-Ar);1088.14,931.46,735.73(Ar-H)。
实施例3
1,2,3,4-四[3-(二甲胺基)苯氧基]酞菁锌配合物的合成,包括以下步骤:
1)分别称取3.76mmol 3,4,5,6-四氯邻苯二甲腈,22.56mmol N,N-二甲基-3-氨基苯酚,30.09mmol碳酸钾于100mL双颈瓶中,用20mL无水N,N-二甲基甲酰胺溶解充分,在氮气保护下110℃搅拌反应约18小时。反应结束后,抽滤除去碳酸钾,稍微浓缩后将反应液倒入300mL冰水中,用乙酸乙酯萃取3次,收集有机层。有机层分别用1M氢氧化钠溶液和饱和氯化钠洗涤3次,收集有机层。用无水硫酸钠干燥,抽滤,滤液旋蒸至干。用乙酸乙酯溶解过硅胶柱,用二氯甲烷:乙酸乙酯=10:1为洗脱剂,收集第一亮黄色带,旋蒸至干。用甲醇重结晶,抽滤,收集滤饼于真空下干燥,得0.83g亮黄色产物3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈,产率66%。
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ7.08(t, J=8.2Hz,2H,Ar-H),6.97(t,J=8.0Hz,2H,Ar-H),6.45(d,J=7.6Hz,2H,Ar-H),6.37(d,J=8.0Hz,2H,Ar-H),6.29(d,J=8.0Hz,2H,Ar-H),6.14(s,2H,Ar-H),6.02(d,J=7.2Hz,2H,Ar-H),5.75(s,2H,Ar-H),2.84(s,12H),2.75(s,12H)。
HRMS(ESI):m/z calcd for C 40H 41N 6O 4[M+H] +,669.3184;found669.3173。
2)分别称取0.3mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈,6mmol邻苯二腈,0.5mmol无水乙酸锌,用20mL正戊醇溶解,在氮气保护下逐渐升温至95℃,搅拌使其溶解,再加入1mL 1,8-二氮杂二环[5.4.0]十一碳-7-烯,135℃反应约12小时。反应结束后,旋蒸除去有机溶剂。用少量N,N-二甲基甲酰胺溶解,过硅胶柱,以二氯甲烷为洗脱剂收集黄绿色酞菁带,旋蒸至干。用少量四氢呋喃溶解过X3型凝胶,收集绿色酞菁带,旋蒸至干。用少量二氯甲烷溶解过硅胶,用二氯甲烷:甲醇=40:1收集绿色酞菁带,旋蒸至干。最后分别用正己烷反复冲洗除去黄色杂质,干燥后得80mg目标酞菁配合物,产率12%;其结构式如下:
Figure PCTCN2021074976-appb-000007
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ9.26(s,3H,Pc-H α),8.95(s,1H,Pc-H α),8.19-7.94(m,6H,Pc-H α,Pc-H β),7.23-6.90(m,8H,Pc-H β,Ar-H),6.62-6.34(m,8H,Ar-H),6.27(s,2H,Ar-H),3.13-2.61(m,24H,CH 3)。
HRMS(ESI):m/z calcd for C 64H 53N 12O 4Zn[M+H] +,1117.3599;found 1117.3639。
IR(KBr,cm -1):3431.04(Ar-H);2925.67(-CH 3);1734.90,1617.30, 1497.87,1400.50(C=C,C=N-);1273.26(Ar-O-Ar);1088.97,1031.20,1000.05,640.18,611.00,571.50,535.03(Ar-H)。
实施例4
1,2,3,4-四[3-(二甲铵基)苯氧基]酞菁锌四碘盐的合成,包括以下步骤:
1)按照实施例3所述方法制备1,2,3,4-四[3-(二甲胺基)苯氧基]酞菁锌配合物;
2)将0.36mmol 1,2,3,4-四[3-(二甲胺基)苯氧基]酞菁锌配合物和3mL碘甲烷加入到5mL三氯甲烷中,25℃下搅拌反应12小时,反应结束后,抽滤,分别用二氯甲烷、乙酸乙酯和丙酮洗至滤液无色,收集滤饼于真空下干燥,最后得40mg目标产物,产率66%;其结构式如下:
Figure PCTCN2021074976-appb-000008
式中,X为I。
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ9.52-9.35(m,2H,Pc-H α),8.69(d,J=7.6Hz,1H,Pc-H α),8.48-8.07(m,5H,Pc-H α,Pc-H β),7.77-7.72(m,4H,Pc-H β),7.72-7.24(m,14H,Ar-H),6.96(s,2H,Ar-H),3.74-3.46(m,36H,CH 3)。
HRMS(ESI):m/z calcd for C 68H 64N 12O 4Zn[M-4I] 4+,294.1111;found 294.1100.calcd for C 68H 64N 12O 4ZnI[M-3I] 3+,434.4498;found 434.4483。
IR(KBr,cm -1):3435.08(Ar-H);3022.26(-CH 3);1607.48,1524.27,1490.01,1435.16,1404.66,1334.14(C=C,C=N-);1220.27(Ar-O-Ar);1117.38,1089.49,1058.91,1005.11,967.42,931.49,751.44,685.12,609.42,577.61,496.06(Ar-H)。
实施例5
2,3,9,10,16,17,23,24-八[3-(二甲胺基)苯氧基]酞菁锌配合物,或称八-β-[3-(二甲胺基)苯氧基]酞菁锌配合物的合成,包括以下步骤:
1)按照实施例1所述方法中的步骤1)制备4,5-二[3-(二甲胺基)-苯氧基]邻苯二腈;
2)分别称取1mmol 4,5-二[3-(二甲胺基)-苯氧基]邻苯二腈,0.5mmol无水乙酸锌于100mL双颈瓶中,加入3mL甲醇,在氮气保护下逐渐升温至85℃,搅拌使其溶解充分,再加入0.5mL 1,8-二氮杂二环[5.4.0]十一碳-7-烯,反应约5小时。反应结束后倒入大量的甲醇析出沉淀,抽滤,分别用甲醇、蒸馏水和饱和食盐水洗涤,收集滤饼于真空下干燥。用少量二氯甲烷溶解过硅胶柱,以二氯甲烷:甲醇=10:1为洗脱剂收集绿色酞菁带,旋蒸至干。用少量二氯甲烷溶解,用大量甲醇析出沉淀,抽滤,分别用甲醇、水和饱和食盐水洗涤,真空下干燥。用少量N,N-二甲基甲酰胺溶解,大量水洗析出,抽滤水洗,真空下干燥。再用少量二氯甲烷溶解过硅胶柱,用二氯甲烷:甲醇=10:1收集绿色酞菁带,旋蒸至干。最后分别用正己烷和热甲醇溶液反复冲洗除去黄色杂质,于真空下干燥得180mg目标酞菁锌配合物,产率10%;其结构式如下:
Figure PCTCN2021074976-appb-000009
产物的表征数据如下: 1H NMR(400MHz,CDCl 3-d+a drop pyridine-d5,ppm):δ9.00(s,8H,Pc-H α),8.02(s,2H,Ar-H),7.22(s,6H,Ar-H),6.81-6.28(m,24H,Ar-H),3.10-2.76(m,48H,CH 3)。
HRMS(ESI):m/z calcd for C 96H 89N 16O 8Zn[M+H] +,1659.6352;found 1659.6397。
IR(KBr,cm -1):3430.57(Ar-H);2916.99(-CH 3);1617.26,1503.49,1400.50(C=C,C=N-);1276.77(Ar-O-Ar);1059.10,1029.97,1000.21, 969.79,669.15,612.78,576.84,526.18,487.97(Ar-H)。
实施例6
2,3,9,10,16,17,23,24-八[3-(三甲铵基)苯氧基]酞菁锌八碘盐,或称八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐的合成,包括以下步骤:
1)按照实施例5所述方法制备八-β-[3-(二甲胺基)苯氧基]酞菁锌配合物;
2)将0.12mmol八-β-[3-(二甲胺基)苯氧基]酞菁锌配合物和3mL碘甲烷加入到5mL三氯甲烷中,25℃下搅拌反应6小时,反应结束后,抽滤,分别用二氯甲烷、乙酸乙酯和丙酮洗至滤液无色,收集滤饼于真空下干燥,得到19mg目标产物,产率56%;其结构式如下:
Figure PCTCN2021074976-appb-000010
式中,X为I。
产物的表征数据如下: 1H NMR(400MHz,DMSO-d6,ppm):δ9.23(s,6H,Pc-H α),9.10(s,1H,Pc-H α),8.93(s,1H,Pc-H α),7.98(s,7H,Ar-H),7.86-7.62(m,15H,Ar-H),7.45(d,J=8.4Hz,6H,Ar-H),6.53(s,4H,Ar-H),3.34(s,72H,CH 3)。
HRMS(ESI):m/z calcd for C 104H 112N 16O 8Zn[M-8I] 8+,222.3515;found 222.3509。
IR(KBr,cm -1):3445.41(Ar-H);1635.04,1516.00,1397.854(C=C,C=N-)。
实施例7
1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-十六[3-(二甲胺基)苯氧基]酞 菁锌配合物,或称十六-[3-(二甲胺基)苯氧基]酞菁锌配合物的合成,包括以下步骤:
1)按照实施例3所述方法中的步骤1)制备3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈;
2)分别称取0.3mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈,0.15mmol无水乙酸锌,用3mL甲醇溶解,在氮气保护下逐渐升温至85℃,搅拌使其溶解,再加入1mL 1,8-二氮杂二环[5.4.0]十一碳-7-烯,反应约5小时。反应结束后,旋蒸除去有机溶剂。用少量二氯甲烷溶解,加入到大量的甲醇中析出沉淀,抽滤,分别用甲醇、蒸馏水和饱和食盐水洗,真空下干燥。用少量二氯甲烷溶解,过硅胶柱,以二氯甲烷:甲醇=10:1为洗脱剂收集黄绿色酞菁带,旋蒸至干。用少量四氢呋喃溶解过X3型凝胶,收集黄绿色酞菁带,旋蒸至干。用少量的二氯甲烷溶解后,用大量的甲醇析出,在分别用甲醇、水和饱和食盐水洗涤,反复溶解析出重复3次。用少量N,N-二甲基甲酰胺溶解,大量水洗析出,抽滤水洗,真空下干燥。干燥后得60mg目标酞菁锌配合物,产率7%;其结构式如下:
Figure PCTCN2021074976-appb-000011
式中,
Figure PCTCN2021074976-appb-000012
产物的表征数据如下: 1HNMR(400MHz,acetone-d6,ppm):δ7.09(d,J=8.6Hz,8H,Ar-H),6.95(s,7H,Ar-H),6.85-6.78(m,8H,Ar-H),6.53-6.42(m,16H,Ar-H),6.31(s,J=8.0Hz,9H,Ar-H),6.27-6.17(m,16H,Ar-H),2.81(s,54H,CH 3),2.68(s,42H,CH 3)。
HRMS(ESI):m/z calcd for C 160H 160N 24O 16ZnCl[M+Cl] -,2775.1453;found 2775.1532。
IR(KBr,cm -1):3445.87(N-H);1645.30,1557.88,1403.95(C=C, C=N-)。
实施例8
十六-[3-(二甲铵基)苯氧基]酞菁锌十六碘盐的合成,包括以下步骤:
1)按照实施例7所述方法制备十六-[3-(二甲胺基)苯氧基]酞菁锌配合物;
2)将0.36mmol十六-[3-(二甲胺基)苯氧基]酞菁锌配合物和3mL碘甲烷加入到5mL三氯甲烷中,25℃下搅拌反应12小时,反应结束后,抽滤,用氯仿洗至滤液无色,收集滤饼于真空下干燥,得到5mg目标产物,产率46%;其结构式如下:
Figure PCTCN2021074976-appb-000013
式中,
Figure PCTCN2021074976-appb-000014
X为I。
产物的表征数据如下: 1HNMR(400MHz,DMSO-d6,ppm):δ8.02(s,8H,Ar-H),7.70-6.99(m,56H,Ar-H),3.50(s,82H,CH 3),3.47(s,62H,CH 3)。
IR(KBr,cm -1):3432.34(Ar-H);2925.75(-CH 3);1609.72,1491.44,1401.83(C=C,C=N-);1217.27(Ar-O-Ar);1123.61,980.42,509.94,464.50,441.19(Ar-H)。
Elemental analysis(%)calcd for C 176H 208N 24O 16I 16Zn:C 42.18,H 4.18,N 6.71,found C 41.03,H 4.06,N 6.28。
实施例9
实施例1所得产物2,3-二[3-(二甲胺基)苯氧基]酞菁锌配合物、实施例2所得产物2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐、实施例3所得产物 1,2,3,4-二[3-(二甲胺基)苯氧基]酞菁锌配合物、实施例4所得产物1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐、实施例5所得产物八-β-[3-(二甲胺基)苯氧基]酞菁锌配合物、实施例6所得产物八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐,实施例7所得产物十六-[3-(二甲胺基)苯氧基]酞菁锌配合物和实施例8所得产物十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐在水中的紫外-可见吸收光谱图,分别见图1。
由图中可见,实施例1-6所得酞菁锌配合物在水中的Q带较为宽低,呈现出不同程度的聚集,仅有实施例7、8中的酞菁锌配合物在水中的Q带为强而尖的峰,说明实施例7所得产物十六-[3-(二甲胺基)苯氧基]酞菁锌配合物和实施例8所得产物十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐在水中为单体,其最大吸收波长分别为727nm和714nm,这对光动力的治疗是有利的。
实施例10
参照文献方法(Bioorganic&Medicinal Chemistry Letters,2015,25,2386-2389)测得实施例8所得十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐在水中的单线态氧产率为0.44,而实施例2、实施例4和实施例6所得产物在水中光敏化产生单线态氧的能力分别为0.42、0.19和0.14。
实施例11
利用本发明所述酞菁锌配合物制备光敏药剂的方法是:将酞菁锌配合物用水或水和其他物质的混合溶液溶解后,配制成含一定浓度的光敏药剂(酞菁锌配合物的浓度不高于其饱和溶液中的浓度);在制成的药剂溶液中加入抗氧化剂、缓冲剂、等渗剂等添加剂以保持光敏药剂的化学稳定性和生物相容性。其中,混合溶液中其它物质的质量分数不高于10%;所述其它物质为蓖麻油衍生物(Cremophor EL)、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000、环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯中的一种或几种的混和物。
将本发明所述的酞菁锌配合物溶解在5-35wt%二甲亚砜的水溶液,可作为局部药用制剂。
利用本发明酞菁锌配合物制备光动力药物、光敏药剂或光敏剂及其在光动力治疗、光动力诊断或光动力消毒中的使用,与已有技术中运用非本 发明所述的酞菁锌配合物或卟啉化合物的制备方法与使用方法相同,但需配套适宜的光源,所述适宜的光源可以由普通光源连接合适的滤光片或由特定波长的激光来提供,光源的波长范围为300-800nm,优选680-730nm。
实施例12
分别测试实施例2所得2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐、实施例4所得1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐、实施例6所得八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐和实施例8所得十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐对人肝癌细胞HepG2的暗毒性和光动力抗癌效果。
主要步骤如下:将上述光敏剂溶解在水中制成1mM的光敏药剂,进而稀释到细胞培养液中,制成含不同浓度锌酞菁锌配合物的细胞培养液。将人肝癌细胞HepG2分别在含有不同浓度的酞菁锌配合物的培养液中培养2小时,之后弃去培养液,用PBS清洗细胞后,加入新的培养液(不含酞菁锌配合物)。光照实验组,对细胞进行红光照射(所用激发光光源为波长大于600nm的红光,照射30分钟,照射光的功率为15mW·cm -2);不照光组,将细胞置于暗处30分钟。光照或不光照后,细胞的存活率采用MTT比色法考察。
上述波长大于610nm的红光是通过500W的卤素灯连接隔热水槽加大于610nm的滤光片来提供的。
结果表明,不进行光照,实施例2、实施例4、实施例6或实施例8所得酞菁锌配合物对HepG2细胞没有杀伤和生长抑制作用,表明没有暗毒性;但经红光照射后,实施例2及实施例4所得酞菁锌配合物均显示出高的光动力抗癌活性。通过考察实施例2、实施例4、实施例6或实施例8所得酞菁锌配合物的浓度和细胞存活率的量效关系,获得在光照条件下的半致死浓度(IC 50,即杀死50%癌细胞所需的药物浓度),分别是170nM(实施例2所述2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐)、210nM(实施例4所述1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐)、60nM(实施例6所述八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐)和40nM(实施例8所述十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐),其分别是同类型酞菁(四-α-[2,4,6-三(N,N,N-三甲铵基甲基)-苯氧基]酞菁锌十二碘盐) 的1.23倍、1.00倍、1.50倍和2.25倍。其中十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐表现出最低的IC 50值,说明本发明十六铵基酞菁具有较高的光动力活性。
实施例13
将实施例2所得2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐、实施例4所得1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐、实施例6所得八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐和实施例8所得十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐溶于生理盐水稀释成待测溶液。根据文献(ACS AppliedMaterials&Interfaces,2019,11(40),36435-36443)建立荷瘤(肝癌H22)小鼠模型,通过尾静脉注射酞菁溶液100μL(给药剂量:0.8mol·Kg -1),在随后的24小时内进行小动物活体成像。
结果显示,实施例2酞菁锌配合物刚静脉注射后会全身分布,之后逐渐在肿瘤部位富集,在12小时达到峰值;在静脉注射实施例6的酞菁锌配合物后,大约12小时肿瘤部位的荧光达到峰值;实施例8酞菁锌配合物在注射后肿瘤荧光在2小时达到峰值,在6小时左右酞菁锌配合物基本上已被机体代谢清除完。实施例4的酞菁锌配合物在肿瘤部位的富集能力较差。由此表明,实施例2、实施例6所得酞菁锌配合物在肝和脾等器官均有不同程度的富集,且代谢速度缓慢;仅实施例8中的十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐在体内表现出优良的靶向性和代谢速度快等优势。
实施例14
将实施例8所得酞菁锌配合物溶于生理盐水稀释成待测溶液。取已种植皮下肿瘤的KM小鼠6只,每个药物分为4组(给药+激光组,给药组,生理盐水组和生理盐水+激光组),每组5只;待肿瘤长到60-100mm 3大小时,静脉注射100μL的酞菁水溶液,给药剂量为0.8mol·Kg -1。于1小时后,将小鼠麻醉,用685±5nm激光照射(光照强度9.4mW·cm -2,光照时间10分钟)。继续饲养小白鼠,隔日观察小鼠情况,测量小白鼠的体重,用游标卡尺测量小白鼠的长直径与短直径,一共测量14天。
结果显示,经过14天的实验,生理盐水组小鼠肿瘤增长了大约18倍,十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐给药+激光组对小鼠抑瘤 率可达98.7%(p<0.001),说明十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐具有良好的抗肿瘤活性。治药组小鼠在14天内体重呈增加趋势,说明十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐对小鼠没有明显毒性,且具有良好的生物相容性。
实施例15
测试实施例2所得2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐、实施例4所得1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐、实施例6所得八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐和实施例8所得十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐对金黄色葡萄球菌的暗毒性和光动力抗菌效果。
将1mM的光敏药剂稀释到PBS中,制成含不同浓度酞菁锌配合物的PBS溶液,然后分别将金黄色葡萄球菌在含有不同浓度酞菁锌配合物的PBS中培养4小时。光照实验组对细胞进行红光照射,所用激发光光源为波长大于610nm的红光,照射30分钟,照射光的功率为15mW·cm -2;不照光组将细胞置于暗处30分钟。处理后将细胞悬浮液接种于Luria-Bertani培养基表面,培养48小时后,通过菌落数来考察光敏药剂对金黄色葡萄球菌的暗毒性和光动力活性。
上述波长大于610nm的红光是通过500W的卤素灯连接隔热水槽加大于610nm的滤光片来提供的。
结果表明,不进行光照,实施例2、实施例4、实施例6或实施例8所得酞菁锌配合物对金黄色葡萄球菌没有杀伤和生长抑制作用,表明没有暗毒性;但经红光照射后,实施例2及实施例4所得酞菁锌配合物均显示出高的光动力抗菌活性。通过考察实施例2、实施例4、实施例6或实施例8所得酞菁锌配合物的浓度和细胞存活率的量效关系,获得在光照条件下的IC 90(即杀死90%金黄色葡萄球菌所需的药物浓度),分别是85nM(实施例2所述2,3-二[3-(三甲铵基)苯氧基]酞菁锌二碘盐)、74nM(实施例4所述1,2,3,4-二[3-(三甲铵基)苯氧基]酞菁锌四碘盐)、71nM(实施例6所述八-β-[3-(三甲铵基)苯氧基]酞菁锌八碘盐)和69nM(实施例8所述十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐),相比常用光敏剂MB的IC 90值(5.9μM),分别提高了69倍、80倍、83倍和86倍,说明十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐具有高效的光动力抗菌作用。
实施例16
测试实施例8所得十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐对感染了金黄色葡萄球菌的小鼠的光动力抗菌效果。
将脱毛的普通级KM雌性老鼠(约20g),右腹部皮下接种0.1mL金黄色葡萄球菌菌落的PBS溶液,菌浓度在1~2×10 6CFU·mL -1,接种两天后即可治疗。分别设置4个组,即十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐+激光组、十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐组、空白+激光组和空白组。治疗前先将无菌的创口贴吸水垫用100μL的酞菁水溶液(含1%CEL)浸润,敷贴于给药组的伤口上,用氧化锌胶带固定。每次敷贴2小时,之后换药一次,继续敷贴2小时。空白组给于生理盐水敷贴。4小时后光照组的给予激光685±5nm(光照强度9.4mW·cm -2,光照时间5分钟)进行治疗。观察记录15天。15天后,将感染部位的组织剪下,用1mL灭菌的PBS研磨提取成菌悬液,稀释50倍,涂布在相应的Luria-Bertani培养基表面,每个浓度平行3板,置于37℃培养箱中培养,24小时后观察计数。
结果表明,空白组、空白+激光组和十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐组均出现明显的肿块,说明体内仍有金黄色葡萄球菌感染。相反,十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐+激光组皮肤已经结痂,则表明感染的金黄色葡萄球菌已经被杀死清除。
为了进一步评价光动力抗菌效果,对处理部位进行剪切,剪切后的组织进行研磨,并在Luria-Bertani培养基上中继续培养24小时。十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐+激光组几乎看不到金黄色葡萄球菌群落,抑制率为98%,而其他三组出现了大量的金黄色葡萄球菌群落。由此进一步说明,十六-[3-(三甲铵基)苯氧基]酞菁锌十六碘盐对浅表微生物感染具有高效的光动力抗菌作用,是一种很有前途的抗菌光敏剂。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种十六胺基修饰的酞菁锌,其特征在于:所述十六胺基修饰的酞菁锌含3-(二甲胺基)苯氧基取代基团,该取代基团分别处于酞菁环的周边α和β位,即1、2、3、4、8、9、10、11、15、16、17、18、22、23、24和25位置;其具体结构式如下:
    Figure PCTCN2021074976-appb-100001
    式中,
    Figure PCTCN2021074976-appb-100002
  2. 一种十六铵基修饰的酞菁锌,其特征在于:所述十六铵基修饰的酞菁锌含3-(三甲铵基)苯氧基取代基团,该取代基团分别处于酞菁环的周边α和β位,即1、2、3、4、8、9、10、11、15、16、17、18、22、23、24和25位置;其具体结构式如下:
    Figure PCTCN2021074976-appb-100003
    式中,
    Figure PCTCN2021074976-appb-100004
    X为I或Br。
  3. 权利要求1所述的十六胺基修饰的酞菁锌的制备方法,其特征在于:包括以下步骤:
    1)3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈的制备:以3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚为反应物,以N,N-二甲基甲酰胺为溶剂,在碳酸钾存在和氮气保护下,110℃下搅拌反应18~20小时,利用薄层色谱进行监控,当3,4,5,6-四氯邻苯二甲腈消耗完毕时终止反应,通过萃取法、色谱法或重结晶法进行纯化,得到3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈;
    2)十六胺基修饰的酞菁锌的制备:以所得3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈为原料,以甲醇为溶剂,加入醋酸锌,然后以1,8-二氮杂二环[5.4.0]十一碳-7-烯为催化剂,65~85℃下搅拌反应5~6小时,利用薄层色谱监控反应终点,生成十六胺基修饰的酞菁锌,进而通过溶剂法或色谱法纯化得到目标产物。
  4. 权利要求2所述的十六铵基修饰的酞菁锌的制备方法,其特征在于:包括以下步骤:
    1)3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈的制备:以3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚为反应物,以N,N-二甲基甲酰胺为溶剂,在碳酸钾存在和氮气保护下,110℃下搅拌反应18~20小时,利用薄层色谱进行监控,当3,4,5,6-四氯邻苯二甲腈消耗完毕时终止反应,通过萃取法、色谱法或重结晶法进行纯化,得到3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈;
    2)十六胺基修饰的酞菁锌的制备:以所得3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈为原料,以甲醇为溶剂,加入醋酸锌,然后以1,8-二氮杂二环[5.4.0]十一碳-7-烯为催化剂,65~85℃下搅拌反应5~6小时,利用薄层色谱监控反应终点,再通过溶剂法或色谱法纯化得到十六胺基修饰的酞菁锌;
    3)十六铵基修饰的酞菁锌的制备:以步骤2)制备的十六胺基修饰的酞菁锌为原料,以三氯甲烷或N,N-二甲基甲酰胺为溶剂,加入碘甲烷或溴甲烷,15~35℃下搅拌反应6~12小时,生成十六铵基修饰的的酞菁锌,进而通过溶剂法或色谱法纯化得到目标产物。
  5. 根据权利要求3或4所述的制备方法,其特征在于:步骤1)中3,4,5,6-四氯邻苯二甲腈和N,N-二甲基-3-氨基苯酚的投料摩尔比为1:5.5~6.0,N,N-二甲基甲酰胺用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用5~6mL,碳酸钾的用量为每mmol 3,4,5,6-四氯邻苯二甲腈使用7.5~8mmol。
  6. 根据权利要求3或4所述的制备方法,其特征在于:步骤2)中所用3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈和醋酸锌的投料摩尔比为2~4:1,甲醇用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用10~15mL,1,8-二氮杂二环[5.4.0]十一碳-7-烯用量为每mmol 3,4,5,6-四[3-(二甲胺基)苯氧基]邻苯二腈使用3~4mL。
  7. 根据权利要求4所述的制备方法,其特征在于:步骤3)中碘甲烷或溴甲烷用量为每0.1mmol十六胺基修饰的酞菁锌使用0.8~2mL,溶剂用量为每0.1mmol十六胺基修饰的酞菁锌使用1.0~2.0mL N,N-二甲基甲酰胺或1.0~2.0mL三氯甲烷。
  8. 权利要求1或2所述的酞菁锌在制备光敏剂或光动力药物或光敏药剂中的应用。
  9. 根据权利要求8所述的应用,其特征在于:利用所述酞菁锌制备光敏药剂的方法为:将酞菁锌用水或水和其他物质的混合溶液溶解后,配制成光敏药剂。
  10. 根据权利要求9所述的应用,其特征在于:所述混合溶液中其它物质的质量分数不高于10%;所述其它物质为蓖麻油衍生物、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000、环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯中的一种或几种的混和物。
  11. 根据权利要求8或9所述的应用,其特征在于:所述光敏药剂中还包括添加剂,所述添加剂包括抗氧化剂、缓冲剂和等渗剂中的一种或几种;
  12. 根据权利要求8所述的应用,其特征在于:当所述光敏药剂为局部给药的药用制剂时,所述光敏药剂的制备方法为:将所述酞菁锌溶解在渗透性溶剂中,或注入到软膏、洗液或凝胶中搅匀。
  13. 根据权利要求12所述的应用,其特征在于:所述渗透性溶剂为 质量分数为5~35wt%二甲亚砜的水溶液。
  14. 权利要求1或2所述的酞菁锌在制备光动力抗菌材料中的应用。
  15. 根据权利要求14所述的应用,其特征在于,所述菌为金黄色葡萄球菌。
PCT/CN2021/074976 2020-10-16 2021-02-03 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用 WO2022077812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2021362841A AU2021362841B2 (en) 2020-10-16 2021-02-03 Hexadecylammonium group-modified phthalocyanine, and preparation method therefor and application thereof as photodynamic drug
US18/246,979 US20230374043A1 (en) 2020-10-16 2021-02-03 Hexadeca Ammonium-Modified Phthalocyanine and Preparation Method and Use Thereof as Photodynamic Drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112741.0 2020-10-16
CN202011112741.0A CN112028901B (zh) 2020-10-16 2020-10-16 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用

Publications (1)

Publication Number Publication Date
WO2022077812A1 true WO2022077812A1 (zh) 2022-04-21

Family

ID=73573678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074976 WO2022077812A1 (zh) 2020-10-16 2021-02-03 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用

Country Status (4)

Country Link
US (1) US20230374043A1 (zh)
CN (1) CN112028901B (zh)
AU (1) AU2021362841B2 (zh)
WO (1) WO2022077812A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028901B (zh) * 2020-10-16 2021-06-01 福州大学 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164135B1 (en) * 2000-06-15 2004-02-18 L. MOLTENI &amp; C. DEI FRATELLI ALITTI SOCIETA' DI ESERCIZIO SOCIETA' PER AZIONI Substituted metal-phthalocyanines, their preparation and the use thereof
WO2007000472A1 (en) * 2005-06-29 2007-01-04 L. Molteni & C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. Self-sterilizing products
EP0906758B1 (en) * 1997-08-14 2011-04-20 L. MOLTENI & C. dei Fratelli Alitti Società di Esercizio S.p.A. Zinc-phthalocyanines and corresponding conjugates, their preparation and use in photodynamic therapy and as diagnostic agents
CN104262350B (zh) * 2014-10-09 2017-01-18 福州大学 一种酞菁金属配合物及其制备方法和应用
CN107722024B (zh) * 2017-11-09 2019-12-06 福州大学 胺基苯氧基取代酞菁及其在制药领域中的应用
CN107915740B (zh) * 2017-11-09 2020-04-07 福州大学 取代酞菁铜及其在光热材料和光热治疗领域的应用
CN107915739B (zh) * 2017-11-09 2020-05-01 福州大学 金属酞菁及其在光热材料和光热治疗领域的应用
CN112028901A (zh) * 2020-10-16 2020-12-04 福州大学 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE299705T1 (de) * 2002-04-25 2005-08-15 Molteni & C Metallphthalocyanin-analoge enthaltende antibakterielle zusammensetzungen
CN111072679B (zh) * 2020-01-16 2022-07-01 福州大学 一种非周边季铵基修饰锌酞菁及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906758B1 (en) * 1997-08-14 2011-04-20 L. MOLTENI & C. dei Fratelli Alitti Società di Esercizio S.p.A. Zinc-phthalocyanines and corresponding conjugates, their preparation and use in photodynamic therapy and as diagnostic agents
EP1164135B1 (en) * 2000-06-15 2004-02-18 L. MOLTENI &amp; C. DEI FRATELLI ALITTI SOCIETA' DI ESERCIZIO SOCIETA' PER AZIONI Substituted metal-phthalocyanines, their preparation and the use thereof
WO2007000472A1 (en) * 2005-06-29 2007-01-04 L. Molteni & C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. Self-sterilizing products
CN104262350B (zh) * 2014-10-09 2017-01-18 福州大学 一种酞菁金属配合物及其制备方法和应用
CN107722024B (zh) * 2017-11-09 2019-12-06 福州大学 胺基苯氧基取代酞菁及其在制药领域中的应用
CN107915740B (zh) * 2017-11-09 2020-04-07 福州大学 取代酞菁铜及其在光热材料和光热治疗领域的应用
CN107915739B (zh) * 2017-11-09 2020-05-01 福州大学 金属酞菁及其在光热材料和光热治疗领域的应用
CN112028901A (zh) * 2020-10-16 2020-12-04 福州大学 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSAY ARMAğAN; GÜL AHMET; BURKUT KOÇAK MAKBU: "A new hexadeca substituted non-aggregating zinc phthalocyanine", DYES AND PIGMENTS, ELSEVIER APPLIED SCIENCE PUBLISHERS BARKING, GB, vol. 100, 18 September 2013 (2013-09-18), GB , pages 177 - 183, XP028780009, ISSN: 0143-7208, DOI: 10.1016/j.dyepig.2013.09.012 *
BAO, ZHENAN ET AL.: "New Air-Stable n-Channel Organic Thin Film Transistors", J. AM. CHEM. SOC., no. 120, 14 January 1998 (1998-01-14), pages 207 - 208, XP002468193, DOI: 10.1021/ja9727629 *

Also Published As

Publication number Publication date
AU2021362841A1 (en) 2023-05-11
AU2021362841B2 (en) 2023-12-07
CN112028901B (zh) 2021-06-01
CN112028901A (zh) 2020-12-04
US20230374043A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US8747811B2 (en) Perylenequinone derivatives and uses thereof
CN107915740B (zh) 取代酞菁铜及其在光热材料和光热治疗领域的应用
CN108727353B (zh) 联合光热治疗和化疗的ir820-ptx两亲性小分子前药及其纳米粒制备方法和应用
CN102552907B (zh) 一种非周边取代酞菁锌在制备声敏剂中的应用
CN104262350A (zh) 一种酞菁金属配合物及其制备方法和应用
WO2021143829A1 (zh) 一种非周边季铵基修饰锌酞菁及其制备方法和应用
CN105622682B (zh) 一种羧基酞菁锌-阿霉素偶联物及其制备和应用
WO2022077812A1 (zh) 十六铵基修饰的酞菁及其制备方法与作为光动力药物的应用
CN103755713A (zh) 一种八磺酸基酞菁及其制备方法和应用
CN109456210B (zh) 一种竹红菌素迫位和2-位同时氨基取代的衍生物及其制备方法和应用
CN113831351A (zh) 一类新型四吡咯衍生物及其应用
Xing et al. Cisplatin-appended BODIPY for near infrared II fluorescent and photoacoustic imaging-guided synergistic phototherapy and chemotherapy of cancer
CN108715591B (zh) 用作光敏剂的近红外吸收卟啉化合物及其应用
CN107501297A (zh) 吩噻嗪‑吡啶化合物及其用途
CN107789623B (zh) 哌嗪取代硅酞菁及其在光热治疗中的应用
CN109456334B (zh) 周环单取代两亲性酞菁光敏剂及其制备和应用
CN101456880B (zh) 磷胺两亲性酞菁衍生物、其制备方法和其在制备光疗药物中的应用
WO2017067497A2 (zh) 一种单取代或多取代的酯水双亲性竹红菌素衍生物及其制备方法和应用
CN110016048B (zh) 线粒体靶向ir780碘化物的衍生物及制备方法与应用
CN111393465A (zh) 一种轴向半乳糖/乳糖修饰的硅酞菁及其制备方法和应用
CN113717183B (zh) 周环不对称精氨酸修饰酞菁及其制备和在制药领域的应用
JP2018199649A (ja) 超音波増感剤
CN114805372B (zh) 具有双摄取通路的轴向磺酸基修饰酞菁硅及其制备方法及和应用
Yin et al. A triphenylamine functionalized photosensitizer as a promising candidate for osteosarcoma cancer phototheranostics
CN116135228A (zh) 一种竹红菌素2-位氨基取代或乙二胺取代的衍生物在制备抗肿瘤光动力药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021362841

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021362841

Country of ref document: AU

Date of ref document: 20210203

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878870

Country of ref document: EP

Kind code of ref document: A1