WO2022075381A1 - 繊維不織布、フィルタ及び繊維不織布の製造方法 - Google Patents

繊維不織布、フィルタ及び繊維不織布の製造方法 Download PDF

Info

Publication number
WO2022075381A1
WO2022075381A1 PCT/JP2021/037058 JP2021037058W WO2022075381A1 WO 2022075381 A1 WO2022075381 A1 WO 2022075381A1 JP 2021037058 W JP2021037058 W JP 2021037058W WO 2022075381 A1 WO2022075381 A1 WO 2022075381A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fibrous nonwoven
resin
temperature
resin composition
Prior art date
Application number
PCT/JP2021/037058
Other languages
English (en)
French (fr)
Inventor
康三 飯場
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP21877680.5A priority Critical patent/EP4209258A1/en
Priority to US18/247,903 priority patent/US20230372848A1/en
Priority to KR1020237011779A priority patent/KR20230061540A/ko
Priority to JP2022555544A priority patent/JPWO2022075381A1/ja
Priority to CN202180068503.0A priority patent/CN116348191A/zh
Publication of WO2022075381A1 publication Critical patent/WO2022075381A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/66Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
    • D01F6/665Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers from polyetherketones, e.g. PEEK
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1258Permeability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • D10B2331/061Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a fibrous nonwoven fabric, a filter and a method for manufacturing a fibrous nonwoven fabric.
  • Aromatic polyetherketone has a high melting point and excellent heat resistance, so it may be used as a non-woven fabric for filter media, battery separators, etc.
  • melt-blown non-woven fabric made of polyetheretherketone resin, having an average fiber diameter of 1 to 20 ⁇ m, a grain size of 5 to 120 g / m 2 , a breathability of 1 to 400 cc / cm 2 / sec, and a thickness of 0.
  • a melt-blown nonwoven fabric characterized by having physical properties of 05 to 1.0 mm, a tensile strength of 2 to 50 N / 25 mm, and a tensile elongation of 1 to 100% has been proposed (see, for example, Patent Document 1).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-106388
  • the nonwoven fabric made of the polyetheretherketone resin described in Patent Document 1 and Patent Document 2 may be inferior in performance when used as a filter.
  • the performance of the filter is expressed, for example, as a quality factor (Q value).
  • Q value is a value obtained from the pressure loss and the collection efficiency of particles.
  • a non-woven fabric When a non-woven fabric is used as a filter, it is preferable that not only the Q value at room temperature is high but also the filter performance is maintained in a wide temperature range. Therefore, it is preferable that the fluctuation of the Q value is small even when the temperature changes, and it is desirable that the decrease of the Q value is suppressed even after the filter is exposed to a high temperature, for example.
  • the thermoplastic resin constituting the non-woven fabric dissolves when the filter is exposed to a high temperature, and the Q value after the heat treatment is significantly lowered as compared with that before the heat treatment. This tends to cause problems such as deterioration of filter performance when the temperature changes.
  • the present disclosure has been made in view of the above, and describes a fibrous nonwoven fabric having a high Q value at room temperature and capable of suppressing a decrease in the Q value due to heat treatment, a filter containing the fibrous nonwoven fabric, and a method for producing the fibrous nonwoven fabric.
  • the purpose is to provide.
  • ⁇ 1> Contains fibers containing aromatic polyetherketone, A fibrous nonwoven fabric in which the coefficient of variation of the fiber diameter of the fiber is 100% or less.
  • ⁇ 2> The fibrous nonwoven fabric according to ⁇ 1>, wherein the fiber has a viscosity at 400 ° C. of 50 Pa ⁇ s to 500 Pa ⁇ s.
  • ⁇ 3> The fibrous nonwoven fabric according to ⁇ 1> or ⁇ 2>, wherein the average fiber diameter of the fibers is 10 ⁇ m or less.
  • ⁇ 4> The fibrous nonwoven fabric according to any one of ⁇ 1> to ⁇ 3>, wherein the aromatic polyetherketone contains a polyetheretherketone.
  • ⁇ 5> The fibrous nonwoven fabric according to any one of ⁇ 1> to ⁇ 4>, wherein the fibrous nonwoven fabric includes a meltblown nonwoven fabric.
  • ⁇ 7> By the melt blown method, a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas, and the resin or the resin composition is stretched by the heating gas to form a fibrous product. Including the process of The flow rate of the heating gas is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m.
  • the temperature of the heating gas is Ta (° C.)
  • the temperature of the molten resin or the resin composition is Tp (° C.)
  • the crystallization temperature of the aromatic polyetherketone is Tc (° C.)
  • the aromatic polyetherketone is Tm (° C.).
  • a method for producing a fibrous nonwoven fabric which comprises a step of stretching the resin or the resin composition with the heating gas to form a fibrous material while cooling. Equation (3) 300 ° C ⁇ Tp-Tq ⁇ 550 ° C ⁇ 12> The method for producing a fibrous nonwoven fabric according to ⁇ 11>, wherein the flow rate of the cooling gas is 1000 Nm 3 / hour / m to 20000 Nm 3 / hour / m. ⁇ 13> The method for producing a fibrous nonwoven fabric according to ⁇ 11> or ⁇ 12>, wherein the temperature of the cooling gas is 30 ° C. or lower.
  • a fibrous nonwoven fabric having a high Q value at room temperature and capable of suppressing a decrease in the Q value due to heat treatment a filter containing the fibrous nonwoven fabric, and a method for producing the fibrous nonwoven fabric.
  • FIG. 1 is a schematic view showing an example of the configuration of a fiber-woven fabric manufacturing apparatus used in the fiber-woven fabric manufacturing method 1 of the present disclosure.
  • FIG. 2 is a schematic view showing an example of the configuration of the fiber-woven fabric manufacturing apparatus used in the fiber-woven fabric manufacturing method 2 of the present disclosure.
  • the Q value of the fibrous nonwoven fabric is a value calculated by the following formula (a) using the collection efficiency and the pressure loss. As shown in the following equation, the lower the pressure loss and the higher the collection performance, the higher the Q value, and it can be seen that the filtration performance when the fibrous nonwoven fabric is used for the filter is good.
  • Q value (Pa -1 ) -[ln (1- [collection efficiency]) / (pressure loss (Pa))] (a)
  • the collection efficiency and the pressure loss can be measured by the methods described in Examples described later.
  • Y ( df ) (-) at the average fiber diameter d f of the fibers constituting the fibrous nonwoven fabric is as described in Russell, Stephen J. Handbook of conveyeds. Woodhead Publishing, P488, 2006. It is expressed by the following formula (b).
  • Y (df) is the collection efficiency at the average fiber diameter d f
  • df is the average fiber diameter (m)
  • is the volume fraction occupied by the fibrous nonwoven fabric (-).
  • h represents the thickness (m) of the fibrous nonwoven fabric
  • E represents the collecting capacity per standard unit area for a flow orthogonal to the fibrous nonwoven fabric (-)
  • ef represents the effective fiber length coefficient (-).
  • ⁇ P 0 The pressure loss ⁇ P 0 (Pa) at the average fiber diameter df of the fibers constituting the fibrous nonwoven fabric is as described in Russell, Stephen J. Handbook of comprisings. Woodhead Publishing, P488, 2006. It is represented by c).
  • ⁇ P 0 is the pressure loss (Pa) at the average fiber diameter d f
  • df is the average fiber diameter (m)
  • is the body integration rate (-) occupied by the fiber non-woven fabric
  • h Is the thickness (m) of the fiber non-woven fabric
  • is the fluid viscosity (Pa ⁇ s)
  • U 0 is the fluid velocity (m / s).
  • excellent Q value in comparison between a certain non-woven fabric and another non-woven fabric means that the average fiber diameter is the same value, for example, the Q value when the average fiber diameter is converted to 5 ⁇ m is high. do.
  • E / ef can be calculated by substituting the measured value of the collection efficiency, the measured value of the average fiber diameter, the volume fraction occupied by the fibrous nonwoven fabric, and the thickness of the fibrous nonwoven fabric into the equation (b). Next, the volume fraction occupied by the fibrous nonwoven fabric, the thickness of the fibrous nonwoven fabric, and the calculated E / ef are substituted into the equation (b), and further, the average fiber diameter df is a value of 5 ⁇ 10-6 m (5 ⁇ m). By substituting the above into the equation (b), the collection efficiency when the average fiber diameter is converted to 5 ⁇ m can be obtained.
  • the fibrous nonwoven fabric of the present disclosure contains a fiber containing an aromatic polyetherketone, and the coefficient of variation of the fiber diameter of the fiber is 100% or less.
  • the fibrous nonwoven fabric of the present disclosure suppresses variations in fiber diameter, so that a filter formed using the fibrous nonwoven fabric has excellent collection efficiency.
  • the filter formed by using the fibrous nonwoven fabric of the present disclosure not only has a high Q value at room temperature, but also maintains the filter performance in a wide temperature range. Further, even after the filter is exposed to a high temperature of about 250 ° C., the decrease in Q value is suppressed.
  • the difference between the Q value at room temperature and the Q value at room temperature after exposure to high temperature is small, and the Q value fluctuates in a wide temperature range. Suppressed, the fibrous nonwoven fabrics of the present disclosure tend to have excellent performance retention.
  • the fibrous nonwoven fabric of the present disclosure preferably has a viscosity of the fiber at 400 ° C. of 50 Pa ⁇ s to 500 Pa ⁇ s, preferably 60 Pa ⁇ s to 250 Pa ⁇ s, from the viewpoint of suppressing spinning defects and reducing the average fiber diameter. It is more preferably s, and even more preferably 70 Pa ⁇ s to 95 Pa ⁇ s.
  • the method for measuring the viscosity in the present disclosure is as described in Examples described later.
  • the average fiber diameter of the fibers constituting the fibrous nonwoven fabric of the present disclosure is preferably 10 ⁇ m or less, and the strength and trapping of the fibrous nonwoven fabric are preferably 10 ⁇ m or less from the viewpoint that the filter formed by using the fibrous nonwoven fabric preferably captures smaller particles. From the viewpoint of collection efficiency, it is more preferably 0.1 ⁇ m to 10 ⁇ m, further preferably 0.3 ⁇ m to 8.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • the average fiber diameter of the fibers constituting the fibrous nonwoven fabric can be obtained as follows. An electron micrograph (magnification 1000 times) of the fiber non-woven fabric is taken, the diameter of the fiber is measurable from the obtained photograph, and the image is taken and measured until the total number of measured fibers exceeds 100. Is repeated, and the calculated average value of the obtained fiber diameters is taken as the above-mentioned average fiber diameter.
  • the coefficient of variation (CV value) of the fiber diameter of the fibers constituting the fibrous nonwoven fabric of the present disclosure is 100% or less, and is preferably 90% or less from the viewpoint of collection efficiency formed by using the fibrous nonwoven fabric. , 85% or less is more preferable.
  • the CV value is not particularly limited as long as it is 0% or more, and may be, for example, 30% or more, or 50% or more.
  • the CV value can be calculated by multiplying the standard deviation (Dp) of the measurement result of the average fiber diameter by 100 by the value obtained by dividing by the average fiber diameter (Da) (see the following formula).
  • CV value [standard deviation (Dp) / average fiber diameter (Da)] x 100
  • the average pore diameter of the pores of the fibrous nonwoven fabric measured at a basis weight of 10 g / m 2 is preferably 0.01 ⁇ m to 10.0 ⁇ m, and more preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • the average pore diameter of the fibrous nonwoven fabric can be measured by the bubble point method. Specifically, the test piece of the fibrous nonwoven fabric may be impregnated with a fluorine-based inert liquid, and the pore size may be measured with a capillary flow poromometer.
  • the basis weight of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 1 g / m 2 to 200 g / m 2 , more preferably 5 g / m 2 to 100 g / m 2 .
  • the basis weight is 1 g / m 2 or more, the strength of the fibrous nonwoven fabric tends to be improved and it tends to be easy to manufacture.
  • the basis weight is 200 g / m 2 or less, the pressure loss does not become too high, and there is a tendency that the filter can be suitably used.
  • the method for measuring the basis weight of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
  • the thickness of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 0.01 mm to 1.00 mm, more preferably 0.05 mm to 0.60 mm, for example.
  • the thickness is 0.01 mm or more, the balance between the dust collection efficiency and the pressure loss is preferably secured when the filter is used, and the Q value of the filter tends to be further improved.
  • the thickness is 1. When it is 00 mm or less, the thickness of the filter tends to be thin, which is preferable.
  • the fibrous nonwoven fabric of the present disclosure since the collection efficiency is improved by suppressing the variation in the fiber diameter, the Q value tends to be excellent even if the thickness is reduced as compared with the conventional fibrous nonwoven fabric.
  • the method for measuring the thickness of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
  • the air permeability of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 0.1 cm 3 / cm 2 / sec to 200 cm 3 / cm 2 / sec, preferably 1.0 cm 3 / cm 2 / sec to 150 cm. More preferably, it is 3 / cm 2 / sec.
  • the air permeability is 0.1 cm 3 / cm 2 / sec or more, the pressure loss tends to be lower, and when the air permeability is 200 cm 3 / cm 2 / sec or less, the collection efficiency tends to be further improved. ..
  • the method for measuring the air permeability of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
  • the fibrous nonwoven fabric of the present disclosure is not particularly limited as long as it contains at least one type of nonwoven fabric.
  • the non-woven fabric included in the fibrous non-woven fabric of the present disclosure include melt blown non-woven fabric, spunbond non-woven fabric, wet non-woven fabric, spunlace non-woven fabric, dry non-woven fabric, dry pulp non-woven fabric, air-laid non-woven fabric, water jet non-woven fabric, flash spun non-woven fabric, open fiber non-woven fabric, and needle punch.
  • Various known short-fiber non-woven fabrics and long-fiber non-woven fabrics for example, long-fiber cellulose non-woven fabrics
  • the fibrous nonwoven fabric of the present disclosure preferably contains a meltblown nonwoven fabric.
  • the fibrous nonwoven fabric of the present disclosure may be composed of one kind of nonwoven fabric or may be composed of two or more kinds of nonwoven fabrics.
  • the fibrous nonwoven fabric of the present disclosure may be used as a single-layer nonwoven fabric or as a nonwoven fabric constituting at least one layer of a laminated body.
  • layers constituting the laminated nonwoven fabric include, in addition to the fibrous nonwoven fabric of the present disclosure, other nonwoven fabrics such as conventional meltblown nonwoven fabric, spunbonded nonwoven fabric, needle punched nonwoven fabric, spunlaced nonwoven fabric, woven fabric, knitted fabric, paper and the like. Can be mentioned.
  • the fibrous nonwoven fabric of the present disclosure can be widely used in applications in which the fibrous nonwoven fabric is usually used.
  • applications of the fibrous nonwoven fabric include filters, sanitary materials, medical materials, packaging materials, battery separators, heat insulating materials, heat insulating materials, protective clothing, clothing materials, electronic materials, sound absorbing materials and the like.
  • the fibrous nonwoven fabric of the present disclosure can be preferably used as a filter for, for example, a gas filter (air filter), a liquid filter, or the like.
  • a gas filter air filter
  • a liquid filter or the like.
  • the fibrous nonwoven fabric of the present disclosure since the above-mentioned CV value, that is, the variation in the fiber diameter is small, it is difficult to form relatively large holes (defect sites) between the fibers. As a result, the fibrous nonwoven fabric of the present disclosure is suitably used for a high-performance filter having excellent filtration performance.
  • the fibrous nonwoven fabric of the present disclosure may be charged.
  • the charged fibrous nonwoven fabric is preferably used for an air filter.
  • the charged fibrous nonwoven fabric can be obtained by subjecting the fibrous nonwoven fabric before charging to a charging process as described later.
  • the fiber contained in the fibrous nonwoven fabric of the present disclosure contains an aromatic polyetherketone.
  • the aromatic polyether ketone include a structure having an aromatic ring such as a benzene ring, an ether bond, and an aromatic ring such as a benzene ring in this order, an aromatic ring such as a benzene ring, a ketone bond, and a benzene ring.
  • the structure is not particularly limited as long as it has a structure having aromatic rings in this order and a polymer having a plurality of aromatic rings.
  • the aromatic polyetherketone may further have a skeleton other than an aromatic ring, an ether bond and a ketone bond, for example, an ester bond.
  • aromatic polyetherketone examples include polyetherketone, polyetherketoneketone, polyetheretherketoneketone, polyetherketone ester, and the like, and polyetheretherketone is preferable from the viewpoint of heat resistance.
  • the above-mentioned fiber may contain one kind of aromatic polyetherketone, or may contain two or more kinds of aromatic polyetherketones.
  • the above-mentioned fiber may contain only aromatic polyetherketone as a resin, or may contain aromatic polyetherketone and other resins.
  • aromatic polyetherketone and other resins include thermoplastic resins.
  • the content of the aromatic polyetherketone in the resin contained in the fiber is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin. It is preferably 99% by mass or more, and more preferably 99% by mass or more.
  • the upper limit of the content of the aromatic polyetherketone in the resin contained in the above-mentioned fiber is not particularly limited.
  • thermoplastic resin that can be contained in the above-mentioned fibers is not particularly limited, and is not particularly limited.
  • Copolymers or copolymers of ⁇ -olefins such as 1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, polyethylene terephthalate, polybutylene terephthalate, polyethylene na
  • polyester such as phthalate, nylon-6, nylon-66, polyamide such as polymethoxylen adipamide, polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, and ionomer.
  • the thermoplastic resin may be composed of one kind or a mixture of two or more kinds.
  • Examples of the ⁇ -olefin homopolymer or copolymer include ethylene / propylene random copolymer, high-pressure low-density polyethylene, linear low-density polyethylene (LLDPE), high-density polyethylene, and ethylene / 1-butene random.
  • Ethylene-based polymers such as ethylene random copolymers such as polymers; propylene random copolymers such as polypropylene (propylene homopolymer), propylene / ethylene random copolymers, propylene / 1-butene random copolymers, etc.
  • Propylene-based polymers; poly1-butene, poly4-methyl-1-pentene and the like can be mentioned.
  • the fibers contained in the fibrous nonwoven fabric of the present disclosure may contain commonly used additives, if necessary.
  • additives for example, various known additives such as antioxidants, weather stabilizers, heat stabilizers, light stabilizers, antistatic agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like. Agents are mentioned.
  • the content of the aromatic polyetherketone in the fiber is preferably 50% by mass or more, more preferably 90% by mass or more, and 99% by mass, based on the total amount of the fiber. % Or more is more preferable.
  • the upper limit of the content of the aromatic polyetherketone in the above-mentioned fiber is not particularly limited.
  • the fibrous nonwoven fabric manufacturing method 1 and the fibrous nonwoven fabric manufacturing method 2 will be described.
  • the method for producing the fibrous nonwoven fabric of the present disclosure is not limited to these production methods.
  • a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas by a melt blown method, and the resin or the resin composition is discharged by the heating gas.
  • the heating gas flow rate is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m, the temperature of the heating gas is Ta (° C.), and the molten resin is included.
  • the temperature of the heating gas (Ta) is the same as the temperature of the molten resin or resin composition (temperature of the spinneret) (Tp). Or, it is generally higher than that.
  • the present inventors make the temperature of the heating gas (Ta) lower than the temperature of the molten resin or the resin composition (Tp) by a certain amount or more, and control the flow rate of the heating gas within a predetermined range. By doing so, it has been found that the above-mentioned fibrous nonwoven fabric having a small variation in fiber diameter can be produced.
  • the difference between the Q value at room temperature and the Q value at room temperature after exposure to high temperature is small.
  • the fluctuation of the Q value is suppressed in a wide temperature range, and the fibrous nonwoven fabric tends to have excellent performance retention.
  • the method 1 for producing a fibrous nonwoven fabric of the present disclosure from the viewpoint of obtaining a fibrous nonwoven fabric having a small variation in fiber diameter, it is not necessary to separately spray a cooling gas for quenching the resin or the resin composition discharged from the spinneret, for example, spinning. It is not necessary to further perform the step of spraying the cooling gas at 30 ° C. or lower on the resin or the resin composition discharged from the mouthpiece. That is, it is not necessary to spray the gas in a plurality of steps, and the gas can be sprayed in one step. Further, as described in Republished Patent No.
  • a suction hood is arranged along the outer peripheral surface of a suction roll, a suction belt, etc., and airflow control by the suction hood is performed. You don't have to go. Therefore, the fibrous nonwoven fabric manufacturing method 1 of the present disclosure can be realized with a relatively simple device configuration.
  • a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas by a melt blown method, and the resin or the resin composition is stretched by the heating gas. Including the step of making a fibrous material.
  • the melt blown method is a method in which when a molten resin or resin composition is discharged into a fibrous form from a spinneret, heating gas is applied from both sides of the melted discharge material (discharged resin or resin composition) and heating is performed. This is a method of reducing the diameter of the discharged material by accompanying gas.
  • a resin containing an aromatic polyetherketone or a resin composition containing an aromatic polyetherketone and at least one of other resins and additives as a raw material is produced by using an extruder or the like. Melt.
  • the molten resin or resin composition is introduced into a spinneret connected to the tip of the extruder and discharged into a fibrous form from the spinneret of the spinneret.
  • a heating gas ejected from a gas nozzle of a spinneret is applied to the resin or resin composition discharged in the form of fibers, and the resin or resin composition is stretched by the heating gas to cause the resin or resin composition. Is refined.
  • the preferred conditions for the content of the aromatic polyetherketone contained in the above-mentioned resin are the same as the content of the aromatic polyetherketone in the resin contained in the above-mentioned fiber. Further, the preferable conditions of the lower limit of the content of the aromatic polyetherketone contained in the above-mentioned resin composition are the same as the above-mentioned content of the aromatic polyetherketone in the fiber.
  • the upper limit of the content of the aromatic polyetherketone contained in the above-mentioned resin composition is not particularly limited as long as it is less than 100% by mass.
  • the aromatic polyetherketone contained in the resin or the resin composition preferably contains a polyetheretherketone from the viewpoint of heat resistance.
  • the viscosity of the resin or resin composition at 400 ° C. is 50 Pa ⁇ s from the viewpoint of excellent spinning stability of the resin or resin composition and from the viewpoint that fibers having a small average fiber diameter can be easily obtained by facilitating spinning. It is preferably about 500 Pa ⁇ s, more preferably 70 Pa ⁇ s to 260 Pa ⁇ s, and even more preferably 80 Pa ⁇ s to 105 Pa ⁇ s.
  • the resin and the resin composition for which the viscosity is to be measured means the resin and the resin composition before melting.
  • the temperature (Ta) of the heating gas when the temperature (Ta) of the heating gas is higher than the crystallization temperature (Tc), it is possible to suppress the poor stretching due to the solidification of the discharged resin or the resin composition, and the fiber.
  • the increase in diameter can be suppressed.
  • the temperature (Ta) of the heating gas is Tm + 200 ° C. or lower, not only is it easy to adjust ⁇ T (Tp-Ta) to the above range, but also thread breakage due to a decrease in the melt viscosity of the discharged resin or the resin composition is suppressed. can.
  • the temperature (Ta) of the heating gas is more likely to satisfy the following formula (1)'. preferable. Equation (1)'Tm-30 ⁇ Ta ⁇ Tm + 200
  • Tp-Ta is preferably 40 ° C to 180 ° C, more preferably 80 ° C to 140 ° C, from the viewpoint of the balance between suppressing variation in fiber diameter and suppressing increase in fiber diameter.
  • ⁇ T is 40 ° C. or higher, the average fiber diameter tends to be smaller, which is preferable.
  • the temperature (Ta) of the heating gas may be selected so as to satisfy the above-mentioned formula (1), preferably further to the formula (1)', depending on the type of aromatic polyetherketone.
  • the temperature (Ta) of the heating gas is preferably, for example, 300 ° C to 500 ° C, more preferably 320 ° C to 480 ° C, and 340 ° C to 340 ° C. It is more preferably 440 ° C.
  • the temperature (Tp) of the molten resin or resin composition may be selected so as to satisfy the above formula (2) according to the type of aromatic polyetherketone.
  • the temperature (Tp) of the melted resin composition is preferably, for example, 360 ° C to 520 ° C, more preferably 400 ° C to 490 ° C. It is more preferably 460 ° C to 490 ° C.
  • the temperature (Tp) of the molten resin or the resin composition can be measured as the set temperature of the spinneret (die).
  • the temperature of the heating gas (Ta) can be measured as the temperature of the heating gas immediately after being discharged from the spinneret (die). Specifically, the temperature of the heating gas (Ta) can be measured as the temperature of the heating gas at the opening of the gas nozzle of the spinneret (die).
  • the temperature (Ta) of the heating gas at the opening of the gas nozzle is predetermined.
  • the supply temperature of the heating gas so as to be the temperature of; under predetermined conditions (for example, die temperature, heating gas flow rate), the temperature of the heating gas (Ta) at the opening of the gas nozzle.
  • Data showing the relationship between the temperature of the heating gas and the supply temperature of the heating gas is prepared in advance, and based on the data, the temperature of the heating gas (Ta) at the opening of the gas nozzle becomes a predetermined temperature. This may be done by adjusting the supply temperature of the heating gas.
  • the crystallization temperature (Tc) and melting point (Tm) of the aromatic polyetherketone can be measured using DSC (differential scanning calorimetry). Specifically, as a differential scanning calorimeter (DSC), DSC Pyr manufactured by PerkinElmer Co., Ltd. Using is1 or DSC7020 manufactured by SI Nanotechnology, the temperature reached for each aromatic polyetherketone (490 ° C. in the case of polyetheretherketone) was set for each sample (about 5 mg) under a nitrogen atmosphere (20 mL / min).
  • DSC differential scanning calorimeter
  • the melting point (Tm) is calculated from the peak peak of the crystal melting peak in, and the crystallization temperature (Tc) is calculated from the peak peak of the crystallization peak in the temperature lowering process.
  • Tm melting point
  • the discharge amount of the resin composition per spinning nozzle of the spinneret is usually 0.01 g / min to 3.0 g / min, preferably 0.05 g / min to 2.0 g / min.
  • the discharge rate is 0.01 g / min or more, not only the productivity of the fibrous nonwoven fabric is not easily impaired, but also the yarn breakage of the fibers is easily suppressed.
  • the discharge rate is 3.0 g / min or less, it is easy to sufficiently reduce the fiber diameter.
  • the flow rate of the heating gas is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m from the viewpoint of reducing the fiber diameter constituting the fibrous nonwoven fabric and reducing the variation in the fiber diameter (narrowing the fiber diameter distribution). be.
  • the flow rate of the heating gas is 150 Nm 3 / hour / m or more, it is easy to sufficiently stretch the discharged resin composition, and it is easy to sufficiently reduce the fiber diameter.
  • the flow rate of the heating gas is 1000 Nm 3 / hour / m or less, it is easy to suppress the increase in the variation in the fiber diameter due to the turbulence of the air flow.
  • the flow rate of the heating gas is preferably 250 Nm 3 / hour / m to 850 Nm 3 / hour / m.
  • the type of the heating gas is not particularly limited, and examples thereof include a molten resin such as air, carbon dioxide gas, and nitrogen gas, or a gas that is inert to the resin composition. Among these, air is preferable from the viewpoint of economy.
  • the discharged resin or resin composition is stretched by a heating gas to obtain a fibrous material.
  • the average fiber diameter of the fibrous material is preferably 10 ⁇ m or less from the viewpoint that the filter formed by using the produced fibrous nonwoven fabric preferably captures smaller particles, and the strength and collection efficiency of the fibrous nonwoven fabric are improved. From the viewpoint, it is more preferably 0.1 ⁇ m to 10 ⁇ m, further preferably 0.3 ⁇ m to 8.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • the method for measuring the average fiber diameter of the fibrous material is the same as the above-mentioned method for measuring the average fiber diameter of the fiber.
  • the method 1 for producing a fibrous nonwoven fabric of the present disclosure may further include a step of collecting the fibrous material in the form of a web after the above-mentioned step of forming the fibrous material.
  • this collecting step for example, the obtained fibrous material is collected in the form of a web on a collector. Further, when collecting on the collector, air may be sucked from the back side of the collector when viewed from the fiber to promote the collection.
  • collectors include perforated belts, perforated drums, and the like.
  • the collection of fibrous substances may be promoted by sucking air from the back surface side of the collector.
  • the finely divided fibers may be collected on a desired substrate provided in advance on the collector.
  • the base material provided in advance include other non-woven fabrics such as melt blown non-woven fabric, spunbond non-woven fabric, needle punching and spunlace non-woven fabric, woven fabric, knitted fabric, paper and the like. This makes it possible to obtain an ultrafine fiber non-woven fabric laminate used in a high-performance filter, wiper, or the like.
  • the fibrous nonwoven fabric manufacturing apparatus used in the fibrous nonwoven fabric manufacturing method 1 of the present disclosure will be described with reference to FIG.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the fiber-woven fabric manufacturing apparatus 10.
  • the fibrous nonwoven fabric manufacturing apparatus 10 includes an extruder 20, a die (spinning cap) 30, and a collection mechanism 40.
  • the extruder 20 has a hopper 21 and a compression unit 22. Then, the extruder 20 melts the solid resin or the resin composition charged in the hopper 21 in the compression unit 22.
  • the extruder 20 may be a single-screw extruder or a multi-screw extruder such as a twin-screw extruder. From the viewpoint of improving spinning stability, it is preferable to melt the resin or the resin composition using a twin-screw extruder.
  • the die (spinning cap) 30 is arranged so as to be connected to the tip of the extruder 20.
  • the die 30 has a plurality of spinning nozzles 31 and two gas nozzles 32.
  • the plurality of spinning nozzles 31 are usually arranged in a row. Then, the molten resin or resin composition conveyed from the extruder 20 is introduced into the spinning nozzle 31, and the resin or resin composition is discharged in a fibrous form from the nozzle opening.
  • the diameter of the spinning nozzle can be, for example, 0.05 mm to 0.80 mm.
  • the temperature (Tp) of the molten resin or the resin composition can be adjusted by the set temperature of the die 30.
  • the distance between the small holes in the spinning nozzle of the spinneret is preferably 0.1 mm to 2.0 mm, more preferably 0.15 mm to 1.8 mm.
  • the distance between the small holes is 0.1 mm or more, the variation in the fiber diameter tends to be smaller.
  • the distance between the small holes is 2.0 mm or less, the production efficiency tends to be further improved.
  • the two gas nozzles (air nozzles) 32 are arranged in the vicinity of the nozzle opening of the spinning nozzle 31, specifically, on both sides of the row of the plurality of spinning nozzles 31. Then, the gas nozzle 32 injects a heating gas (heated compressed gas) near the opening of the spinning nozzle 31. As shown in FIG. 1, the gas nozzle 32 injects a heating gas into the resin or the resin composition immediately after being discharged from the opening of the spinning nozzle 31.
  • the heating gas supplied to the gas nozzle 32 is supplied from the gas heating device 50.
  • the temperature (Ta) of the heating gas can be adjusted by a heating temperature adjusting means (not shown) attached to the gas heating device 50.
  • the collection mechanism 40 has a perforated belt (collector) 41, rollers 42 and 42 that support and convey the perforated belt, and an air suction unit 43 arranged on the back side of the collection surface of the perforated belt 41.
  • the air suction unit 43 is connected to the blower 44. Then, the collecting mechanism 40 collects the obtained fibrous material on the moving porous belt 41.
  • the resin or the resin composition melted by the extruder 20 is introduced into the spinning nozzle 31 of the die (spinning cap) 30 and discharged from the opening of the spinning nozzle 31.
  • the heating gas is injected toward the vicinity of the opening of the spinning nozzle 31. Then, the discharged resin or resin composition is stretched and refined by the heating gas to become a fibrous material.
  • the temperature (Ta) of the heating gas is adjusted so as to satisfy the above-mentioned equations (1) and (2).
  • the molten resin or resin composition is appropriately quenched and stretched.
  • the flow rate of the heating gas is adjusted so as to satisfy the above range. Therefore, even if the molten resin or the resin composition is rapidly cooled, it can be sufficiently stretched. Therefore, it is possible to reduce the variation in the fiber diameter while reducing the fiber diameter.
  • the discharged fibrous material is collected on the porous belt 41 to obtain a fibrous nonwoven fabric.
  • the method 2 for producing a fibrous nonwoven fabric of the present disclosure is a cooling gas supplied from both sides in the mechanical direction by discharging a molten resin or resin composition containing an aromatic polyetherketone from a spinneret together with a heating gas by a melt blown method.
  • This method includes a step of stretching the resin or the resin composition with the heating gas to form a fibrous product while cooling the resin or the resin composition.
  • the method 2 for producing the fibrous nonwoven fabric of the present disclosure is not limited to the method in which the heating gas is discharged so as to satisfy the above formulas (1) and (2), and when the resin or the resin composition is stretched by the heating gas. In addition, it differs from the above-mentioned manufacturing method 1 of the fibrous nonwoven fabric of the present disclosure in that the resin or the resin composition is cooled by the cooling gas supplied from both sides in the mechanical direction. In the method 2 for producing a fibrous nonwoven fabric of the present disclosure, the heating gas and the cooling gas are combined to cool the heating gas by separately spraying a cooling gas for rapidly cooling the resin or the resin composition discharged from the spinneret.
  • the fibrous resin or the resin composition is cooled immediately after discharge, and it is possible to suppress the fusion of the adjacent fibrous resin or the resin composition, and as a result, the variation in the fiber diameter can be suppressed. Therefore, the above-mentioned fibrous nonwoven fabric having a small variation in fiber diameter can be manufactured.
  • the discharge of the heating gas satisfies the above formula (1) from the viewpoint of suppressing an increase in the fiber diameter.
  • Tp-Ta is not particularly limited when the temperature of the heating gas is Ta (° C) and the temperature of the molten resin or resin composition is Tp (° C). ..
  • Tp-Ta ( ⁇ T) may be substantially equal, or -30 ⁇ Tp-Ta ⁇ 30.
  • the temperature (Ta) of the heating gas may be selected according to the type of aromatic polyetherketone.
  • the temperature (Ta) of the heating gas is preferably, for example, 330 ° C to 550 ° C, more preferably 370 ° C to 520 ° C, and 430 ° C to 430 ° C. It is more preferably 520 ° C.
  • the temperature (Tp) of the melted resin or the resin composition may be the same as the preferable range of Tp described in the above-mentioned method 1 for producing a fibrous nonwoven fabric.
  • the temperature of the cooling gas is preferably 30 ° C. or lower, preferably 5 ° C. to 25 ° C., from the viewpoint of preferably suppressing variations in fiber diameter due to fusion of adjacent fibrous resins or resin compositions immediately after discharge.
  • the temperature is more preferably 5 ° C to 20 ° C.
  • the flow rate of the cooling gas is preferably 1000 Nm 3 / hour / m to 20000 Nm 3 / hour / m, more preferably 3000 Nm 3 / hour / m to 18000 Nm 3 / hour / m, and more preferably 5000 Nm 3 / hour / m. It is more preferably m to 15000 Nm 3 / hour / m.
  • the type of cooling gas is not particularly limited, and examples thereof include cooling air.
  • the present inventors have set Tp-Tq ( ⁇ T) when the temperature of the molten resin or resin composition is Tp (° C) and the temperature of the cooling gas is Tq (° C). It has been found that the above-mentioned fibrous nonwoven fabric having a smaller variation in fiber diameter can be produced by controlling') within a predetermined range. For example, it is preferable to discharge the heating gas and supply the cooling gas so as to satisfy the following formula (3). Equation (3) 350 ° C ⁇ Tp-Tq ⁇ 550 ° C
  • ⁇ T' is preferably 370 ° C to 520 ° C, more preferably 400 ° C to 500 ° C.
  • the fibrous nonwoven fabric manufacturing apparatus used in the fibrous nonwoven fabric manufacturing method 2 of the present disclosure will be described with reference to FIG.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the fibrous nonwoven fabric manufacturing apparatus 100. As shown in FIG. 2, the fibrous nonwoven fabric manufacturing apparatus 100 differs from the fibrous nonwoven fabric manufacturing apparatus 10 shown in FIG. 1 in that an attachment 34 for introducing cooling air is attached to the die 30.
  • the attachment 34 is removable from the die 30.
  • the die 30 injects heating gas (heated compressed gas) from the gas nozzle 32 into the vicinity of the opening of the spinning nozzle 31 while discharging the molten resin or resin composition from the spinning nozzle 31.
  • the attachment 34 supplies the cooling gas in the direction of arrow B from the horizontal direction to the molten resin or resin composition and the heating gas discharged from the die 30.
  • the resin or the resin composition is stretched by the heating gas to obtain a fibrous material.
  • the heating gas and the cooling gas merge to cool the heating gas.
  • the method 2 for producing a fibrous nonwoven fabric of the present disclosure it is possible to produce a fibrous nonwoven fabric having an excellent Q value when used as a filter.
  • the attachment 34 is attached to the die 30 in the vertical direction without any gap. Therefore, an air passage for taking in external air is not formed, the generation of a vortex is suppressed in the upper part of the attachment 34, and the turbulent flow of the heating gas due to the vortex is unlikely to occur. Therefore, it is possible to preferably prevent the adjacent fibrous resin or resin composition from being fused by turbulent flow immediately after discharge.
  • the attachment 34 may have a gap between it and the die 30 in the vertical direction. In this case, it is preferable that the attachment 34 and the die 30 are airtight in the machine direction from the viewpoint of suppressing the inflow of air in the machine direction and suppressing fusion due to turbulent flow.
  • the die 30 is heated to discharge the heating gas, and the temperature difference between the die 30 and the attachment 34 is large.
  • the above-mentioned fibrous nonwoven fabric of the present disclosure and the fibrous nonwoven fabric manufactured by the above-mentioned manufacturing method 1 or manufacturing method 2 may be charged.
  • the method of charging is not particularly limited as long as the fibrous nonwoven fabric can be electretized.
  • a corona charging method a method of applying water or a water-soluble organic solvent aqueous solution to the fibrous nonwoven fabric and then drying the fabric to electret (the method).
  • the methods described in JP-A-9-501604, JP-A-2002-115177, etc. can be mentioned.
  • an electric field strength of 15 kV / cm or more is preferable, and an electric field strength of 20 kV / cm or more is more preferable.
  • the filters of the present disclosure include the above-mentioned fibrous nonwoven fabrics of the present disclosure. As a result, the filter of the present disclosure suppresses variations in fiber diameter and is excellent in filter accuracy.
  • Example 1 A fibrous nonwoven fabric was produced using the manufacturing apparatus shown in FIG. Specifically, PEEK (polyetheretherketone, Solvey, Ketaspire KT-890P, resin viscosity at 400 ° C. of 99 Pa ⁇ s) is melted using a twin-screw extruder, and the melted PEEK is supplied to the die. , Set temperature: 480 ° C die (melted PEEK temperature Tp), discharge rate per spinning nozzle: 0.2 g / min, intersmall hole distance: 1.0 mm, heating blown from both sides of the spinning nozzle It was discharged together with air (temperature Ta: 350 ° C., flow rate: 300 Nm 3 / hour / m).
  • PEEK polyetheretherketone, Solvey, Ketaspire KT-890P, resin viscosity at 400 ° C. of 99 Pa ⁇ s
  • the diameter of the spinning nozzle of the die was 0.4 mm. Then, the fibrous PEEK was collected on a collector so that the basis weight was 15 g / m 2 , and a fibrous nonwoven fabric was obtained.
  • Tc crystallization temperature
  • Tm melting point
  • the viscosities of the resins used in each Example and each Comparative Example were determined as follows. Specifically, using a capillary leometer (product name; Capillograph 1D PMD-C, manufactured by Toyo Seiki Seisakusho Co., Ltd.) and the resins used in each example and each comparative example, the shear stress and shear strain rate are measured under the following conditions. The shear viscosity ( ⁇ ) (Pa ⁇ s) was calculated based on the following formula and used as the viscosity of the resin.
  • ⁇ (Pa) represents the apparent shear stress
  • ⁇ dot (Pa) (a symbol with a dot ( ⁇ ) above ⁇ ; hereinafter simply referred to as “ ⁇ ”) is the shear strain rate.
  • Example 2 and 3 A fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature of the heated air was changed as shown in Table 1 in Example 1.
  • Example 4 The fibrous nonwoven fabric was prepared in the same manner as in Example 1 except that PEEK used in Example 1 was changed to PEEK (polyetheretherketone, Solvay, Ketaspire KT-880P, resin viscosity at 400 ° C. 220 Pa ⁇ s). Obtained.
  • the crystallization temperature (Tc) of PEEK was 177 ° C, and the melting point (Tm) of PEEK was 349 ° C.
  • Example 5 A fibrous nonwoven fabric was produced using the manufacturing apparatus shown in FIG. Specifically, the molten PEEK used in Example 1 is supplied to the die, and the discharge rate per spinning nozzle is 0.2 g from the die having a set temperature of 480 ° C. (the temperature Tp of the molten PEEK). At / min, it was discharged together with heated air (temperature Ta: 480 ° C., flow rate: 300 Nm 3 / hour / m) blown from both sides of the spinning nozzle. The diameter of the spinning nozzle of the die was 0.4 mm. Further, the temperature Tq of the cooling air was 10 ° C., and the flow rate of the cooling air was 12000 Nm 3 / hour / m. Then, the fibrous PEEK was collected on a collector so that the basis weight was 15 g / m 2 , and a fibrous nonwoven fabric was obtained.
  • the molten PEEK used in Example 1 is supplied to the die, and the discharge rate per spinning
  • Example 6 A fibrous nonwoven fabric was obtained in the same manner as in Example 5 except that the temperature of the melted PEEK, the temperature of the heating air, and the temperature of the cooling air were changed as shown in Table 1.
  • Example 1 Example 1 except that the PEEK is melted by using a single-screw extruder instead of the twin-screw extruder in Example 1 and the temperature of the die and the temperature of the heated air are changed as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as above.
  • Example 5 The PEEK used in Example 1 was changed to PP (polypropylene, ExxonMobil, Achieve 6936G2, weight average molecular weight: 55,000), and the die temperature and the heating air temperature were changed as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as in Example 1.
  • Example 6 The PEEK used in Example 1 was changed to PET (polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62), and the temperature of the die and the temperature of the heated air were as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature was changed to.
  • PET polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62
  • Table 2 Polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62
  • a fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature was changed to.
  • the physical characteristics (average fiber diameter, CV value, basis weight, thickness, and air permeability) of the obtained fibrous nonwoven fabric were measured by the following method.
  • Average fiber diameter ( ⁇ m) and coefficient of variation (CV value) of the fibers constituting the fibrous nonwoven fabric Using an electron microscope (S-3500N manufactured by Hitachi, Ltd.), a photograph of a fibrous nonwoven fabric having a magnification of 1000 times was taken. The diameter of the fiber can be measured from the obtained photograph. The diameter of the fiber is measured, and imaging and measurement are repeated until the total number of measured fibers exceeds 100, and the arithmetic average value of the diameter of the obtained fiber is averaged. The fiber diameter was used.
  • Air permeability (cm 3 / cm 2 / sec) Five samples of 150 mm in the vertical direction ⁇ 150 mm in the horizontal direction were collected, and the air permeability was measured under the condition of the flow rate at a pressure difference of 125 Pa by a Frazier air permeability measuring machine according to JIS L 1096: 2010.
  • the dust collection efficiency of the fibrous nonwoven fabric which had not been heat-treated was measured by the following method. Three samples of 15 cm ⁇ 15 cm were collected from an arbitrary part of the fibrous nonwoven fabric, and the collection efficiency of each sample was measured using a collection performance measuring device (Model 8130 manufactured by Tokyo Dyrec Co., Ltd.). In measuring the collection efficiency, NaCl particle dust with a central diameter of 0.3 ⁇ m is generated by an atomizer, then the sample is set in the holder, and the air volume is set so that the filter passing speed is 5.3 cm / sec.
  • the dust concentration was stabilized in the range of 15 mg / m 3 to 20 mg / m 3 by adjusting with a flow rate adjusting valve.
  • the upstream dust number D2 and the downstream dust number D1 of the sample were detected by a laser particle detector, and the second decimal place of the numerical value obtained by the following formula was rounded off to obtain the collection efficiency.
  • the pressure loss of the fibrous nonwoven fabric that had not been heat-treated was determined by reading the static pressure difference between the upstream and downstream of the sample at the time of measuring the collection efficiency with a pressure gauge.
  • the pressure loss shown in Tables 1 and 2 is an arithmetic mean value obtained using three samples.
  • the volume fraction occupied by the fibrous nonwoven fabric, the thickness of the fibrous nonwoven fabric, and the calculated E / ef are substituted into the equation (b), and further, the average fiber diameter df is a value of 5 ⁇ 10-6 m (5 ⁇ m).
  • the collection efficiency (5 ⁇ m conversion value).
  • the density of PEEK is 132 kg / m 3 .
  • the above-mentioned (measurement of pressure loss (Pa) of non-woven fabric not heat-treated), (conversion of collection efficiency of non-woven fabric not heat-treated), (pressure loss of non-woven fabric not heat-treated).
  • the measurement, conversion and calculation of each physical property after the heat treatment were carried out by the same method as (conversion) and (calculation of Q value of the fibrous nonwoven fabric not heat-treated).
  • the ratio of the Q value of the fibrous nonwoven fabric after the heat treatment to the Q value of the fibrous nonwoven fabric not heat-treated was determined as the performance retention rate. The higher the performance retention rate, the more the decrease in the Q value due to the heat treatment is suppressed.
  • Tables 1 and 2 show the production conditions of the fibrous nonwoven fabrics of Examples 1 to 6 and Comparative Examples 1 to 6 and the evaluation results of the fibrous nonwoven fabric.
  • the fibrous nonwoven fabrics obtained in Examples 1 to 6 have a lower CV value than the fibrous nonwoven fabrics obtained in Comparative Examples 1 to 4, and have a Q value and a heat treatment of the fibrous nonwoven fabric that has not been heat-treated. It was later shown that the Q value of the fibrous nonwoven fabric was excellent. Since the resin of the fibrous nonwoven fabric obtained in Comparative Example 5 was melted during heating at 250 ° C., the Q value of the fibrous nonwoven fabric after the heat treatment could not be measured. It was shown that in the fibrous nonwoven fabric obtained in Comparative Example 6, the Q value of the fibrous nonwoven fabric after the heat treatment was significantly lower than the Q value of the fibrous nonwoven fabric not treated with heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

芳香族ポリエーテルケトンを含有する繊維を含み、前記繊維の繊維径の変動係数が100%以下である繊維不織布。

Description

繊維不織布、フィルタ及び繊維不織布の製造方法
 本発明は、繊維不織布、フィルタ及び繊維不織布の製造方法に関する。
 芳香族ポリエーテルケトンは、融点が高く、耐熱性に優れるため、不織布としてフィルタの濾材、電池用セパレーター等に用いられることがある。
 例えば、ポリエーテルエーテルケトン樹脂からなる耐熱性メルトブロー不織布であって、平均繊維径が1~20μm、目付が5~120g/m、通気度が1~400cc/cm/sec、厚みが0.05~1.0mm、引張強度が2~50N/25mm及び引張伸度が1~100%である物性を有することを特徴とするメルトブロー不織布が提案されている(例えば、特許文献1を参照)。
 また、芳香族ポリエーテルケトンの長繊維からなることを特徴とする耐熱性不織布であり、好ましくは、前記長繊維の繊維径が3~50μm、結晶化度が20~60%であり、前記不織布が、圧着面積率3%以上の熱圧着で一体化されていることを特徴とする耐熱性不織布が提案されている(例えば、特許文献2を参照)。
  [特許文献1] 特開2008-81893号公報
  [特許文献2] 特開2010-106388号公報
 特許文献1及び特許文献2に記載されたポリエーテルエーテルケトン樹脂からなる不織布は、フィルタとしたときの性能に劣る場合があることが分かった。フィルタの性能は、例えば、クオリティーファクター(Q値)として表される。Q値は、圧力損失と粒子の捕集効率から求められる値である。
 不織布をフィルタとして用いる場合、室温でのQ値が高いだけでなく、幅広い温度範囲にてフィルタ性能が維持されることが好ましい。そのため、温度変化が生じた場合であってもQ値の変動が少ないことが好ましく、例えば、フィルタを高温に晒した後であってもQ値の低下が抑制されていることが望ましい。しかし、熱可塑性樹脂から構成される不織布をフィルタとして用いた場合、フィルタを高温に晒した際に、不織布を構成する熱可塑性樹脂が溶解する、熱処理後のQ値が熱処理前に対して大きく低下する等によって温度変化時にフィルタ性能が劣化してしまう等の問題が生じやすい。
 本開示は、上記に鑑みてなされたものであり、室温でのQ値が高く、かつ熱処理によるQ値の低下が抑制可能な繊維不織布、この繊維不織布を含むフィルタ及びこの繊維不織布の製造方法を提供することを目的とする。
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 芳香族ポリエーテルケトンを含有する繊維を含み、
 前記繊維の繊維径の変動係数が100%以下である繊維不織布。
<2> 400℃での前記繊維の粘度が50Pa・s~500Pa・sである<1>に記載の繊維不織布。
<3> 前記繊維の平均繊維径が10μm以下である<1>又は<2>に記載の繊維不織布。
<4> 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む<1>~<3>のいずれか1つに記載の繊維不織布。
<5> 前記繊維不織布はメルトブローン不織布を含む、<1>~<4>のいずれか1つに記載の繊維不織布。
<6> <1>~<5>のいずれか1つに記載の繊維不織布を含むフィルタ。
<7> メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、
 前記加熱ガスの流量を150Nm/時/m~1000Nm/時/mとし、
 前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う繊維不織布の製造方法。
 式(1) Tc<Ta≦Tm+200
 式(2) 40≦Tp-Ta≦190
<8> 400℃での前記樹脂又は前記樹脂組成物の粘度が50Pa・s~500Pa・sである<7>に記載の繊維不織布の製造方法。
<9> 前記加熱ガスの吐出は、下記式(1)’をさらに満たすように行う<7>又は<8>に記載の繊維不織布の製造方法。
 式(1)’ Tm-30≦Ta≦Tm+200
<10> 前記加熱ガスの流量を250Nm/時/m~850Nm/時/mとする<7>~<9>のいずれか1つに記載の繊維不織布の製造方法。
<11> メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む繊維不織布の製造方法。
 式(3) 300℃≦Tp-Tq≦550℃
<12> 前記冷却ガスの流量が1000Nm/時/m~20000Nm/時/mである<11>に記載の繊維不織布の製造方法。
<13> 前記冷却ガスの温度が30℃以下である<11>又は<12>に記載の繊維不織布の製造方法。
<14> 前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記冷却ガスの温度をTq(℃)としたとき、前記加熱ガスの吐出及び前記冷却ガスの供給は、下記式(3)を満たす<11>~<13>のいずれか1つに記載の繊維不織布の製造方法。
 式(3) 350℃≦Tp-Tq≦550℃
<15> 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む<7>~<14>のいずれか1つに記載の繊維不織布の製造方法。
<16> 二軸押出機を用いて前記芳香族ポリエーテルケトンを含む樹脂又は樹脂組成物を溶融する<11>~<15>のいずれか1つに記載の繊維不織布の製造方法。
 本開示によれば、室温でのQ値が高く、かつ熱処理によるQ値の低下が抑制可能な繊維不織布、この繊維不織布を含むフィルタ及びこの繊維不織布の製造方法を提供することができる。
図1は、本開示の繊維不織布の製造方法1で用いる繊維不織布の製造装置の構成の一例を示す模式図である。 図2は、本開示の繊維不織布の製造方法2で用いる繊維不織布の製造装置の構成の一例を示す模式図である。
 本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、繊維不織布のQ値は、捕集効率及び圧力損失を用いて以下の式(a)により計算された値である。以下の式に示すように低圧力損失かつ高捕集性能であるほどQ値は高くなり、繊維不織布をフィルタに用いたときの濾過性能が良好であることが分かる。
Q値(Pa-1)=-[ln(1-[捕集効率])/(圧力損失(Pa))]  (a)
 本開示において、捕集効率及び圧力損失は、後述の実施例に記載の方法により測定することができる。
 繊維不織布を構成する繊維の平均繊維径dでの捕集効率Y(d)(-)は、Russell, Stephen J. Handbook of nonwovens. Woodhead Publishing, P488, 2006.に記載されているように下記の式(b)で表される。なお、下記の式(b)中、Y(d)は平均繊維径dでの捕集効率、dは平均繊維径(m)、Φは繊維不織布の占める体積分率(-)、hは繊維不織布の厚み(m)、Eは繊維不織布に直交する流れに対する規格単位面積あたりの捕集能力(-)、eは有効繊維長係数(-)を表す。
Figure JPOXMLDOC01-appb-M000001

 
 繊維不織布を構成する繊維の平均繊維径dでの圧力損失ΔP(Pa)は、Russell, Stephen J. Handbook of nonwovens. Woodhead Publishing, P488, 2006.に記載されているように下記の式(c)で表される。なお、下記の式(c)中、ΔPは平均繊維径dでの圧力損失(Pa)、dは平均繊維径(m)、Φは繊維不織布の占める体積分率(-)、hは繊維不織布の厚み(m)、ηは流体粘度(Pa・s)、Uは流体速度(m/s)を表す。
Figure JPOXMLDOC01-appb-M000002

 
 本開示において、ある繊維不織布と他の繊維不織布とを比較してQ値に優れるとは、平均繊維径を同一の値、例えば平均繊維径を5μmに換算した際のQ値が高いことを意味する。
 捕集効率の実測値、平均繊維径の実測値、繊維不織布の占める体積分率、及び繊維不織布の厚みを式(b)に代入すると、E/eを算出できる。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したE/eを式(b)に代入し、さらに、平均繊維径dとして5×10-6m(5μm)の値を式(b)に代入することで、平均繊維径を5μmに換算した際の捕集効率を求めることができる。
 圧力損失の実測値、平均繊維径の実測値、繊維不織布の占める体積分率、及び繊維不織布の厚みを式(c)に代入すると、Uηを算出できる。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したUηを式(c)に代入し、さらに、平均繊維径dとして5×10-6m(5μm)の値を式(c)に代入することで、平均繊維径を5μmに換算した際の圧力損失を求めることができる。
 平均繊維径を5μmに換算した際の捕集効率及び平均繊維径を5μmに換算した際の圧力損失を、式(a)に代入することで平均繊維径を5μmに換算した際のQ値を求めることができる。
[繊維不織布]
 本開示の繊維不織布は、芳香族ポリエーテルケトンを含有する繊維を含み、前記繊維の繊維径の変動係数が100%以下である。これにより、本開示の繊維不織布は、繊維径のばらつきが抑制されているため、繊維不織布を用いて形成されたフィルタは捕集効率に優れる。より具体的には、本開示の繊維不織布を用いて形成されたフィルタは、室温でのQ値が高いだけでなく、幅広い温度範囲にてフィルタ性能が維持される。さらに、前記フィルタを250℃程度の高温に晒した後であってもQ値の低下が抑制される。また、本開示の繊維不織布を用いて形成されたフィルタでは、室温でのQ値と、高温に曝した後の室温でのQ値との差が小さく、幅広い温度範囲にてQ値の変動が抑制され、本開示の繊維不織布は性能保持性に優れる傾向にある。
 本開示の繊維不織布は、紡糸不良が抑制されて平均繊維径が小さくなる観点から、400℃での前記繊維の粘度が50Pa・s~500Pa・sであることが好ましく、60Pa・s~250Pa・sであることがより好ましく、70Pa・s~95Pa・sであることがさらに好ましい。
 本開示における粘度の測定方法は後述の実施例に記載の通りである。
 本開示の繊維不織布を構成する繊維の平均繊維径は、繊維不織布を用いて形成されたフィルタがより小さい粒子を好適に捕捉する観点から、10μm以下であることが好ましく、繊維不織布の強度及び捕集効率の観点から、0.1μm~10μmであることがより好ましく、0.3μm~8.0μmであることがさらに好ましく、0.5μm~5.0μmであることが特に好ましい。
 繊維不織布を構成する繊維の平均繊維径は、以下のようにして求めることができる。繊維不織布の電子顕微鏡写真(倍率1000倍)を撮像し、得られた写真から繊維の直径を測定可能な繊維の直径を測定し、測定した繊維の本数の合計が100本を超えるまで撮像と測定を繰り返し、得られた繊維の直径の算術平均値を前述の平均繊維径とする。
 本開示の繊維不織布を構成する繊維の繊維径の変動係数(CV値)は、100%以下であり、繊維不織布を用いて形成された捕集効率の観点から、90%以下であることが好ましく、85%以下であることがより好ましい。CV値は、0%以上であれば特に限定されず、例えば、30%以上であってもよく、50%以上であってもよい。CV値は、上記平均繊維径の測定結果の標準偏差(Dp)を、平均繊維径(Da)で除した値に100を乗じることにより算出することができる(下記式参照)。
 CV値=[標準偏差(Dp)/平均繊維径(Da)]×100
 繊維不織布の孔の、目付10g/mで測定した平均孔径は、0.01μm~10.0μmであることが好ましく、0.1μm~3.0μmであることがより好ましい。平均孔径が0.01μm以上であると、繊維不織布をフィルタに用いた場合に、圧力損失が高くなりすぎず、流量の低下を抑制しやすい。平均孔径が10.0μm以下であると、繊維不織布をフィルタに用いた場合に、捕集効率がより向上する傾向にある。繊維不織布の平均孔径は、バブルポイント法により測定することができる。具体的には、繊維不織布の試験片にフッ素系不活性液体を含浸させ、キャピラリー・フロー・ポロメーターで孔径を測定すればよい。
 繊維不織布の目付は、用途により適宜決めればよく、例えば、1g/m~200g/mであることが好ましく、5g/m~100g/mであることがより好ましい。目付が1g/m以上であると、繊維不織布の強度が向上して製造しやすくなる傾向がある。目付が200g/m以下であると、圧力損失が高くなり過ぎず、フィルタとして好適に用いることができる傾向がある。
 本開示における繊維不織布の目付の測定方法は後述の実施例に記載の通りである。
 繊維不織布の厚みは、用途により適宜決めればよく、例えば、0.01mm~1.00mmであることが好ましく、0.05mm~0.60mmであることがより好ましい。厚みが0.01mm以上であると、フィルタとしたときに、粉塵の捕集効率と圧力損失とのバランスが好適に確保され、フィルタのQ値がより向上する傾向にあり好ましく、厚みが1.00mm以下であるとフィルタの厚みを薄くできる傾向にあるため好ましい。本開示の繊維不織布によれば、繊維径のばらつきが抑えられることで捕集効率が向上しているため、従来の繊維不織布に比べて厚みを薄くしてもQ値に優れる傾向がある。
 本開示における繊維不織布の厚みの測定方法は後述の実施例に記載の通りである。
 繊維不織布の通気度は、用途により適宜決めればよく、例えば、0.1cm/cm/sec~200cm/cm/secであることが好ましく、1.0cm/cm/sec~150cm/cm/secであることがより好ましい。通気度が0.1cm/cm/sec以上であると圧力損失がより低下する傾向にあり、通気度が200cm/cm/sec以下であると捕集効率がより向上する傾向にある。
 本開示における繊維不織布の通気度の測定方法は後述の実施例に記載の通りである。
 本開示の繊維不織布は、少なくとも1種の不織布を含んでいれば特に限定されない。本開示の繊維不織布に含まれる不織布としては、メルトブローン不織布、スパンボンド不織布、湿式不織布、スパンレース不織布、乾式不織布、乾式パルプ不織布、エアレイド不織布、ウォータージェット不織布、フラッシュ紡糸不織布、開繊不織布、ニードルパンチ不織布等、種々公知の短繊維不織布及び長繊維不織布(例えば長繊維セルロース不織布)等が挙げられる。中でも、本開示の繊維不織布は、メルトブローン不織布を含むことが好ましい。
 本開示の繊維不織布は、1種の不織布から構成されるものであってもよく、2種以上の不織布から構成されるものであってもよい。
 本開示の繊維不織布は、単層不織布として用いられてもよく、積層体の少なくとも一つの層を構成する不織布として用いられてもよい。積層不織布を構成する他の層の例には、本開示の繊維不織布の他に、従来のメルトブローン不織布、スパンボンド不織布、ニードルパンチ不織布、スパンレース不織布等の他の不織布、織物、編物、紙などが挙げられる。
 本開示の繊維不織布は、繊維不織布が通常使用されている用途に幅広く利用することができる。繊維不織布の用途としては、例えば、フィルタ、衛生材料、医療用部材、包装材、電池用セパレーター、保温材、断熱材、防護服、衣料部材、電子材料、吸音材等が挙げられる。
 本開示の繊維不織布は、例えば、ガスフィルタ(エアフィルタ)、液体フィルタ等のフィルタとして好ましく用いられうる。本開示の繊維不織布は、前述のCV値、すなわち、繊維径のばらつきが少ないため、繊維間に比較的大きい孔(欠損部位)が形成されにくい。これにより、本開示の繊維不織布は、濾過性能に優れる高性能フィルタに好適に用いられる。
 本開示の繊維不織布は、帯電されていてもよい。帯電されている繊維不織布は、エアフィルタに好適に用いられる。帯電されている繊維不織布は、後述するように帯電前の繊維不織布に帯電加工をすることで得られる。
 本開示の繊維不織布に含まれる繊維は、芳香族ポリエーテルケトンを含有する。芳香族ポリエーテルケトンとしては、ベンゼン環等の芳香環と、エーテル結合と、ベンゼン環等の芳香環とをこの順に有する構造と、ベンゼン環等の芳香環と、ケトン結合と、ベンゼン環等の芳香環とをこの順に有する構造と、をそれぞれ複数有する高分子であれば特に限定されない。また、芳香族ポリエーテルケトンは、芳香環、エーテル結合及びケトン結合以外の骨格、例えばエステル結合等をさらに有していてもよい。
 芳香族ポリエーテルケトンの具体例としては、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエステル等が挙げられ、耐熱性の観点から、ポリエーテルエーテルケトンが好ましい。
 前述の繊維は、1種の芳香族ポリエーテルケトンを含有していてもよく、2種以上の芳香族ポリエーテルケトンを含有していてもよい。
 前述の繊維は、樹脂として芳香族ポリエーテルケトンのみを含んでいてもよく、芳香族ポリエーテルケトンとその他の樹脂とを含んでいてもよい。その他の樹脂としては、熱可塑性樹脂が挙げられる。
 前述の繊維に含まれる樹脂中の芳香族ポリエーテルケトンの含有率は、耐熱性の観点から、樹脂全量に対して、50質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
 前述の繊維に含まれる樹脂中の芳香族ポリエーテルケトンの含有率の上限は特に限定されない。
 前述の繊維に含まれ得る熱可塑性樹脂としては、特に限定されず、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等のα-オレフィンの単独重合体又は共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等のポリアミド、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマーなどが挙げられる。熱可塑性樹脂は、1種からなるものであってもよく、2種以上の混合物であってもよい。
 α-オレフィンの単独重合体又は共重合体としては、例えば、エチレン・プロピレンランダム共重合体、高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE)、高密度ポリエチレン、エチレン・1-ブテンランダム共重合体等のエチレンランダム共重合体などのエチレン系重合体;ポリプロピレン(プロピレン単独重合体)、プロピレン・エチレンランダム共重合体、プロピレン・1-ブテンランダム共重合体等のプロピレンランダム共重合体などのプロピレン系重合体;ポリ1-ブテン、ポリ4-メチル-1-ペンテンなどが挙げられる。
 本開示の繊維不織布に含まれる繊維は、必要に応じて、通常用いられる添加剤を含んでいてもよい。添加剤としては、例えば、酸化防止剤、耐候安定剤、耐熱安定剤、耐光安定剤、帯電防止剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス等の種々公知の添加剤が挙げられる。
 前述の繊維中の芳香族ポリエーテルケトンの含有率は、耐熱性の観点から、繊維全量に対して、50質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
 前述の繊維中の芳香族ポリエーテルケトンの含有率の上限は特に限定されない。
 以下、本開示の繊維不織布を製造する方法の例として、繊維不織布の製造方法1及び繊維不織布の製造方法2を説明する。本開示の繊維不織布を製造する方法はこれらの製造方法に限定されない。
[繊維不織布の製造方法1]
 本開示の繊維不織布の製造方法1は、メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、前記加熱ガスの流量を150Nm/時/m~1000Nm/時/mとし、前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う方法である。
 式(1) Tc<Ta≦Tm+200
 式(2) 40≦Tp-Ta≦190
 従来は、例えば、再公表特許第2012/102398号に記載されているように、加熱ガスの温度(Ta)は、溶融した樹脂又は樹脂組成物の温度(紡糸口金の温度)(Tp)と同じか、それよりも高くすることが一般的である。これに対して、本発明者らは、加熱ガスの温度(Ta)を、溶融した樹脂又は樹脂組成物の温度(Tp)よりも一定以上低くし、かつ、加熱ガスの流量を所定範囲に制御することで、繊維径のばらつきが小さい前述の繊維不織布を製造できることを見出した。
 この理由は明らかではないが、以下のように推測される。すなわち、Tp-Ta(ΔT)が40℃以上であると、紡糸口金から吐出された樹脂又は樹脂組成物は適度に急冷されるため、適度に固化しやすい。それにより、繊維状に吐出された樹脂又は樹脂組成物同士が融着しにくくなるため、繊維径のばらつきを少なくできる。一方、ΔTが190℃以下であり、かつ加熱ガスの温度(Ta)が式(1)の範囲を満たしていると、紡糸口金から吐出された樹脂又は樹脂組成物は、急冷されすぎないため、加熱ガスによる延伸(牽引)効果が損なわれにくい。それにより、加熱ガスによる延伸不足を抑制することができるため、繊維径の増大も抑制できる。
 さらに、加熱ガスの流量を調整することで、延伸効果が十分に発現して繊維径の増大を抑制することができ、吐出直後に隣接する繊維状の樹脂又は樹脂組成物が融着することによる繊維径のばらつきも抑制できる。本開示の繊維不織布の製造方法1によれば、フィルタとしたときに室温でのQ値が高く、かつ熱処理によるQ値の低下が抑制可能な繊維不織布を製造し得る。さらに、本開示の繊維不織布の製造方法1にて製造された繊維不織布を用いて形成されたフィルタでは、室温でのQ値と、高温に曝した後の室温でのQ値との差が小さく、幅広い温度範囲にてQ値の変動が抑制され、前記繊維不織布は性能保持性に優れる傾向にある。
 本開示の繊維不織布の製造方法1では、繊維径のばらつきの小さい繊維不織布を得る観点から、紡糸口金から吐出された樹脂又は樹脂組成物を急冷する冷却ガスを別途吹き付ける必要がなく、例えば、紡糸口金から吐出された樹脂又は樹脂組成物に、30℃以下の冷却ガスを吹き付ける工程をさらに行う必要がない。つまり、ガスの吹き付けを複数段階で行う必要がなく、1段階で行うことができる。さらに、再公表特許第2012/102398号に記載のように繊維径のばらつきを低減させるために、吸引ロール、吸引ベルト等の外周面に沿って吸引フードを配置したり、吸引フードによる気流制御を行ったりする必要がない。したがって、本開示の繊維不織布の製造方法1は、比較的簡易な装置構成で実現することができる。
 本開示の繊維不織布の製造方法1は、メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、加熱ガスにより樹脂又は樹脂組成物を延伸して、繊維状物とする工程を含む。
 メルトブローン法とは、溶融した樹脂又は樹脂組成物を、紡糸口金から繊維状に吐出させるときに、溶融状態の吐出物(吐出された樹脂又は樹脂組成物)の両側から加熱ガスを当てるとともに、加熱ガスを随伴させることで吐出物の径を小さくする方法である。具体的には、例えば、原料として、芳香族ポリエーテルケトンを含む樹脂、又は芳香族ポリエーテルケトンと、その他の樹脂及び添加剤の少なくとも一方とを含む樹脂組成物を、押出機などを用いて溶融する。溶融した樹脂又は樹脂組成物は、押出機の先端に接続された紡糸口金に導入され、紡糸口金の紡糸ノズルから、繊維状に吐出される。繊維状に吐出された樹脂又は樹脂組成物に、紡糸口金のガスノズルから噴出される加熱ガスが当てられて、当該加熱ガスにより樹脂又は樹脂組成物が延伸されることにより、当該樹脂又は樹脂組成物が細化される。
 前述の樹脂に含まれる芳香族ポリエーテルケトンの含有率の好ましい条件は、前述の繊維に含まれる樹脂中の芳香族ポリエーテルケトンの含有率と同様である。
 また、前述の樹脂組成物に含まれる芳香族ポリエーテルケトンの含有率の下限の好ましい条件は、前述の繊維中の芳香族ポリエーテルケトンの含有率と同様である。前述の樹脂組成物に含まれる芳香族ポリエーテルケトンの含有率の上限は100質量%未満であれば特に限定されない。
 樹脂又は樹脂組成物に含まれる芳香族ポリエーテルケトンは、耐熱性の観点から、ポリエーテルエーテルケトンを含むことが好ましい。
 400℃での樹脂又は樹脂組成物の粘度は、樹脂又は樹脂組成物の紡糸安定性に優れる観点、及び、紡糸しやすくなることで平均繊維径が小さい繊維が得られやすい観点から、50Pa・s~500Pa・sであることが好ましく、70Pa・s~260Pa・sであることがより好ましく、80Pa・s~105Pa・sであることがさらに好ましい。
 粘度の測定対象となる樹脂及び樹脂組成物は、溶融前の樹脂及び樹脂組成物を意味する。
 そして、前述の通り、繊維不織布を構成する繊維径を小さくし、かつ繊維径のばらつきを少なくする(繊維径分布を狭くする)観点から、加熱ガスの吹き付けは、下記式(1)及び(2)を満たすように行う。
 式(1) Tc<Ta≦Tm+200
 式(2) 40≦Tp-Ta≦190
 式(1)に示されるように、加熱ガスの温度(Ta)が結晶化温度(Tc)よりも高いと、吐出された樹脂又は樹脂組成物の固化による延伸不良を抑制することができ、繊維径の増大を抑制できる。加熱ガスの温度(Ta)がTm+200℃以下であると、ΔT(Tp-Ta)を上記範囲に調整しやすいだけでなく、吐出された樹脂又は樹脂組成物の溶融粘度の低下による糸切れを抑制できる。中でも、吐出された樹脂又は樹脂組成物を十分に延伸して、より繊維径の小さい繊維を得やすくする観点では、加熱ガスの温度(Ta)は、下記式(1)’を満たすことがより好ましい。
 式(1)’ Tm-30≦Ta≦Tm+200
 Tp-Ta(ΔT)は、繊維径のばらつきの抑制及び繊維径の増大の抑制のバランスの観点から、40℃~180℃であることが好ましく、80℃~140℃であることがより好ましい。ΔTが40℃以上であると、平均繊維径がより小さくなる傾向にあるため好ましい。
 加熱ガスの温度(Ta)は、芳香族ポリエーテルケトンの種類に応じて、前述の式(1)を満たし、好ましくはさらに式(1)’を満たすように選択すればよい。芳香族ポリエーテルケトンがポリエーテルエーテルケトンである場合、加熱ガスの温度(Ta)は、例えば300℃~500℃であることが好ましく、320℃~480℃であることがより好ましく、340℃~440℃であることがさらに好ましい。
 溶融した樹脂又は樹脂組成物の温度(Tp)は、芳香族ポリエーテルケトンの種類に応じて、前述の式(2)を満たすように選択すればよい。芳香族ポリエーテルケトンがポリエーテルエーテルケトンである場合、溶融した樹脂組成物の温度(Tp)は、例えば360℃~520℃であることが好ましく、400℃~490℃であることがより好ましく、460℃~490℃であることがさらに好ましい。
 溶融した樹脂又は樹脂組成物の温度(Tp)は、紡糸口金(ダイ)の設定温度として測定することができる。
 加熱ガスの温度(Ta)は、紡糸口金(ダイ)から吐出された直後の加熱ガスの温度として測定することができる。具体的には、加熱ガスの温度(Ta)は、紡糸口金(ダイ)のガスノズルの開口部における加熱ガスの温度として測定することができる。加熱ガスの温度(Ta)の調整は、例えば紡糸口金(ダイ)のガスノズルの開口部の加熱ガスの温度(Ta)を測定しながら、当該ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよいし;所定の条件(例えばダイ温度、加熱ガス流量)下で、ガスノズルの開口部の加熱ガスの温度(Ta)と加熱ガスの供給温度との関係を示すデータ(検量線)を予め準備しておき、そのデータに基づいて、ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよい。
 芳香族ポリエーテルケトンの結晶化温度(Tc)及び融点(Tm)は、DSC(示差走査熱量測定)を用いて測定することができる。
 具体的には、示差走査型熱量計(DSC)としてパーキンエルマー社製DSC Pyr
is1又はエスアイアイ・ナノテクノロジー社製DSC7020を用い、窒素雰囲気下(20mL/min)、試料(約5mg)を、芳香族ポリエーテルケトンごとに設定した到達温度(ポリエーテルエーテルケトンの場合は490℃)まで昇温し、その温度で3分間保持した後、10℃/分で30℃まで冷却して30℃で1分間保持し、10℃/分で上記到達温度まで昇温し、昇温過程における結晶溶融ピークのピーク頂点から融点(Tm)を算出し、降温過程における結晶化ピークのピーク頂点から結晶化温度(Tc)を算出する。なお、複数の結晶溶融ピークが観測された場合は、高温側ピークを融点(Tm)とする。
 紡糸口金の紡糸ノズル1つ当たりの樹脂組成物の吐出量は、通常、0.01g/分~3.0g/分、好ましくは0.05g/分~2.0g/分である。吐出量が0.01g/分以上であると、繊維不織布の生産性が損なわれにくいだけでなく、繊維の糸切れを抑制しやすい。吐出量が3.0g/分以下であると、繊維径を十分に小さくしやすい。
 加熱ガスの流量は、繊維不織布を構成する繊維径を小さくし、かつ繊維径のばらつきを少なくする(繊維径分布を狭くする)観点から、150Nm/時/m~1000Nm/時/mである。加熱ガスの流量が150Nm/時/m以上であると、吐出された樹脂組成物を十分に延伸しやすく、十分に繊維径を小さくしやすい。加熱ガスの流量が1000Nm/時/m以下であると、気流の乱れによる繊維径のばらつきの増大を抑制しやすい。同様の観点から、加熱ガスの流量は、250Nm/時/m~850Nm/時/mであることが好ましい。
 加熱ガスの種類は特に限定されず、例えば、空気(エア)、炭酸ガス、窒素ガスなどの溶融した樹脂又は樹脂組成物に対して不活性なガスが挙げられる。これらの中でも、経済性の観点から空気(エア)が好ましい。
 吐出された樹脂又は樹脂組成物は、加熱ガスによって延伸されることで、繊維状物が得られる。繊維状物の平均繊維径は、製造される繊維不織布を用いて形成されたフィルタがより小さい粒子を好適に捕捉する観点から、10μm以下であることが好ましく、繊維不織布の強度及び捕集効率の観点から、0.1μm~10μmであることがより好ましく、0.3μm~8.0μmであることがさらに好ましく、0.5μm~5.0μmであることが特に好ましい。
 繊維状物の平均繊維径の測定方法は、前述の繊維の平均繊維径の測定方法と同様である。
 本開示の繊維不織布の製造方法1は、前述の繊維状物とする工程の後に、繊維状物をウェブ状に捕集する工程をさらに含んでいてもよい。この捕集する工程では、例えば、コレクター上に、得られた繊維状物をウェブ状に捕集する。また、コレクター上に捕集する際には、繊維から見てコレクターの裏側から、エアを吸引するなどして捕集を促進してもよい。
 コレクターの具体例としては、多孔ベルト、多孔ドラム等が挙げられる。なお、コレクターの裏面側からエアを吸引するなどして、繊維状物の捕集を促進してもよい。
 また、コレクター上に予め設けた所望の基材上に、細化された繊維を捕集してもよい。予め設けておく基材の例には、メルトブローン不織布、スパンボンド不織布、ニードルパンチング及びスパンレース不織布等の他の不織布、織物、編物、紙などが挙げられる。これにより、高性能フィルタ、ワイパー等で使用する極細繊維不織布積層体を得ることもできる。
 本開示の繊維不織布の製造方法1に用いられる繊維不織布の製造装置について、図1を参照しながら説明する。
 図1は、繊維不織布の製造装置10の構成の一例を示す模式図である。図1に示されるように、繊維不織布の製造装置10は、押出機20と、ダイ(紡糸口金)30と、捕集機構40とを有する。
 押出機20は、ホッパー21と、圧縮部22とを有する。そして、押出機20は、ホッパー21に投入された固体の樹脂又は樹脂組成物を、圧縮部22で溶融させる。押出機20は、単軸押出機であってもよいし、二軸押出機等の多軸押出機であってもよい。紡糸安定性を向上させる観点から、二軸押出機を用いて樹脂又は樹脂組成物を溶融することが好ましい。
 ダイ(紡糸口金)30は、押出機20の先端に繋がって配置されている。ダイ30は、複数の紡糸ノズル31と、2つのガスノズル32とを有する。
 複数の紡糸ノズル31は、通常、列状に配置されている。そして、紡糸ノズル31は、押出機20から搬送された、溶融した樹脂又は樹脂組成物が導入され、ノズル開口から、当該樹脂又は樹脂組成物を繊維状に吐出させる。紡糸ノズルの直径は、例えば0.05mm~0.80mmでありうる。溶融した樹脂又は樹脂組成物の温度(Tp)は、ダイ30の設定温度によって調整することができる。
 紡糸口金の紡糸ノズルにおける小孔間距離は、0.1mm~2.0mmが好ましく、0.15mm~1.8mmがより好ましい。小孔間距離が0.1mm以上であると、繊維径のばらつきをより少なくできる傾向がある。小孔間距離が2.0mm以下であると、生産効率をより向上できる傾向がある。
 2つのガスノズル(エアノズル)32は、紡糸ノズル31のノズル開口部の近傍、具体的には、複数の紡糸ノズル31の列を挟んだ両側に配置されている。そして、ガスノズル32は、紡糸ノズル31の開口部付近に加熱ガス(加熱圧縮ガス)を噴射する。図1に示されるように、ガスノズル32は、紡糸ノズル31の開口部から吐出された直後の樹脂又は樹脂組成物に、加熱ガスを噴射する。
 ガスノズル32に供給される加熱ガスは、ガス加熱装置50から供給される。加熱ガスの温度(Ta)は、ガス加熱装置50に付属の加熱温度調整手段(不図示)によって調整することができる。
 捕集機構40は、多孔ベルト(コレクター)41と、それを支持するとともに搬送させるローラ42及び42と、多孔ベルト41の捕集面の裏側に配置されたエア吸引部43とを有する。エア吸引部43は、ブロワー44と連結されている。そして、捕集機構40は、得られた繊維状物を、移動する多孔ベルト41上に捕集する。
 このような構成によれば、押出機20で溶融した樹脂又は樹脂組成物は、ダイ(紡糸口金)30の紡糸ノズル31に導入され、紡糸ノズル31の開口部から吐出される。一方、ガスノズル32からは、加熱ガスが紡糸ノズル31の開口部付近に向かって噴射される。そして、吐出された樹脂又は樹脂組成物は、加熱ガスにより延伸及び細化されて、繊維状物となる。
 そして、加熱ガスの温度(Ta)は、前述の式(1)及び(2)を満たすように調整されている。それにより、溶融した樹脂又は樹脂組成物は適度に急冷されて延伸される。また、加熱ガスの流量は、前述の範囲を満たすように調整されている。これにより、溶融した樹脂又は樹脂組成物が急冷されていても、十分に延伸させることができる。そのため、繊維径を小さくしつつ、繊維径のばらつきを少なくすることができる。そして、吐出された繊維状物は、多孔ベルト41上に捕集されて、繊維不織布が得られる。
[繊維不織布の製造方法2]
 本開示の繊維不織布の製造方法2は、メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む方法である。
 本開示の繊維不織布の製造方法2は、加熱ガスの吐出が上記式(1)及び(2)を満たすように行う方法に限定されない点、及び、加熱ガスにより樹脂又は樹脂組成物を延伸する際に、機械方向の両面から供給される冷却ガスで樹脂又は樹脂組成物を冷却する点で、前述の本開示の繊維不織布の製造方法1と相違する。本開示の繊維不織布の製造方法2では、紡糸口金から吐出された樹脂又は樹脂組成物を急冷する冷却ガスを別途吹き付けることで加熱ガスと冷却ガスとが合流して加熱ガスが冷却される。そのため、吐出直後に繊維状の樹脂又は樹脂組成物が冷却され、隣接する繊維状の樹脂又は樹脂組成物が融着することが抑制でき、その結果、繊維径のばらつきを抑制できる。したがって、繊維径のばらつきが小さい前述の繊維不織布を製造できる。
 以下、本開示の繊維不織布の製造方法2について、前述の本開示の繊維不織布の製造方法1と相違する好ましい条件について説明する。
 本開示の繊維不織布の製造方法2は、繊維径の増大を抑制する観点から、加熱ガスの吐出が上記式(1)を満たすことが好ましい。
 本開示の繊維不織布の製造方法2は、加熱ガスの温度をTa(℃)、溶融した樹脂又は樹脂組成物の温度をTp(℃)としたとき、Tp-Ta(ΔT)は、特に限定されない。例えば、Tp-Ta(ΔT)は、略等しくてもよく、-30≦Tp-Ta≦30であってもよい。
 加熱ガスの温度(Ta)は、芳香族ポリエーテルケトンの種類に応じて選択すればよい。芳香族ポリエーテルケトンがポリエーテルエーテルケトンである場合、加熱ガスの温度(Ta)は、例えば330℃~550℃であることが好ましく、370℃~520℃であることがより好ましく、430℃~520℃であることがさらに好ましい。
 溶融した樹脂又は樹脂組成物の温度(Tp)は、前述の繊維不織布の製造方法1に記載のTpの好ましい範囲と同様であってもよい。
 冷却ガスの温度は、吐出直後に隣接する繊維状の樹脂又は樹脂組成物が融着することによる繊維径のばらつきを好適に抑制する観点から、30℃以下であることが好ましく、5℃~25℃であることがより好ましく、5℃~20℃であることがさらに好ましい。
 冷却ガスの流量は、1000Nm/時/m~20000Nm/時/mであることが好ましく、3000Nm/時/m~18000Nm/時/mであることがより好ましく、5000Nm/時/m~15000Nm/時/mであることがさらに好ましい。
 冷却ガスの種類としては特に限定されず、例えば、冷却エアが挙げられる。
 本開示の繊維不織布の製造方法2では、本発明者らは、溶融した樹脂又は樹脂組成物の温度をTp(℃)、冷却ガスの温度をTq(℃)としたときのTp-Tq(ΔT’)を所定範囲に制御することで、より繊維径のばらつきが小さい前述の繊維不織布を製造できることを見出した。例えば、加熱ガスの吐出及び冷却ガスの供給は、下記式(3)を満たすように行うことが好ましい。
 式(3) 350℃≦Tp-Tq≦550℃
 より繊維径のばらつきが小さい前述の繊維不織布を製造できる理由は明らかではないが、以下のように推測される。すなわち、ΔT’が350℃以上であると、紡糸口金から吐出された樹脂又は樹脂組成物は適度に急冷されるため、適度に固化しやすい。それにより、繊維状に吐出された樹脂又は樹脂組成物同士が融着しにくくなるため、繊維径のばらつきを少なくできる。一方、ΔT’が550℃以下であると、紡糸口金から吐出された樹脂又は樹脂組成物は、急冷されすぎないため、加熱ガスによる延伸(牽引)効果が損なわれにくい。それにより、加熱ガスによる延伸不足を抑制することができるため、繊維径の増大も抑制できる。
 さらに繊維径のばらつきが小さい前述の繊維不織布を製造する観点から、ΔT’は、370℃~520℃であることが好ましく、400℃~500℃であることがより好ましい。
 本開示の繊維不織布の製造方法2に用いられる繊維不織布の製造装置について、図2を参照しながら説明する。
 図2は、繊維不織布の製造装置100の構成の一例を示す模式図である。図2に示されるように、繊維不織布の製造装置100は、冷却空気を導入するためのアタッチメント34がダイ30に取り付けられている点で図1に示される繊維不織布の製造装置10と相違する。
 アタッチメント34は、ダイ30から着脱可能である。これにより、繊維不織布の製造装置100では、ダイ30は、溶融した樹脂又は樹脂組成物を紡糸ノズル31から吐出しつつガスノズル32から紡糸ノズル31の開口部付近に加熱ガス(加熱圧縮ガス)を噴射し、アタッチメント34は、水平方向から矢印B方向の冷却ガスをダイ30から吐出された溶融した樹脂又は樹脂組成物及び加熱ガスに供給する。加熱ガスにより樹脂又は樹脂組成物が延伸され、繊維状物が得られる。このとき、ダイ30から吐出された樹脂又は樹脂組成物を急冷する冷却ガスを別途吹き付けることで加熱ガスと冷却ガスとが合流して加熱ガスが冷却されるため、吐出直後に隣接する繊維状の樹脂又は樹脂組成物が融着することが抑制でき、その結果、繊維径のばらつきを抑制できる。本開示の繊維不織布の製造方法2によれば、フィルタとしたときのQ値に優れる繊維不織布を製造し得る。
 また、ダイ30には、垂直方向においてアタッチメント34が隙間なく取り付けられている。そのため、外部の空気が取り込まれる空気通路が形成されておらず、アタッチメント34の上部に渦流が発生することが抑制されており、渦流による加熱ガスの乱流が発生しにくい。したがって、吐出直後に隣接する繊維状の樹脂又は樹脂組成物が乱流によって融着することを好適に抑制できる。他の実施態様において、アタッチメント34は、垂直方向においてはダイ30との間に隙間を有していてもよい。この場合は、機械方向における空気の流入を抑制して乱流による融着を抑制する観点から、アタッチメント34とダイ30が、機械方向において気密されていることが好ましい。
 ダイ30は、加熱ガスを吐出するために加熱されており、ダイ30とアタッチメント34とは温度差が大きい。アタッチメント34とダイ30との間の熱伝播を抑制するため、例えば、ダイ30の下面と、アタッチメント34の上面との間に断熱材を介在させることが好ましい。
 前述の本開示の繊維不織布、及び前述の製造方法1又は製造方法2により製造された繊維不織布は、帯電加工されていてもよい。
 帯電加工の方法としては、繊維不織布をエレクトレット化させることができれば特に限定されず、例えば、コロナ荷電法、繊維不織布に水又は水溶性有機溶剤水溶液を付与した後に乾燥させることによりエレクトレット化する方法(例えば、特表平9-501604号公報、特開2002-115177号公報等に記載されている方法)が挙げられる。コロナ荷電法の場合は15kV/cm以上の電界強度が好ましく、20kV/cm以上の電界強度がより好ましい。
[フィルタ]
 本開示のフィルタは、前述の本開示の繊維不織布を含む。これにより、本開示のフィルタは、繊維径のばらつきが抑制されており、フィルタ精度に優れる。
 以下、本発明を実施例により具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
[実施例1]
 図1に示される製造装置を用いて、繊維不織布を作製した。具体的には、二軸押出機を用いてPEEK(ポリエーテルエーテルケトン、Solvey社、キータスパイアKT-890P、400℃での樹脂粘度99Pa・s)を溶融し、溶融したPEEKをダイに供給し、設定温度:480℃のダイ(溶融したPEEKの温度Tp)から、紡糸ノズル1つあたりの吐出量:0.2g/分、小孔間距離:1.0mmで、紡糸ノズルの両側から吹き出す加熱エア(温度Ta:350℃、流量:300Nm/時/m)とともに吐出した。ダイの紡糸ノズルの直径は、0.4mmであった。そして、繊維状のPEEKを、目付量が15g/mとなるようにコレクター上に捕集し、繊維不織布を得た。なお、PEEKの結晶化温度(Tc)及び融点(Tm)は、前述の方法で測定した値を採用した。PEEKの結晶化温度(Tc)は176℃であり、PEEKの融点(Tm)は347℃であった。
(樹脂粘度の測定)
 各実施例及び各比較例で用いた樹脂の粘度は、以下のようにして求めた。具体的には、キャピラリーレオメーター(製品名;キャピログラフ1D PMD-C、株式会社東洋精機製作所製)並びに各実施例及び各比較例で用いた樹脂を用い、下記条件でせん断応力及びせん断歪み速度を求め、下記式に基づいてせん断粘度(η)(Pa・s)を算出し、樹脂の粘度とした。
[測定条件]
 測定機器:キャピログラフ1D PMD-C (株式会社東洋精機製作所製)
 キャピラリー内径:Φ=0.2[mm]
 測定温度:400℃
 キャピラリー長さ/キャピラリー内径(L/D):10
 ピストン速度:2.5×10(1/秒)
 せん断粘度(η)(Pa・s)は、上記L/Dが10のときの見かけのせん断応力及びせん断歪み速度の各値から、下記式で算出される。
Figure JPOXMLDOC01-appb-M000003
 式中、τ(Pa)は見かけのせん断応力を表し、γドット(Pa)(γの上部にドット(・)が記された記号;以下、単に「γ」ともいう。)は、せん断歪み速度を表す。
 見かけのせん断応力τ(Pa)は、ピストン荷重p(Pa)とキャピラリー内径D(mm)、キャピラリー長さL(mm)からτ=pD/π4Lで表され、せん断応力γ(Pa)は、体積流量Q(mm/s)を用いてγ=32Q/πDで表される。
[実施例2、3]
 実施例1にて加熱エアの温度を表1に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
[実施例4]
 実施例1にて使用したPEEKをPEEK(ポリエーテルエーテルケトン、Solvey社、キータスパイアKT-880P、400℃での樹脂粘度220Pa・s)に変更した以外は実施例1と同様にして繊維不織布を得た。PEEKの結晶化温度(Tc)は177℃であり、PEEKの融点(Tm)は349℃であった。
[実施例5]
 図2に示される製造装置を用いて、繊維不織布を作製した。具体的には、実施例1にて用いた溶融したPEEKをダイに供給し、設定温度:480℃のダイ(溶融したPEEKの温度Tp)から、紡糸ノズル1つあたりの吐出量:0.2g/分で、紡糸ノズルの両側から吹き出す加熱エア(温度Ta:480℃、流量:300Nm/時/m)とともに吐出した。ダイの紡糸ノズルの直径は、0.4mmであった。さらに、冷却エアの温度Tqは10℃であり、冷却エアの流量は12000Nm/時/mであった。そして、繊維状のPEEKを、目付量が15g/mとなるようにコレクター上に捕集し、繊維不織布を得た。
[実施例6]
 実施例5にて溶融したPEEKの温度、加熱エアの温度、及び冷却エアの温度を表1に示される通りに変更した以外は実施例5と同様にして繊維不織布を得た。
[比較例1]
 実施例1にて二軸押出機の代わりに単軸押出機を用いてPEEKを溶融する点及び、ダイの温度及び加熱エアの温度を表2に示される通りに変更した点以外は実施例1と同様にして繊維不織布を得た。
[比較例2、3、4]
 実施例1にて加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
[比較例5]
 実施例1にて使用したPEEKをPP(ポリプロピレン、ExxonMobil社製、Achieve 6936G2、重量平均分子量:5.5万)に変更し、ダイの温度及び加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
[比較例6]
 実施例1にて使用したPEEKをPET(ポリエチレンテレフタレート、三井化学(株)社製、三井PET、IV:0.62)に変更し、ダイの温度及び加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
 得られた繊維不織布の物性(平均繊維径、CV値、目付量、厚み、及び通気度)を、以下方法で測定した。
 (1)繊維不織布を構成する繊維の平均繊維径(μm)、変動係数(CV値)
 電子顕微鏡(日立製作所製S-3500N)を用いて、倍率1000倍の繊維不織布の写真を撮影した。得られた写真から繊維の直径を測定可能な繊維の直径を測定し、測定した繊維の本数の合計が100本を超えるまで撮像と測定を繰り返し、得られた繊維の直径の算術平均値を平均繊維径とした。
 また、この測定結果の標準偏差(Dp)を平均繊維径(Da)で除して、繊維径の変動係数(CV値)とした。
 CV値=[標準偏差(Dp)/平均繊維径(Da)]×100
 (2)目付(g/m
 縦方向100mm×横方向100mmの試料を3個採取して、各試料の重量をそれぞれ測定した。得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入して、目付量(g/m)とした。
 (3)厚み
 目付を測定した試料の中央及び四隅の5点の厚みを、厚み計(PEACOCK社製、品番「R1-250」、測定端子25mmφ)を用いて、荷重7g/m2で測定した。目付を測定した試料の10点の試料につき、この方法で厚みを測定し、その平均値を厚み(mm)とした。
 (4)通気度(cm/cm/sec)
 縦方向150mm×横方向150mmの試料を5個採取し、JIS L 1096:2010に準じたフラジール通気度測定機による圧力差125Paでの流量の条件で通気度の測定を行った。
(繊維粘度の測定)
 各実施例及び各比較例で得られた繊維不織布を構成する繊維の粘度を、前述の(樹脂粘度の測定)と同様の方法によって求めた。
(加熱処理していない繊維不織布の捕集効率の測定)
 各実施例及び各比較例で得られた繊維不織布について、加熱処理していない繊維不織布の粉塵の捕集効率を、以下の方法で測定した。繊維不織布の任意の部分から、15cm×15cmのサンプルを3個採取し、それぞれのサンプルについて、捕集性能測定装置(東京ダイレック(株)社製、Model8130)を用いて捕集効率を測定した。捕集効率の測定にあたっては、個数中央径:0.3μmをもつNaCl粒子ダストをアトマイザーで発生させ、次にサンプルをホルダーにセットし、風量をフィルタ通過速度が5.3cm/secになるように流量調整バルブで調整し、ダスト濃度を15mg/m~20mg/mの範囲で安定させた。サンプルの上流のダスト個数D2及び下流のダスト個数D1をレーザー式粒子検出器で検出し、下記計算式にて求めた数値の小数点以下第2位を四捨五入し捕集効率を求めた。なお、表1及び表2中に記載の捕集効率は、3個のサンプルを用いて測定した算術平均値である。
 捕集効率=〔1-(D1/D2)〕
 (D1:下流のダスト個数、D2:上流のダスト個数)
(加熱処理していない繊維不織布の圧力損失(Pa)の測定)
 加熱処理していない繊維不織布の圧力損失は捕集効率測定時のサンプルの上流及び下流の静圧差を圧力計で読み取ることで求めた。なお、表1及び表2中に記載の圧力損失は、3個のサンプルを用いて求めた算術平均値である。
(加熱処理していない繊維不織布の捕集効率の換算)
 加熱処理していない繊維不織布の捕集効率の実測値、平均繊維径の実測値、繊維不織布の目付をPEEKの密度に繊維不織布の厚みを乗じた値で割った値(目付/(密度×厚み))である繊維不織布の占める体積分率、及び繊維不織布の厚みを前述の式(b)に代入して、E/eを算出した。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したE/eを式(b)に代入し、さらに、平均繊維径dとして5×10-6m(5μm)の値を式(b)に代入することで、捕集効率(5μm換算値)を求めた。
 なお、PEEKの密度は132kg/mである。
(加熱処理していない繊維不織布の圧力損失の換算)
 加熱処理していない繊維不織布の圧力損失の実測値、平均繊維径の実測値、繊維不織布の占める体積分率、及び繊維不織布の厚みを式(c)に代入して、Uηを算出した。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したUηを式(c)に代入し、さらに、平均繊維径dとして5×10-6m(5μm)の値を式(c)に代入することで、圧力損失(5μm換算値)を求めた。
(加熱処理していない繊維不織布のQ値の算出)
 得られた捕集効率(5μm換算値)及び圧力損失(5μm換算値)から、式(a)を用いて、Q値(5μm換算値)を算出した。
(加熱処理後の繊維不織布の捕集効率の測定等)
 各実施例及び各比較例で得られた繊維不織布について、以下の方法で高温条件に晒した。繊維不織布の任意の部分から、15cm×15cmのサンプルを3個採取し、それぞれのサンプルについて、それぞれ100gの分銅で四隅を固定し、250℃に加熱した1mm厚のアルミ平板上に置いた。24時間後、アルミ平板ごと取り出し、室温で6時間放置し室温に戻した。その後、前述の(加熱処理していない繊維不織布の捕集効率の測定)と同様の方法で加熱処理後での捕集効率を測定した。
 さらに、前述の(加熱処理していない繊維不織布の圧力損失(Pa)の測定)、(加熱処理していない繊維不織布の捕集効率の換算)、(加熱処理していない繊維不織布の圧力損失の換算)及び(加熱処理していない繊維不織布のQ値の算出)と同様の方法で加熱処理後での各物性の測定、換算及び算出を行った。
 また、加熱処理していない繊維不織布のQ値に対する加熱処理後の繊維不織布のQ値の比率を性能保持率として求めた。性能保持率が高いほど、熱処理によるQ値の低下が抑制されていることを意味する。
 実施例1~6及び比較例1~6の繊維不織布の作製条件及び繊維不織布の評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~実施例6にて得られた繊維不織布は、比較例1~4にて得られた繊維不織布と比較してCV値が低く、加熱処理していない繊維不織布のQ値及び加熱処理後での繊維不織布のQ値に優れることが示された。
 比較例5にて得られた繊維不織布は、250℃にて加熱中、樹脂が溶解してしまったため、加熱処理後の繊維不織布のQ値は測定できなかった。
 比較例6にて得られた繊維不織布は、加熱処理後での繊維不織布のQ値が、加熱処理していない繊維不織布のQ値よりも大きく低下することが示された。
 2020年10月7日に出願された日本国特許出願2020-170104号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 10、100 繊維不織布の製造装置
 20 押出機
 21 ホッパー
 22 圧縮部
 30 ダイ(紡糸口金)
 31 紡糸ノズル
 32 ガスノズル
 34 アタッチメント
 40 捕集機構
 41 多孔ベルト
 42 ローラ
 43 エア吸引部
 44 ブロワー
 50 ガス加熱装置
 P 溶融した樹脂又は樹脂組成物
 G 加熱ガス

Claims (16)

  1.  芳香族ポリエーテルケトンを含有する繊維を含み、
     前記繊維の繊維径の変動係数が100%以下である繊維不織布。
  2.  400℃での前記繊維の粘度が50Pa・s~500Pa・sである請求項1に記載の繊維不織布。
  3.  前記繊維の平均繊維径が10μm以下である請求項1又は請求項2に記載の繊維不織布。
  4.  前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む請求項1~請求項3のいずれか1項に記載の繊維不織布。
  5.  前記繊維不織布はメルトブローン不織布を含む、請求項1~請求項4のいずれか1項に記載の繊維不織布。
  6.  請求項1~請求項5のいずれか1項に記載の繊維不織布を含むフィルタ。
  7.  メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、
     前記加熱ガスの流量を150Nm/時/m~1000Nm/時/mとし、
     前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う繊維不織布の製造方法。
     式(1) Tc<Ta≦Tm+200
     式(2) 40≦Tp-Ta≦190
  8.  400℃での前記樹脂又は前記樹脂組成物の粘度が50Pa・s~500Pa・sである請求項7に記載の繊維不織布の製造方法。
  9.  前記加熱ガスの吐出は、下記式(1)’をさらに満たすように行う請求項7又は請求項8に記載の繊維不織布の製造方法。
     式(1)’ Tm-30≦Ta≦Tm+200
  10.  前記加熱ガスの流量を250Nm/時/m~850Nm/時/mとする請求項7~請求項9のいずれか1項に記載の繊維不織布の製造方法。
  11.  メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む繊維不織布の製造方法。
  12.  前記冷却ガスの流量が1000Nm/時/m~20000Nm/時/mである請求項11に記載の繊維不織布の製造方法。
  13.  前記冷却ガスの温度が30℃以下である請求項11又は請求項12に記載の繊維不織布の製造方法。
  14.  前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記冷却ガスの温度をTq(℃)としたとき、前記加熱ガスの吐出及び前記冷却ガスの供給は、下記式(3)を満たす請求項11~請求項13のいずれか1項に記載の繊維不織布の製造方法。
     式(3) 350℃≦Tp-Tq≦550℃
  15.  前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む請求項7~請求項14のいずれか1項に記載の繊維不織布の製造方法。
  16.  二軸押出機を用いて前記芳香族ポリエーテルケトンを含む樹脂又は樹脂組成物を溶融する請求項11~請求項15のいずれか1項に記載の繊維不織布の製造方法。
PCT/JP2021/037058 2020-10-07 2021-10-06 繊維不織布、フィルタ及び繊維不織布の製造方法 WO2022075381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21877680.5A EP4209258A1 (en) 2020-10-07 2021-10-06 Fiber nonwoven fabric, filter, and method for manufacturing fiber nonwoven fabric
US18/247,903 US20230372848A1 (en) 2020-10-07 2021-10-06 Fiber nonwoven fabric, filter, and method of fiber nonwoven fabric
KR1020237011779A KR20230061540A (ko) 2020-10-07 2021-10-06 섬유 부직포, 필터 및 섬유 부직포의 제조 방법
JP2022555544A JPWO2022075381A1 (ja) 2020-10-07 2021-10-06
CN202180068503.0A CN116348191A (zh) 2020-10-07 2021-10-06 纤维无纺布、过滤器和纤维无纺布的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170104 2020-10-07
JP2020-170104 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075381A1 true WO2022075381A1 (ja) 2022-04-14

Family

ID=81126968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037058 WO2022075381A1 (ja) 2020-10-07 2021-10-06 繊維不織布、フィルタ及び繊維不織布の製造方法

Country Status (7)

Country Link
US (1) US20230372848A1 (ja)
EP (1) EP4209258A1 (ja)
JP (1) JPWO2022075381A1 (ja)
KR (1) KR20230061540A (ja)
CN (1) CN116348191A (ja)
TW (1) TW202217107A (ja)
WO (1) WO2022075381A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501604A (ja) 1993-08-17 1997-02-18 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー エレクトレット濾過材の荷電方法
JP2002115177A (ja) 2000-10-11 2002-04-19 Toray Ind Inc エレクトレット加工品の製造方法
JP2008081893A (ja) 2006-09-28 2008-04-10 Tapyrus Co Ltd ポリエーテルエーテルケトン製メルトブロー不織布、その製造方法及びそれからなる耐熱性電池セパレータ
JP2008240225A (ja) * 2007-03-01 2008-10-09 Toray Ind Inc ポリエーテルエーテルケトンモノフィラメントおよびその製造法、およびポリエーテルエーテルケトンモノフィラメントからなるフィルター
JP2010106388A (ja) 2008-10-29 2010-05-13 Asahi Kasei Fibers Corp 耐熱性不織布
JP2012520950A (ja) * 2009-03-20 2012-09-10 アーケマ・インコーポレイテッド ポリエーテルケトンケトン不織布マット
JP2018106827A (ja) * 2016-12-22 2018-07-05 株式会社ダイセル 電解質膜補強材及び電解質膜
JP2020170104A (ja) 2019-04-04 2020-10-15 株式会社ジャパンディスプレイ 電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501604A (ja) 1993-08-17 1997-02-18 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー エレクトレット濾過材の荷電方法
JP2002115177A (ja) 2000-10-11 2002-04-19 Toray Ind Inc エレクトレット加工品の製造方法
JP2008081893A (ja) 2006-09-28 2008-04-10 Tapyrus Co Ltd ポリエーテルエーテルケトン製メルトブロー不織布、その製造方法及びそれからなる耐熱性電池セパレータ
JP2008240225A (ja) * 2007-03-01 2008-10-09 Toray Ind Inc ポリエーテルエーテルケトンモノフィラメントおよびその製造法、およびポリエーテルエーテルケトンモノフィラメントからなるフィルター
JP2010106388A (ja) 2008-10-29 2010-05-13 Asahi Kasei Fibers Corp 耐熱性不織布
JP2012520950A (ja) * 2009-03-20 2012-09-10 アーケマ・インコーポレイテッド ポリエーテルケトンケトン不織布マット
JP2018106827A (ja) * 2016-12-22 2018-07-05 株式会社ダイセル 電解質膜補強材及び電解質膜
JP2020170104A (ja) 2019-04-04 2020-10-15 株式会社ジャパンディスプレイ 電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUSSELLSTEPHEN J: "Handbook of nonwovens", 2006, WOODHEAD PUBLISHING, pages: 488

Also Published As

Publication number Publication date
KR20230061540A (ko) 2023-05-08
EP4209258A1 (en) 2023-07-12
US20230372848A1 (en) 2023-11-23
TW202217107A (zh) 2022-05-01
CN116348191A (zh) 2023-06-27
JPWO2022075381A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
JP6270750B2 (ja) メルトブロー不織布、その製造方法および装置
US20170065917A1 (en) Non-woven fiber fabric, and production method and production device therefor
JP5021740B2 (ja) 単一成分の濾過/補強単一層を有する折り畳み式マスク
JP6496009B2 (ja) 不織布およびその製造方法
TW200819160A (en) Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media
WO2017142021A1 (ja) 不織布、フィルタ及び不織布の製造方法
JP2022149681A (ja) 不織布、フィルタ、吸音材及びメルトブローン不織布の製造方法
JP7299316B2 (ja) メルトブロー不織布、フィルター、及びメルトブロー不織布の製造方法
WO2022075381A1 (ja) 繊維不織布、フィルタ及び繊維不織布の製造方法
JP6511594B1 (ja) メルトブローン不織布、フィルタ、及びメルトブローン不織布の製造方法
US20200330911A1 (en) Melt-blown nonwoven fabric, filter, and method of producing melt-blown nonwoven fabric
KR101282784B1 (ko) 수직기류를 이용한 단섬유 공급장치
TW201920795A (zh) 熔噴不織布、不織布積層體和過濾器
WO2020202899A1 (ja) 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター
JP2021195670A (ja) 繊維不織布、フィルタ、繊維不織布の製造方法及びエレクトレット繊維不織布の製造方法
JP2020165013A (ja) 繊維不織布の製造方法
JPH1119435A (ja) 極細複合繊維不織布からなる円筒状フィルター及びその製造方法
JP2022183506A (ja) スパンボンド不織布および芯鞘型複合繊維
CN103228832B (zh) 熔喷非织造布、其制造方法及装置
JP2020190057A (ja) 不織布、不織布の積層体、及びそれらを含むフィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555544

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237011779

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021877680

Country of ref document: EP

Effective date: 20230404

NENP Non-entry into the national phase

Ref country code: DE