WO2022074963A1 - 静電容量検出装置及び入力装置 - Google Patents

静電容量検出装置及び入力装置 Download PDF

Info

Publication number
WO2022074963A1
WO2022074963A1 PCT/JP2021/031977 JP2021031977W WO2022074963A1 WO 2022074963 A1 WO2022074963 A1 WO 2022074963A1 JP 2021031977 W JP2021031977 W JP 2021031977W WO 2022074963 A1 WO2022074963 A1 WO 2022074963A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
signal
voltage
capacitance
generation unit
Prior art date
Application number
PCT/JP2021/031977
Other languages
English (en)
French (fr)
Inventor
昭久 飯倉
基史 大井
友哉 佐々木
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to DE112021005309.4T priority Critical patent/DE112021005309T5/de
Priority to JP2022555301A priority patent/JP7406650B2/ja
Priority to CN202180063625.0A priority patent/CN116235021A/zh
Publication of WO2022074963A1 publication Critical patent/WO2022074963A1/ja
Priority to US18/186,537 priority patent/US11983362B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present invention relates to a capacitance detection device and an input device.
  • Patent Document 1 describes a technique for further reducing the influence of the above-mentioned parasitic capacitance in a capacitance detecting device provided with a shield electrode.
  • the capacitance cannot be detected, so the occurrence of the disconnection can be easily determined.
  • a part of the multiple wires connected to the shield electrode is broken, it may be easily affected by external noise or radiate noise to the surroundings, but the shield electrode and the electronic circuit may be electrically connected. Since the continuity is maintained, it is unlikely that an abnormality will appear in the capacitance detection result. Therefore, there is a disadvantage that the occurrence of disconnection cannot be easily determined from the detection result of the capacitance.
  • the present invention has been made in view of such circumstances, and an object thereof is a capacitance detecting device capable of easily determining that a part of a plurality of wirings connected to a shield electrode is broken. It is an object of the present invention to provide an input device provided with a capacitance detection device.
  • the first aspect of the present invention is a capacitance detection device that detects the capacitance between a detection electrode arranged close to a shield electrode and an object, and is via a plurality of first wirings.
  • a plurality of detections connected one-to-one with a plurality of detection electrodes via an AC voltage output unit that outputs an AC voltage to the shield electrode and a plurality of second wirings arranged in close proximity to the first wiring, respectively.
  • the detection node supplies a charge to the detection electrode via the second wiring so that the voltage of the detection node vibrates in response to the AC voltage, and the voltage is supplied from each of the plurality of detection nodes.
  • a first detection signal generation unit that generates a plurality of first detection signals according to the charge, and a plurality of AC voltage output units that branch from an AC output node that outputs the AC voltage to each of the plurality of first wirings. It has a plurality of first filters provided in the first path of the above, and at least one phase difference signal generation unit that generates a phase difference signal according to the phase difference between the first detection signal and the AC voltage. It is a capacitance detection device.
  • the first filter is provided in each of the plurality of first paths branching from the AC output node to each of the plurality of first wirings.
  • the number of the first filters connected in parallel between the AC output node and the shield electrode changes.
  • the frequency characteristics from the AC output node to the shield electrode change, and the frequency characteristics from the AC output node to the output node of the first detection signal also change, so that the AC output node outputs the output.
  • the phase difference between the AC voltage and the AC component included in the first detection signal changes.
  • phase difference signal generated by the phase difference signal generation unit is a signal corresponding to the phase difference between the first detection signal and the AC voltage, a part of the plurality of first wirings is disconnected. As a result, the change in the phase difference between the first detection signal and the AC voltage can be easily discriminated based on the phase difference signal.
  • the first filter is a low-pass filter having a cutoff frequency higher than the frequency of the AC voltage. This makes it possible to attenuate high-frequency external noise propagating from the first wiring in the first filter.
  • the second filter has a plurality of second filters provided in a plurality of second paths between the plurality of second wirings and the plurality of detection nodes, and the second filter is higher than the frequency of the AC voltage. It is a low-pass filter with a cutoff frequency. This makes it possible to attenuate the high frequency external noise propagating from the second wiring in the second filter.
  • the capacitance detection device generates a sine wave generating unit that generates a sine wave signal and a second detection signal corresponding to the amplitude of the AC component included in the first detection signal.
  • the AC voltage output unit has at least one second detection signal generation unit, the AC voltage output unit outputs the AC voltage corresponding to the sine wave signal, and the second detection signal generation unit has the sine wave signal and the sine wave signal.
  • the phase difference signal generation unit includes a first multiplication unit that multiplies the first detection signal and a first low-pass filter that attenuates high-frequency components of the output signal of the first multiplication unit, and the phase difference signal generation unit is of the sine wave signal.
  • the second detection signal generation unit includes a second low-pass filter that attenuates a region component, the second detection signal generation unit generates the second detection signal corresponding to the output signal of the first low-pass filter, and the phase difference signal generation unit generates the second detection signal.
  • the phase difference signal corresponding to the output signal of the second low pass filter is generated.
  • the phase difference signal corresponding to the output signal of the second low-pass filter is the second detection.
  • the rate of change corresponding to the change in the phase difference is larger. Therefore, it is possible to easily determine the change in the phase difference between the first detection signal and the AC voltage due to a partial disconnection of the plurality of first wirings based on the change in the phase difference signal.
  • both the second detection signal and the phase signal can be efficiently generated based on one sine wave signal.
  • the capacitance detection device has a second delay unit that delays the sine wave signal, and the AC voltage output unit is the sine wave signal delayed by the second delay unit.
  • the AC voltage is output according to the above, and the delay amount of the second delay portion is adjusted so that the output signal of the second low-pass filter is minimized.
  • the phase difference between the AC component included in the first detection signal and the sine wave signal becomes close to zero. It is possible to increase the detection sensitivity of the capacitance by the second detection signal. Further, according to this configuration, by observing the change of the phase difference signal according to the change of the delay amount of the second delay portion, the AC component included in the first detection signal and the sine wave signal can be observed. It is possible to make adjustments to bring the phase difference closer to zero.
  • the first detection signal generation unit supplies the charge to the detection node so that the voltage of the detection node vibrates in response to the AC voltage, and outputs a signal corresponding to the supplied charge at least.
  • One charge amplifier, at least one differential amplifier that outputs a signal corresponding to the difference between the output signal of the charge amplifier and the AC voltage, and the output signal of the differential amplifier are converted into a digital signal, and the first 1 Includes at least one analog-digital converter that outputs as a detection signal.
  • the first detection signal can be generated by a simple configuration using the charge amplifier, the differential amplifier, and the analog-to-digital conversion unit.
  • the AC voltage output unit, the first detection signal generation unit, the second detection signal generation unit, the phase difference signal generation unit, and the sine wave generation unit are contained in one or more integrated circuits.
  • the first filter and the second filter are provided, and are composed of one or more components different from the one or more integrated circuits. This makes it possible to configure the first filter and the second filter having a relatively large time constant, which is difficult to realize in an integrated circuit, with one or more components.
  • the first filter comprises a first inductor provided in the first path and two first capacitors provided between the nodes at both ends of the first inductor and ground, respectively.
  • the second filter includes a second inductor provided in the second path and two second capacitors each provided between the nodes at both ends of the second inductor and the ground. According to this configuration, it becomes easy to attenuate the external noise from the first wiring side having a relatively high impedance in the first filter, and from the second wiring side having a relatively high impedance in the second filter. It becomes easy to attenuate the external noise.
  • the first filter comprises a first resistance provided in the first path and two first capacitors provided between the nodes at both ends of the first resistance and the ground, respectively.
  • the second filter includes a second resistance provided in the second path and two second capacitors each provided between the nodes at both ends of the second resistance and the ground.
  • the AC voltage output unit, the first detection signal generation unit, the plurality of first filters, and the at least one phase difference signal generation unit are provided on a common first wiring board.
  • the shield electrode and the plurality of detection electrodes are provided on one or more second wiring boards, and the first wiring board and the one or more second wiring boards are connected by one or more wiring cables.
  • the first wiring and the second wiring are included in the wiring cable, respectively.
  • the AC voltage output unit outputs the AC voltage on which a DC voltage larger than half of the amplitude is superimposed. This makes it possible to operate the circuit for inputting the AC voltage with a single power supply.
  • a second aspect of the present invention is an input device for inputting information according to the proximity of the object, and a plurality of detections in which the capacitance between the object and the object changes according to the proximity of the object.
  • a capacitance detecting device capable of easily determining that a part of a plurality of wirings connected to a shield electrode is broken, and an input device provided with such a capacitance detecting device are provided. Can be provided.
  • FIG. 1 is a diagram showing an example of the configuration of the input device according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the capacitance detection device according to the present embodiment.
  • 3A to 3B are diagrams showing an example of the configuration of the first filter and the second filter.
  • FIG. 4 is a diagram showing an example of the configuration of the second signal generation unit and the phase difference signal generation unit.
  • FIG. 5 is a diagram for explaining a state in which a part of the plurality of first wirings connected to the shield electrode is broken.
  • FIG. 6 is a diagram showing a modification of the phase difference signal generation unit.
  • FIG. 1 is a diagram showing an example of the configuration of the input device according to the present embodiment.
  • the input device 1 shown in FIG. 1 includes two detection electrodes Es-1 and Es-2, a shield electrode Ea arranged close to the detection electrodes Es-1 and Es-2, and a capacitance detection device 3. , A processing unit 4, a storage unit 5, and an interface unit 6.
  • the input device 1 has the detection electrode Es-i and the object when the object 9 such as a finger or a pen is close to the detection electrode Es-i (i indicates an integer of 1 or 2). Capacitance between 9 and 9 is detected, and based on this detection result, information according to the proximity of the object 9 is input. For example, the input device 1 acquires information on the presence / absence of proximity of the object 9 to the detection electrode Es-i, information on the distance between the detection electrode Es-i and the object 9, and the like based on the detection result of the capacitance. For example, the input device 1 is applied to a user interface device such as a touch sensor or a touch pad.
  • proximity in the present specification means that they are close to each other, and does not limit the presence or absence of contact between adjacent objects.
  • the detection electrode Es-i creates a capacitance between the detection electrode Es-i and the object 9 such as a finger or a pen which is a conductor.
  • the shield electrode Ea is arranged close to the detection electrode Es-i.
  • the detection electrode Es-i is arranged in a detection region where an object 9 such as a finger can be approached.
  • the surface of the detection region is covered with, for example, an insulating cover layer, and the detection electrode Es-i is arranged below the cover layer.
  • the shield electrode Ea is an electrostatic shield for preventing electrostatic coupling between an object other than the object 9 and the detection electrode Es-i, and is arranged below the detection electrode Es-i in the detection region, for example. ..
  • a parasitic capacitive component Crg is formed between the detection electrode Es-i and the object 9.
  • a parasitic capacitive component Crs is formed between the shield electrode Ea and the detection electrode Es.
  • a parasitic capacitive component Csg is formed between the shield electrode Ea and the ground.
  • the capacitance detection device 3 may refer to the capacitance of the capacitance component Crg formed between the detection electrodes Es-1 and Es-2 and the object 9 (hereinafter, referred to as “detection target capacitance Crg”). ) Is detected, and the second detection signals D2-1 and D2-2 indicating the detection result are output.
  • the capacitance detection device 3 includes a signal phase difference signal P-1 corresponding to the phase difference between the first detection signal D1-1 and the AC voltage Vas, and a first detection signal D1-2.
  • a phase difference signal P-2 corresponding to the phase difference between the AC voltage Vas and the AC voltage Vas is generated.
  • the capacitance detection device 3 is connected to the detection electrode Es-1 and the shield electrode Ea via the cable 2-1 and is connected to the detection electrode Es-2 and the shield electrode Ea via the cable 2-2. Connected to Ea. Inside the cable 2-1 the first wiring W1-1 connected to the shield electrode Ea and the second wiring W2-1 connected to the detection electrode Es-1 are arranged in close proximity to each other. Inside the cable 2-2, the first wiring W1-2 connected to the shield electrode Ea and the second wiring W2-2 connected to the detection electrode Es-1 are arranged in close proximity to each other. In the following description, the first wiring W1-1 and W1-2 may be referred to as "first wiring W1" without distinction.
  • the processing unit 4 is a circuit that controls the overall operation of the input device 1, and includes, for example, one or more processors (CPU, DSP, etc.) that perform processing according to the instruction code of the program stored in the storage unit 5. Further, the processing unit 4 may include dedicated hardware (ASIC, FPGA, etc.) configured to perform a specific function. The processing by the processing unit 4 may be realized by the processor executing the instruction code of the program, or at least a part thereof may be realized by the dedicated hardware.
  • the processing unit 4 determines whether or not the object 9 is close to the detection electrodes Es-1 and Es-2 based on the second detection signals D2-1 and D2-2 output from the capacitance detection device 3. , Calculation of the distance between the object 9 and the detection electrode Es-i, calculation of the proximity position of the object 9 in the detection region, calculation of the size of the object 9, and the like.
  • the processing unit 4 performs processing for determining whether or not a part of the plurality of first wirings W1 connected to the shield electrode Ea is disconnected based on the phase difference signal Pi output from the capacitance detection device 3. ..
  • the storage unit 5 stores a program including an instruction code executed by the processor of the processing unit 4, data used for processing in the processing unit 4, data temporarily held in the process of processing, and the like.
  • the storage unit 5 is configured by using one or more types of storage devices such as a DRAM, an SRAM, a flash memory, and a hard disk.
  • the interface unit 6 is a circuit for exchanging data between the input device 1 and another device (for example, a host controller of an electronic device on which the input device 1 is mounted).
  • the processing unit 4 has information obtained based on the detection result of the capacitance detection device 3 (presence / absence of the object 9, proximity position of the object 9, distance to the object 9, size of the object 9, etc.). Is output to a higher-level device (not shown) by the interface unit 6.
  • a user interface for recognizing, for example, a pointing operation or a gesture operation is constructed by using this information.
  • the capacitance detection device 3, the processing unit 4, the storage unit 5, and the interface unit 6 are provided on the first wiring board B1, and the detection electrodes Es-1 and Es-2 and the shield electrode Ea are provided. Is provided on the second wiring board B2.
  • the first wiring board B1 and the second wiring board B2 are connected by cables 2-1 and 2-2.
  • FIG. 2 is a diagram showing an example of the configuration of the capacitance detection device 3 according to the present embodiment.
  • the capacitance detection device 3 includes a first detection signal generation unit 10, an AC voltage output unit 20, second signal generation units 30-1 and 30-2, and a phase difference signal.
  • the capacitance detection device 3 has capacitors C1-1 and C1-2, capacitors C2-1 and C2-2, and capacitors C3-1 and C3-2.
  • the first detection signal generation unit 10 As shown in FIG. 2, the first detection signal generation unit 10 has two detection nodes N1-1 and N1-2 connected one-to-one with two detection electrodes Es via two second wirings W2. .. The detection node N1-i is connected to the detection electrode Es-i via the second wiring W2-i.
  • the first detection signal generation unit 10 connects the second wiring W2-i from the detection node N1-i so that the voltage of the detection node N1-i vibrates according to the AC voltage Vas output from the AC voltage output unit 20. A charge is supplied to the detection electrode Es-i via the device.
  • the first detection signal generation unit 10 generates two first detection signals D1-1 and D1-2 according to the charges supplied from each of the two detection nodes N1-1 and N1-2. That is, the first detection signal generation unit 10 generates the first detection signal D1-i according to the electric charge supplied from the detection node N1-i to the detection electrode Es-i.
  • the first detection signal generation unit 10 includes charge amplifiers 11-1 and 11-2, attenuation circuits 12-1 and 12-2, differential amplifiers 13-1 and 13-2, and A. It has / D conversion units 14-1 and 14-2 and resistors R1-1 and R1-2.
  • the attenuation circuit 12-i outputs the AC voltage Vdrv-i in which the amplitude of the AC voltage Vas output by the AC voltage output unit 20 is attenuated.
  • the attenuation circuit 12-i sets the attenuation ratio K, which is the ratio of the amplitude of the AC voltage Vdrv-i to the amplitude of the AC voltage Vas, to the output signal Vo-i of the charge amplifier 11-i in a non-detection state in which the object 9 does not exist.
  • the voltage amplitude of is maintained at a ratio close to zero.
  • the attenuation circuit 12-i includes a capacitor C4-i and a capacitor C5-i connected in series.
  • the AC voltage output unit 20 applies the AC voltage Vas to the series circuit of the capacitor C4-i and the capacitor C5-i.
  • One terminal of the capacitor C4-i is connected to the AC output node N3 to which the AC voltage Vas of the AC voltage output unit 20 is output, and the other terminal of the capacitor C4-i is grounded via the capacitor C5-i. Be connected.
  • the attenuation circuit 12-i outputs the AC voltage generated in the capacitor C5-i as the AC voltage Vdrv-i.
  • the capacitance of the capacitor C4-i and the capacitance of the capacitor C5-i are set so that the voltage amplitude of the output signal Vo-i of the charge amplifier 11-i is close to zero in the non-detection state where the object 9 does not exist.
  • Each is the set capacitance.
  • the capacitance value of the capacitor C5-i can be adjusted, and the voltage amplitude of the output signal Vo-i of the charge amplifier 11-i is close to zero in the non-detection state where the object 9 does not exist.
  • the capacitance value of the capacitor C5-i is adjusted so as to be.
  • the capacitor C5-i may be a component formed on a semiconductor chip or the like inside the IC. In this case, for example, the capacitor C5-i is composed of a plurality of capacitors connected in parallel, and the capacitance value is adjusted by selecting the number of capacitors connected in parallel by laser trimming or the like. Further, the capacitor C5-i may be a discrete component whose element value can be adjusted.
  • the AC input node N2-i to which the capacitor C4-i and the capacitor C5-i are connected is connected to the AC output node N3 via the resistor R2-i.
  • the input of the charge amplifier 11-i to which the AC input node N2-i is connected (the non-inverting input terminal of the operational amplifier U1-i described later) has a sufficiently large input impedance as compared with this resistor R2-i, so that it is an AC input.
  • the DC potential of the node N2-i is substantially equal to the DC potential of the AC output node N3.
  • the resistance value of the resistor R2-i can be adjusted at the time of manufacture, and the phase of the AC voltage Vdrv-i with respect to the AC voltage Vas can be adjusted by adjusting this resistance value.
  • the charge amplifier 11-i supplies an electric charge to the detection node N1-i so that the voltage of the detection node N1-i vibrates according to the AC voltage Vas, and outputs a signal Vo-i according to the supplied electric charge.
  • the charge amplifier 11-i inputs the AC voltage Vdrv-i with the amplitude of the AC voltage Vas attenuated at the AC input node N2-i, and the voltage of the detection node N1-i approaches the voltage of the AC input node N2-i. (Ie, so that the AC voltage Vdrv-i is generated in the detection node N1-i), the charge is supplied to the detection node N1-i.
  • the charge amplifier 11-i has a feedback capacitor Cag and an operational amplifier U1-i.
  • the operational amplifier U1-i amplifies the voltage difference between the inverting input terminal connected to the detection node N1-i and the non-inverting input terminal connected to the AC input node N2-i, and the signal corresponding to the amplified voltage difference. Output Vo-i.
  • the feedback capacitor Cag is provided in the path between the output node of the operational amplifier U1-i that outputs the signal Vo-i and the detection node N1-i.
  • the differential amplifier 13-i outputs a signal Vm-i according to the difference between the output signal Vo-i of the charge amplifier 11-i and the AC voltage Vas.
  • the differential amplifier 13-i includes a fully differential amplifier and outputs the signal Vm-i as a differential signal.
  • the differential amplifier 13-i has a function as a low-pass filter that attenuates frequency components in a frequency band higher than a predetermined frequency band in order to suppress aliasing associated with the conversion operation of the A / D conversion unit 14-i in the subsequent stage. ..
  • the A / D conversion unit 14-i converts the signal Vm-i output from the differential amplifier 13-i into the first detection signal D1-i, which is a digital signal.
  • the resistance R1-i is provided in the second path P2-i, which is a conductive path between the detection node N1-i and the second wiring W2-i.
  • the AC voltage output unit 20 outputs the AC voltage Vas to the shield electrode Ea via the plurality of first wirings W1.
  • the AC voltage output unit 20 outputs a sinusoidal AC voltage Vas having a constant amplitude and frequency.
  • the AC voltage output unit 20 includes a constant voltage source 21 that outputs a DC voltage, an operational amplifier U2, and resistors R3 and R4.
  • the DC voltage Vb of the constant voltage source 21 is applied to the non-inverting input terminal of the operational amplifier U2, and the sinusoidal signal Vsin is input to the inverting input terminal of the operational amplifier U2 via the resistor R3.
  • a resistor R4 is provided in the path between the output terminal and the inverting input terminal of the operational amplifier U2.
  • the output terminal of the operational amplifier U2 is connected to the AC output node N3.
  • the operational amplifier U2 outputs the AC voltage Vas on which the DC voltage Vb of the constant voltage source 21 is superimposed from the output terminal to the AC output node N3.
  • the AC voltage Vas is always a positive voltage.
  • the resistance value of the resistor R4 is adjustable, and the resistance value of the resistor R4 is adjusted so that the AC voltage Vas has a predetermined amplitude.
  • the first filters F1-1 and F1-2 are provided in two conductive paths (first paths P1-1 and P1-2) branching from the AC output node N3 to each of the two first wirings W1. That is, the first filter F1-i is provided on the first path P1-i that branches from the AC output node N3 to the first wiring W1-i.
  • the second filters F2-1 and F2-2 have two conductive paths (second paths P2-1 and P2-) between the second wirings W2-1 and W2-2 and the detection nodes N1-1 and N1-2. It is provided in 2). That is, the second filter F2-i is provided on the second path P2-i between the second wiring W2-i and the detection node N1-i.
  • the first filter F1-i and the second filter F2-i are, for example, low-pass filters having a cutoff frequency higher than the frequency of the AC voltage Vas. These filters attenuate external noise propagating from the first wiring W1-i and the second wiring W2-i to the capacitance detection device 3, and are static through the first wiring W1-i and the second wiring W2-i. The noise radiated from the capacitance detection device 3 to the surroundings is attenuated.
  • FIG. 3A is a diagram showing an example of the configuration of the first filter F1-i and the second filter F2-i.
  • the first filter F1-i and the second filter F2-i are low-pass filters in which the inductor and the capacitor are connected in a ⁇ shape.
  • the first filter F1-i shown in FIG. 3A is provided between the first inductor L1-i provided in the first path P1-i and the nodes at both ends of the first inductor L1-i and the ground, respectively. It has a first capacitor C6-i and a first capacitor C7-i.
  • the first capacitor C6-i is connected to one terminal of the first inductor L1-i (on the side of the first wiring W1-i), and the first capacitor C7-i is connected to the other terminal of the first inductor L1-i.
  • the second filter F2-i shown in FIG. 3A is provided between the second inductor L2-i provided in the second path P2-i and the nodes and ground at both ends of the second inductor L2-i, respectively. It has a second capacitor C8-i and a second capacitor C9-i.
  • the second capacitor C8-i is connected to one terminal of the second inductor L2-i (on the side of the second wiring W2-i), and the second capacitor C9-i is connected to the other terminal of the second inductor L2-i.
  • FIG. 3B is a diagram showing another configuration example of the first filter F1-i and the second filter F2-i.
  • the first filter F1-i and the second filter F2-i are low-pass filters in which a resistor and a capacitor are connected in a ⁇ shape.
  • the first filter F1-i shown in FIG. 3B is provided between the first resistance R5-i provided in the first path P1-i and the nodes at both ends of the first resistance R5-i and the ground, respectively. It has a first capacitor C10-i and a first capacitor C11-i.
  • the first capacitor C10-i is connected to one terminal of the first resistance R5-i (on the side of the first wiring W1-i), and the first capacitor C11-i is connected to the other terminal of the first resistance R5-i.
  • the second filter F2-i shown in FIG. 3B is provided between the second resistance R6-i provided in the second path P2-i and the nodes at both ends of the second resistance R6-i and the ground, respectively. It has a second capacitor C12-i and a second capacitor C13-i.
  • the second capacitor C12-i is connected to one terminal of the second resistance R6-i (on the side of the second wiring W2-i), and the second capacitor C13-i is connected to the other terminal of the second resistance R6-i.
  • Capacitors C1-i, C2-i, C3-i The capacitor C1-i is provided between the resistor R1-i in the second path P2-i and the second filter F2-i.
  • the capacitor C2-i is provided between the terminal on the second filter F2-i side of the capacitor C1-i and the ground.
  • the capacitors C1-i and the capacitors C2-i can suppress the increase in the charge of the charge amplifier 11-i due to the large capacitance of the capacitance component Crs, and can suppress the detection sensitivity to an appropriate range.
  • the capacitor C3-i is provided between the terminal on the second filter F2-i side of the capacitor C1-i and the AC output node N3.
  • the capacitor C3-i can reduce external noise propagating from the first wiring W1-i and the second wiring W2-i to the capacitance detection device 3.
  • the sine wave generation unit 50 generates a sine wave signal Ds1 which is a reference of the AC voltage Vas.
  • the sine wave generation unit 50 generates a sine wave signal Ds1 by sequentially reading, for example, numerical data of a sine wave stored in a memory at a predetermined timing.
  • the second signal generation unit 30-i generates the second detection signal D2-i according to the amplitude of the AC component (component synchronized with the AC voltage Vas) included in the first detection signal D1-i. Since the AC component synchronized with the AC voltage Vas included in the first detection signal D1-i has an amplitude corresponding to the detection target capacitance Crg, the first detection signal D1-i has a value corresponding to the detection target capacitance Crg.
  • the second signal generation unit 30-i has, for example, as shown in FIG. 4, a first multiplication unit 31-i and a first low-pass filter 32-i.
  • the first multiplication unit 31-i multiplies the sine wave signal Ds1 and the first detection signal D1-i.
  • the first low-pass filter 32-i outputs a signal obtained by attenuating the high frequency component of the output signal of the first multiplication unit 31-i as the second detection signal D2-i.
  • phase difference signal generation unit 40-i The phase difference signal generation unit 40-i generates a phase difference signal Pi corresponding to the phase difference between the first detection signal D1-i and the AC voltage Vas.
  • the phase difference signal generation unit 40-i has a second multiplication unit 41-i, a second low-pass filter 42-i, and a first delay unit 43-i.
  • the first delay unit 43-i delays the phase of the sinusoidal signal Ds1 by 90 degrees.
  • the second multiplication unit 41-i multiplies the sine wave signal Ds1 delayed by the first delay unit 43-i and the first detection signal D1-i.
  • the second low-pass filter 42-i outputs a signal obtained by attenuating the high frequency component of the output signal of the second multiplication unit 41-i as a phase difference signal Pi.
  • the phase difference signal P-i has a value close to zero.
  • the phase difference signal generation unit 40-i uses the output signal of the first low-pass filter 32-i and the output signal of the second low-pass filter 42-i as the first detection signal D1-i and the AC voltage Vas.
  • the phase difference signal Pi corresponding to the phase difference of the above may be generated.
  • the sine and cosine value of the complex vector having the output signal of the first low-pass filter 32-i as the real part and the output signal of the second low-pass filter 42-i as the imaginary part may be calculated as the phase difference signal Pi.
  • the phase difference signal Pi calculated in this way also has a value close to zero when the phase difference between the first detection signal D1-i and the AC voltage Vas is close to zero.
  • the second delay unit 60 generates a sine wave signal Ds2 which is a delay of the sine wave signal Ds1 generated by the sine wave generation unit 50.
  • the D / A conversion unit 70 converts the sine wave signal Ds2 from a digital signal to an analog sine wave signal Vsin, and inputs the sine wave signal Ds2 to the AC voltage output unit 20.
  • the AC voltage output unit 20 generates an AC voltage Vas based on the sinusoidal signal Vsin obtained by delaying the sinusoidal signal Ds1 and converting it into an analog signal.
  • the delay amount of the second delay unit 60 is adjusted so that the output signal of the second low-pass filter 42-i of the phase difference signal generation unit 40-i is minimized.
  • the output signal of the second low-pass filter 42-i is minimized, the phase difference between the AC component included in the first detection signal D1-i and the sine wave signal Ds1 becomes close to zero, so that the second detection
  • the detection sensitivity of the detection target capacitance Crg by the signal D2-i is increased.
  • the capacitance detection device 3 is composed of, for example, one or more integrated circuits (ICs) and one or more components (discrete components) different from the integrated circuits.
  • ICs integrated circuits
  • the first detection signal generation unit 10 the AC voltage output unit 20, the second signal generation unit 30-i, the phase difference signal generation unit 40-i, the sine wave generation unit 50, and the first 2
  • the delay unit 60 and the D / A conversion unit 70 are provided in one or more integrated circuits.
  • the first filter F1-i, the second filter F2-i, the capacitor C1-i, the capacitor C2-i, and the capacitor C3-i are composed of components (discrete components) different from those of the integrated circuit.
  • the charge amplifier 11-i of the first detection signal generation unit 10 is almost the same as the AC voltage Vdrv-i in which the amplitude of the AC voltage Vas is attenuated by the attenuation circuit 12-i. Charges are supplied to the detection node N1 so that an AC voltage is generated at the detection node N1-i. Since this charge is supplied from the detection node N1-i to the detection electrode Es-i via the second wiring W2-i, the amplitude of the charge fluctuation according to the AC voltage Vdrv-i is the detection target capacitance Crg. It changes accordingly.
  • the amplitude of the output signal Vo-i of the charge amplifier 11-i changes according to the detection target capacitance Crg, and the difference between the output signal Vo-i of the charge amplifier 11-i and the AC voltage Vas is amplified to be a digital signal.
  • the amplitude of the first detection signal D1-i converted to is also changed according to the detection target capacitance Crg.
  • the second signal generation unit 30-i generates a second detection signal D2-i according to the amplitude of the AC component (component synchronized with the AC voltage Vas) contained in the first detection signal D1-i.
  • the value of the detection signal D2-i changes according to the detection target capacitance Crg. This makes it possible to detect a change in the detection target capacitance Crg as the object 9 approaches the detection electrode Es-i as a change in the second detection signal D2-i.
  • phase difference signal generation unit 40- The phase difference signal Pi generated by i has a value close to zero.
  • first wiring W1 first wiring W1-2 in the example of FIG. 5
  • the number of first filters F1-i connected in parallel between the AC output node N3 and the shield electrode Ea is reduced.
  • the first filter F1-i is a ⁇ -type low-pass filter as shown in FIGS. 3A and 3B
  • the frequency characteristics from the AC output node N3 to the shield electrode Ea change, and the frequency characteristics from the AC output node N3 to the output node of the first detection signal D1-i also change, so that the frequency characteristics are output at the AC output node N3.
  • the phase difference between the AC voltage Vas and the AC component included in the first detection signal D1-i changes. Specifically, the phase of the AC component included in the first detection signal D1-i is changed by lowering the cutoff frequency of the low-pass filter characteristic from the AC output node N3 to the output node of the first detection signal D1-i. It lags behind the phase of the sinusoidal signal Ds1. Due to this change in phase difference, the phase difference signal Pi generated by the phase difference signal generation unit 40-i also changes. Therefore, it is possible to detect the disconnection that occurs in a part of the plurality of first wirings W1 based on the change of the phase difference signal Pi.
  • the phase difference signal P-i of the phase difference signal generation unit 40-i obtained based on the multiplication result of the signal obtained by delaying the sine wave signal Ds1 by 90 degrees and the first detection signal D1-i has a position.
  • the rate of change with respect to the phase difference is the largest. Therefore, since the phase difference signal Pi also changes significantly according to the change in the phase difference, the disconnection of the first wiring W1 can be easily discriminated from the change in the phase difference signal Pi.
  • FIG. 6 is a diagram showing a modification of the phase difference signal generation unit 40-i.
  • the phase difference signal generation unit 40-i shown in FIG. 6 includes a delay unit 44-i that delays the sinusoidal signal Ds1 according to an input control signal, an output signal of the delay unit 44-i, and a first detection signal D1.
  • the phase comparison unit 45-i that compares the phase with -i and the integration unit 46-i that integrates the signals corresponding to the phase comparison results of the phase comparison unit 45-i and outputs them as the phase difference signal P-i.
  • the delay unit 44-i inputs the phase difference signal Pi output by the integration unit 46-i as a control signal, and controls the delay amount of the sinusoidal wave signal Ds1 according to the phase difference signal Pi.
  • the phase comparison unit 45-i is positive or negative depending on the phase comparison result between the output signal of the delay unit 44-i and the first detection signal D1-i. Signal is output. For example, if the phase of the output signal of the delay unit 44-i advances with respect to the phase of the first detection signal D1-i, a positive signal is output, and in the opposite case, a negative signal is output.
  • the delay unit 44-i increases the delay amount when the value of the phase difference signal P-i increases positively, and decreases the delay amount in the opposite case. As a result, the value of the phase difference signal Pi becomes a value corresponding to the phase difference between the first detection signal D1-i and the sine wave signal Ds1.
  • the number of detection electrodes is two in the above-described embodiment, the number of detection electrodes may be three or more in other examples of the present embodiment.
  • the first detection signal generation unit includes the same number of charge amplifiers as the detection electrodes, but in another example of the present embodiment, the connection between the plurality of detection electrodes and the charge amplifier is made by a selector circuit. By switching, the number of charge amplifiers in the first detection signal generation unit may be smaller than the number of detection electrodes.
  • the input device of this embodiment is not limited to the user interface device for inputting information by operating a finger or the like. That is, the input device of the present embodiment can be widely applied to a device that detects the capacitance between various objects and the detection electrode, which is not limited to the human body.
  • Second low-pass filter 43-1, 43-2 ... 1st delay part, 44-1, 44-2 ... Delay part, 45-1,45-2 ... Phase comparison part, 46-1,45-2 ... Integration part, 50 ... Sine wave generation part, 60 ... First 2 Delay section, 70 ... D / A conversion section Es-1, Es-2 ... Detection electrode, Ea ... Shield electrode, F1-1, F1-2 ... 1st filter, F2-1, F2-2 ... 2nd filter , W1, W1-1, W1-2 ... 1st wiring, W2-1, W2-2 ... 2nd wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

第1検出信号生成部10は、検出電極Ea-1,Ea2と一対一に接続された検出ノードN1-1,N1-2を持ち、検出ノードN1-1,N1-2の電圧が交流電圧Vasに応じて振動するように検出ノードN1-1,N1-2から第2配線W2-1,W2-2を介して検出電極Ea-1,Ea2に電荷を供給し、供給した前記電荷に応じた第1検出信号D1-1,D1-2を生成する。第1検出信号生成部10と、交流出力ノードN3から複数の第1配線W1の各々へ分岐する第1経路P1-1,P1-2には、第1フィルタF1-1,F1-2が設けられている。位相差信号生成部40-1は、第1検出信号D1-1と交流電圧Vasとの位相差に応じた位相差信号P1を生成する。

Description

静電容量検出装置及び入力装置
 本発明は、静電容量検出装置及び入力装置に関するものである。
 指などの対象物と検出電極との間の静電容量を検出する自己容量方式の静電容量センサでは、対象物以外の物体と検出電極との間の寄生容量が検出結果の誤差になる。このような誤差を低減する方法として、検出電極と同じ電位を持つシールド電極(アクティブシールドとも呼ばれる)を検出電極の周囲に配置させる方法が知られている。下記の特許文献1には、シールド電極を備えた静電容量検出装置において上述した寄生容量の影響を更に低減する技術が記載されている。
国際公開第2018/116706号 特開平5-288790号公報
 ところで、センシング用の電極(検出電極、シールド電極)が設けられた配線基板と静電容量の検出を行う電子回路が設けられた配線基板とを離れた場所に配置する場合、これらの配線基板をケーブル等によって配線しなければならないため、断線による故障や動作不良が発生し易くなる。
 検出電極につながる配線が断線した場合は、静電容量の検出ができなくなるため、断線の発生を容易に判別することができる。他方、シールド電極につながる複数の配線の一部が断線した場合は、外来ノイズの影響を受け易くなったり、周囲にノイズを放射し易くなったりするものの、シールド電極と電子回路との電気的な導通は維持されていることから、静電容量の検出結果に異常が表れ難い。そのため、静電容量の検出結果からは断線の発生を容易に判別できないという不利益がある。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、シールド電極につながる複数の配線の一部が断線したことを容易に判別することが可能な静電容量検出装置と、そのような静電容量検出装置を備えた入力装置を提供することにある。
 本発明の第1の観点は、シールド電極に近接して配置された検出電極と対象物との間の静電容量を検出する静電容量検出装置であって、複数の第1配線を介して前記シールド電極に交流電圧を出力する交流電圧出力部と、それぞれ前記第1配線と近接して配置された複数の第2配線を介して複数の前記検出電極と一対一に接続された複数の検出ノードを持ち、前記検出ノードの電圧が前記交流電圧に応じて振動するように前記検出ノードから前記第2配線を介して前記検出電極に電荷を供給し、複数の前記検出ノードの各々から供給した前記電荷に応じた複数の第1検出信号を生成する第1検出信号生成部と、前記交流電圧出力部が前記交流電圧を出力する交流出力ノードから前記複数の第1配線の各々へ分岐する複数の第1経路に設けられた複数の第1フィルタと、一の前記第1検出信号と前記交流電圧との位相差に応じた位相差信号を生成する少なくとも1つの位相差信号生成部とを有する静電容量検出装置である。
 第1の観点の静電容量検出装置によれば、前記交流出力ノードから前記複数の第1配線の各々へ分岐する前記複数の第1経路に前記第1フィルタがそれぞれ設けられていることから、前記複数の第1配線の一部が断線した場合、前記交流出力ノードと前記シールド電極との間で並列に接続される前記第1フィルタの数が変化する。これにより、前記交流出力ノードから前記シールド電極までの周波数特性が変化し、前記交流出力ノードから前記第1検出信号の出力ノードまでの周波数特性も変化するため、前記交流出力ノードにおいて出力される前記交流電圧と、前記第1検出信号に含まれる交流成分との位相差が変化する。前記位相差信号生成部が生成する前記位相差信号は、一の前記第1検出信号と前記交流電圧との位相差に応じた信号であるため、前記複数の第1配線の一部が断線したことによる前記第1検出信号と前記交流電圧との位相差の変化を、前記位相差信号に基づいて容易に判別することが可能となる。
 好適に、前記第1フィルタが、前記交流電圧の周波数より高いカットオフ周波数を持ったローパスフィルタである。
 これにより、前記第1配線から伝搬する周波数の高い外来ノイズを前記第1フィルタにおいて減衰させることが可能となる。
 好適に、前記複数の第2配線と前記複数の検出ノードとの間の複数の第2経路に設けられた複数の第2フィルタを有し、前記第2フィルタが、前記交流電圧の周波数より高いカットオフ周波数を持ったローパスフィルタである。
 これにより、前記第2配線から伝搬する周波数の高い外来ノイズを前記第2フィルタにおいて減衰させることが可能となる。
 好適に、上記第1の観点の静電容量検出装置は、正弦波信号を発生する正弦波発生部と、前記第1検出信号に含まれる交流成分の振幅に応じた第2検出信号を生成する少なくとも1つの第2検出信号生成部とを有し、前記交流電圧出力部は、前記正弦波信号に応じた前記交流電圧を出力し、前記第2検出信号生成部は、前記正弦波信号と前記第1検出信号とを乗算する第1乗算部と、前記第1乗算部の出力信号の高域成分を減衰させる第1ローパスフィルタとを含み、前記位相差信号生成部は、前記正弦波信号の位相を90度遅延させる第1遅延部と、前記第1遅延部により遅延した前記正弦波信号と前記第1検出信号とを乗算する第2乗算部と、前記第2乗算部の出力信号の高域成分を減衰させる第2ローパスフィルタとを含み、前記第2検出信号生成部は、前記第1ローパスフィルタの出力信号に応じた前記第2検出信号を生成し、前記位相差信号生成部は、前記第2ローパスフィルタの出力信号に応じた前記位相差信号を生成する。
 この構成によれば、前記第1検出信号に含まれる交流成分と前記正弦波信号との位相差が小さい場合、前記第2ローパスフィルタの出力信号に応じた前記位相差信号は、前記第2検出信号に比べて、当該位相差の変化に応じた変化率が大きくなる。そのため、前記複数の第1配線の一部が断線したことによる前記第1検出信号と前記交流電圧との位相差の変化を、前記位相差信号の変化に基づいて容易に判別することが可能となる。
 また、この構成によれば、前記第2検出信号と前記位相信号の両方を一つの前記正弦波信号に基づいて効率的に生成することが可能となる。
 好適に、上記第1の観点の静電容量検出装置は、前記正弦波信号を遅延させる第2遅延部を有し、前記交流電圧出力部は、前記第2遅延部により遅延した前記正弦波信号に応じた前記交流電圧を出力し、前記第2遅延部の遅延量は、前記第2ローパスフィルタの出力信号が最小となるように調整されている。
 この構成によれば、前記第2ローパスフィルタの出力信号が最小となる場合に、前記第1検出信号に含まれる交流成分と前記正弦波信号との位相差がゼロに近い状態となるため、前記第2検出信号による前記静電容量の検出感度を高めることが可能となる。
 また、この構成によれば、前記第2遅延部の遅延量の変化に応じた前記位相差信号の変化を観測することにより、前記第1検出信号に含まれる交流成分と前記正弦波信号との位相差をゼロに近づける調整を行うことが可能となる。
 好適に、前記第1検出信号生成部は、前記検出ノードの電圧が前記交流電圧に応じて振動するように前記検出ノードへ前記電荷を供給し、供給した前記電荷に応じた信号を出力する少なくとも1つのチャージアンプと、前記チャージアンプの出力信号と前記交流電圧との差に応じた信号を出力する少なくとも1つの差動アンプと、前記差動アンプの出力信号をデジタル信号に変換し、前記第1検出信号として出力する少なくとも1つのアナログ-デジタル変換部とを含む。
 この構成によれば、前記チャージアンプと前記差動アンプと前記アナログ-デジタル変換部とを用いた簡易な構成により前記第1検出信号を生成することが可能となる。
 好適に、前記交流電圧出力部と、前記第1検出信号生成部と、前記第2検出信号生成部と、前記位相差信号生成部と、前記正弦波発生部とが1以上の集積回路内に設けられており、前記第1フィルタと前記第2フィルタとが、前記1以上の集積回路と異なる1以上の部品により構成されている。
 これにより、集積回路内では実現が難しい比較的大きな時定数を持つ前記第1フィルタ及び前記第2フィルタを、前記1以上の部品によって構成することが可能となる。
 好適に、前記第1フィルタは、前記第1経路に設けられた第1インダクタと、前記第1インダクタの両端のノードとグランドとの間にそれぞれ設けられた2つの第1キャパシタとを含み、前記第2フィルタは、前記第2経路に設けられた第2インダクタと、前記第2インダクタの両端のノードと前記グランドとの間にそれぞれ設けられた2つの第2キャパシタとを含む。
 この構成によれば、前記第1フィルタにおいて、比較的インピーダンスが高い前記第1配線側からの外来ノイズを減衰させ易くなり、前記第2フィルタにおいて、比較的インピーダンスが高い前記第2配線側からの外来ノイズを減衰させ易くなる。
 好適に、前記第1フィルタは、前記第1経路に設けられた第1抵抗と、前記第1抵抗の両端のノードとグランドとの間にそれぞれ設けられた2つの第1キャパシタとを含み、前記第2フィルタは、前記第2経路に設けられた第2抵抗と、前記第2抵抗の両端のノードと前記グランドとの間にそれぞれ設けられた2つの第2キャパシタとを含む。
 この構成によれば、前記第1フィルタにおいて、比較的インピーダンスが高い前記第1配線側からの外来ノイズを減衰させ易くなり、前記第2フィルタにおいて、比較的インピーダンスが高い前記第2配線側からの外来ノイズを減衰させ易くなる。
 好適に、前記交流電圧出力部と、前記第1検出信号生成部と、前記複数の第1フィルタと、前記少なくとも1つの位相差信号生成部とが、共通の第1配線基板に設けられており、前記シールド電極と前記複数の検出電極とが、1以上の第2配線基板に設けられており、前記第1配線基板と前記1以上の第2配線基板とが、1以上の配線ケーブルにより接続されており、前記第1配線及び前記第2配線が、それぞれ前記配線ケーブルに含まれている。
 この構成によれば、前記複数の第1配線の一部が1以上の前記配線ケーブルにおいて断線したことによる前記第1検出信号と前記交流電圧との位相差の変化を、前記位相差信号に基づいて容易に判別することが可能となる。
 好適に、前記交流電圧出力部は、振幅の半分より大きい直流電圧が重畳した前記交流電圧を出力する。
 これにより、前記交流電圧を入力する回路を単電源で動作させることが可能となる。
 本発明の第2の観点は、対象物の近接に応じた情報を入力する入力装置であって、前記対象物の近接に応じて前記対象物との間の静電容量が変化する複数の検出電極と、前記複数の検出電極に近接して配置されたシールド電極と、前記対象物と前記複数の検出電極との間の前記静電容量をそれぞれ検出する上記第1の観点の静電容量検出装置とを有する、入力装置である。
 本発明によれば、シールド電極につながる複数の配線の一部が断線したことを容易に判別することが可能な静電容量検出装置と、そのような静電容量検出装置を備えた入力装置を提供できる。
図1は、本実施形態に係る入力装置の構成の一例を示す図である。 図2は、本実施形態に係る静電容量検出装置の構成の一例を示す図である。 図3A~図3Bは、第1フィルタ及び第2フィルタの構成の一例を示す図である。 図4は、第2信号生成部及び位相差信号生成部の構成の一例を示す図である。 図5は、シールド電極につながる複数の第1配線の一部が断線した状態を説明するための図である。 図6は、位相差信号生成部の一変形例を示す図である。
 図1は、本実施形態に係る入力装置の構成の一例を示す図である。図1に示す入力装置1は、2つの検出電極Es-1及びEs-2と、検出電極Es-1及びEs-2に近接して配置されたシールド電極Eaと、静電容量検出装置3と、処理部4と、記憶部5と、インターフェース部6とを有する。
 本実施形態に係る入力装置1は、指やペンなどの対象物9が検出電極Es-i(iは1又は2の整数を示す。)に近接した場合に、検出電極Es-iと対象物9との間の静電容量を検出し、この検出結果に基づいて、対象物9の近接に応じた情報を入力する。例えば入力装置1は、検出電極Es-iに対する対象物9の近接の有無や、検出電極Es-iと対象物9との距離に関する情報などを、静電容量の検出結果に基づいて取得する。例えば入力装置1は、タッチセンサやタッチパッドなどのユーザーインターフェース装置に適用される。なお、本明細書における「近接」とは、近くにあることを意味しており、近接する物同士の接触の有無を限定しない。
 検出電極Es-iは、導電体である指やペンなどの対象物9との間に静電容量を生じる。シールド電極Eaは、検出電極Es-iに近接して配置される。検出電極Es-iは、指などの対象物9が近接可能な検出領域に配置される。検出領域の表面は、例えば絶縁性のカバー層で覆われており、カバー層より下層側に検出電極Es-iが配置される。シールド電極Eaは、対象物9以外の物体と検出電極Es-iとの静電結合を防止するための静電シールドであり、例えば検出領域において検出電極Es-iよりも下層側に配置される。
 図1に示すように、検出電極Es-iと対象物9との間には、寄生的な容量成分Crgが形成される。シールド電極Eaと検出電極Esとの間には、寄生的な容量成分Crsが形成される。シールド電極Eaとグランドとの間には、寄生的な容量成分Csgが形成される。
 静電容量検出装置3は、検出電極Es-1及びEs-2と対象物9との間にそれぞれ形成される容量成分Crgの静電容量(以下、「検出対象容量Crg」と記す場合がある。)を検出し、その検出結果を示す第2検出信号D2-1及びD2-2を出力する。
 また、静電容量検出装置3は、後述するように、第1検出信号D1-1と交流電圧Vasとの位相差に応じた信号位相差信号P-1、及び、第1検出信号D1-2と交流電圧Vasとの位相差に応じた位相差信号P-2をそれぞれ生成する。
 静電容量検出装置3は、図1に示すように、ケーブル2-1を介して検出電極Es-1及びシールド電極Eaに接続され、ケーブル2-2を介して検出電極Es-2及びシールド電極Eaに接続される。ケーブル2-1の内部では、シールド電極Eaにつながる第1配線W1-1と検出電極Es-1につながる第2配線W2-1とが近接して配置される。ケーブル2-2の内部では、シールド電極Eaにつながる第1配線W1-2と検出電極Es-1につながる第2配線W2-2とが近接して配置される。以下の説明では、第1配線W1-1及びW1-2を区別せずに「第1配線W1」と記す場合がある。
 処理部4は、入力装置1の全体的な動作を制御する回路であり、例えば記憶部5に格納されるプログラムの命令コードに従って処理を行う1以上のプロセッサ(CPU、DSPなど)を含む。また処理部4は、特定の機能を果たすように構成された専用のハードウェア(ASIC、FPGAなど)を含んでもよい。処理部4による処理は、プロセッサがプログラムの命令コードを実行することにより実現してもよいし、少なくとも一部を専用のハードウェアにより実現してもよい。
 処理部4は、静電容量検出装置3から出力される第2検出信号D2-1及びD2-2に基づいて、対象物9が検出電極Es-1、Es-2に近接しているか否かの判定や、対象物9と検出電極Es-iとの距離の算出、検出領域における対象物9の近接位置の算出、対象物9の大きさの算出などの処理を行う。
 また処理部4は、静電容量検出装置3から出力される位相差信号P-iに基づいて、シールド電極Eaにつながる複数の第1配線W1の一部が断線したかを判定する処理を行う。
 記憶部5は、処理部4のプロセッサにおいて実行される命令コードを含んだプログラムや、処理部4において処理に使用されるデータ、処理の過程で一時的に保持されるデータなどを記憶する。記憶部5は、例えばDRAMやSRAM、フラッシュメモリ、ハードディスクなど、1種類以上の記憶デバイスを用いて構成される。
 インターフェース部6は、入力装置1と他の装置(例えば入力装置1を搭載する電子機器のホストコントローラなど)との間でデータをやり取りするための回路である。処理部4は、静電容量検出装置3の検出結果に基づいて得られた情報(対象物9の有無、対象物9の近接位置、対象物9との距離、対象物9の大きさなど)を、インターフェース部6によって図示しない上位装置に出力する。上位装置では、これらの情報を用いて、例えばポインティング操作やジェスチャ操作などを認識するユーザーインターフェースが構築される。
 図1の例において、静電容量検出装置3と処理部4と記憶部5とインターフェース部6とが第1配線基板B1に設けられており、検出電極Es-1及びEs-2とシールド電極Eaとが第2配線基板B2に設けられている。第1配線基板B1と第2配線基板B2とは、ケーブル2-1及び2-2によって接続されている。
 次に、静電容量検出装置3の構成について説明する。図2は、本実施形態に係る静電容量検出装置3の構成の一例を示す図である。
 図1及び図2の例において、静電容量検出装置3は、第1検出信号生成部10と、交流電圧出力部20と、第2信号生成部30-1及び30-2と、位相差信号生成部40-1及び40-2と、正弦波発生部50と、第2遅延部60と、D/A変換部70と、第1フィルタF1-1及びF1-2と、第2フィルタF2-1及びF2-2とを有する。
 また図2の例において、静電容量検出装置3は、キャパシタC1-1及びC1-2と、キャパシタC2-1及びC2-2と、キャパシタC3-1及びC3-2とを有する。
[第1検出信号生成部10]
 第1検出信号生成部10は、図2に示すように、2つの第2配線W2を介して2つの検出電極Esと一対一に接続された2つの検出ノードN1-1及びN1-2を持つ。検出ノードN1-iは、第2配線W2-iを介して検出電極Es-iに接続される。
 第1検出信号生成部10は、交流電圧出力部20から出力される交流電圧Vasに応じて検出ノードN1-iの電圧が振動するように、検出ノードN1-iから第2配線W2-iを介して検出電極Es-iに電荷を供給する。
 第1検出信号生成部10は、2つの検出ノードN1-1及びN1-2の各々から供給した電荷に応じた2つの第1検出信号D1-1及びD1-2を生成する。すなわち、第1検出信号生成部10は、検出ノードN1-iから検出電極Es-iへ供給した電荷に応じた第1検出信号D1-iを生成する。
 図2の例において、第1検出信号生成部10は、チャージアンプ11-1及び11-2と、減衰回路12-1及び12-2と、差動アンプ13-1及び13-2と、A/D変換部14-1及び14-2と、抵抗R1-1及びR1-2とを有する。
 減衰回路12-iは、交流電圧出力部20が出力する交流電圧Vasの振幅を減衰させた交流電圧Vdrv-iを出力する。減衰回路12-iは、交流電圧Vasの振幅に対する交流電圧Vdrv-iの振幅の比である減衰比Kを、対象物9が存在しない非検出状態においてチャージアンプ11-iの出力信号Vo-iの電圧振幅がゼロ付近となる比に保持する。
 図2の例において、減衰回路12-iは、直列に接続されたキャパシタC4-i及びキャパシタC5-iを含む。交流電圧出力部20は、キャパシタC4-iとキャパシタC5-iとの直列回路に交流電圧Vasを印加する。キャパシタC4-iの一方の端子は、交流電圧出力部20の交流電圧Vasが出力される交流出力ノードN3に接続され、キャパシタC4-iの他方の端子は、キャパシタC5-iを介してグランドに接続される。減衰回路12-iは、キャパシタC5-iに生じる交流電圧を交流電圧Vdrv-iとして出力する。キャパシタC4-iの静電容量及びキャパシタC5-iの静電容量は、対象物9が存在しない非検出状態においてチャージアンプ11-iの出力信号Vo-iの電圧振幅がゼロ付近となるようにそれぞれ設定された静電容量である。
 図2の例において、キャパシタC5-iは静電容量値の調整が可能であり、対象物9が存在しない非検出状態においてチャージアンプ11-iの出力信号Vo-iの電圧振幅がゼロ付近となるようにキャパシタC5-iの静電容量値が調整される。キャパシタC5-iは、IC内部の半導体チップ等に形成される部品でもよい。この場合、例えばキャパシタC5-iは、並列に接続された複数のキャパシタにより構成されており、レーザートリミング等で並列接続されるキャパシタの数を選択することにより静電容量値が調整される。またキャパシタC5-iは、素子値の調整が可能なディスクリート部品でもよい。
 キャパシタC4-iとキャパシタC5-iとが接続される交流入力ノードN2-iは、抵抗R2-iを介して交流出力ノードN3に接続される。交流入力ノードN2-iが接続されるチャージアンプ11-iの入力(後述するオペアンプU1-iの非反転入力端子)は、この抵抗R2-iに比べて入力インピーダンスが十分に大きいため、交流入力ノードN2-iの直流電位は交流出力ノードN3の直流電位と概ね等しくなる。図2の例において、抵抗R2-iの抵抗値は製造時に調整可能であり、この抵抗値を調整することによって交流電圧Vasに対する交流電圧Vdrv-iの位相を調整することが可能である。
 チャージアンプ11-iは、検出ノードN1-iの電圧が交流電圧Vasに応じて振動するように検出ノードN1-iへ電荷を供給し、供給した電荷に応じた信号Vo-iを出力する。チャージアンプ11-iは、交流電圧Vasの振幅を減衰させた交流電圧Vdrv-iを交流入力ノードN2-iにおいて入力し、検出ノードN1-iの電圧が交流入力ノードN2-iの電圧に近づくように(すなわち検出ノードN1-iにおいて交流電圧Vdrv-iが生じるように)検出ノードN1-iへ電荷を供給する。
 図2の例において、チャージアンプ11-iは、帰還キャパシタCagと、オペアンプU1-iとを有する。オペアンプU1-iは、検出ノードN1-iに接続される反転入力端子と交流入力ノードN2-iに接続される非反転入力端子との電圧差を増幅し、当該増幅した電圧差に応じた信号Vo-iを出力する。帰還キャパシタCagは、信号Vo-iを出力するオペアンプU1-iの出力ノードと検出ノードN1-iとの間の経路に設けられる。
 差動アンプ13-iは、チャージアンプ11-iの出力信号Vo-iと交流電圧Vasとの差に応じた信号Vm-iを出力する。例えば差動アンプ13-iは全差動増幅器を含んでおり、信号Vm-iを差動信号として出力する。また差動アンプ13-iは、後段のA/D変換部14-iの変換動作に伴うエイリアシングを抑制するため、所定の周波数帯域より高域の周波数成分を減衰させるローパスフィルタとしての機能を備える。
 A/D変換部14-iは、差動アンプ13-iから出力される信号Vm-iをデジタル信号である第1検出信号D1-iに変換する。
 抵抗R1-iは、検出ノードN1-iと第2配線W2-iとの間の導電路である第2経路P2-iに設けられている。
[交流電圧出力部20]
 交流電圧出力部20は、複数の第1配線W1を介してシールド電極Eaに交流電圧Vasを出力する。例えば交流電圧出力部20は、一定の振幅及び周波数を持つ正弦波の交流電圧Vasを出力する。
 図2の例において、交流電圧出力部20は、直流電圧を出力する定電圧源21と、オペアンプU2と、抵抗R3及びR4とを含む。オペアンプU2の非反転入力端子には定電圧源21の直流電圧Vbが印加され、オペアンプU2の反転入力端子には抵抗R3を介して正弦波の信号Vsinが入力される。オペアンプU2の出力端子と反転入力端子との間の経路には、抵抗R4が設けられる。オペアンプU2の出力端子は、交流出力ノードN3に接続される。オペアンプU2は、定電圧源21の直流電圧Vbが重畳した交流電圧Vasを出力端子から交流出力ノードN3に出力する。直流電圧Vbが交流電圧Vasの振幅の半分より大きいため、交流電圧Vasは常に正の電圧となる。図2の例において、抵抗R4の抵抗値が調整可能であり、交流電圧Vasが所定の振幅を持つように抵抗R4の抵抗値が調整される。
[第1フィルタF1-i、第2フィルタF2-i]
 第1フィルタF1-1及びF1-2は、交流出力ノードN3から2つの第1配線W1の各々へ分岐する2つの導電路(第1経路P1-1、P1-2)に設けられている。すなわち、第1フィルタF1-iは、交流出力ノードN3から第1配線W1-iへ分岐する第1経路P1-iに設けられている。
 第2フィルタF2-1及びF2-2は、第2配線W2-1及びW2-2と検出ノードN1-1及びN1-2との間の2つの導電路(第2経路P2-1、P2-2)に設けられている。すなわち、第2フィルタF2-iは、第2配線W2-iと検出ノードN1-iとの間の第2経路P2-iに設けられている。
 第1フィルタF1-i及び第2フィルタF2-iは、例えば、交流電圧Vasの周波数より高いカットオフ周波数を持ったローパスフィルタである。これらのフィルタにより、第1配線W1-iや第2配線W2-iから静電容量検出装置3へ伝搬する外来ノイズが減衰すると共に、第1配線W1-iや第2配線W2-iを通じて静電容量検出装置3から周囲に放射されるノイズが減衰する。
 図3Aは、第1フィルタF1-i及び第2フィルタF2-iの構成の一例を示す図である。図3Aの例において、第1フィルタF1-i及び第2フィルタF2-iは、インダクタとキャパシタとがπ型に接続されたローパスフィルタである。
 図3Aに示す第1フィルタF1-iは、第1経路P1-iに設けられた第1インダクタL1-iと、第1インダクタL1-iの両端のノードとグランドとの間にそれぞれ設けられた第1キャパシタC6-i及び第1キャパシタC7-iとを有する。第1キャパシタC6-iは第1インダクタL1-iの一方(第1配線W1-i側)の端子に接続され、第1キャパシタC7-iは第1インダクタL1-iの他方の端子に接続される。
 図3Aに示す第2フィルタF2-iは、第2経路P2-iに設けられた第2インダクタL2-iと、第2インダクタL2-iの両端のノードとグランドとの間にそれぞれ設けられた第2キャパシタC8-i及び第2キャパシタC9-iとを有する。第2キャパシタC8-iは第2インダクタL2-iの一方(第2配線W2-i側)の端子に接続され、第2キャパシタC9-iは第2インダクタL2-iの他方の端子に接続される。
 図3Bは、第1フィルタF1-i及び第2フィルタF2-iの別の構成例を示す図である。図3Bの例において、第1フィルタF1-i及び第2フィルタF2-iは、抵抗とキャパシタとがπ型に接続されたローパスフィルタである。
 図3Bに示す第1フィルタF1-iは、第1経路P1-iに設けられた第1抵抗R5-iと、第1抵抗R5-iの両端のノードとグランドとの間にそれぞれ設けられた第1キャパシタC10-i及び第1キャパシタC11-iとを有する。第1キャパシタC10-iは第1抵抗R5-iの一方(第1配線W1-i側)の端子に接続され、第1キャパシタC11-iは第1抵抗R5-iの他方の端子に接続される。
 図3Bに示す第2フィルタF2-iは、第2経路P2-iに設けられた第2抵抗R6-iと、第2抵抗R6-iの両端のノードとグランドとの間にそれぞれ設けられた第2キャパシタC12-i及び第2キャパシタC13-iとを有する。第2キャパシタC12-iは第2抵抗R6-iの一方(第2配線W2-i側)の端子に接続され、第2キャパシタC13-iは第2抵抗R6-iの他方の端子に接続される。
[キャパシタC1-i、C2-i、C3-i]
 キャパシタC1-iは、第2経路P2-iにおける抵抗R1-iと第2フィルタF2-iとの間に設けられている。キャパシタC2-iは、キャパシタC1-iの第2フィルタF2-i側の端子とグランドとの間に設けられている。キャパシタC1-iとキャパシタC2-iにより、容量成分Crsの静電容量が大きいことによるチャージアンプ11-iの電荷の増大を抑制して、検出感度を適切な範囲に抑えることができる。
 キャパシタC3-iは、キャパシタC1-iの第2フィルタF2-i側の端子と交流出力ノードN3との間に設けられている。キャパシタC3-iにより、第1配線W1-i及び第2配線W2-iから静電容量検出装置3に伝搬する外来ノイズを低減できる。
[正弦波発生部50]
 正弦波発生部50は、交流電圧Vasの基準となる正弦波信号Ds1を発生する。正弦波発生部50は、例えばメモリに記憶された正弦波の数値データを所定のタイミングで順次に読み出すことにより正弦波信号Ds1を生成する。
[第2信号生成部30-i]
 第2信号生成部30-iは、第1検出信号D1-iに含まれる交流成分(交流電圧Vasに同期した成分)の振幅に応じた第2検出信号D2-iを生成する。第1検出信号D1-iに含まれる交流電圧Vasに同期した交流成分は検出対象容量Crgに応じた振幅を持つため、第1検出信号D1-iは検出対象容量Crgに応じた値を持つ。
 第2信号生成部30-iは、例えば図4に示すように、第1乗算部31-iと第1ローパスフィルタ32-iとを有する。第1乗算部31-iは、正弦波信号Ds1と第1検出信号D1-iとを乗算する。第1ローパスフィルタ32-iは、第1乗算部31-iの出力信号の高域成分を減衰させた信号を第2検出信号D2-iとして出力する。
[位相差信号生成部40-i]
 位相差信号生成部40-iは、第1検出信号D1-iと交流電圧Vasとの位相差に応じた位相差信号P-iを生成する。
 位相差信号生成部40-iは、例えば図4に示すように、第2乗算部41-iと、第2ローパスフィルタ42-iと、第1遅延部43-iとを有する。
 第1遅延部43-iは、正弦波信号Ds1の位相を90度遅延させる。第2乗算部41-iは、第1遅延部43-iにより遅延した正弦波信号Ds1と第1検出信号D1-iとを乗算する。第2ローパスフィルタ42-iは、第2乗算部41-iの出力信号の高域成分を減衰させた信号を位相差信号P-iとして出力する。第1検出信号D1-iと交流電圧Vasとの位相差がゼロに近い場合、位相差信号P-iはゼロに近い値となる。
 なお、位相差信号生成部40-iは、第1ローパスフィルタ32-iの出力信号と第2ローパスフィルタ42-iの出力信号とに基づいて、第1検出信号D1-iと交流電圧Vasとの位相差に応じた位相差信号P-iを生成してもよい。例えば、第1ローパスフィルタ32-iの出力信号を実部、第2ローパスフィルタ42-iの出力信号を虚部とする複素ベクトルの正弦値を位相差信号P-iとして算出してもよい。このように算出した位相差信号P-iも、第1検出信号D1-iと交流電圧Vasとの位相差がゼロに近い場合、ゼロに近い値となる。
[第2遅延部60、D/A変換部70]
 第2遅延部60は、正弦波発生部50が生成した正弦波信号Ds1を遅延させた正弦波信号Ds2を生成する。D/A変換部70は、正弦波信号Ds2をデジタル信号からアナログの正弦波の信号Vsinに変換し、交流電圧出力部20に入力する。交流電圧出力部20は、正弦波信号Ds1を遅延させてアナログ信号に変換した正弦波の信号Vsinに基づいて交流電圧Vasを生成する。
 第2遅延部60の遅延量は、位相差信号生成部40-iの第2ローパスフィルタ42-iの出力信号が最小となるように調整されている。第2ローパスフィルタ42-iの出力信号が最小となる場合に、第1検出信号D1-iに含まれる交流成分と正弦波信号Ds1との位相差がゼロに近い状態となるため、第2検出信号D2-iによる検出対象容量Crgの検出感度が高くなる。
 静電容量検出装置3は、例えば1以上の集積回路(IC)と、集積回路とは異なる1以上の部品(ディスクリート部品)によって構成される。例えば上述した構成において、第1検出信号生成部10と、交流電圧出力部20と、第2信号生成部30-iと、位相差信号生成部40-iと、正弦波発生部50と、第2遅延部60と、D/A変換部70とが、1以上の集積回路内に設けられている。また、第1フィルタF1-i、第2フィルタF2-i、キャパシタC1-i、キャパシタC2-i、キャパシタC3-iは、集積回路とは異なる部品(ディスクリート部品)により構成される。
 次に、上述した構成を有する入力装置1における静電容量検出装置3の動作を説明する。
 断線等が発生していない通常の動作において、第1検出信号生成部10のチャージアンプ11-iは、交流電圧Vasの振幅を減衰回路12-iにより減衰させた交流電圧Vdrv-iとほぼ同じ交流電圧が検出ノードN1-iにおいて発生するように、検出ノードN1へ電荷を供給する。この電荷は、検出ノードN1-iから第2配線W2-iを介して検出電極Es-iに供給されるため、交流電圧Vdrv-iに応じた電荷の変動の振幅は、検出対象容量Crgに応じて変化する。そのため、チャージアンプ11-iの出力信号Vo-iの振幅は検出対象容量Crgに応じて変化し、チャージアンプ11-iの出力信号Vo-iと交流電圧Vasとの差を増幅してデジタル信号に変換した第1検出信号D1-iの振幅も、検出対象容量Crgに応じて変化する。第2信号生成部30-iは、第1検出信号D1-iに含まれる交流成分(交流電圧Vasに同期した成分)の振幅に応じた第2検出信号D2-iを生成するため、第2検出信号D2-iの値は検出対象容量Crgに応じて変化する。これにより、対象物9が検出電極Es-iに近づくことによる検出対象容量Crgの変化を、第2検出信号D2-iの変化として検出することが可能となる。
 断線等が発生していない場合、第1検出信号D1-iに含まれる交流成分(交流電圧Vasに同期した成分)と正弦波信号Ds1との位相差は小さいため、位相差信号生成部40-iが生成する位相差信号P-iはゼロに近い値となっている。
 ここで、例えば図5に示すように、複数の第1配線W1の一部(図5の例では第1配線W1-2)が断線したものとする。この場合、交流出力ノードN3とシールド電極Eaとの間において並列に接続される第1フィルタF1-iの個数が少なくなる。また、第1フィルタF1-iが図3Aや図3Bに示すようなπ型のローパスフィルタである場合、断線が生じた第1配線W1につながる第1フィルタF1-iの交流出力ノードN3とグランドとの間の静電容量が見かけ上大きくなる。これにより、交流出力ノードN3からシールド電極Eaまでの周波数特性が変化し、交流出力ノードN3から第1検出信号D1-iの出力ノードまでの周波数特性も変化するため、交流出力ノードN3において出力される交流電圧Vasと、第1検出信号D1-iに含まれる交流成分との位相差が変化する。具体的には、交流出力ノードN3から第1検出信号D1-iの出力ノードまでのローパスフィルタ特性のカットオフ周波数が低くなることにより、第1検出信号D1-iに含まれる交流成分の位相が正弦波信号Ds1の位相に対して遅れる。この位相差の変化により、位相差信号生成部40-iが生成する位相差信号P-iも変化する。従って、位相差信号P-iの変化に基づいて、複数の第1配線W1の一部に生じた断線を検出することが可能となる。
 第1検出信号D1-iに含まれる交流成分と正弦波信号Ds1との位相差が微小である場合、第1検出信号D1-iと正弦波信号Ds1との乗算結果に基づいて得られる第2信号生成部30-iの第2検出信号D2-iは、位相差に対する変化率がゼロに近い。そのため、この位相差を第2検出信号D2-iに基づいて検出することは困難である。これに対し、正弦波信号Ds1を90度遅延させた信号と第1検出信号D1-iとの乗算結果に基づいて得られる位相差信号生成部40-iの位相差信号P-iは、位相差に対する変化率が最も大きい状態になっている。そのため、位相差の変化に応じて位相差信号P-iも大きく変化するため、位相差信号P-iの変化から第1配線W1の断線を容易に判別することができる。
 なお、本実施形態は上述した例に限定されるものではなく、種々の変形例を含んでいる。
 図6は、位相差信号生成部40-iの一変形例を示す図である。図6に示す位相差信号生成部40-iは、入力される制御信号に応じて正弦波信号Ds1を遅延させる遅延部44-iと、遅延部44-iの出力信号と第1検出信号D1-iとの位相を比較する位相比較部45-iと、位相比較部45-iの位相比較結果に応じた信号を積分し、位相差信号P-iとして出力する積分部46-iとを有する。遅延部44-iは、積分部46-iが出力する位相差信号P-iを制御信号として入力し、位相差信号P-iに応じて正弦波信号Ds1の遅延量を制御する。
 図6に示す位相差信号生成部40-iにおいて、位相比較部45-iは、遅延部44-iの出力信号と第1検出信号D1-iとの位相比較結果に応じて、正又は負の信号を出力する。例えば、遅延部44-iの出力信号の位相が第1検出信号D1-iの位相に比べて進むと正の信号を出力し、逆の場合に負の信号を出力する。遅延部44-iは、位相差信号P-iの値が正に増大すると遅延量を大きくし、逆の場合に遅延量を小さくする。これにより、位相差信号P-iの値は、第1検出信号D1-iと正弦波信号Ds1との位相差に応じた値となる。
 上述した実施形態において検出電極は2つであるが、本実施形態の他の例において検出電極は3以上でもよい。
 上述した実施形態において、第1検出信号生成部は検出電極と同じ数のチャージアンプを備えているが、本実施形態の他の例では、複数の検出電極とチャージアンプとの接続をセレクタ回路によって切り替えることにより、第1検出信号生成部におけるチャージアンプの数を検出電極の数より少なくしてもよい。
 本実施形態の入力装置は、指等の操作による情報を入力するユーザーインターフェース装置に限定されない。すなわち、本実施形態の入力装置は、人体に限定されない種々の物体と検出電極との間の静電容量を検出する装置に広く適用可能である。
1…入力装置、2-1,2-2…ケーブル、3…静電容量検出装置、4…処理部、5…記憶部、6…インターフェース部、9…対象物、10…第1検出信号生成部、11-1,11-2…チャージアンプ、12-1,12-2…減衰回路、13-1,13-2…差動アンプ、14-1,14-2…A/D変換部、20…交流電圧出力部、21…定電圧源、30-1,30-2…第2信号生成部、31-1,31-2…第1乗算部、32-1,32-2…第1ローパスフィルタ、40-1,40-2…位相差信号生成部、41-1,41-2…第2乗算部、42-1,42-2…第2ローパスフィルタ、43-1,43-2…第1遅延部、44-1,44-2…遅延部、45-1,45-2…位相比較部、46-1,45-2…積分部、50…正弦波発生部、60…第2遅延部、70…D/A変換部Es-1,Es-2…検出電極、Ea…シールド電極、F1-1,F1-2…第1フィルタ、F2-1,F2-2…第2フィルタ、W1,W1-1,W1-2…第1配線、W2-1,W2-2…第2配線
 

Claims (12)

  1.  シールド電極に近接して配置された検出電極と対象物との間の静電容量を検出する静電容量検出装置であって、
     複数の第1配線を介して前記シールド電極に交流電圧を出力する交流電圧出力部と、
     それぞれ前記第1配線と近接して配置された複数の第2配線を介して複数の前記検出電極と一対一に接続された複数の検出ノードを持ち、前記検出ノードの電圧が前記交流電圧に応じて振動するように前記検出ノードから前記第2配線を介して前記検出電極に電荷を供給し、複数の前記検出ノードの各々から供給した前記電荷に応じた複数の第1検出信号を生成する第1検出信号生成部と、
     前記交流電圧出力部が前記交流電圧を出力する交流出力ノードから前記複数の第1配線の各々へ分岐する複数の第1経路に設けられた複数の第1フィルタと、
     一の前記第1検出信号と前記交流電圧との位相差に応じた位相差信号を生成する少なくとも1つの位相差信号生成部と
     を有する静電容量検出装置。
  2.  前記第1フィルタが、前記交流電圧の周波数より高いカットオフ周波数を持ったローパスフィルタである、
     請求項1に記載の静電容量検出装置。
  3.  前記複数の第2配線と前記複数の検出ノードとの間の複数の第2経路に設けられた複数の第2フィルタを有し、
     前記第2フィルタが、前記交流電圧の周波数より高いカットオフ周波数を持ったローパスフィルタである、
     請求項2に記載の静電容量検出装置。
  4.  正弦波信号を発生する正弦波発生部と、
     前記第1検出信号に含まれる交流成分の振幅に応じた第2検出信号を生成する少なくとも1つの第2検出信号生成部とを有し、
     前記交流電圧出力部は、前記正弦波信号に応じた前記交流電圧を出力し、
     前記第2検出信号生成部は、
      前記正弦波信号と前記第1検出信号とを乗算する第1乗算部と、
      前記第1乗算部の出力信号の高域成分を減衰させる第1ローパスフィルタとを含み、
     前記位相差信号生成部は、
      前記正弦波信号の位相を90度遅延させる第1遅延部と、
      前記第1遅延部により遅延した前記正弦波信号と前記第1検出信号とを乗算する第2乗算部と、
      前記第2乗算部の出力信号の高域成分を減衰させる第2ローパスフィルタとを含み、
     前記第2検出信号生成部は、前記第1ローパスフィルタの出力信号に応じた前記第2検出信号を生成し、
     前記位相差信号生成部は、前記第2ローパスフィルタの出力信号に応じた前記位相差信号を生成する、
     請求項3に記載の静電容量検出装置。
  5.  前記正弦波信号を遅延させる第2遅延部を有し、
     前記交流電圧出力部は、前記第2遅延部により遅延した前記正弦波信号に応じた前記交流電圧を出力し、
     前記第2遅延部の遅延量は、前記第2ローパスフィルタの出力信号が最小となるように調整されている、
     請求項4に記載の静電容量検出装置。
  6.  前記第1検出信号生成部は、
      前記検出ノードの電圧が前記交流電圧に応じて振動するように前記検出ノードへ前記電荷を供給し、供給した前記電荷に応じた信号を出力する少なくとも1つのチャージアンプと、
      前記チャージアンプの出力信号と前記交流電圧との差に応じた信号を出力する少なくとも1つの差動アンプと、
      前記差動アンプの出力信号をデジタル信号に変換し、前記第1検出信号として出力する少なくとも1つのアナログ-デジタル変換部とを含む、
     請求項4又は5に記載の静電容量検出装置。
  7.  前記交流電圧出力部と、前記第1検出信号生成部と、前記第2検出信号生成部と、前記位相差信号生成部と、前記正弦波発生部とが1以上の集積回路内に設けられており、
     前記第1フィルタと前記第2フィルタとが、前記1以上の集積回路と異なる1以上の部品により構成されている、
     請求項4~6のいずれか一項に記載の静電容量検出装置。
  8.  前記第1フィルタは、
      前記第1経路に設けられた第1インダクタと、
      前記第1インダクタの両端のノードとグランドとの間にそれぞれ設けられた2つの第1キャパシタとを含み、
     前記第2フィルタは、
      前記第2経路に設けられた第2インダクタと、
      前記第2インダクタの両端のノードと前記グランドとの間にそれぞれ設けられた2つの第2キャパシタとを含む、
     請求項3~7のいずれか一項に記載の静電容量検出装置。
  9.  前記第1フィルタは、
      前記第1経路に設けられた第1抵抗と、
      前記第1抵抗の両端のノードとグランドとの間にそれぞれ設けられた2つの第1キャパシタとを含み、
     前記第2フィルタは、
      前記第2経路に設けられた第2抵抗と、
      前記第2抵抗の両端のノードと前記グランドとの間にそれぞれ設けられた2つの第2キャパシタとを含む、
     請求項3~7のいずれか一項に記載の静電容量検出装置。
  10.  前記交流電圧出力部と、前記第1検出信号生成部と、前記複数の第1フィルタと、前記少なくとも1つの位相差信号生成部とが、共通の第1配線基板に設けられており、
     前記シールド電極と前記複数の検出電極とが、1以上の第2配線基板に設けられており、
     前記第1配線基板と前記1以上の第2配線基板とが、1以上の配線ケーブルにより接続されており、
     前記第1配線及び前記第2配線が、それぞれ前記配線ケーブルに含まれている、
     請求項1~9のいずれか一項に記載の静電容量検出装置。
  11.  前記交流電圧出力部は、振幅の半分より大きい直流電圧が重畳した前記交流電圧を出力する、
     請求項1~10のいずれか一項に記載の静電容量検出装置。
  12.  対象物の近接に応じた情報を入力する入力装置であって、
     前記対象物の近接に応じて前記対象物との間の静電容量が変化する複数の検出電極と、
     前記複数の検出電極に近接して配置されたシールド電極と、
     前記対象物と前記複数の検出電極との間の前記静電容量をそれぞれ検出する請求項1~請求項11のいずれか一項に記載の静電容量検出装置とを有する、
     入力装置。
     
PCT/JP2021/031977 2020-10-08 2021-08-31 静電容量検出装置及び入力装置 WO2022074963A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021005309.4T DE112021005309T5 (de) 2020-10-08 2021-08-31 Kapzitätserfassungsvorrichtung und eingabevorrichtung
JP2022555301A JP7406650B2 (ja) 2020-10-08 2021-08-31 静電容量検出装置及び入力装置
CN202180063625.0A CN116235021A (zh) 2020-10-08 2021-08-31 静电容检测装置以及输入装置
US18/186,537 US11983362B2 (en) 2020-10-08 2023-03-20 Capacitance detection device and input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170629 2020-10-08
JP2020-170629 2020-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/186,537 Continuation US11983362B2 (en) 2020-10-08 2023-03-20 Capacitance detection device and input device

Publications (1)

Publication Number Publication Date
WO2022074963A1 true WO2022074963A1 (ja) 2022-04-14

Family

ID=81125807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031977 WO2022074963A1 (ja) 2020-10-08 2021-08-31 静電容量検出装置及び入力装置

Country Status (5)

Country Link
US (1) US11983362B2 (ja)
JP (1) JP7406650B2 (ja)
CN (1) CN116235021A (ja)
DE (1) DE112021005309T5 (ja)
WO (1) WO2022074963A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266338A (ja) * 2009-05-14 2010-11-25 Nidec-Read Corp タッチパネル検査装置
JP2011169783A (ja) * 2010-02-19 2011-09-01 Honda Motor Co Ltd 電荷変化型センサの出力回路
US20130320994A1 (en) * 2012-05-30 2013-12-05 3M Innovative Properties Company Electrode testing apparatus
JP2020010198A (ja) * 2018-07-09 2020-01-16 株式会社東海理化電機製作所 検出装置
JP2020113960A (ja) * 2019-01-17 2020-07-27 株式会社東海理化電機製作所 検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288790A (ja) 1992-04-13 1993-11-02 Hitachi Cable Ltd 架空地線電流センサ断線検知装置
JP5288790B2 (ja) 2007-08-02 2013-09-11 三洋電機株式会社 太陽電池モジュール及びその製造方法
US10845901B2 (en) * 2013-07-31 2020-11-24 Apple Inc. Touch controller architecture
US10037094B2 (en) * 2015-10-29 2018-07-31 Novatek Microelectronics Corp. Carrier touch sensing system capable of performing phase calibration and carrier signal demodulation
US10353518B2 (en) * 2016-10-14 2019-07-16 Synaptics Incorporated Touch controller with signal combining and simultaneous I/Q demodulation
WO2018116706A1 (ja) 2016-12-21 2018-06-28 アルプス電気株式会社 静電容量検出装置及び入力装置
JP7170150B2 (ja) 2019-11-07 2022-11-11 アルプスアルパイン株式会社 静電容量検出装置及び静電容量検出方法
US11144162B1 (en) * 2020-11-20 2021-10-12 Synaptics Incorporated Device and method for sensor electrode testing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266338A (ja) * 2009-05-14 2010-11-25 Nidec-Read Corp タッチパネル検査装置
JP2011169783A (ja) * 2010-02-19 2011-09-01 Honda Motor Co Ltd 電荷変化型センサの出力回路
US20130320994A1 (en) * 2012-05-30 2013-12-05 3M Innovative Properties Company Electrode testing apparatus
JP2020010198A (ja) * 2018-07-09 2020-01-16 株式会社東海理化電機製作所 検出装置
JP2020113960A (ja) * 2019-01-17 2020-07-27 株式会社東海理化電機製作所 検出装置

Also Published As

Publication number Publication date
DE112021005309T5 (de) 2023-07-20
US11983362B2 (en) 2024-05-14
JP7406650B2 (ja) 2023-12-27
US20230229261A1 (en) 2023-07-20
CN116235021A (zh) 2023-06-06
JPWO2022074963A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
CN110088637B (zh) 静电电容检测装置以及输入装置
JP5411670B2 (ja) 静電容量型タッチパネルの信号処理回路
JP6609619B2 (ja) ジェスチャ検出および追跡のための電極配列
CN110383221B (zh) 输入装置和其控制方法
JP5044348B2 (ja) センサ装置、及びこれを用いたセンサシステムと電子機器
JP6184317B2 (ja) 入力装置
US9442143B2 (en) Capacitive proximity sensor as well as method for capacitive approximation detection
JP2017528803A5 (ja)
US11444623B2 (en) Sensor device, method of controlling sensor device, and program therefor
JP2001094408A (ja) 静電容量型センサ、静電容量型センサ部品および物体搭載体
JP4356570B2 (ja) 静電容量型距離センサ
CN114556278B (zh) 静电电容检测装置及静电电容检测方法
WO2022074963A1 (ja) 静電容量検出装置及び入力装置
WO2022109957A1 (zh) 自电容检测电路、触控芯片和电子设备
CN112363003B (zh) 自电容检测电路、触控芯片和电子设备
JP2011113186A (ja) 静電容量型タッチパネルの信号処理回路
US20230408565A1 (en) Capacitance detection device, capacitance detection method, and input device
JP2011113188A (ja) 静電容量型タッチパネルの信号処理回路
JP6772658B2 (ja) 静電容量式入力装置
US11126304B2 (en) Capacitance sensor, method for controlling the same, and program
WO2021225061A1 (ja) 静電容量検出装置及び入力装置
TWI694363B (zh) 偵測裝置及其偵測方法
CN112000249A (zh) 电容检测电路、触控芯片和电容检测电路的参数调整方法
WO2021245993A1 (ja) 慣性力検出回路、慣性力センサ及び慣性力検出方法
KR101919439B1 (ko) 커패시턴스 검출 방법 및 이를 이용한 커패시턴스 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555301

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21877266

Country of ref document: EP

Kind code of ref document: A1