WO2022071690A1 - 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물 - Google Patents

헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물 Download PDF

Info

Publication number
WO2022071690A1
WO2022071690A1 PCT/KR2021/013013 KR2021013013W WO2022071690A1 WO 2022071690 A1 WO2022071690 A1 WO 2022071690A1 KR 2021013013 W KR2021013013 W KR 2021013013W WO 2022071690 A1 WO2022071690 A1 WO 2022071690A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
unsubstituted
light emitting
Prior art date
Application number
PCT/KR2021/013013
Other languages
English (en)
French (fr)
Inventor
신성민
김동준
노영석
박경민
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Publication of WO2022071690A1 publication Critical patent/WO2022071690A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present specification relates to a heterocyclic compound, an organic light emitting device including the same, and a composition for forming an organic material layer.
  • the electroluminescent device is a type of self-luminous display device, and has advantages of a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes combine in the organic thin film to form a pair, and then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers, if necessary.
  • the material of the organic thin film may have a light emitting function if necessary.
  • a compound capable of forming the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant light emitting layer may be used.
  • a compound capable of performing the roles of hole injection, hole transport, electron blocking, hole blocking, electron transport, electron injection, and the like may be used.
  • An object of the present specification is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for forming an organic material layer.
  • a heterocyclic compound of Formula 1 is provided.
  • X1 to X3 are each N or CR, at least one is N,
  • H1 and H2 are each hydrogen; or deuterium
  • Ar1 is a C12 to C18 aryl group consisting of two or more monocyclic rings
  • Ar2 is a C6 to C18 aryl group
  • Ar1 and Ar2 are each deuterium; tritium; Or it may be further substituted with a C1 to C10 alkyl group,
  • R is hydrogen; heavy hydrogen; a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the first electrode a second electrode; and an organic material layer provided between the first electrode and the second electrode, wherein the organic material layer includes the heterocyclic compound of Formula 1 above.
  • the heterocyclic compound of Formula 1 provides a composition for forming an organic material layer comprising a compound of formula (2).
  • R21 and R22 are each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C3 to C60 cycloalkyl group; a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • Ar21 and Ar22 are each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • r21 is an integer of 0 to 4, and when 2 or more, R21 are the same as or different from each other,
  • r22 is an integer of 0 to 4, and in the case of 2 or more, R22 is the same as or different from each other.
  • the heterocyclic compound described herein may be used as an organic material layer of an organic light emitting device.
  • the heterocyclic compound may serve as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a charge generating material, and the like in an organic light emitting device.
  • the heterocyclic compound may be used as a material of a light emitting layer of an organic light emitting device.
  • the heterocyclic compound of Formula 1 When the heterocyclic compound of Formula 1 is used as a material for a light emitting layer of an organic light emitting device, an organic light emitting device having excellent driving voltage and lifespan can be provided.
  • heterocyclic compound of Formula 1 and the compound of Formula 2 are used together as a material for the light emitting layer of the organic light emitting device, it is possible to lower the driving voltage of the device, improve luminous efficiency, and improve lifespan characteristics.
  • 1 to 3 are diagrams exemplarily showing a stacked structure of an organic light emitting device according to an exemplary embodiment of the present specification.
  • substitution means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is substituted. , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted means deuterium; halogen group; cyano group; C1 to C60 alkyl group; C3 to C60 cycloalkyl group; C2 to C60 heterocycloalkyl group; C6 to C60 aryl group; C2 to C60 heteroaryl group; silyl group; a phosphine oxide group; And it means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of an amine group, or substituted or unsubstituted with a substituent to which two or more substituents selected from the above-exemplified substituents are connected.
  • "when a substituent is not indicated in the chemical formula or compound structure” may mean that all positions that may come as a substituent are hydrogen or deuterium. That is, in the case of deuterium, deuterium is an isotope of hydrogen, and some hydrogen atoms may be isotope deuterium, and the content of deuterium may be 0% to 100%.
  • the content of deuterium is 0%, the content of hydrogen is 100%, and all of the substituents explicitly exclude deuterium such as hydrogen If not, hydrogen and deuterium may be mixed and used in the compound.
  • deuterium is one of the isotopes of hydrogen, and as an element having a deuteron consisting of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2 , and the element symbol can also be written as D or 2H.
  • isotopes have the same atomic number (Z), but isotopes that have different mass numbers (A) have the same number of protons, but neutrons It can also be interpreted as an element with a different number of (neutron).
  • 20% of the content of deuterium in the phenyl group represented by means that the total number of substituents the phenyl group can have is 5 (T1 in the formula), and among them, if the number of deuterium is 1 (T2 in the formula), it will be expressed as 20% can That is, the 20% content of deuterium in the phenyl group may be represented by the following structural formula.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain a deuterium atom, that is, has 5 hydrogen atoms.
  • the alkyl group includes a straight or branched chain, and may be further substituted by other substituents.
  • the number of carbon atoms in the alkyl group may be 1 to 60, specifically 1 to 40, more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group
  • the cycloalkyl group includes a monocyclic or polycyclic ring, and may be further substituted by other substituents.
  • polycyclic means a group in which a cycloalkyl group is directly connected to another ring group or condensed.
  • the other ring group may be a cycloalkyl group, but may be a different type of ring group, for example, a heterocycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the carbon number of the cycloalkyl group may be 3 to 60, specifically 3 to 40, more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, includes monocyclic or polycyclic, and may be further substituted by other substituents.
  • polycyclic refers to a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may be a different type of ring group, for example, a cycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • the heterocycloalkyl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic ring, and may be further substituted by other substituents.
  • polycyclic means a group in which an aryl group is directly connected or condensed with another ring group.
  • the other ring group may be an aryl group, but may be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the carbon number of the aryl group may be 6 to 60, specifically 6 to 40, more specifically 6 to 25. When the aryl group is two or more rings, the carbon number may be 8 to 60, 8 to 40, or 8 to 30.
  • aryl group examples include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, a pyrethyl group Nyl group, tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof and the like, but is not limited thereto.
  • terphenyl group may be selected from the following structures.
  • the fluorenyl group may be substituted, and adjacent substituents may combine with each other to form a ring.
  • the heteroaryl group includes O, S, SO 2 , Se, N or Si as a hetero atom, includes monocyclic or polycyclic, and may be further substituted by other substituents.
  • the polycyclic refers to a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may be a different type of ring group, for example, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • the number of carbon atoms may be 4 to 60, 4 to 40, or 4 to 25.
  • the heteroaryl group include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophene group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group group, isothiazolyl group, triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , thiazinyl group, deoxynyl group, triazinyl group, te
  • the silyl group is a substituent including Si and the Si atom is directly connected as a radical, and is represented by -Si(R101)(R102)(R103), R101 to R103 are the same as or different from each other, and each independently Hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. It is not limited.
  • the phosphine oxide group may be substituted with an aryl group, and the above-described examples may be applied to the aryl group.
  • the phosphine oxide group includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide group, and the like, but is not limited thereto.
  • the amine group is represented by -N(R106)(R107), R106 and R107 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • the amine group is -NH 2 ; monoalkylamine group; monoarylamine group; monoheteroarylamine group; dialkylamine group; diarylamine group; diheteroarylamine group; an alkylarylamine group; an alkyl heteroarylamine group; And it may be selected from the group consisting of an aryl heteroarylamine group, the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • X1 to X3 of Formula 1 are N or CR, and at least one is N.
  • X1 to X3 are N or CR, and at least two are N.
  • X1 to X3 are all N.
  • R is hydrogen; or deuterium.
  • H1 and H2 are hydrogen; or deuterium.
  • Chemical Formula 1 may be represented by the following Chemical Formula 1-1 or 1-2.
  • T As d thermal decomposition temperature
  • Chemical Formula 1 may be represented by the following Chemical Formulas 1-3 or 1-4.
  • Ar1 is a C12 to C18 aryl group consisting of two or more monocyclic rings, deuterium; tritium; Or it may be further substituted with a C1 to C10 alkyl group.
  • Ar1 is a C18 aryl group consisting of three monocyclic rings.
  • Ar1 is an aryl group consisting of three phenyl groups.
  • Ar1 is a terphenyl group.
  • Ar1 may be selected from the following structures.
  • Ar2 is a C6 to C18 aryl group, deuterium; tritium; Or it may be further substituted with a C1 to C10 alkyl group.
  • Ar2 is a C6 to C18 aryl group consisting of one or more monocyclic rings; Or a fluorenyl group, deuterium; tritium; Or it may be further substituted with a C1 to C10 alkyl group.
  • Ar2 is a C6 to C18 aryl group consisting of one or more phenyl groups; Or a fluorenyl group, deuterium; tritium; Or it may be further substituted with a C1 to C10 alkyl group.
  • Ar2 is a phenyl group; biphenyl group; terphenyl group; Or it may be a fluorenyl group unsubstituted or substituted with a C1 to C10 alkyl group.
  • Ar2 is a phenyl group; biphenyl group; terphenyl group; Or it may be a dimethyl fluorenyl group.
  • Ar2 may be selected from the following structures.
  • Ar2 is a heteroaryl group
  • the lifespan of the device is reduced when used as a material of an organic light emitting device because hole characteristics are increased compared to that of a C6 to C18 aryl group.
  • Chemical Formula 1 may be represented by any one of the following compounds, but is not limited thereto.
  • the first electrode a second electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound of Formula 1 above.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a negative electrode
  • the second electrode may be an anode
  • the organic light emitting device may be a blue organic light emitting device
  • the heterocyclic compound of Formula 1 may be used as a material of the blue organic light emitting device.
  • the heterocyclic compound of Formula 1 may be included in the light emitting layer of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound of Formula 1 may be used as a material of the green organic light emitting device.
  • the heterocyclic compound of Formula 1 may be included in the emission layer of the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device
  • the heterocyclic compound of Formula 1 may be used as a material of the red organic light emitting device.
  • the heterocyclic compound of Formula 1 may be included in the emission layer of the red organic light emitting device.
  • the organic light emitting device of the present specification may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except for forming one or more organic material layers using the above-described compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound of Formula 1 above.
  • the organic material layer may include a light emitting layer, the light emitting layer may include a host, and the host may include the heterocyclic compound of Formula 1 above.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound of Formula 1 and the compound of Formula 2 below.
  • R21 and R22 are each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C3 to C60 cycloalkyl group; a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • Ar21 and Ar22 are each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • r21 is an integer of 0 to 4, and when 2 or more, R21 are the same as or different from each other,
  • r22 is an integer of 0 to 4, and in the case of 2 or more, R22 is the same as or different from each other.
  • R21 and R22 of Formula 2 are each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R21 and R22 are each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C6 to C30 aryl group; Or a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R21 and R22 are each independently hydrogen; heavy hydrogen; or a substituted or unsubstituted C6 to C30 aryl group.
  • R21 and R22 are hydrogen; or deuterium.
  • Ar21 and Ar22 of Formula 2 are each independently a substituted or unsubstituted C6 to C40 aryl group; Or a substituted or unsubstituted C2 to C40 heteroaryl group.
  • Ar21 and Ar22 are each independently a substituted or unsubstituted C6 to C40 aryl group.
  • Ar21 and Ar22 are each independently a substituted or unsubstituted C6 to C30 aryl group.
  • Ar21 and Ar22 are each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted terphenyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted fluorenyl group; Or a substituted or unsubstituted triphenylene group.
  • Ar21 and Ar22 are each independently a phenyl group unsubstituted or substituted with a cyano group, a silyl group, or an aryl group; biphenyl group; terphenyl group; naphthyl group; a fluorenyl group unsubstituted or substituted with an alkyl group or an aryl group; 9,9'-spirobi[fluorene]; or a triphenylene group.
  • Ar21 and Ar22 are each independently a phenyl group unsubstituted or substituted with a cyano group, a triphenylsilyl group, or an aryl group; biphenyl group; terphenyl group; naphthyl group; a fluorenyl group unsubstituted or substituted with an alkyl group or an aryl group; 9,9'-spirobi[fluorene]; or a triphenylene group.
  • Chemical Formula 2 may be represented by any one of the following compounds, but is not limited thereto.
  • the organic light emitting device of the present invention may further include one or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an electron blocking layer, and a hole blocking layer.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present specification.
  • the scope of the present application be limited by these drawings, and the structure of an organic light emitting device known in the art may also be applied to the present application.
  • an organic light-emitting device in which an anode 200 , an organic material layer 300 , and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting diode according to FIG. 3 includes a hole injection layer 301 , a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • a hole injection layer 301 a hole transport layer 302 , a light emitting layer 303 , a hole blocking layer 304 , an electron transport layer 305 , and an electron injection layer 306 .
  • the scope of the present application is not limited by such a laminated structure, and if necessary, the remaining layers except for the light emitting layer may be omitted, and other necessary functional layers may be further added.
  • the organic material layer including the heterocyclic compound of Formula 1 may further include other materials as needed.
  • materials other than the heterocyclic compound of Formula 1 are exemplified below, but these are for illustration only and not for limiting the scope of the present application, may be substituted with known materials.
  • anode material Materials having a relatively large work function may be used as the anode material, and transparent conductive oxides, metals, conductive polymers, or the like may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • anode material Materials having a relatively low work function may be used as the anode material, and a metal, metal oxide, conductive polymer, or the like may be used.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • a known hole injection material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in US Pat. No. 4,356,429 or Advanced Material, 6, p.677 (1994).
  • starburst-type amine derivatives such as tris(4-carbazolyl-9-ylphenyl)amine (TCTA), 4,4′,4′′-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/Dodecylbenzenesulfonic acid or poly( 3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/Camphor
  • a pyrazoline derivative an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, etc.
  • a low molecular weight or high molecular material may be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, etc. may be used, and polymer materials as well as low molecular weight materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green, or blue light emitting material may be additionally used, and if necessary, two or more light emitting materials may be mixed and used.
  • two or more light emitting materials may be deposited and used as individual sources, or may be premixed and deposited as a single source for use.
  • a fluorescent material can be used as a light emitting material, it can also be used as a phosphorescent material.
  • a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used alone, but materials in which the host material and the dopant material together participate in light emission may be used.
  • a phosphorescent dopant may be used as the dopant material.
  • Ir(ppy) 3 may be used as the phosphorescent dopant.
  • a host of the same series may be mixed and used, or a host of different series may be mixed and used.
  • any two or more types of an N-type host material or a P-type host material may be selected and used as the host material of the light emitting layer.
  • the compound of Formula 1 and the compound of Formula 2 may be mixed and used as the host of the light emitting material.
  • the compound of Formula 1 may be an N-type host material
  • the compound of Formula 2 may be used as a P-type host material.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type according to a material used.
  • the compound according to an exemplary embodiment of the present specification may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • the heterocyclic compound of Formula 1 provides a composition for forming an organic material layer comprising the compound of Formula 2.
  • composition for forming an organic material layer contains the heterocyclic compound of Formula 1 and the compound of Formula 2 in a weight ratio of 1:10 to 10:1, a weight ratio of 1:8 to 8:1, and 1:5 to 5:1 by weight, 1:2 to 2:1 by weight.
  • an organic light emitting device having a low driving voltage and excellent luminous efficiency and lifespan can be provided.
  • the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting diode are remarkably improved.
  • composition for forming an organic material layer may be used as a light emitting layer material of an organic light emitting device.
  • Compound 1-1-1 15.0 g (35.7 mM), (9-phenyl-9H-carbazol-2-yl) boronic acid ((9-phenyl-9H-carbazol-2-yl) boronic acid) 10.3 g (35.7 mM), Pd(PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium (0)) 4.1 g (3.6 mM), K 2 CO 3 9.9 g (71.4 mM) 1,4-dioxane/H 2 O It was dissolved in 200/40 mL and refluxed for 24 hours.
  • a glass substrate coated with a thin film of ITO to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic washing was performed with a solvent such as acetone, methanol, isopropyl alcohol, etc., dried, and UVO-treated for 5 minutes using UV in a UV washer. After transferring the substrate to a plasma cleaner (PT), plasma treatment was performed to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal deposition equipment for organic deposition.
  • PT plasma cleaner
  • the hole injection layer 2-TNATA (4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine) as a common layer on the ITO transparent electrode (anode) and the hole transport layer NPB (N,N'-Di) (1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) was formed.
  • a light emitting layer was deposited thereon by thermal vacuum deposition as follows.
  • the emission layer was deposited by depositing 400 ⁇ of the emission layer compound described in Table 5 below as a host, and the green phosphorescent dopant was deposited by doping Ir(ppy) 3 7% of the emission thickness of the emission layer deposition thickness.
  • 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq3 was deposited thereon as an electron transporting layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited to a thickness of 1,200 ⁇ on the electron injection layer to form a cathode.
  • An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with M7000 of McScience, and the reference luminance was 6,000 cd through the life measuring device (M6000) manufactured by McScience with the measurement result. When /m 2 , the lifetime (T 90 ) was measured.
  • Example 1 1-1 4.11 72.2 (0.251, 0.711) 321
  • Example 2 1-2 4.21 73.8 (0.249, 0.712) 317
  • Example 3 1-6 4.15 74.7 (0.245, 0.714) 307
  • Example 4 1-16 4.17 78.0 (0.240, 0.712) 291
  • Example 5 1-18 4.23 78.4 (0.237, 0.713) 286
  • Example 6 1-19 4.30 78.7 (0.233, 0.711) 252
  • Example 7 1-20 4.55 77.4 (0.240, 0.712) 291
  • Example 8 1-26 4.52 78.5 (0.250, 0.714)
  • Example 9 1-41 4.13 72.5 (0.254, 0.711) 330
  • Example 10 1-51 4.22 73.0 (0.247, 0.717) 319
  • Example 11 1-58 4.45 78.2 (0.236, 0.714)
  • Example 12 1-59 4.53 78.8 (0.2
  • the organic electroluminescent device using the organic electroluminescent device light emitting layer material of the present invention has a lower driving voltage and improved luminous efficiency as well as significantly improved lifespan compared to Comparative Examples 1 to 11. .
  • a glass substrate coated with a thin film of ITO to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic washing was performed with a solvent such as acetone, methanol, isopropyl alcohol, etc., dried, and UVO-treated for 5 minutes using UV in a UV washer. After transferring the substrate to a plasma cleaner (PT), plasma treatment was performed to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal deposition equipment for organic deposition.
  • PT plasma cleaner
  • the hole injection layer 2-TNATA (4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine) as a common layer on the ITO transparent electrode (anode) and the hole transport layer NPB (N,N'-Di) (1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) was formed.
  • a light emitting layer was deposited thereon by thermal vacuum deposition as follows.
  • the light emitting layer was pre-mixed with one compound of Formula 1 and one compound of Formula 2 described in Table 6 below as a host, and after preliminary mixing, 400 ⁇ was deposited in one park, and the green phosphorescent dopant Ir(ppy) 3 was deposited as a light emitting layer Deposited by doping 7% of the thickness. Thereafter, 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq3 was deposited thereon as an electron transporting layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited to a thickness of 1,200 ⁇ on the electron injection layer to form a cathode.
  • An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with M7000 of McScience, and the reference luminance was 6,000 cd through the life measuring device (M6000) manufactured by McScience with the measurement result. When /m 2 , the lifetime (T 90 ) was measured.
  • Example 21 1-1 : 2-3 1:8 4.65 54.2 (0.232, 0.715) 373
  • Example 22 1-1 : 2-3 1:5 4.59 56.6 (0.243, 0.714) 380
  • Example 23 1-1 : 2-3 1:2 4.32 72.3 (0.242, 0.714) 512
  • Example 24 1-1 : 2-3 1:1 4.42 71.6 (0.229, 0.711) 498
  • Example 25 1-1 : 2-3 2:1 4.60 69.3 (0.250, 0.713) 452
  • Example 26 1-1 : 2-3 5:1 4.29 67.3 (0.240, 0.712) 386
  • Example 27 1-1 : 2-3 8:1 4.20 64.0 (0.247, 0.727) 370
  • Example 28 1-16: 2-4 1:2 4.27 75.5 (0.239, 0.713) 492
  • Example 29 1-16: 2-4 1:1 4.36 70.3 (0.230, 0.711) 465
  • the exciplex phenomenon is a phenomenon in which energy having a size of a HOMO level of a donor (p-host) and a LUMO level of an acceptor (n-host) is emitted through electron exchange between two molecules.
  • RISC Reverse Intersystem Crossing
  • a donor (P-host) with good hole transport ability and an acceptor (N-host) with good electron transport ability are used as the host of the emission layer, holes are injected into the P-host and electrons are injected into the N-host, so the driving voltage can be lowered, thereby helping to improve lifespan.
  • the compound of Formula 1 and the compound of Formula 2 are used together as a light emitting layer host, it is confirmed that the compound of Formula 2 acts as a donor and the compound of Formula 1 acts as an acceptor to exhibit excellent device characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물에 관한 것이다.

Description

헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물
본 명세서는 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물에 관한 것이다.
본 명세서는 2020년 9월 29일 한국 특허청에 제출된 한국 특허 출원 제10-2020-0126983호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공주입, 정공수송, 전자차단, 정공차단, 전자수송, 전자주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
본 명세서는 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물을 제공하고자 한다.
본 명세서의 일 실시상태에 있어서, 하기 화학식 1의 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2021013013-appb-img-000001
상기 화학식 1에 있어서,
X1 내지 X3은 각각 N 또는 CR이고, 적어도 하나는 N이며,
H1 및 H2는 각각 수소; 또는 중수소이고,
Ar1은 2 이상의 단환으로 이루어진 C12 내지 C18의 아릴기이며,
Ar2는 C6 내지 C18의 아릴기이고,
Ar1 및 Ar2는 각각 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있고,
R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
또 하나의 실시상태에 있어서, 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 상기 화학식 1의 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 화학식 1의 헤테로고리 화합물; 및 하기 화학식 2의 화합물을 포함하는 유기물층 형성용 조성물을 제공한다.
[화학식 2]
Figure PCTKR2021013013-appb-img-000002
상기 화학식 2에 있어서,
R21 및 R22는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
r21은 0 내지 4의 정수이며, 2 이상인 경우 R21은 서로 같거나 상이하고,
r22는 0 내지 4의 정수이며, 2 이상인 경우 R22는 서로 같거나 상이하다.
본 명세서에 기재된 헤테로고리 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 헤테로고리 화합물은 유기 발광 소자에서 정공주입재료, 정공수송재료, 발광재료, 전자수송재료, 전자주입재료, 전하생성재료 등의 역할을 할 수 있다. 특히, 상기 헤테로고리 화합물은 유기 발광 소자의 발광층의 재료로서 사용될 수 있다.
상기 화학식 1의 헤테로고리 화합물을 유기 발광 소자의 발광층 재료로 사용할 경우, 구동전압과 수명 면에서 우수한 유기 발광 소자를 제공할 수 있다.
또한, 유기 발광 소자의 발광층의 재료로서 화학식 1의 헤테로고리 화합물과 화학식 2의 화합물을 함께 사용하는 경우, 소자의 구동전압을 낮추고, 발광효율을 향상시키며, 수명 특성을 향상시킬 수 있다.
도 1 내지 도 3은 각각 본 명세서의 일 실시상태에 따른 유기 발광 소자의 적층 구조를 예시적으로 나타낸 도이다.
[부호의 설명]
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; 할로겐기; 시아노기; C1 내지 C60의 알킬기; C3 내지 C60의 시클로알킬기; C2 내지 C60의 헤테로시클로알킬기; C6 내지 C60의 아릴기; C2 내지 C60의 헤테로아릴기; 실릴기; 포스핀옥사이드기; 및 아민기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다.
본 명세서에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어, 중수소의 함량이 0%, 수소의 함량이 100%, 치환기는 모두 수소 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 중수소는 수소의 동위원소(isotope)중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 출원의 일 실시상태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 출원의 일 실시상태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1Х100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2021013013-appb-img-000003
로 표시되는 페닐기에 있어 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우 20%로 표시될 수 있다. 즉, 페닐기에 있어 중수소의 함량이 20%인 것은 하기 구조식으로 표시될 수 있다.
Figure PCTKR2021013013-appb-img-000004
또한, 본 출원의 일 실시상태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 시클로알킬기는 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 상기 아릴기는 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기가 2환 이상인 경우 탄소수는 8 내지 60, 8 내지 40, 8 내지 30일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 터페닐기는 하기 구조 중에서 선택될 수 있다.
Figure PCTKR2021013013-appb-img-000005
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플로오레닐기가 치환되는 경우,
Figure PCTKR2021013013-appb-img-000006
,
Figure PCTKR2021013013-appb-img-000007
,
Figure PCTKR2021013013-appb-img-000008
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로 원자로서 O, S, SO2, Se, N 또는 Si를 포함하고, 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기가 2환 이상인 경우 탄소수는 4 내지 60, 4 내지 40, 4 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 퓨라닐기, 티오펜기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조퓨란기, 디벤조티오펜기, 디벤조퓨란기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 벤조퓨로[2,3-d] 피리미딜기; 벤조티에노[2,3-d] 피리미딜기; 벤조퓨로[2,3-a]카바졸릴기, 벤조티에노[2,3-a]카바졸릴기, 1,3-디하이드로인돌로[2,3-a]카바졸릴기, 벤조퓨로[3,2-a]카바졸릴기, 벤조티에노[3,2-a]카바졸릴기, 1,3-디하이드로인돌로[3,2-a]카바졸릴기, 벤조퓨로[2,3-b]카바졸릴기, 벤조티에노[2,3-b]카바졸릴기, 1,3-디하이드로인돌로[2,3-b]카바졸릴기, 벤조퓨로[3,2-b]카바졸릴기, 벤조티에노[3,2-b]카바졸릴기, 1,3-디하이드로인돌로[3,2-b]카바졸릴기, 벤조퓨로[2,3-c]카바졸릴기, 벤조티에노[2,3-c]카바졸릴기, 1,3-디하이드로인돌로[2,3-c]카바졸릴기, 벤조퓨로[3,2-c]카바졸릴기, 벤조티에노[3,2-c]카바졸릴기, 1,3-디하이드로인돌로[3,2-c]카바졸릴기, 1,3-디하이드로인데노[2,1-b]카바졸릴기, 5,11-디하이드로인데노[1,2-b]카바졸릴기, 5,12-디하이드로인데노[1,2-c]카바졸릴기, 5,8- 디하이드로인데노[2,1-c]카바졸릴기, 7,12-디하이드로인데노[1,2-a]카바졸릴기, 11,12-디하이드로인데노[2,1-a]카바졸릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -Si(R101)(R102)(R103)로 표시되고, R101 내지 R103은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)(R104)(R105)로 표시되고, R104 및 R105는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 구체적으로 포스핀옥사이드기는 아릴기로 치환될 수 있으며, 상기 아릴기는 전술한 예시가 적용될 수 있다. 예컨대, 포스핀옥사이드기는 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아민기는 -N(R106)(R107)로 표시되고, R106 및 R107은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 상기 아민기는 -NH2; 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1의 X1 내지 X3는 N 또는 CR이고, 적어도 하나는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 X1 내지 X3는 N 또는 CR이고, 적어도 2개는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 X1 내지 X3는 모두 N이다.
본 명세서의 일 실시상태에 있어서, 상기 X1 내지 X3 중 어느 하나가 CR인 경우, R은 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 H1 및 H2는 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 1-2로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2021013013-appb-img-000009
[화학식 1-2]
Figure PCTKR2021013013-appb-img-000010
상기 화학식 1-1 및 1-2에 있어서, 각 치환기의 정의는 화학식 1에서의 정의와 동일하다.
상기 화학식 1-1 또는 1-2와 같이, 피리딘, 피리미딘 또는 트리아진이 카바졸의 2번 또는 4번 위치에 결합될 경우 소자의 수명이 우수하며, 카바졸의 3번 위치에 결합될 경우 Td(열분해 온도)가 상승하여, P-type의 호스트와 함께 사용할 때 P-type 호스트와의 열 안정성 차이로 인해 소자 증착시 비율에 문제가 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-3 또는 1-4로 표시될 수 있다.
[화학식 1-3]
Figure PCTKR2021013013-appb-img-000011
[화학식 1-4]
Figure PCTKR2021013013-appb-img-000012
상기 화학식 1-3 및 1-4에 있어서, 각 치환기의 정의는 화학식 1에서의 정의와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1은 2 이상의 단환으로 이루어진 C12 내지 C18의 아릴기이며, 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1은 3개의 단환으로 이루어진 C18의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1은 3개의 페닐기로 이루어진 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1은 터페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1은 하기 구조 중에서 선택될 수 있다.
Figure PCTKR2021013013-appb-img-000013
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 C6 내지 C18의 아릴기이며, 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 1 이상의 단환으로 이루어진 C6 내지 C18의 아릴기; 또는 플루오레닐기이고, 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 1 이상의 페닐기로 이루어진 C6 내지 C18의 아릴기; 또는 플루오레닐기이고, 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 페닐기; 비페닐기; 터페닐기; 또는 C1 내지 C10의 알킬기로 치환 또는 비치환된 플루오레닐기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 페닐기; 비페닐기; 터페닐기; 또는 디메틸플루오레닐기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 하기 구조 중에서 선택될 수 있다.
Figure PCTKR2021013013-appb-img-000014
상기 Ar2이 헤테로아릴기인 경우, C6 내지 C18의 아릴기인 경우보다 정공 특성이 증가하여 유기 발광 소자의 재료로 사용되었을 때 소자의 수명이 감소하는 문제가 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2021013013-appb-img-000015
Figure PCTKR2021013013-appb-img-000016
Figure PCTKR2021013013-appb-img-000017
Figure PCTKR2021013013-appb-img-000018
Figure PCTKR2021013013-appb-img-000019
Figure PCTKR2021013013-appb-img-000020
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송층 물질, 발광층 물질, 전자 수송층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
본 명세서의 일 실시상태에 있어서, 제1 전극; 제2 전극; 및 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화학식 1의 헤테로고리 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
본 명세서의 또 하나의 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1의 헤테로고리 화합물은 상기 청색 유기 발광 소자의 재료로 사용될 수 있다. 예컨대, 상기 화학식 1의 헤테로고리 화합물은 청색 유기 발광 소자의 발광층에 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1의 헤테로고리 화합물은 상기 녹색 유기 발광 소자의 재료로 사용될 수 있다. 예컨대, 상기 화학식 1의 헤테로고리 화합물은 녹색 유기 발광 소자의 발광층에 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1의 헤테로고리 화합물은 상기 적색 유기 발광 소자의 재료로 사용될 수 있다. 예컨대, 상기 화학식 1의 헤테로고리 화합물은 적색 유기 발광 소자의 발광층에 포함될 수 있다.
본 명세서의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 명세서의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 명세서의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트를 포함하며, 상기 호스트는 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 명세서의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 헤테로고리 화합물 및 하기 화학식 2의 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2021013013-appb-img-000021
상기 화학식 2에 있어서,
R21 및 R22는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
r21은 0 내지 4의 정수이며, 2 이상인 경우 R21은 서로 같거나 상이하고,
r22는 0 내지 4의 정수이며, 2 이상인 경우 R22는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 R21 및 R22는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R21 및 R22는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R21 및 R22는 각각 독립적으로, 수소; 중수소; 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R21 및 R22는 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C40의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 또는 치환 또는 비치환된 트리페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 각각 독립적으로, 시아노기, 실릴기 또는 아릴기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 나프틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 플루오레닐기; 9,9'-스피로비[플루오렌]; 또는 트리페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 각각 독립적으로, 시아노기, 트리페닐실릴기 또는 아릴기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 나프틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 플루오레닐기; 9,9'-스피로비[플루오렌]; 또는 트리페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화합물 중 어느 하나로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2021013013-appb-img-000022
Figure PCTKR2021013013-appb-img-000023
Figure PCTKR2021013013-appb-img-000024
Figure PCTKR2021013013-appb-img-000025
본 발명의 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 3에 본 명세서의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
상기 화학식 1의 헤테로고리 화합물을 포함하는 유기물층은 필요에 따라 다른 물질을 추가로 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 헤테로고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산 (Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrenesulfonate)) 등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물 외에 적색, 녹색 또는 청색 발광재료가 추가로 사용될 수 있고, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
본 명세서의 일 실시상태에 있어서, 상기 도펀트 재료로는 인광 도펀트가 사용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 인광 도펀트로 Ir(ppy)3가 사용될 수 있다.
발광 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, N-타입 호스트 재료 또는 P-타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 발광 재료의 호스트로 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물이 혼합되어 사용될 수 있다. 이때, 상기 화학식 1의 화합물은 N-타입 호스트 재료이고, 상기 화학식 2의 화합물은 P-타입 호스트 재료로 사용될 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 명세서의 일 실시상태에 따른 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1의 헤테로고리 화합물; 및 상기 화학식 2의 화합물을 포함하는 유기물층 형성용 조성물을 제공한다.
본 명세서의 일 실시상태에 따른 유기물층 형성용 조성물은 상기 화학식 1의 헤테로고리 화합물과 상기 화학식 2의 화합물을 1:10 내지 10:1의 중량비, 1:8 내지 8:1의 중량비, 1:5 내지 5:1의 중량비, 1:2 내지 2:1의 중량비로 포함한다.
상기 화학식 1의 헤테로고리 화합물과 상기 화학식 2의 화합물이 상기 범위 내의 중량비로 포함될 경우, 구동전압이 낮고, 발광효율 및 수명이 우수한 유기 발광 소자를 제공할 수 있다. 특히, 1:2 내지 2:1의 중량비로 포함될 경우, 유기 발광 소자의 구동전압, 발광효율 및 수명 특성이 현저히 향상된다.
본 명세서의 일 실시상태에 따른 유기물층 형성용 조성물은 유기 발광 소자의 발광층 재료로 사용될 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원 범위를 한정하기 위한 것은 아니다.
<제조예>
<제조예 1> 화합물 1-1의 제조
Figure PCTKR2021013013-appb-img-000026
1) 화합물 1-1-2의 제조
4-브로모-1,1':4',1''-터페닐(4-bromo-1,1':4',1''-terphenyl) 88.5g(286.2mM), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 145.4g(572.4mM), PdCl2(dppf)([1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐(II)) 20.9g(28.6mM), KOAc(포타슘 아세테이트) 84.3g(858.7mM)를 1,4-디옥산(1,4-dioxane) 500mL에 녹인 후 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM(디클로로메탄)을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:4)로 정제하여 화합물 1-1-2 92.8g(91%)을 얻었다.
2) 화합물 1-1-1의 제조
화합물 1-1-2 15.0g(42.1mM), 2,4-디클로로-6-페닐-1,3,5-트리아진(2,4-dichloro-6-phenyl-1,3,5-triazine) 4.8g(21.1mM), Pd(PPh3)4(테트라키스(트리페닐포스핀)팔라듐(0)) 2.4g(2.1mM), Na2CO3 2.2g(21.1mM)를 THF(테트라하이드로퓨란)/H2O 200/40mL에 녹인 후 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hex=1:3)로 정제하였고 메탄올로 재결정하여 화합물 1-1-1 7.2g(82%)을 얻었다.
3) 화합물 1-1의 제조
화합물 1-1-1 15.0g(35.7mM), (9-페닐-9H-카바졸-2-일)보론산((9-phenyl-9H-carbazol-2-yl)boronic acid) 10.3g(35.7mM), Pd(PPh3)4(테트라키스(트리페닐포스핀)팔라듐(0)) 4.1g(3.6mM), K2CO3 9.9g(71.4mM)를 1,4-dioxane/H2O 200/40mL에 녹인 후 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hex=1:3)로 정제하였고 메탄올로 재결정하여 목적화합물 1-1 17.9g(80%)을 얻었다.
상기 제조예 1에서 4-브로모-1,1':4',1''-터페닐 대신 하기 표 1의 중간체 A를 사용하고 (9-페닐-9H-카바졸-2-일)보론산 대신 하기 표 1의 중간체 B를 사용한 것을 제외하고 제조예 1의 제조와 동일한 방법으로 제조하여 목적화합물 C를 합성하였다.
[표 1]
Figure PCTKR2021013013-appb-img-000027
Figure PCTKR2021013013-appb-img-000028
Figure PCTKR2021013013-appb-img-000029
<제조예 2> 화합물 2-3 합성
Figure PCTKR2021013013-appb-img-000030
3-브로모-1,1'-바이페닐(3-bromo-1,1'-biphenyl) 3.7g(15.8mM), 9-페닐-9H,9'H-3,3'-바이카바졸(9-phenyl-9H,9'H-3,3'-bicarbazole) 6.5g(15.8mM), CuI 3.0g(15.8mM), 트랜스-1,2-디아미노사이클로헥산(trans-1,2-diaminocyclohexane) 1.9mL(15.8mM), K3PO4 3.3g(31.6mM)를 1,4-dioxane 100mL에 녹인 후 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hex=1:3)로 정제하였고 메탄올로 재결정하여 목적화합물 2-3 7.5g(85%)을 얻었다.
상기 제조예 2에서 3-브로모-1,1`-바이페닐 대신 하기 표 2의 중간체 D를 사용하고 상기 9-페닐-9H,9'H-3,3'-바이카바졸 대신 하기 표 2의 중간체 E를 사용한 것을 제외하고 제조예 2의 제조와 동일한 방법으로 제조하여 목적화합물 F를 합성하였다.
[표 2]
Figure PCTKR2021013013-appb-img-000031
Figure PCTKR2021013013-appb-img-000032
상기 표 1 및 2에 기재된 화합물 이외의 나머지 화합물도 전술한 제조예에 기재된 방법과 마찬가지로 제조하였다.
상기에서 제조된 화합물들의 합성 확인자료는 하기 표 3 및 4에 기재한 바와 같다. 하기 표 3은 1H NMR(CDCl3, 200Mz)의 측정값이고, 하기 표 4는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 1H NMR(CDCl3, 200Mz)
1-1 δ = 8.49(1H, d), 8.28(2H, d), 8.10-8.12(2H, m), 7.85(2H, d), 7.63-7.41(16H, m), 7.29-7.25(7H, m)
1-6 δ = 8.49(1H, d), 8.28(2H, d), 8.10-8.12(2H, m), 7.85-7.79(4H, m), 7.68-7.62(4H, m), 7.52-7.41(14H, m), 7.29-7.25(7H, m)
1-16 δ = 8.49(1H, d), 8.28(2H, d), 8.10-8.12(2H, m), 7.85-7.79(4H, m), 7.68-7.62(4H, m), 7.52-7.41(14H, m), 7.29-7.25(11H, m)
1-18 δ = 8.49(1H, d), 8.28-8.24(3H, m), 8.12-8.10(2H, m), 7.79(2H, d), 7.68-7.41(21H, m), 7.29-7.25(9H, m)
1-19 δ = 8.49(1H, d), 8.28-8.24(3H, m), 8.12-8.10(2H, m), 7.79(2H, d), 7.70-7.41(25H, m), 7.29-7.25(5H, m)
1-20 δ = 8.49(1H, d), 8.28(2H, d), 8.12-8.10(2H, m), 7.79(2H, d), 7.68-7.63(7H, m), 7.52-7.41(19H, m), 7.29-7.25(5H, m)
1-26 δ = 8.48(1H, d), 8.28(2H, d), 8.12-8.09(3H, m), 7.85(2H, d), 7.70(1H, d), 7.63-7.41(22H, m), 7.29-7.25(7H, m)
1-41 δ = 8.28(2H, m), 8.12-8.10(2H, m), 7.90-7.85(3H, m), 7.63-7.41(16H, m), 7.29-7.25(7H, m)
1-51 δ = 8.28(2H, m), 8.12-8.10(3H, m), 7.90-7.85(3H, m), 7.63(1H, d), 7.52-7.41(18H, m), 7.29-7.25(7H, m)
1-58 δ = 8.28-8.24(3H, m), 8.12-8.10(2H, m), 7.90(1H, d), 7.79(2H, d), 7.68-7.41(21H, m), 7.29-7.25(9H, m)
1-59 δ = 8.28-8.24(3H, m), 8.12-8.10(2H, m), 7.90(1H, d), 7.79(2H, d), 7.63-7.41(25H, m), 7.29-7.25(5H, m)
1-60 δ = 8.28(2H, d), 8.12-8.10(2H, m), 7.90(1H, d), 7.79(2H, d), 7.68-7.63(6H, m), 7.52-7.39(20H, m), 7.29-7.25(5H, m)
1-80 δ = 8.28(2H, d), 8.12-8.05(4H, m), 7.90-7.88(2H, m), 7.66-7.63(4H, m), 7.52-7.39(25H, m), 7.29(1H, t)
1-81 δ = 8.49(1H, d), 8.28(2H, d), 8.12-8.10(2H, m), 7.87-7.85(4H, m), 7.63-7.62(2H, m), 7.52-7.17(20H, m), 7.07(1H, t), 1.72(6H, s)
1-90 δ = 8.49(1H, d), 8.28(2H, d), 8.12-8.10(2H, m), 7.87(2H, d), 7.66-7.62(5H, m), 7.52-7.29(16H, m), 7.17(2H, t), 7.07(2H, m), 1.72(6H, s)
1-115 δ = 8.28(2H, d), 8.12-8.10(2H, m), 7.90-7.87(2H, m), 7.66-7.63(5H, m), 7.52-7.29(18H, m), 7.17(1H, t), 7.07(2H, m), 1.72(6H, s)
2-3 δ = 8.55(1H, d), 8.30(1H, d), 8.21-8.13(3H, m), 7.99-7.89(3H, m), 7.77-7.35(17H, m), 7.20-7.16(2H, m)
2-4 δ = 8.55(1H, d), 8.30(1H, d), 8.19-8.13(2H, m), 7.99-7.89(8H, m), 7.77-7.75(3H, m), 7.62-7.35(11H, m), 7.20-7.16(2H, m)
2-7 δ = 8.55(1H, d), 8.31-8.30(3H, d), 8.19-8.13(2H, m), 7.99-7.89(5H, m), 7.77-7.75(5H, m), 7.62-7.35(14H, m), 7.20-7.16(2H, m)
2-31 δ = 8.55(1H, d), 8.30(1H, d), 8.21-8.13(4H, m), 7.99-7.89(4H, m), 7.77-7.35(20H, m), 7.20-7.16(2H, m)
2-32 δ = 8.55(1H, d), 8.30(1H, d), 8.21-8.13(3H, m), 7.99-7.89(8H, m), 7.77-7.35(17H, m), 7.20-7.16(2H, m)
화합물 FD-MS 화합물 FD-MS
1-1 m/z=626.25(C45H30N4=626.75) 1-2 m/z=626.25(C45H30N4=626.75)
1-3 m/z=626.25(C45H30N4=626.75) 1-4 m/z=626.25(C45H30N4=626.75)
1-5 m/z=626.25(C45H30N4=626.75) 1-6 m/z=702.28(C51H34N4=702.84)
1-7 m/z=702.28(C51H34N4=702.84) 1-8 m/z=702.28(C51H34N4=702.84)
1-9 m/z=702.28(C51H34N4=702.84) 1-10 m/z=702.28(C51H34N4=702.84)
1-11 m/z=702.28(C51H34N4=702.84) 1-12 m/z=702.28(C51H34N4=702.84)
1-13 m/z=702.28(C51H34N4=702.84) 1-14 m/z=702.28(C51H34N4=702.84)
1-15 m/z=702.28(C51H34N4=702.84) 1-16 m/z=778.31(C57H38N4=778.94)
1-17 m/z=778.31(C57H38N4=778.94) 1-18 m/z=778.31(C57H38N4=778.94)
1-19 m/z=778.31(C57H38N4=778.94) 1-20 m/z=778.31(C57H38N4=778.94)
1-21 m/z=778.31(C57H38N4=778.94) 1-22 m/z=778.31(C57H38N4=778.94)
1-23 m/z=778.31(C57H38N4=778.94) 1-24 m/z=778.31(C57H38N4=778.94)
1-25 m/z=778.31(C57H38N4=778.94) 1-26 m/z=778.31(C57H38N4=778.94)
1-27 m/z=778.31(C57H38N4=778.94) 1-28 m/z=778.31(C57H38N4=778.94)
1-29 m/z=778.31(C57H38N4=778.94) 1-30 m/z=778.31(C57H38N4=778.94)
1-31 m/z=778.31(C57H38N4=778.94) 1-32 m/z=778.31(C57H38N4=778.94)
1-33 m/z=778.31(C57H38N4=778.94) 1-34 m/z=778.31(C57H38N4=778.94)
1-35 m/z=778.31(C57H38N4=778.94) 1-36 m/z=778.31(C57H38N4=778.94)
1-37 m/z=778.31(C57H38N4=778.94) 1-38 m/z=778.31(C57H38N4=778.94)
1-39 m/z=778.31(C57H38N4=778.94) 1-40 m/z=778.31(C57H38N4=778.94)
1-41 m/z=626.25(C45H30N4=626.75) 1-42 m/z=626.25(C45H30N4=626.75)
1-43 m/z=626.25(C45H30N4=626.75) 1-44 m/z=626.25(C45H30N4=626.75)
1-45 m/z=626.25(C45H30N4=626.75) 1-46 m/z=702.28(C51H34N4=702.84)
1-47 m/z=702.28(C51H34N4=702.84) 1-48 m/z=702.28(C51H34N4=702.84)
1-49 m/z=702.28(C51H34N4=702.84) 1-50 m/z=702.28(C51H34N4=702.84)
1-51 m/z=702.28(C51H34N4=702.84) 1-52 m/z=702.28(C51H34N4=702.84)
1-53 m/z=702.28(C51H34N4=702.84) 1-54 m/z=702.28(C51H34N4=702.84)
1-55 m/z=702.28(C51H34N4=702.84) 1-56 m/z=778.31(C57H38N4=778.94)
1-57 m/z=778.31(C57H38N4=778.94) 1-58 m/z=778.31(C57H38N4=778.94)
1-59 m/z=778.31(C57H38N4=778.94) 1-60 m/z=778.31(C57H38N4=778.94)
1-61 m/z=778.31(C57H38N4=778.94) 1-62 m/z=778.31(C57H38N4=778.94)
1-63 m/z=778.31(C57H38N4=778.94) 1-64 m/z=778.31(C57H38N4=778.94)
1-65 m/z=778.31(C57H38N4=778.94) 1-66 m/z=778.31(C57H38N4=778.94)
1-67 m/z=778.31(C57H38N4=778.94) 1-68 m/z=778.31(C57H38N4=778.94)
1-69 m/z=778.31(C57H38N4=778.94) 1-70 m/z=778.31(C57H38N4=778.94)
1-71 m/z=778.31(C57H38N4=778.94) 1-72 m/z=778.31(C57H38N4=778.94)
1-73 m/z=778.31(C57H38N4=778.94) 1-74 m/z=778.31(C57H38N4=778.94)
1-75 m/z=778.31(C57H38N4=778.94) 1-76 m/z=778.31(C57H38N4=778.94)
1-77 m/z=778.31(C57H38N4=778.94) 1-78 m/z=778.31(C57H38N4=778.94)
1-79 m/z=778.31(C57H38N4=778.94) 1-80 m/z=778.31(C57H38N4=778.94)
1-81 m/z=742.31(C54H38N4=742.91) 1-82 m/z=742.31(C54H38N4=742.91)
1-83 m/z=742.31(C54H38N4=742.91) 1-84 m/z=742.31(C54H38N4=742.91)
1-85 m/z=742.31(C54H38N4=742.91) 1-86 m/z=742.31(C54H38N4=742.91)
1-87 m/z=742.31(C54H38N4=742.91) 1-88 m/z=742.31(C54H38N4=742.91)
1-89 m/z=742.31(C54H38N4=742.91) 1-90 m/z=742.31(C54H38N4=742.91)
1-91 m/z=742.31(C54H38N4=742.91) 1-92 m/z=742.31(C54H38N4=742.91)
1-93 m/z=742.31(C54H38N4=742.91) 1-94 m/z=742.31(C54H38N4=742.91)
1-95 m/z=742.31(C54H38N4=742.91) 1-96 m/z=742.31(C54H38N4=742.91)
1-97 m/z=742.31(C54H38N4=742.91) 1-98 m/z=742.31(C54H38N4=742.91)
1-99 m/z=742.31(C54H38N4=742.91) 1-100 m/z=742.31(C54H38N4=742.91)
1-101 m/z=742.31(C54H38N4=742.91) 1-102 m/z=742.31(C54H38N4=742.91)
1-103 m/z=742.31(C54H38N4=742.91) 1-104 m/z=742.31(C54H38N4=742.91)
1-105 m/z=742.31(C54H38N4=742.91) 1-106 m/z=742.31(C54H38N4=742.91)
1-107 m/z=742.31(C54H38N4=742.91) 1-108 m/z=742.31(C54H38N4=742.91)
1-109 m/z=742.31(C54H38N4=742.91) 1-110 m/z=742.31(C54H38N4=742.91)
1-111 m/z=742.31(C54H38N4=742.91) 1-112 m/z=742.31(C54H38N4=742.91)
1-113 m/z=742.31(C54H38N4=742.91) 1-114 m/z=742.31(C54H38N4=742.91)
1-115 m/z=742.31(C54H38N4=742.91) 1-116 m/z=742.31(C54H38N4=742.91)
1-117 m/z=742.31(C54H38N4=742.91) 1-118 m/z=742.31(C54H38N4=742.91)
1-119 m/z=742.31(C54H38N4=742.91) 1-120 m/z=742.31(C54H38N4=742.91)
2-3 m/z=560.23(C42H28N2=560.70) 2-4 m/z=560.23(C42H28N2=560.70)
2-7 m/z=636.26(C48H32N2=636.80) 2-31 m/z=636.26(C48H32N2=636.80)
2-32 m/z=636.26(C48H32N2=636.80)
<실험예 1>
1) 유기 발광 소자의 제작
실시예 1 내지 20 및 비교예 1 내지 11
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공 수송층 NPB(N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 5에 기재된 발광층 화합물을 400Å 증착하였고, 녹색 인광 도펀트는 Ir(ppy)3를 발광층 증착 두께의 7% 도핑하여 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
2) 유기 발광 소자의 평가
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이언스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, 수명(T90)을 측정하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 5와 같았다.
발광층
화합물
구동전압
(V)
발광효율
(cd/A)
색좌표
(x, y)
수명
(T90)
실시예 1 1-1 4.11 72.2 (0.251, 0.711) 321
실시예 2 1-2 4.21 73.8 (0.249, 0.712) 317
실시예 3 1-6 4.15 74.7 (0.245, 0.714) 307
실시예 4 1-16 4.17 78.0 (0.240, 0.712) 291
실시예 5 1-18 4.23 78.4 (0.237, 0.713) 286
실시예 6 1-19 4.30 78.7 (0.233, 0.711) 252
실시예 7 1-20 4.55 77.4 (0.240, 0.712) 291
실시예 8 1-26 4.52 78.5 (0.250, 0.714) 301
실시예 9 1-41 4.13 72.5 (0.254, 0.711) 330
실시예 10 1-51 4.22 73.0 (0.247, 0.717) 319
실시예 11 1-58 4.45 78.2 (0.236, 0.714) 301
실시예 12 1-59 4.53 78.8 (0.234, 0.717) 295
실시예 13 1-60 4.71 78.0 (0.240, 0.717) 308
실시예 14 1-61 4.25 79.1 (0.240, 0.715) 271
실시예 15 1-81 4.32 69.8 (0.242, 0.713) 291
실시예 16 1-82 4.34 70.1 (0.239, 0.717) 281
실시예 17 1-83 4.37 70.8 (0.237, 0.714) 277
실시예 18 1-101 4.35 68.8 (0.247, 0.713) 292
실시예 19 1-102 4.38 69.5 (0.243, 0.712) 284
실시예 20 1-103 4.40 69.7 (0.239, 0.711) 269
비교예 1 2-3 4.83 50.9 (0.233, 0.703) 91
비교예 2 2-4 4.69 69.2 (0.231, 0.712) 96
비교예 3 2-7 5.21 57.0 (0.247, 0.727) 85
비교예 4 2-31 4.75 51.2 (0.254, 0.724) 79
비교예 5 2-32 4.48 70.2 (0.241, 0.714) 86
비교예 6 Ref.1 5.79 65.9 (0.258, 0.717) 59
비교예 7 Ref.2 5.64 59.9 (0.235, 0.686) 62
비교예 8 Ref.3 5.51 66.2 (0.223, 0.671) 58
비교예 9 Ref.4 5.41 64.7 (0.243, 0.701) 67
비교예 10 Ref.5 5.66 67.8 (0.259, 0.711) 70
비교예 11 Ref.6 5.73 65.6 (0.251, 0.710) 59
Figure PCTKR2021013013-appb-img-000033
상기 표 5의 결과로부터 알 수 있듯이, 본 발명의 유기 전계 발광 소자 발광층 재료를 이용한 유기 전계 발광 소자는 비교예 1 내지 11에 비해 구동 전압이 낮고, 발광효율이 향상되었을 뿐만 아니라 수명도 현저히 개선되었다.
비교예 6의 화합물과 같이 본원 화학식 1의 트리아진의 위치가 카바졸의 2번 또는 4번에 위치하지 않을 경우에는, 발광층에서 정공과 전자의 균형이 깨져서 수명이 저하됨을 확인할 수 있었다. 특히, carbazole의 위치가 3번에 위치할 경우 p-host와의 Td값 차이로 인해 비율에 문제가 있음을 확인할 수 있었다.
비교예 7의 경우 전자와 정공의 이동속도의 균형이 깨져서 수명이 저하됨을 확인할 수 있었다.
비교예 8의 경우 LUMO 에너지의 확장으로 전자의 이동속도가 증가하여 정공과의 균형이 깨져 수명이 저하됨을 확인할 수 있었다.
비교예 9 및 11의 화합물은 각각 전자와 정공의 이동속도가 빨라 균형이 깨져서 수명이 저하됨을 확인할 수 있었다.
비교예 10의 경우 HOMO 에너지의 확장으로 정공의 이동속도가 증가하여 정공과의 균형이 깨져 수명이 저하됨을 확인할 수 있었다.
<실험예 2>
1) 유기 발광 소자의 제작
실시예 21 내지 42
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공 수송층 NPB(N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 6에 기재된 화학식 1의 화합물 1종과 화학식 2의 화합물 1종을 pre-mixed하여 예비 혼합 후 하나의 공원에서 400Å 증착하였고, 녹색 인광 도펀트는 Ir(ppy)3를 발광층 증착 두께의 7% 도핑하여 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
2) 유기 발광 소자의 평가
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이언스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, 수명(T90)을 측정하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 6과 같았다.
발광층
화합물
비율
(중량비)
구동전압
(V)
발광효율
(cd/A)
색좌표
(x, y)
수명
(T90)
실시예 21 1-1 : 2-3 1:8 4.65 54.2 (0.232, 0.715) 373
실시예 22 1-1 : 2-3 1:5 4.59 56.6 (0.243, 0.714) 380
실시예 23 1-1 : 2-3 1:2 4.32 72.3 (0.242, 0.714) 512
실시예 24 1-1 : 2-3 1:1 4.42 71.6 (0.229, 0.711) 498
실시예 25 1-1 : 2-3 2:1 4.60 69.3 (0.250, 0.713) 452
실시예 26 1-1 : 2-3 5:1 4.29 67.3 (0.240, 0.712) 386
실시예 27 1-1 : 2-3 8:1 4.20 64.0 (0.247, 0.727) 370
실시예 28 1-16 : 2-4 1:2 4.27 75.5 (0.239, 0.713) 492
실시예 29 1-16 : 2-4 1:1 4.36 70.3 (0.230, 0.711) 465
실시예 30 1-16 : 2-4 2:1 4.52 69.1 (0.249, 0.713) 430
실시예 31 1-19 : 2-7 1:2 4.36 74.3 (0.251, 0.714) 432
실시예 32 1-19 : 2-7 1:1 4.49 71.5 (0.240, 0.713) 421
실시예 33 1-19 : 2-7 2:1 4.67 69.2 (0.232, 0.711) 409
실시예 34 1-41 : 2-31 1:2 4.35 73.8 (0.232, 0.711) 518
실시예 35 1-41 : 2-31 1:1 4.47 72.6 (0.242, 0.712) 506
실시예 36 1-41 : 2-31 2:1 4.62 70.3 (0.244, 0.714) 489
실시예 37 1-56 : 2-32 1:2 4.30 77.2 (0.243, 0.717) 520
실시예 38 1-56 : 2-32 1:1 4.40 76.4 (0.240, 0.712) 493
실시예 39 1-56 : 2-32 2:1 4.49 71.3 (0.239, 0.714) 455
실시예 40 1-59 : 2-32 1:2 4.34 76.2 (0.247, 0.729) 548
실시예 41 1-59 : 2-32 1:1 4.48 75.6 (0.241, 0.718) 447
실시예 42 1-59 : 2-32 2:1 4.67 69.3 (0.231, 0.717) 429
상기 표 5 및 6의 결과를 보면, 화학식 1의 화합물 및 화학식 2의 화합물을 동시에 포함하는 경우 더 우수한 효율 및 수명 효과를 보인다. 이 결과는 두 화합물을 동시에 포함하는 경우 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 donor(p-host)의 HOMO level, acceptor(n-host) LUMO level 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 Reverse Intersystem Crossing(RISC)이 일어나게 되고 이로 인해 형광의 내부양자 효율이 100%까지 올라갈 수 있다. 정공 수송 능력이 좋은 donor(P-host)와 전자 수송 능력이 좋은 acceptor(N-host)가 발광층의 호스트로 사용될 경우 정공은 P-host로 주입되고, 전자는 N-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다. 본원발명에서는 상기 화학식 1의 화합물과 상기 화학식 2의 화합물이 발광층 호스트로 함께 사용되었을 경우에 상기 화학식 2의 화합물이 donor 역할을 하고 상기 화학식 1의 화합물이 acceptor 역할을 하여 우수한 소자 특성을 나타냄을 확인할 수 있었다.

Claims (11)

  1. 하기 화학식 1의 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2021013013-appb-img-000034
    상기 화학식 1에 있어서,
    X1 내지 X3은 각각 N 또는 CR이고, 적어도 하나는 N이며,
    H1 및 H2는 각각 수소; 또는 중수소이고,
    Ar1은 2 이상의 단환으로 이루어진 C12 내지 C18의 아릴기이며,
    Ar2는 C6 내지 C18의 아릴기이고,
    Ar1 및 Ar2는 각각 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있고,
    R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-3 또는 1-4로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-3]
    Figure PCTKR2021013013-appb-img-000035
    [화학식 1-4]
    Figure PCTKR2021013013-appb-img-000036
    상기 화학식 1-3 및 1-4에 있어서, 각 치환기의 정의는 화학식 1에서의 정의와 동일하다.
  3. 청구항 1에 있어서,
    상기 Ar2는 페닐기; 비페닐기; 터페닐기; 또는 C1 내지 C10의 알킬기로 치환 또는 비치환된 플루오레닐기인 것인 헤테로고리 화합물.
  4. 청구항 1에 있어서,
    상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2021013013-appb-img-000037
    Figure PCTKR2021013013-appb-img-000038
    Figure PCTKR2021013013-appb-img-000039
    Figure PCTKR2021013013-appb-img-000040
    Figure PCTKR2021013013-appb-img-000041
    Figure PCTKR2021013013-appb-img-000042
  5. 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 유기물층을 포함하는 유기 발광 소자로서,
    상기 유기물층은 청구항 1 내지 4 중 어느 한 항에 따른 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  6. 청구항 5에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  7. 청구항 5에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 호스트를 포함하며,
    상기 호스트는 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 6에 있어서,
    상기 발광층은 하기 화학식 2의 화합물을 더 포함하는 것인 유기 발광 소자:
    [화학식 2]
    Figure PCTKR2021013013-appb-img-000043
    상기 화학식 2에 있어서,
    R21 및 R22는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    r21은 0 내지 4의 정수이며, 2 이상인 경우 R21은 서로 같거나 상이하고,
    r22는 0 내지 4의 정수이며, 2 이상인 경우 R22는 서로 같거나 상이하다.
  9. 청구항 8에 있어서,
    상기 화학식 2는 하기 화합물 중 어느 하나로 표시되는 것인 유기 발광 소자:
    Figure PCTKR2021013013-appb-img-000044
    Figure PCTKR2021013013-appb-img-000045
    Figure PCTKR2021013013-appb-img-000046
    Figure PCTKR2021013013-appb-img-000047
  10. 하기 화학식 1의 헤테로고리 화합물; 및
    하기 화학식 2의 화합물을 포함하는 유기물층 형성용 조성물:
    [화학식 1]
    Figure PCTKR2021013013-appb-img-000048
    상기 화학식 1에 있어서,
    X1 내지 X3은 각각 N 또는 CR이고, 적어도 하나는 N이며,
    Ar1은 2 이상의 단환으로 이루어진 C12 내지 C18의 아릴기이고,
    Ar2는 C6 내지 C18의 아릴기이며,
    Ar1 및 Ar2는 각각 중수소; 삼중수소; 또는 C1 내지 C10의 알킬기로 더 치환될 수 있고,
    R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    [화학식 2]
    Figure PCTKR2021013013-appb-img-000049
    상기 화학식 2에 있어서,
    R21 및 R22는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    Ar21 및 Ar22는 각각 독립적으로, 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    r21은 0 내지 4의 정수이며, 2 이상인 경우 R21은 서로 같거나 상이하고,
    r22는 0 내지 4의 정수이며, 2 이상인 경우 R22는 서로 같거나 상이하다.
  11. 청구항 10에 있어서, 상기 화학식 1의 헤테로고리 화합물과 상기 화학식 2의 화합물의 중량비는 1:10 내지 10:1인 것인 유기물층 형성용 조성물.
PCT/KR2021/013013 2020-09-29 2021-09-24 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물 WO2022071690A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0126983 2020-09-29
KR1020200126983A KR20220043506A (ko) 2020-09-29 2020-09-29 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2022071690A1 true WO2022071690A1 (ko) 2022-04-07

Family

ID=80950764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013013 WO2022071690A1 (ko) 2020-09-29 2021-09-24 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물

Country Status (3)

Country Link
KR (1) KR20220043506A (ko)
TW (1) TW202216687A (ko)
WO (1) WO2022071690A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170134264A (ko) * 2016-05-27 2017-12-06 주식회사 엘지화학 유기발광소자
CN109575002A (zh) * 2017-12-14 2019-04-05 广州华睿光电材料有限公司 有机化合物及其应用
KR20190135398A (ko) * 2018-05-28 2019-12-06 주식회사 엘지화학 신규한 트리페닐렌 화합물 및 이를 이용한 유기 발광 소자
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
US20200277283A1 (en) * 2019-02-28 2020-09-03 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170134264A (ko) * 2016-05-27 2017-12-06 주식회사 엘지화학 유기발광소자
CN109575002A (zh) * 2017-12-14 2019-04-05 广州华睿光电材料有限公司 有机化合物及其应用
KR20190135398A (ko) * 2018-05-28 2019-12-06 주식회사 엘지화학 신규한 트리페닐렌 화합물 및 이를 이용한 유기 발광 소자
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
US20200277283A1 (en) * 2019-02-28 2020-09-03 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
KR20220043506A (ko) 2022-04-05
TW202216687A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
WO2022025516A1 (ko) 헤테로고리 화합물, 및 이를 포함하는 유기 발광 소자
WO2022065762A1 (ko) 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의제조 방법
WO2018117618A1 (ko) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021101117A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018009009A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2012015265A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2018174678A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2010114266A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2021091259A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2010114253A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2021261946A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2017043908A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2021112496A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022164086A1 (ko) 유기 금속 착물 및 이를 포함한 유기전계발광소자
WO2022039408A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2022055155A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018174682A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019066607A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023075134A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021045460A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020101397A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022211211A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
WO2022108141A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021256836A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875965

Country of ref document: EP

Kind code of ref document: A1