WO2022071455A1 - メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体 - Google Patents

メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体 Download PDF

Info

Publication number
WO2022071455A1
WO2022071455A1 PCT/JP2021/036025 JP2021036025W WO2022071455A1 WO 2022071455 A1 WO2022071455 A1 WO 2022071455A1 JP 2021036025 W JP2021036025 W JP 2021036025W WO 2022071455 A1 WO2022071455 A1 WO 2022071455A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
fibers
fiber
resin
knitting
Prior art date
Application number
PCT/JP2021/036025
Other languages
English (en)
French (fr)
Inventor
信吉 村上
功 倉田
裕人 海野
雅之 北村
Original Assignee
日鉄ケミカル&マテリアル株式会社
北陸ファイバーグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社, 北陸ファイバーグラス株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2022554075A priority Critical patent/JPWO2022071455A1/ja
Priority to CN202180066779.5A priority patent/CN116348263A/zh
Publication of WO2022071455A1 publication Critical patent/WO2022071455A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • D04B21/12Open-work fabrics characterised by thread material

Definitions

  • the present invention is a composite material of a thermosetting or thermoplastic resin and a reinforcing fiber, and has a high opening ratio due to its mesh shape, and is lightweight, high strength, and highly impact resistant, so that it can be used for filters, covers, and reinforcements. It relates to a mesh fiber reinforced composite material suitable as a member, particularly a protector such as a protective cap and an interior / exterior member of an artificial limb (artificial leg, artificial hand).
  • the present invention relates to a mesh-like knitting structure and a material for forming a mesh-like fiber-reinforced composite material used for a mesh-like fiber-reinforced composite material, and further shapes a material for forming a mesh-like fiber-reinforced composite material. It relates to a mesh-like fiber-reinforced composite material molded body.
  • Patent Document 1 describes a hat 100 with a protective inner, and the hat 100 is a cap-shaped hat body (crown) made of cloth. ) 102 and a collar 103, and a protective inner 110 is provided inside the hat body 102. Further, as shown in the figure, the protective inner 110 is fitted to the inside of the hat body 102 and is curved in a substantially spherical shape so that it can be fitted to the human head when worn by a person.
  • An inner main body 111 having a basic structure of an inner made of a fiber reinforced resin material (FRP), which has a bowl shape and a curved shape similar to the shape of the top region of the hat main body 102, and the inner main body 111. It is composed of a cushion member 112 arranged inside, and a cover sheet 113 arranged so as to cover the inner main body 111 and the cushion member 112.
  • FRP fiber reinforced resin material
  • the hat 100 with a protective inner described in Patent Document 1 is lightweight, has good breathability, is excellent in impact resistance, and is also excellent in wearability.
  • the inner main body 111 forming the basic structure of the inner is made of a thermosetting resin or a thermoplastic resin in a unidirectional or reinforced fiber as a woven fabric. It is made of a fiber reinforced plastic material (FRP) impregnated with a matrix resin and cured. Therefore, although it is lightweight and high-strength, it may feel stuffy when worn for a long time, and it has been found that further improvement in terms of breathability is desired. Further, as described above, the inner main body 111 has a bowl shape curved in a substantially spherical shape so as to be compatible with the human head, and is cured by impregnating a unidirectional or woven reinforced fiber sheet with resin. Although it is a fiber reinforced plastic material (FRP), the unidirectional or woven reinforced fiber sheet before resin impregnation has problems in terms of elasticity and drape, and in terms of formability (formability). Further improvement is desired.
  • FRP fiber reinforced plastic material
  • Patent Document 2 discloses a sheet-shaped carbon fiber knitted fabric knitted using carbon fibers, and describes that the sheet-shaped carbon fiber knitted fabric is excellent in elasticity and drapeability.
  • a mesh-like reinforced fiber composite material made by impregnating a fiber woven fabric with a predetermined amount of resin and hardening it is an interior material (inner) such as a hat, various protectors, artificial limbs (prosthesis, artificial hand), or an exterior material (frame). It has been found that when used as a material for constructing a basic structure such as, it provides excellent breathability, can prevent stuffiness, and is lightweight and high strength.
  • FIGS. 8 (a) and 8 (b) attached to the present application.
  • A With respect to a plurality of vertical knitting structures 20 produced by knitting chain knitting yarns 2 while forming chain stitches 2A continuously in a loop shape, and the vertical knitting structure 20. It has a mesh-like knitting structure 1A having a gap G formed by an insertion yarn 3 inserted in the lateral direction and binding the knitting structures 20 adjacent to each other.
  • B A mesh-like fiber shaped into a curved shape, which is hardened by impregnating only the knitting structure 20 (chain knitting yarn 2) and the insertion yarn 3 in the mesh-like knitting structure 1A with the resin R.
  • Reinforced composite material 10A At least a part of the chain knitting yarn 2 and the insertion yarn 3 is a carbon fiber strand made of carbon fibers.
  • the aperture ratio of the mesh-like knitting structure 1A is 20 to 60%.
  • the mesh-like knitting structure 1A used for the mesh-like fiber reinforced composite material 10A described in Patent Document 3 has excellent elasticity and drapeability because the reinforcing fibers used are not linear but have a knitted structure, and have a curved surface. It is excellent in formability (formability) to the shape it has, and because it has a void G, it has excellent breathability, can prevent stuffiness, is lightweight, and has sufficient strength. , Hats, various protectors, interior materials (inners) such as artificial limbs (artificial legs, artificial hands), or basic structures such as exterior materials (frames) can be configured.
  • the mesh-like knitting structure 1A used for the mesh-like fiber-reinforced composite material 10A described in Patent Document 3 is excellent in elasticity and drapeability, and is excellent in shapeability to a shape having a curved surface.
  • the mesh-like fiber reinforced composite material 10A impregnated with the resin and cured is easily broken from the resin by an external force.
  • a hat for head protection such as a helmet
  • stress (impact) is applied due to a falling object
  • bending (distortion) is likely to occur in the stressed part, and the machine has tensile strength, bending elasticity, etc. It turned out that there is a problem that the target strength is also low.
  • the knitted structure is easily deformed, that is, has a high drape property, and is a fabric or a base material suitable for producing a deep-drawn product.
  • it has the characteristics that the mechanical performance such as tensile strength, elasticity, and bending elasticity of the product is low.
  • the reason is, (1) When stress is applied, the base material itself is a knitted fabric and is easily deformed. also, (2) The breaking strength of the loops constituting the knitted fabric is derived from the knot strength of the fiber, and the knot strength is lower than the normal tensile strength. (For example, carbon fiber has zero knot strength, so it is not suitable as a fiber used for loops.)
  • the stressed portion bends and becomes distorted. If the amount of bending and strain is large, the stress is transmitted to the lower part of the molded product, and as the knitted fabric or the molded product is deformed, the loops that make up the knitted fabric are torn by the fibers with low knot strength, causing the molded product to break. It will be destroyed.
  • the present inventors tried to solve the above problem by providing a knitted fabric and a base material that can withstand deep drawing during molding.
  • an object of the present invention is a knitted fabric base material that can withstand deep drawing during molding, has excellent elasticity and drapeability as compared with general materials, and has moldability and breathability into a shape having a curved surface. It is excellent in stuffiness, is lightweight and high strength, and has high rigidity, and has excellent impact resistance. It is to provide the material for material molding and the mesh-like fiber reinforced composite material molded body.
  • the purpose of solving the above problems is to form a mesh-like fiber-reinforced composite material, a mesh-like knitting structure, a mesh-like fiber-reinforced composite material molding material, and a mesh-like fiber-reinforced composite material molding according to the following (1) to (4). Achieved by the body. (1) Increase the knot strength of the fibers constituting the loop. (2) Use fibers with high fineness. (3) Specify the type of fiber to be used. (4) Identify a knitted structure with excellent impact resistance.
  • a plurality of rows of knitting structures in which chain knitting yarns are continuously formed in a loop shape in the vertical direction and the knitting structure in the vertical direction are formed in each course 3 in the horizontal direction. It is formed of three types of yarns: a multi-row horizontal insertion yarn that is folded back and inserted in more than one row, and a warp insertion yarn that inserts the chain knitting yarn in the direction of multiple rows that swing one row per course in the opposite direction of the horizontal insertion yarn.
  • the chain knitting yarn is (A) Organic fibers such as polyester, nylon and vinylon, or (b) high-strength fibers such as aramid filaments, PBO fibers, ultra-high molecular weight polyethylene fibers, high-strength polyallylate fibers, or (c) glass filaments.
  • Inorganic fibers such as basalt fibers
  • the warp and weft insertion threads are (A) Inorganic fibers such as glass long fibers and basalt fibers, or (b) High strength fibers such as aramid long fibers, PBO long fibers, ultra-high molecular weight polyethylene fibers and high-strength polyarylate long fibers.
  • a mesh-like fiber reinforced composite material is provided.
  • a plurality of rows of knitting structures in which chain knitting yarns are continuously formed in a loop shape in the vertical direction and the knitting structure in the vertical direction are folded back and shaken in three or more rows for each course in the horizontal direction. It was formed of three types of yarns: a plurality of rows of weft-inserted yarns to be inserted, and a plurality of rows of warp-inserted yarns in which the chain knitting yarn is shaken in one row for each course in the opposite direction of the laterally inserted yarns.
  • the chain knitting yarn is (A) Organic fibers such as polyester, nylon and vinylon, or (b) high-strength fibers such as aramid filaments, PBO fibers, ultra-high molecular weight polyethylene fibers, high-strength polyallylate fibers, or (c) glass filaments.
  • Inorganic fibers such as basalt fibers
  • the warp and weft insertion threads are (A) Inorganic fibers such as glass long fibers and basalt fibers, or (b) High strength fibers such as aramid long fibers, PBO long fibers, ultra-high molecular weight polyethylene fibers and high-strength polyarylate long fibers.
  • a mesh-like fiber reinforced composite material is provided.
  • the resin impregnated in the mesh-like knitted structure is a room temperature curable type or thermosetting type epoxy resin, vinyl ester resin, MMA resin, acrylic.
  • Thermosetting resin such as resin, unsaturated polyester resin, or phenol resin; or thermoplastic epoxy resin, phenoxy resin, polycarbonate resin, polyester resin, polyurethane resin, polyamide resin, polyetherimide resin, polyetheretherketone resin
  • a thermoplastic resin such as polyphenylene sulfide resin is used.
  • a plurality of rows of knitting structures in which chain knitting yarns are continuously formed in a loop shape in the vertical direction and the knitting structure in the vertical direction are folded back and shaken in three or more rows for each course in the horizontal direction. It was formed of three types of yarns: a plurality of rows of weft-inserted yarns to be inserted, and a plurality of rows of warp-inserted yarns in which the chain knitting yarn is shaken in one row for each course in the opposite direction of the laterally inserted yarns.
  • the chain knitting yarn is (A) Organic fibers such as polyester, nylon and vinylon, or (b) high-strength fibers such as aramid filaments, PBO fibers, ultra-high molecular weight polyethylene fibers, high-strength polyallylate fibers, or (c) glass filaments.
  • Inorganic fibers such as basalt fibers
  • the warp and weft insertion threads are (A) Inorganic fibers such as glass long fibers and basalt fibers, or (b) High strength fibers such as aramid long fibers, PBO long fibers, ultra-high molecular weight polyethylene fibers and high-strength polyarylate long fibers.
  • a mesh-like fiber reinforced composite material is provided.
  • the resin impregnated in the mesh-like knitted structure is a thermoplastic epoxy resin, a phenoxy resin, a polycarbonate resin, a polyester resin, a polyurethane resin, a polyamide resin, or a polyetherimide.
  • a thermoplastic resin such as a resin, a polyether ether ketone resin, or a polyphenylene sulfide resin is used.
  • the fiber used for the chain knitting yarn is 40 tex or more for a single yarn or a combined twisted yarn
  • the fiber used for the warp and weft insertion yarn is 80 tex or more for a single yarn or a combined twisted yarn. ..
  • the aperture ratio of the mesh-like knitted structure is 20 to 60%.
  • a plurality of rows of knitting structures in which chain knitting yarns are continuously formed in a loop shape in the vertical direction, and three or more rows of the vertical knitting structure in each course in the horizontal direction. It was formed of three types of yarns: a multi-row horizontal insertion yarn that is folded back and inserted, and a warp insertion yarn that inserts the chain knitting yarn in the direction of multiple rows that swing one row each course in the opposite direction of the horizontal insertion yarn.
  • a mesh knitting structure is provided.
  • a plurality of rows of knitting structures in which chain knitting yarns are continuously formed in a loop shape in the vertical direction, and three or more rows of the vertical knitting structure in the horizontal direction for each course. It was formed of three types of yarns: a multi-row horizontal insertion yarn that is folded back and inserted, and a warp insertion yarn that inserts the chain knitting yarn in the direction of multiple rows that swing one row each course in the opposite direction of the horizontal insertion yarn.
  • the chain knitting yarn is (A) Organic fibers such as polyester, nylon and vinylon, or (b) high-strength fibers such as aramid filaments, PBO fibers, ultra-high molecular weight polyethylene fibers, high-strength polyallylate fibers, or (c) glass filaments.
  • Inorganic fibers such as basalt fibers
  • the warp and weft insertion threads are (A) Inorganic fibers such as glass long fibers and basalt fibers, or (b) High strength fibers such as aramid long fibers, PBO long fibers, ultra-high molecular weight polyethylene fibers and high-strength polyarylate long fibers.
  • a material for forming a mesh-like fiber-reinforced composite material is provided.
  • a mesh-shaped fiber-reinforced composite material molded body in which the above-mentioned mesh-shaped fiber-reinforced composite material molding material is shaped.
  • the mesh-like fiber-reinforced composite material of the present invention is composed of a knitted fabric base material that can withstand deep drawing during molding, has excellent elasticity and drapeability, and is excellent in moldability into a shape having a curved surface. Moreover, it has excellent breathability, can prevent stuffiness, is lightweight and has sufficient strength, has high rigidity, and has improved impact resistance. For this reason, it is suitable as a filter, cover, and reinforcing member, but in particular, as a member constituting a basic structure such as various protectors, interior materials (inners) such as artificial limbs (prosthesis, artificial hand), or exterior materials (frame). Optimal.
  • the mesh-like fiber-reinforced composite material of the present invention is suitably produced by the mesh-like knitting structure of the present invention and the material for forming the mesh-like fiber-reinforced composite material, and for such mesh-like fiber-reinforced composite material molding.
  • the material can be shaped to suitably produce a mesh-like fiber-reinforced composite material molded body having a desired shape.
  • FIG. 1 is a partial knitting structure diagram showing an embodiment of the mesh-like knitting structure according to the present invention.
  • FIG. 2 is an enlarged schematic view of the mesh-like knitting structure shown in FIG.
  • FIG. 3 is a partial knitting structure diagram showing another embodiment of the mesh-like knitting structure according to the present invention.
  • FIG. 4 is a schematic view of a conventional mesh-like knitting structure showing a comparative example of the present invention.
  • 5 (a) to 5 (e) are views illustrating an embodiment of a method for forming a mesh-like fiber-reinforced composite material of the present invention.
  • 6 (a) and 6 (b) are views illustrating another embodiment of the molding method of the mesh-like fiber reinforced composite material of the present invention.
  • FIG. 7 (a) and 7 (b) are views showing an embodiment of a hat to which the mesh-like fiber reinforced composite material of the present invention can be applied as an inner material.
  • FIG. 8A is a partial knitting structure diagram showing an example of the mesh-like knitting structure described in Japanese Patent No. 6362454
  • FIG. 8B illustrates a resin impregnation state for the mesh-like knitting structure. It is a cross-sectional schematic diagram for this.
  • curing in the present specification includes not only curing by forming a three-dimensional network structure of a thermosetting resin but also solidification of a thermoplastic resin from a fluid state.
  • FIG. 1 is a partially enlarged knitted structure diagram for explaining a sheet-shaped reinforcing fiber knitted fabric configured according to the present invention, particularly a mesh-shaped knitted structure as a sheet-shaped reinforcing fiber vertical knitting, that is, a mesh-shaped fiber sheet 1. Is.
  • the mesh-like fiber-reinforced composite material according to the present invention has a mesh-like sheet-like knitting structure, and mesh-like knitting while maintaining the mesh (void portion) G formed in the mesh-like knitting structure 1. It is a mesh-like fiber reinforced composite (FRP) in which the structure 1 is impregnated with a resin and cured. That is, the mesh-shaped fiber-reinforced composite material according to the present invention is a mesh-shaped fiber-reinforced composite material (FRP) obtained by impregnating each constituent thread of the mesh-shaped knitting structure 1 shown in FIG. 1 with a resin and hardening the resin.
  • FRP mesh-like fiber reinforced composite
  • the present invention is to solve the above problems and provide a knitted fabric base material that can withstand deep drawing during molding.
  • the destruction of a knitted fabric caused by an impact from above begins with the first breaking of the chain knitting yarn, which causes the yarn to be unwound.
  • To prevent the chain knitting yarn from breaking (1) Increase the strength of the chain knitting yarn. That is, the cutting resistance is improved in consideration of the material and the thickness.
  • the load received by the chain knitting yarn is also borne by other yarns. That is, by swinging the warp main yarn in the reverse direction of the horizontal main yarn, the yarns are crossed and a load is received.
  • the eccentricity in the warp direction is reduced by having the main yarns on both sides of the chain knitting yarn.
  • the difference in the amount of warp and weft main yarns is reduced to suppress the difference in the amount of deformation due to the difference in direction.
  • the mesh-shaped knitting structure 1 has a plurality of rows of knitting structures 20 in which chain knitting yarns 2 continuously form stitches 2A in a loop shape in the vertical direction, and a knitting structure 20 in the vertical direction.
  • the knitting structure 20 is inserted in three or more rows in each course in the horizontal direction, for example, by folding back and shaking in 3 to 6 rows, and the chain knitting yarn 2 is inserted in each course in the opposite direction of the weft insertion yarn 3.
  • the mesh-like knitting structure may be a web or a ribbon.
  • the mesh-like knitting structure 1 impregnates only the chain knitting yarn 2, the weft insertion yarn 3 and the warp insertion yarn 4 in the mesh-like knitting structure 1 after or before shaping into a predetermined shape. .. That is, as will be described in detail later, the mesh-like knitting structure 1 is formed into a predetermined shape, and then resin is used only for the chain knitting yarn 2, the weft insertion yarn 3, and the warp insertion yarn 4 that form the mesh-like knitting structure 1. Is impregnated and hardened to form a mesh-like fiber-reinforced composite material having a predetermined shape, or the mesh-like knitting structure 1 is first formed only on the chain knitting yarn 2, the weft insertion yarn 3, and the warp insertion yarn 4.
  • the mesh-like knitting structure 1 having the above structure has excellent drapeability, can be deep-drawn and shaped, and the forming work when forming the composite material is very simple.
  • the yarn is formed of a loop of a chain knitting yarn 2 and an insertion yarn that folds and swings the chain knitting yarn 2 in two or more rows. Since the tensile strength cannot be used, yarn breakage is likely to occur and the knitting structure 20 is destroyed, making it difficult to obtain rigidity. The main cause of the destruction of the knitting structure 20 is that the loop of the chain knitting yarn 2 is broken and the horizontal and warp insertion yarns 3 and 4 cannot be bound.
  • the mesh-shaped knitting structure 1 according to the present invention is obtained by compensating for the characteristics of the above-mentioned general vertical knitting using the material used and the knitting structure to obtain rigidity.
  • a general warp knit base material is elastic in all directions because the yarn is formed of a loop of chain knitting yarn 2 and horizontal and warp insertion yarns 3 and 4 that swing the chain knitting yarn 2 in two or more rows. Rich in shape and good shape.
  • the mesh-like knitting structure 1 according to the present invention does not stretch in the vertical direction, but shrinks in the vertical direction and expands and contracts in the horizontal direction. Although the shapeability is inferior to that of a general vertical knitted material, it can be shaped into a hemispherical shape without any problem.
  • the mesh-like knitting structure 1 constituting the mesh-like fiber-reinforced composite material of the present invention has a chain knitting yarn 2 forming a knitting structure 20 and a vertical knitting structure 20 as described above. It has a weft-inserting yarn 3 inserted in the lateral direction and a warp-inserting yarn 4 in which the chain knitting yarn 2 is inserted in the opposite direction of the weft-inserting yarn 3.
  • the chain knitting yarn 2 is (A) Organic fibers such as polyester, nylon and vinylon, or (b) high-strength fibers such as aramid filaments, PBO fibers, ultra-high molecular weight polyethylene fibers, high-strength polyallylate fibers, or (c) glass filaments.
  • Inorganic fibers such as basalt fibers
  • the horizontal insertion thread 3 and the vertical insertion thread 4 are (A) Inorganic fibers such as glass long fibers and basalt fibers, or (b) High strength fibers such as aramid long fibers, PBO long fibers, ultra-high molecular weight polyethylene fibers and high-strength polyarylate long fibers. Is said to be.
  • the chain knitting yarn 2 used in the present invention is an organic fiber such as polyester, nylon or vinylon, or an aramid fiber, a PBO fiber, an ultrahigh molecular weight polyethylene fiber, or a high-strength polyarylate. It is desirable to select high-strength fibers such as long fibers or inorganic fibers such as glass long fibers and basalt fibers as single yarns or twisted yarns according to the purpose of use of the mesh-like fiber reinforced composite material. If the count used is too fine, the impact resistance of the mesh fiber reinforced composite material will decrease, so it is desirable to set it to 40 tex or more and select it according to the purpose of use of the mesh fiber reinforced composite material.
  • the weft insertion thread 3 used in the present invention includes inorganic fibers such as glass long fibers and basalt fibers, as well as aramid long fibers, PBO long fibers, ultrahigh molecular weight polyethylene fibers, and high-strength polyarylate long fibers. It is desirable to select high-strength fibers as single yarns or twisted yarns according to the purpose of use of the mesh-like fiber reinforced composite material. Further, if the count to be used becomes too small, the strength will not be obtained in the first place, so it is desirable to set it at least 80 tex or more, preferably 100 tex or more, and select it according to the purpose of use of the mesh fiber reinforced composite material.
  • the warp insertion yarn 4 used in the present invention includes inorganic fibers such as glass long fibers and basalt fibers, as well as aramid long fibers, PBO long fibers, ultrahigh molecular weight polyethylene fibers, and high-strength polyarylate long fibers. It is desirable to select such high-strength fibers as single yarns or twisted yarns according to the purpose of use of the mesh-like fiber reinforced composite material. Further, if the count to be used becomes too small, the strength will not be obtained in the first place, so it is desirable to set it at least 80 tex or more, preferably 100 tex or more, and select it according to the purpose of use of the mesh fiber reinforced composite material.
  • the mesh-like fiber-reinforced composite material of the present invention is cured by impregnating only the knitting structure 20 (chain knitting yarn 2) and the warp and weft insertion yarns 4 and 3 in the mesh-like knitting body shown in FIG. 1 with resin.
  • it is a mesh-shaped fiber-reinforced composite material shaped into a shape having a curved surface.
  • thermoplastic resin a thermoplastic epoxy resin, a phenoxy resin, a polycarbonate resin, a polyester resin, a polyurethane resin, a polyamide resin, a polyetherimide resin, a polyether ether ketone resin, a polyphenylene sulfide resin, etc.
  • thermosetting resin a thermosetting resin
  • thermoplastic epoxy resin is a linear polymer showing thermoplasticity produced by extending a chain of a bifunctional epoxy compound and a bifunctional phenolic compound by addition polymerization accompanied by ring opening of an epoxy ring, for example, bisphenol. It can be obtained by blending an A-type epoxy resin and bisphenol A so that the ratio of functional groups is 1: 1 and in-situ polymerization in the presence of a phosphorus-based polymerization catalyst.
  • the mesh-like knitting structure 1 according to the present invention hardly stretches in the vertical direction, but shrinks in the vertical direction and expands and contracts in the horizontal direction. Although the shapeability is inferior to that of a general vertical knitted material, it can be shaped into a hemispherical shape without any problem.
  • a general warp knitting base material is formed of a loop of a chain knitting yarn 2 and a weft insertion yarn 3 that swings the chain knitting yarn 2 in two or more rows. Since the weft-inserted yarn 3 is folded back and bound to the chain-knitted yarn 2, the load received by the weft-inserted yarn 3 is always transmitted to the chain-knitted yarn 2. Since the chain knitting yarn 2 often uses a fine count in consideration of the characteristics of forming a loop and the workability of knitting, the strength is weak and the chain knitting yarn 2 is first broken.
  • the mesh-like knitting structure 1 for example, polyester filament is used for the chain knitting yarn 2, and the cross-sectional performance is increased by increasing the amount of fibers used and increasing the cross-sectional area.
  • the strength of the chain knitting yarn 2 is increased by improving the above.
  • the warp insertion yarn 4 is bound so as to be along the chain knitting yarn 2 one row at a time by the reverse swing of the weft insertion yarn 3, so that the weft insertion yarn 3 and the warp insertion yarn 4 intersect at the loop portion to form a chain.
  • the load received by the knitting yarn 2 is borne by the warp insertion yarn 4, and the load received is reduced.
  • the chain knitting yarn 2 is folded back and shaken across three rows, so that the chain knitting yarn 2 that receives the load becomes four rows, and the load borne by one row of the chain knitting yarn 2 is reduced.
  • the weft insertion yarn 3 is not limited to inserting the chain knitting yarn 2 across three rows, and may be inserted into the chain knitting yarn 2 by folding and shaking it over four or more rows, for example. As can be seen from the shape of FIG. 1, even if one row of the chain knitting yarn 2 is broken and the knitting structure 20 is broken, the weft insertion yarn 3 straddles the chain knitting yarn 2 in three or more rows and binds them. It does not lead to the large-scale destruction of the organization 20.
  • the load most acting on the chain knitting yarn 2 is that the weft insertion yarn 3 tries to extend in the lateral direction due to the deformation when the mesh-like knitting structure 1 receives an impact.
  • This is the hooking load at the intersection of the generated force P3 and the force P4 at which the vertical insertion thread 4 tends to extend in the vertical direction. Therefore, by improving the cross-sectional performance of the chain knitting yarn 2 and distributing the load received, the chain knitting yarn 2 becomes difficult to cut, and the mesh-like knitting structure 1 becomes a structure resistant to an impact load.
  • the mesh-shaped knitting structure 1 is a mesh-shaped sheet knitted fabric formed by using polyester fibers for the chain knitting yarn 2 and long glass fibers for the horizontal insertion yarns 3 and the warp insertion yarns 4. Will be done.
  • the chain knitting yarn 2 loops in the vertical direction. It is formed, and the horizontal insertion thread 3 and the vertical insertion thread 4 are woven into a loop and bound.
  • the knitting structure (so-called Russell structure) 20 shown in this specific example may be a tricot structure, or a structure in which the Russell structure and the tricot structure of this specific example are combined. You can also.
  • the knitting structure 20 in the mesh-like knitting structure 1 is preferably selected according to the purpose of use of the mesh-like fiber reinforced composite material.
  • polyester fiber 110tex was used as the polyester fiber used as the chain knitting yarn 2 forming the knitting structure 20 in the mesh-like knitting structure 1.
  • the long glass fibers used as the horizontal insertion thread 3 and the vertical insertion thread 4 include E glass, T glass, NE glass and the like depending on the characteristics of the glass.
  • E glass general purpose
  • Product was used. It is desirable to select the long glass fiber according to the purpose of use of the mesh-like fiber reinforced composite material.
  • long glass fibers such as glass yarn, glass direct roving, and glass synthetic yarn roving depending on the manufacturing method, but it should be selected according to the purpose of use of the mesh-like fiber reinforced composite material and the mesh size. Is desirable. Further, if the count of the long glass fiber to be used becomes too small, the strength is not obtained in the first place. Therefore, as described above, 100 tex or more is desirable.
  • the long glass fibers used for the horizontal insertion yarn 3 and the vertical insertion yarn 4 were those of glass yarn twisted yarn 420tex.
  • the mesh-like knitting structure 1 has a plurality of rows of knitting structures 20 in which chain knitting yarns 2 using polyester fibers 110tex are continuously formed in a loop shape in the vertical direction, and laterally.
  • the mass of the mesh-like knitting structure 1 of the present specific example 1 is 476 g / m 2 .
  • the mesh knitting structure 1 of the specific example 1 can be manufactured by using a single Russell knitting machine, and can also be knitted by using a tricot knitting machine, a crochet knitting machine, or the like. Since such a knitted fabric manufacturing method is a method well known in the art, further detailed description thereof will be omitted.
  • the chain knitting yarn 2 is made of aramid filaments, and the weft insertion yarns 3 and the warp insertion yarns 4 are formed of mesh-like filaments. It is considered to be a sheet knit.
  • the aramid long fiber used for the chain knitting yarn 2 in the present specific example 2 is 88tex made by twisting a standard para-aramid fiber.
  • the mesh-like knitting structure 1 of the present specific example 2 also has the same knitting structure as the mesh-like knitting structure 1 of the specific example 1 described with reference to FIG. 1, and the present specific example 2 and the specific example 1 have the same knitting structure.
  • the difference is that the chain knitting yarn 2 is changed to aramid long fibers, particularly aramid long fibers combined twisted yarn 88tex. By this change, the strength of the chain knitting yarn is increased, and the impact-resistant load of the mesh-shaped knitting structure 1 of the second embodiment is improved.
  • the mass of the mesh-like knitting structure 1 of the second embodiment is 461 g / m 2 .
  • the mesh knitting structure 1 of the specific example 2 can be manufactured by using a single Russell knitting machine, and can also be knitted by using a tricot knitting machine, a crochet knitting machine, or the like. Since such a knitted fabric manufacturing method is a method well known in the art, further detailed description thereof will be omitted.
  • the knitting structure 20 of the mesh-like knitting structure 1 used in the specific example 3 is not limited to the above specific example.
  • the loop shape of the chain knitting yarn 2 can have a tricot structure.
  • the chain knitting yarn 2, the horizontal and warp insertion yarns 3 and 4 forming the tricot structure used for the mesh-like knitting structure 1 will be described in the above-described embodiment, and the above-mentioned specific example 1 is also described. It is the same as specifically described in Sections 2 and 2, and is appropriately selected according to the purpose of use of the mesh-like fiber reinforced composite material.
  • the opening ratio of the mesh-like fiber-reinforced composite material 10 produced by using the mesh-like knitting structure 1 is important, and as will be described in detail later, the opening ratio is preferably 20 to 60%. Is 20 to 50%, more preferably 30 to 50%.
  • the opening ratio of the mesh-like fiber reinforced composite material 10 is the opening ratio of the mesh-like knitting structure 1. Is substantially the same as.
  • the aperture ratio generally means the ratio of holes in a flat surface used in, for example, screen-printed mesh fabrics and punching metals. Similarly, in the present invention, the aperture ratio is in the form of a mesh.
  • the aperture ratio of the knitted structure 1 means the ratio of holes opened in the plane of the mesh-shaped knitted structure 1.
  • the mesh-like knitting structure 1 is read by a two-dimensional scanner and calculated by the ratio of the portion with the fiber and the portion without the fiber. Actually, it is read by a two-dimensional scanner, and the aperture ratio is calculated by cutting into a void portion and a fiber portion using image software. For example, such an aperture ratio can be efficiently obtained by using a two-dimensional scanner manufactured by Canon Inc. (trade name "CanoScan4400F").
  • Aperture ratio (%) ⁇ (area of void portion) / (area of fiber portion + area of void portion) ⁇ ⁇ 100
  • the aperture ratio of the mesh-like knitting structure 1 is 20 to 60%. If the aperture ratio is less than 20%, the rigidity is very good, but the holes are not heard after molding, the air permeability is poor, and the weight becomes very heavy. When the aperture ratio exceeds 60%, the air permeability is very good and the weight is light, but the amount of reinforcing fibers is insufficient as a whole and the rigidity is insufficient. It is preferably 20 to 50%, more preferably 30 to 50%.
  • the size per opening (hole) is also important, and the area of the opening per opening may be 1.5 to 80 mm 2 . is important. If the opening area per piece is less than 1.5 mm 2 , holes may not be formed during molding, and if the opening area exceeds 80 mm 2 , the mesh after molding becomes too large and the mesh-like fiber There is a possibility that the rigidity of the reinforced composite material 10 will be lost.
  • the mesh-like knitting structure 1 has the knitting structure 20 in the mesh-like knitting structure 1 and the warp and weft insertion threads 4 after being shaped into a predetermined shape or before being shaped. 3 and 3 are impregnated with resin and cured to obtain a mesh-like fiber-reinforced composite material 10.
  • the fiber content in the mesh-like fiber reinforced composite 10 is 30 to 70%, preferably 40 to 70% in terms of the weight ratio of the fibers.
  • thermoplastic resin examples include thermoplastic epoxy resin, phenoxy resin, polycarbonate resin, polyester resin, polyurethane resin, polyamide resin, polyetherimide resin, polyether ether ketone resin, and polyphenylene sulfide resin in the above examples.
  • thermosetting resin room temperature curable type or thermocurable type epoxy resin, vinyl ester resin, MMA resin, acrylic resin, unsaturated polyester resin, phenol resin and the like are exemplified, but thermoplasticity is preferable.
  • a resin is used, more preferably a thermoplastic resin having a breaking elongation of 4% or more, further preferably a thermoplastic resin having a breaking elongation of 10% or more, and most preferably a heat having a breaking elongation of 50% or more. It is to use a plastic resin.
  • the same molding method as the conventionally known fiber reinforced composite material such as press molding, sheet winding molding, tape winding molding, and hand bending molding can be used.
  • FIGS. 5 (a) to 5 (c) show a press molding method which is an example of the molding method.
  • this press forming method the mesh-like knitting structure 1 is fitted to the convex male mold 201, and by pressing the mesh-like knitting structure 1, the mesh-like knitting structure 1 is formed following the male mold 201 (FIG. 5 (FIG. 5). a)).
  • the mesh-like knitting structure 1 produced according to the present invention has good drapeability, elasticity, good moldability, and is easy to work with.
  • Resin R is applied to the structure 1 (FIG. 5 (b)).
  • the resin R may be a thermosetting resin or a thermoplastic resin.
  • the concave female mold 202 is installed in conformity with the male mold 201, pressed with a predetermined pressing force, and heated to cure the resin R, and the mesh-like fiber reinforced composite shaped into a predetermined shape is formed.
  • the material 10 is molded (FIG. 5 (c)).
  • the mesh-like fiber reinforced composite material 10 is taken out from the mold (FIG. 5 (d)) and finished into a predetermined shape (FIG. 5 (e)).
  • FIGS. 6 (a) and 6 (b) show a vacuum forming method which is another embodiment of the forming method.
  • the mesh-like knitting structure 1 is formed by impregnating only the knitting structure 20 made of the chain knitting yarn 2 and the warp and weft insertion yarns 4 and 3 with resin and hardening the mesh-like knitting structure 1 to form a flat plate as an FRP material.
  • the mesh-like knitting structure 1a of the above is formed.
  • the resin a thermosetting resin can also be applied by setting it in the B stage state, but a thermoplastic resin is preferably used.
  • the resin impregnation into the mesh-like knitting structure may be applied or impregnated in advance in advance, or may be immediately before molding.
  • the mesh-like knitting structure 1 which has been preliminarily impregnated with resin R and cured by coating or dipping is installed on a concave vacuum mold (female mold) 202 as a material 1a for forming a mesh-like fiber reinforced composite material, and further. It is coated with the resin film 60 (FIG. 6 (a)).
  • the female mold 202 is evacuated, and the male mold 201 is pressed and heated from the resin film 60 side in accordance with the female mold 202 with a predetermined pressing force.
  • the resin impregnated and cured in the mesh-like knitting structure 1a is softened (melted) and molded in accordance with the female mold 202.
  • a mesh-like fiber-reinforced composite material 10 shaped into a predetermined shape can be obtained (FIG. 6 (b)). After that, as shown in FIGS. 5 (d) and 5 (e), the mesh-like fiber reinforced composite material 10 is taken out from the mold and finished into a predetermined shape as in the press molding method.
  • the mesh-like knitting structure 1 when the resin is softened or melted has good drapeability, elasticity, good moldability, and is molded according to a male mold, so that the work is easy. be.
  • the mesh-like knitting structure 1 which has been previously coated or impregnated with resin and cured can be used as a material 1a for forming a mesh-like fiber-reinforced composite material like a prepreg, and thus has good productivity. Since the holes of the mesh-like knitting structure 1 are not crushed during molding and the sheet thickness is not reduced during molding, the composite material has a thick cross section, and there is an advantage that high strength can be easily obtained.
  • the mesh-like knitted structure 1 was impregnated with a thermoplastic epoxy resin (manufactured by Nagase ChemteX Corporation, trade name "XNR6850V”) as an impregnating resin, and then the solvent was placed in an oven at 120 ° C. for 10 minutes. Was dried, and then heated at 160 ° C. for 30 minutes using a mold to prepare a mesh-like fiber-reinforced composite material. At this time, the content of the fiber in the composite material was 65% in terms of the weight ratio of the fiber.
  • a thermoplastic epoxy resin manufactured by Nagase ChemteX Corporation, trade name "XNR6850V”
  • Experimental Example 1 As the mesh-like knitting structure 1 used in Experimental Example 1, the mesh-like knitting structure 1 produced in Specific Example 1 was used as the knitted fabric base material. With reference to FIG. 1, the vertical row spacing (SB) is 4 mm and the horizontal row spacing (SA) is 5 mm as a shape.
  • the chain knitting yarn 2 is a polyester fiber 110tex
  • the weft insertion yarn 3 is a glass long fiber twisted yarn 420tex
  • the warp insertion yarn 4 is a glass long fiber twisted yarn 420tex
  • the mesh-like knitting structure 1 has a mass of 476 g / m 2 and an opening. The rate was 45%.
  • the mesh-like fiber composite material 10 produced by using the mesh-like knitting structure 1 showed a maximum impact resistance load of 852N, and the knitted structure 20 after the test was destroyed.
  • Experimental Example 2 As the mesh-like knitting structure 1 used in Experimental Example 2, the mesh-like knitting structure 1 produced in Specific Example 2 was used as the knitted fabric base material.
  • the vertical column spacing (SB) is 4 mm
  • the horizontal row spacing (SA) is 5 mm.
  • the chain knitting yarn 2 is an aramid long fiber twisted yarn 88tex
  • the weft insertion yarn 3 is a glass long fiber twisted yarn 420tex
  • the warp insertion yarn 4 is a glass long fiber twisted yarn 420tex
  • the mass of the mesh-like knitting structure 1 is 461 g / m 2 .
  • the aperture ratio was 40%.
  • the mesh-like fiber composite material 10 produced by using the mesh-like knitting structure 1 of this experimental example showed a maximum impact resistance load of 1748N, and the knitted structure 20 after the test was deformed.
  • the strength of the chain knitting yarn 2 had a great influence on the impact resistance load without being destroyed.
  • the knitted fabric base material used in the mesh knitting structure 1 used in Comparative Example 1 has the same knitting structure 20 as in Experimental Examples 1 and 2, and has a vertical row spacing (SB) of 4 mm as a shape.
  • the spacing (SA) of the horizontal rows is 5 mm.
  • the chain knitting yarn 2 is an aramid long fiber twisted yarn 88tex
  • the weft insertion yarn 3 is a carbon fiber strand 400tex
  • the warp insertion yarn 4 is a carbon fiber strand 400tex
  • the mass of the mesh-like knitting structure 1 is 488 g / m 2 .
  • the opening rate was 29%.
  • the mesh-like fiber composite material 10 produced by using the mesh-like knitting structure 1 of Comparative Example 1 showed a maximum impact resistance load of 1254N, and the knitted structure 20 after the test was destroyed. Was there.
  • This comparative example is obtained by changing the long glass fibers of the horizontal and vertical insertion threads 3 and 4 of Experimental Example 2 to carbon fiber strands, and is for comparing the impact load resistance performance of the long glass fibers and the carbon fiber strands.
  • the carbon fiber used in this comparative example has a count 20 less than that of long glass fiber, but since the specific gravity is 1.8 for carbon fiber compared to 2.6 for glass fiber, the maximum load capacity is 1.37 times larger than the volume of the inserted thread. It was confirmed that the carbon fiber strand was more vulnerable to impact load than the long glass fiber.
  • Comparative Example 2 is a mesh-like fiber-reinforced composite material using the mesh-like knitting structure 1A shown in FIG. 4, which is described in Patent Document 3 (Japanese Patent No. 6362454), and FIG. 8 (a) attached to the present application. It has the same configuration as the mesh-like knitting structure 1A described with reference to (b). Comparative Example 2 was a mesh-like fiber reinforced composite material 10A obtained by impregnating a chain knitting yarn 2 and a weft insertion yarn 3 with a resin and hardening the mesh-like knitting structure 1A.
  • the mesh knitting structure 1A used in Comparative Example 2 uses the knitting structure of FIG. 4, and the vertical row spacing (SB) is 4 mm and the horizontal row spacing (SA) is 5 mm.
  • the chain knitting yarn 2 was an aramid long fiber twisted yarn 88tex, and the weft insertion yarn 3 was a glass long fiber twisted yarn 1145tex.
  • the mesh-like knitting structure 1A had a mass of 674 g / m 2 and an aperture ratio of 38%.
  • the maximum impact resistance load of the mesh fiber reinforced composite material 10A produced by using the mesh knitting structure 1A of Comparative Example 2 was 441N, and the knitted structure 20 after the test was broken. It had been.
  • the load-bearing performance is confirmed by strengthening the knitting structure 20 having good elasticity by using the chain knitting yarn 2 and the weft insertion yarn 3, and the chain knitting yarn is compared with the experimental example 1.
  • the impact-resistant load is only 53% of that of Experimental Example 1, so that the knitted structure 20 of the mesh-like fiber reinforced composite material shown in Experimental Example 2 has a knitting structure 20. It was confirmed that it is effective against impact-resistant loads.
  • the mesh-like fiber composite material of the present invention is particularly suitable as a protector such as a protective cap and an interior / exterior member of an artificial limb (prosthesis, artificial hand), but the application is not limited thereto.
  • a protector such as a protective cap and an interior / exterior member of an artificial limb (prosthesis, artificial hand)
  • medical materials such as gypsum for fixing affected areas, clothing and tools such as shoes and hats for sports and leisure, reinforcing or protective members for filters and housing members, piping and hoses, and reinforcing members for structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Laminated Bodies (AREA)

Abstract

成形時の深絞りに耐え得る編地基材にて構成され、従来の材料よりも伸縮性及びドレープ性に優れ、曲面を有する形状への成形性及び通気性に優れており蒸れを防止するとともに軽量高強度であり、しかも、剛性が大とされ、耐衝撃性に優れたメッシュ状繊維強化複合材、更には、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体を提供する。縦方向に鎖編糸(2)がループ状に連続して鎖編み目(2A)を形成した複数列の編み組織(20)と、縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸(3)と、鎖編糸を横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸(4)の3種類の糸で形成されたメッシュ状編み構造体を有し、編み組織と、縦、横挿入糸にのみ樹脂を含浸して硬化されたメッシュ状の繊維強化複合材であって、 鎖編糸は、 (a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は (c)ガラス長繊維、バサルト繊維などの無機繊維、 であり、 縦、横挿入糸は、 (a)ガラス長繊維、バサルト繊維などの無機繊維、又は (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、 である。

Description

メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体
 本発明は、熱硬化性又は熱可塑性樹脂と強化繊維との複合材料であって、メッシュ状であるために開口率が高く、軽量高強度且つ高耐衝撃性であるため、フィルターやカバー、補強部材、特に保護帽などのプロテクタや義肢(義足、義手)の内外装部材として好適なメッシュ状繊維強化複合材に関するものである。また、本発明は、メッシュ状繊維強化複合材に使用されるメッシュ状編み構造体及びメッシュ状繊維強化複合材成形用材料に関するものであり、更に、メッシュ状繊維強化複合材成形用材料を賦形したメッシュ状繊維強化複合材成形体に関するものである。
 従来、メッシュ材料は樹脂若しくは金属にて作製されるものが殆んどであるが、樹脂製は軽量であるが強度が不足し、金属製が強度はあるが重量が重くなるという問題があった。
 この問題は特に身体保護のために身に着ける装具において影響が大きく、近年では繊維強化プラスチック部材を適用する事例もみられる。例えば、警備員、駅員、警察官などが制帽として着用し、不測の落下物、或いは、外部からの打撃などに対して頭部を防護することができ、また、子供、高齢者を始め一般の人が運動帽などとして着用して頭部を防護することのできるインナー付き帽子が提案され、また、市販されている。
 特許文献1には、本願添付の図7(a)、(b)に記載するように、防護用インナー付き帽子100が記載されており、該帽子100は、布製のキャップ状の帽子本体(クラウン)102と、鍔103とを備えており、帽子本体102の内部には、防護用インナー110が設けられる。また、図示するように、防護用インナー110は、帽子本体102の内側に適合して装着し、且つ、人が着用した場合に、人の頭部に適合し得るように、略球形状に湾曲した椀形状とされ、帽子本体102の頂部領域形状と同様の湾曲形状とされる、繊維強化樹脂材料(FRP)にて作製されたインナーの基本構造をなすインナー本体111と、このインナー本体111の内側に配置されたクッション部材112と、インナー本体111及びクッション部材112を覆って配置されたカバーシート113と、にて構成される。
 上記特許文献1に記載の防護用インナー付き帽子100は、軽量で通気性が良く、しかも、耐衝撃性に優れており、且つ、装着性に優れているものである。
 しかしながら、上記特許文献1に記載の防護用インナー付き帽子100にて、インナーの基本構造をなすインナー本体111は、一方向或いは織物とされる強化繊維に熱硬化性樹脂或いは熱可塑性樹脂とされるマトリクス樹脂が含浸され、硬化された繊維強化樹脂材料(FRP)にて作製される。そのために、軽量高強度ではあるが、長時間の着用において蒸れを感じることがあり、通気性の点で更なる改良が望まれることが分かった。また、上述のように、インナー本体111は、人の頭部に適合し得るように略球形状に湾曲した椀形状とされ、一方向或いは織物とされる強化繊維シートに樹脂含浸して硬化された繊維強化樹脂材料(FRP)とされるが、樹脂含浸前の一方向或いは織物とされる強化繊維シートは伸縮性及びドレープ性の点で問題があり、成形性(賦形性)の点で更なる改良が望まれる。
 特許文献2には、炭素繊維を使用して編成したシート状炭素繊維編物を開示しており、該シート状炭素繊維編物が、伸縮性及びドレープ性に優れていることを記載している。
 本発明者らは、特許文献2に記載されるシート状炭素繊維編物の優れた伸縮性及びドレープ性に着目し、シート状炭素繊維編物が有する所定の開口率を保有したまま、このシート状炭素繊維織物に所定量の樹脂を含浸し、硬化して作製したメッシュ状の強化繊維複合材が帽子、各種プロテクタ、義肢(義足、義手)などの内装材(インナー)、或いは、外装材(フレーム)などの基本構造を構成するための材料として使用したとき、優れた通気性を提供し、蒸れを防止することができ、しかも、軽量高強度であることを見出した。
 そこで、本発明者らは、特許文献3に記載されるように、また、本願添付の図8(a)、(b)に図示するように、
(a)鎖編糸2がループ状に縦方向に連続して鎖編み目2Aを形成しながら編成されて作製された複数の縦方向の編み組織20と、前記縦方向の編み組織20に対して横方向に挿入し、互いに隣接した前記編み組織20を結束する挿入糸3と、により形成された空隙Gを有するメッシュ状編み構造体1Aを有し、
(b)前記メッシュ状編み構造体1Aにおける前記編み組織20(鎖編糸2)と挿入糸3にのみ樹脂Rを含浸して硬化された、曲面を有する形状に賦形されたメッシュ状の繊維強化複合材10Aであって、
(c)前記鎖編糸2及び挿入糸3の少なくとも一部の糸は、炭素繊維からなる炭素繊維ストランドとされ、
(d)前記メッシュ状編み構造体1Aの開口率は20~60%とされる、
構成の空隙Gを有したメッシュ状繊維強化複合材10Aを提案した。
 特許文献3に記載するメッシュ状繊維強化複合材10Aに使用するメッシュ状編み構造体1Aは、使用する強化繊維が直線的でなく編み構造であることから、伸縮性及びドレープ性に優れ、曲面を有する形状への成形性(賦形性)において優れており、しかも、空隙Gを有することから、通気性に優れており蒸れを防止することができ、軽量で且つ十分な強度を有しており、帽子、各種プロテクタ、義肢(義足、義手)などの内装材(インナー)、或いは、外装材(フレーム)などの基本構造を構成することができる、といった特長を有するものである。
実用新案登録第3187008号公報 特許第4822528号公報 特許第6362454号公報
 上記特許文献3に記載するメッシュ状繊維強化複合材10Aに使用するメッシュ状編み構造体1Aは、伸縮性及びドレープ性に優れ、曲面を有する形状への賦形性において優れたものである。しかしながら、鎖編糸2及び挿入糸3の少なくとも一部の糸に炭素繊維からなる炭素繊維ストランドを使用したとしても樹脂含浸し硬化したメッシュ状繊維強化複合材10Aは、外力で樹脂から破壊しやすく、例えばヘルメットなどの頭部保護用の帽子などに使用した場合、落下物などにより応力(衝撃)が加わると、応力が加わった部分に撓み(歪)を生じやすく、引張強度、曲げ弾性等機械的強度も低くなるという問題があることが分かった。
 更に説明すると、一般に編み組織は、変形し易く、即ち、ドレープ性が高く、深絞り製品を製造する場合に適した生地、基材である。しかし、それ故に製品の持つ引張強度、弾性、曲げ弾性等機械的性能が低いという特性を有している。その理由は、
(1)応力が掛かると、基材そのものが編地であるため変形し易い。また、
(2)編地を構成しているループの破断強度は繊維の結節強度に由来し、その結節強度は通常の引張強度よりも低い。(例えば、炭素繊維は結節強度がゼロであるため、ループに使用繊維としては不適切である。)
 このため、成形品の表面に応力(衝撃)が加わると、応力が加わった部分に撓み、歪が生じる。撓み、歪量が大きいとその成形品下部にその応力が伝わってしまうほか、編地または成形体の変形に伴って結節強度の低い繊維により編地を構成してるループが断裂して成形体が破壊してしまうのである。
 そこで、本発明者らは、成形時の深絞りに耐え得る編地、基材を提供することにより上記問題の解消を試みた。
 つまり、本発明の目的は、成形時の深絞りに耐え得る編地基材にて構成され、一般的な材料よりも伸縮性及びドレープ性に優れ、曲面を有する形状への成形性及び通気性に優れており蒸れを防止するとともに軽量高強度であり、しかも、剛性が大とされ、耐衝撃性に優れたメッシュ状繊維強化複合材、更には、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体を提供することである。
 上記課題の解決と目的は以下の(1)~(4)による本発明のメッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体にて達成される。
(1)ループを構成する繊維の結節強度を上げる。
(2)繊度の高い繊維を使用する。
(3)使用する繊維の種類を特定する。
(4)耐衝撃性に優れた編み組織を特定する。
 要約すれば、第1の本発明によると、縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体を有し、
 前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化されたメッシュ状の繊維強化複合材であって、
 前記鎖編糸は、
(a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
(c)ガラス長繊維、バサルト繊維などの無機繊維、
であり、
 前記縦、横挿入糸は、
(a)ガラス長繊維、バサルト繊維などの無機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
であることを特徴とするメッシュ状繊維強化複合材が提供される。
 第2の本発明によると、縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横方向挿入糸の逆方向に毎コース1列振る複数列の縦方向に挿入する縦挿入糸の3種類の糸で形成されたシート状とされるメッシュ状編み構造体を有し、
 前記メッシュ状編み構造体を所定形状に賦形し、その後、前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化したメッシュ状の繊維強化複合材であって、
 前記鎖編糸は、
(a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
(c)ガラス長繊維、バサルト繊維などの無機繊維、
であり、
 前記縦、横挿入糸は、
(a)ガラス長繊維、バサルト繊維などの無機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
であることを特徴とするメッシュ状繊維強化複合材が提供される。
 上記第1、第2の本発明にて一実施態様によると、前記メッシュ状の編み構造体に含浸する樹脂は、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂、若しくは、フェノール樹脂などの熱硬化性樹脂;又は、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、若しくは、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂が使用される。
 第3の本発明によると、縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横方向挿入糸の逆方向に毎コース1列振る複数列の縦方向に挿入する縦挿入糸の3種類の糸で形成されたシート状とされるメッシュ状編み構造体を有し、
 前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化し、その後、所定形状に賦形されたメッシュ状の繊維強化複合材であって、
 前記鎖編糸は、
(a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
(c)ガラス長繊維、バサルト繊維などの無機繊維、
であり、
 前記縦、横挿入糸は、
(a)ガラス長繊維、バサルト繊維などの無機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
であることを特徴とするメッシュ状繊維強化複合材が提供される。
 上記第3の本発明にて一実施態様によると、前記メッシュ状の編み構造体に含浸する樹脂は、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、若しくは、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂が使用される。
 上記本発明にて一実施態様によると、前記鎖編糸に使用する繊維は単糸又は合撚糸で40tex以上、前記縦、横挿入糸に使用する繊維は単糸又は合撚糸で80tex以上である。
 上記本発明にて一実施態様によると、前記メッシュ状編み構造体の開口率は20~60%である。
 更に、第4の本発明によると、縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体が提供される。
 また、第5の本発明によると、縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体を有し、
 前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみに樹脂が含浸されており、
 前記鎖編糸は、
(a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
(c)ガラス長繊維、バサルト繊維などの無機繊維、であり、
前記縦、横挿入糸は、
(a)ガラス長繊維、バサルト繊維などの無機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
であることを特徴とするメッシュ状繊維強化複合材成形用材料が提供される。
 また、第6の本発明によると、上記メッシュ状繊維強化複合材成形用材料を賦形したメッシュ状繊維強化複合材成形体が提供される。
 本発明のメッシュ状繊維強化複合材は、成形時の深絞りに耐え得る編地基材にて構成され、伸縮性及びドレープ性に優れ、曲面を有する形状への成形性において優れている。しかも、通気性に優れており蒸れを防止することができ、軽量で且つ十分な強度を有しており、しかも、剛性が大とされ、耐衝撃性も向上する。このため、フィルターやカバー、補強部材として好適であるが、特に、各種プロテクタ、義肢(義足、義手)などの内装材(インナー)、或いは、外装材(フレーム)などの基本構造を構成する部材として最適である。また、本発明のメッシュ状繊維強化複合材は、本発明のメッシュ状編み構造体及びメッシュ状繊維強化複合材成形用材料にて好適に作製され、また、斯かるメッシュ状繊維強化複合材成形用材料を賦形して所望の形状のメッシュ状繊維強化複合材成形体を好適に作製することができる。
図1は、本発明に係るメッシュ状編み構造体の一実施例を示す部分編構造図である。 図2は、図1に示すメッシュ状編み構造体の拡大模式図である。 図3は、本発明に係るメッシュ状編み構造体の他の実施例を示す部分編構造図である。 図4は、本発明の比較例を示す従来のメッシュ状編み構造体の模式図である。 図5(a)~(e)は、本発明のメッシュ状繊維強化複合材の成形法の一実施例を説明する図である。 図6(a)、(b)は、本発明のメッシュ状繊維強化複合材の成形法の他の実施例を説明する図である。 図7(a)、(b)は、本発明のメッシュ状繊維強化複合材がインナー材として適用可能な帽子の一実施例を示す図である。 図8(a)は、特許第6362454号公報に記載のメッシュ状編み構造体の一例を示す部分編構造図であり、図8(b)は、メッシュ状編み構造体に対する樹脂含浸状態を説明するための断面模式図である。
 以下、本発明に係るメッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体を図面に則して更に詳しく説明する。
 なお、本明細書における「硬化」とは、熱硬化性樹脂が3次元網状構造を形成することによる硬化だけでなく、熱可塑性樹脂が流動状態から固化することも含む。
 実施例1
 図1を参照して、本発明に係るメッシュ状繊維強化複合材の一実施例を説明する。図1は、本発明に従って構成されるシート状強化繊維編物、特に、シート状強化繊維縦編物とされるメッシュ状編み構造体、即ち、メッシュ状繊維シート1を説明するための部分拡大編構造図である。
 本発明に係るメッシュ状繊維強化複合材は、メッシュ状のシート状とされる編み構造体を有し、メッシュ状編み構造体1に形成されたメッシュ(空隙部)Gを維持したままメッシュ状編み構造体1に樹脂を含浸して硬化したメッシュ状の繊維強化複合材(FRP)である。つまり、本発明に係るメッシュ状繊維強化複合材は、図1に示すメッシュ状編み構造体1の各構成糸に、樹脂を含浸して硬化したメッシュ状の繊維強化複合材(FRP)である。
 上述したように、メッシュ状繊維強化複合材にて形成される成形品の表面に応力(衝撃)が加わると、応力が加わった部分に撓み、歪が生じる。撓み、歪量が大きいとその成形品下部にその応力が伝わる。更に言えば、一般的には丸編、横編、縦編等の編地基材を使用したFRPに応力が加わると、破壊は結節強度の低い編地を構成しているループが断裂する。この問題を解消するには、
(1)ループを構成する繊維の結節強度を上げる。
(2)繊度の高い繊維を使用する。
(3)使用する繊維の種類を特定する。
(4)耐衝撃性に優れた編み組織を特定する。
などが考えられる。
 本発明は、上記問題を解消し、成形時の深絞りに耐え得る編地基材を提供することにある。
 一般に、上から衝撃を受けて起こる編み物の破壊は最初に鎖編糸が切れることにより糸が解かれることから始まる。鎖編糸の切れるのを防ぐには、
(1)鎖編糸の強度を上げる。即ち、材質、太さを考慮し、耐切断性の向上を図る。
(2)鎖編糸の受ける荷重を他の糸にも負担させる。即ち、縦主糸を横主糸の逆振りとすることで糸をクロスさせて荷重を受ける。
(3)鎖編糸の両側に主糸があることにより縦糸方向偏心を低減させる。
(4)縦、横主糸の糸量の差を少なくして方向差による変形量の差を抑える。
(5)鎖編糸が切れて編み組織が崩れないように縦主糸を少なくとも3列(針)振りにすることで鎖編糸が1個所切れても縦主糸の1本は解けないので横主糸で荷重を受けることができる。但し、鎖編糸が切れているために残った組織は、縦間隔が広くなり、糸量も減るため強度は格段に下がる。
(6)鎖編糸と主糸は物性値が近いものにする。
ことが重要である。
 そこで、本発明に係るメッシュ状編み構造体1は、図1に示すように、縦方向に鎖編糸2がループ状に連続して編み目2Aを形成した複数列の編み組織20と、縦方向の編み組織20を横方向に毎コース3列以上、例えば3~6列にて折り返し振って挿入する複数列の横挿入糸3と、鎖編糸2を横挿入糸3の逆方向に毎コース1列振る複数列の縦方向に挿入する縦挿入糸4の3種類の糸で形成されたメッシュ状のシートとされる。なお、メッシュ状編み構造体はウェブ若しくはリボンとしても良い。
 メッシュ状編み構造体1は、所定形状に賦形後に、又は、賦形前において、メッシュ状編み構造体1における鎖編糸2、横挿入糸3及び縦挿入糸4のみに樹脂を含侵させる。つまり、詳しくは後述するが、メッシュ状編み構造体1は、所定形状に賦形し、その後メッシュ状編み構造体1を形成する鎖編糸2、横挿入糸3及び縦挿入糸4のみに樹脂を含侵して硬化して所定形状のメッシュ状の繊維強化複合材とされるか、又は、メッシュ状編み構造体1は、先ず、鎖編糸2、横挿入糸3及び縦挿入糸4のみに樹脂を含侵して硬化し、その後、加熱成形して所定形状に賦形されたメッシュ状の繊維強化複合材とされる。上記構成とされるメッシュ状編み構造体1は、ドレープ性に優れ、深絞り賦形が可能であり、複合材を成形する際の成形作業が非常に簡単である。
 一般的な縦編物基材は糸が鎖編糸2のループと、その鎖編糸2を2列以上跨いで折返し振る挿入糸で形成されているため、繊維の特徴である最も強い引っ張り方向の引張強度を使用することが出来ないので糸切れが発生し易く編み組織20が破壊され剛性が出づらい。編み組織20の破壊は鎖編糸2のループが切れて横、縦挿入糸3、4を結束できなくなることが主な原因である。本発明に係るメッシュ状編み構造体1は、前記の一般的な縦編物の特性を使用材料と編み組織を用いて補填し剛性を得たものである。
 一般的な縦編物基材は、糸が鎖編糸2のループと、その鎖編糸2を2列以上振る横、縦挿入糸3、4で形成されているため、全方向に対し伸縮性に富み賦形性が良い。本発明に係るメッシュ状編み構造体1は縦方向にはほぼ伸びないが、縦方向に縮み、横方向に伸縮する。賦形性は一般的な縦編物基材に劣るものの、問題なく半球形状に賦形できる。
 次に、本発明のメッシュ状繊維強化複合材を構成するメッシュ状編み構造体1について更に説明する。
 (メッシュ状編み構造体)
 図1を参照すると、本発明のメッシュ状繊維強化複合材を構成するメッシュ状編み構造体1は、上述したように、編み組織20を形成する鎖編糸2と、縦方向の編み組織20を横方向に挿入される横挿入糸3と、鎖編糸2を横挿入糸3の逆方向に挿入される縦挿入糸4とを有する。
 本発明のメッシュ状編み構造体1では、鎖編糸2は、
(a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
(c)ガラス長繊維、バサルト繊維などの無機繊維、
であり、
 横挿入糸3及び縦挿入糸4は、
(a)ガラス長繊維、バサルト繊維などの無機繊維、又は
(b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
とされる。
 本発明にて使用される鎖編糸2は、上述のように、使用繊維としてポリエステル、ナイロン、ビニロンなどの有機繊維、又はアラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又はガラス長繊維、バサルト繊維などの無機繊維、を単糸或いは合撚糸として、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。使用される番手は細過ぎるとメッシュ状繊維強化複合材の耐衝撃強度が低下するため40tex以上とし、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。
 本発明にて使用される横挿入糸3は、使用繊維としてガラス長繊維、バサルト繊維などの無機繊維のほかアラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維を単糸或いは合撚糸として、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。また使用する番手が小さくなり過ぎるとそもそも強度が出ないので少なくとも80tex以上、望ましくは100tex以上とし、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。
 また、本発明にて使用される縦挿入糸4は、使用繊維としてガラス長繊維、バサルト繊維などの無機繊維のほかアラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維を単糸或いは合撚糸として、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。また使用する番手が小さくなり過ぎるとそもそも強度が出ないので少なくとも80tex以上、望ましくは100tex以上とし、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。
 本発明のメッシュ状繊維強化複合材は、図1に示すメッシュ状編み造体における編み組織20(鎖編糸2)と、縦、横挿入糸4、3とにのみ樹脂を含浸して硬化された、曲面を有する形状に賦形されたメッシュ状の繊維強化複合材である。
 なお、本発明のメッシュ状繊維強化複合材にてFRPの耐衝撃性を更に向上させるには、樹脂部での衝撃吸収エネルギーを多くするため、破断伸度の大きな樹脂を用いることが好ましい。熱可塑性樹脂の場合は、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂及びポリフェニレンサルファイド樹脂などが、また、熱硬化性樹脂の場合は、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂及びフェノール樹脂などが使用され、破断伸度が4%以上の高破断伸度樹脂が好ましい。
 なお、熱可塑性エポキシ樹脂とは、2官能エポキシ化合物と2官能フェノール性化合物とを、エポキシ環の開環を伴う付加重合により鎖延長して生成する熱可塑性を示す線状ポリマーであり、例えばビスフェノールA型エポキシ樹脂とビスフェノールAとを官能基の比率を1:1となるように配合し、リン系重合触媒存在下で現場重合させることにより得ることができる。
 本発明に係るメッシュ状編み構造体1は、縦方向にはほぼ伸びないが、縦方向に縮み、横方向に伸縮する。賦形性は一般的な縦編物基材に劣るものの、問題なく半球形状に賦形できる。
 一般的な縦編物基材は、鎖編糸2のループと、その鎖編糸2を2列以上振る横挿入糸3で形成されている。横挿入糸3は折り返して鎖編糸2に結束されているので、横挿入糸3が受けた荷重は必ず鎖編糸2に伝わる。鎖編糸2はループを形成す特性上また編立の作業性を考えて細番手を使用していることが多いため、強度が弱く最初に破壊される。
 これに対して、本発明に係るメッシュ状編み構造体1は、鎖編糸2に、例えばポリエステル長繊維を使用し、その使用繊維量を一般のものより増やし断面積を大きくすることで断面性能を向上させることで鎖編糸2の強度を増加させる。また、縦挿入糸4を横挿入糸3の逆振りで鎖編糸2に1列ずつ沿わすように結束することによりループ部で横挿入糸3と縦挿入糸4が交差することにより、鎖編糸2が受ける荷重を縦挿入糸4に負担させ、受ける荷重を少なくさせる。横挿入糸3は鎖編糸2を3列跨いで折り返して振ることにより、荷重を受ける鎖編糸2が4列になり、鎖編糸2の1列が負担する荷重を低減させる。横挿入糸3は鎖編糸2を3列を跨いで挿入することに限定されるものではなく、例えば、4列以上に跨いで折り返して振って鎖編糸2に挿入することもできる。図1の形状から分るように、鎖編糸2が1列破壊されて、編み組織20が破壊されても横挿入糸3は鎖編糸2を3列以上跨いで結束しているので編み組織20の大規模な破壊には繋がらない。
 上記より理解されるように、図2にて、鎖編糸2に最も作用する荷重は、メッシュ状編み構造体1が衝撃を受けた時の変形により横挿入糸3が横方向に伸びようとして発生する力P3と縦挿入糸4が縦方向に伸びようとする力P4の交差する部分の引掛け荷重なる。従って、鎖編糸2の断面性能の向上と受ける荷重を分散することにより鎖編糸2が切断し難くなりメッシュ状編み構造体1は耐衝撃荷重に強い構造体になる。
 具体例1
 本発明の一具体例にて、メッシュ状編み構造体1は、鎖編糸2をポリエステル繊維とし、横挿入糸3及び縦挿入糸4にガラス長繊維を用いて形成したメッシュ状のシート編物とされる。
 図1を参照して本具体例1のメッシュ状編み構造体1を説明すると、本具体例1にて、メッシュ状編み構造体1における編み組織20は、鎖編糸2が縦方向にループを形成し、また横挿入糸3及び縦挿入糸4がループに編み込まれて結束されている。ループの形状は、本具体例にて示す編み組織(所謂、ラッセル組織)20は、その他にトリコット組織とすることもでき、また、本具体例のラッセル組織とトリコット組織を組み合わせた組織とすることもできる。メッシュ状編み構造体1における編み組織20は、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。
 本具体例1にて、メッシュ状編み構造体1における編み組織20を形成する鎖編糸2として使用するポリエステル繊維としては、ポリエステル繊維110texを用いた。
 また、横挿入糸3及び縦挿入糸4として使用するガラス長繊維には、ガラスの特性によりEガラス、Tガラス、NEガラスなどの種類があるが、本具体例1においては、Eガラス(汎用品)を使用した。ガラス長繊維は、メッシュ状繊維強化複合材の使用目的に応じて選定することが望ましい。
 なお、ガラス長繊維には製造方法によりガラスヤーン、ガラスダイレクトロービング、ガラス合糸ロービングなどの種類と各種番手があるが、メッシュ状繊維強化複合材の使用目的やメッシュ目サイズに応じて選定することが望ましい。また使用するガラス長繊維の番手が小さくなり過ぎるとそもそも強度がでないので、上述したように、100tex以上が望ましい。本具体例1において横挿入糸3及び縦挿入糸4に使用するガラス長繊維はガラスヤーン合撚糸420texのものを使用した。
 つまり、本具体例1にて、メッシュ状編み構造体1は、縦方向にポリエステル繊維110texを用いた鎖編糸2がループ状に連続して編み目を形成した複数列の編み組織20と、横方向の鎖編糸2を横方向に毎コース3列以上跨いで折り返して振って挿入する複数列のガラス長繊維420texを用いた横挿入糸3と、横挿入糸3の逆方向に毎コース1列振る複数列の縦方向に挿入するガラス長繊維420texを用いた縦挿入糸4の3種類の糸で形成されたメッシュ状のシートである。本具体例1の、メッシュ状編み構造体1の質量は476g/mである。
 本具体例1のメッシュ編み構造体1は、シングルラッセル編機を使用して作製することができ、その他にトリコット編機やクロチェット編機などを使用して、編成可能である。斯かる編物製造方法は、当業種には周知の方法であるので、更に詳しい説明は省略する。
 具体例2
 本発明の他の具体例2によると、メッシュ状編み構造体1は、鎖編糸2をアラミド長繊維とし、横挿入糸3及び縦挿入糸4にガラス長繊維を用いて形成したメッシュ状のシート編物とされる。
 本具体例2において鎖編糸2に使用するアラミド長繊維は、パラ系アラミド繊維の標準品を合撚糸した88texものである。
 本具体例2のメッシュ状編み構造体1も、図1を参照して説明した具体例1のメッシュ状編み構造体1と同様の編構造を有しており、本具体例2と具体例1の違いは鎖編糸2をアラミド長繊維、特にアラミド長繊維合撚糸88texに変更したことにある。この変更により、鎖編糸の強度が増大し、本具体例2のメッシュ状編み構造体1の耐衝撃荷重が向上する。本具体例2のメッシュ状編み構造体1の質量は461g/mである。
 本具体例2のメッシュ編み構造体1は、シングルラッセル編機を使用して作製することができ、その他にトリコット編機やクロチェット編機などを使用して、編成可能である。斯かる編物製造方法は、当業種には周知の方法であるので、更に詳しい説明は省略する。
 具体例3
 次に、図3を参照して、本発明の他の具体例3について説明する。本具体例3にて使用されるメッシュ状編み構造体1の編み組織20は上記具体例に限定されるものではない。図3に示すように、鎖編糸2のループ形状は、トリコット組織とすることができる。
 本具体例3においても、メッシュ状編み構造体1に使用するトリコット組織を形成する鎖編糸2、横、縦挿入糸3、4は、上記実施例にて説明し、また、上記具体例1、2などにて具体的に説明したと同様とされ、メッシュ状繊維強化複合材の使用目的に応じて適宜選定される。
 (開口率)
 本発明にて、上記メッシュ状編み構造体1を使用して作製されるメッシュ状繊維強化複合材10の開口率は重要であり、詳しくは後述するように、開口率は20~60%、好ましくは、20~50%、更に好ましくは、30~50%とされる。
 なお、本発明によれば、メッシュ状編み構造体1には、メッシュ状編み構造体1における、鎖編糸2にて形成される編み組織20と縦、横挿入糸4、3にのみ樹脂を含浸して硬化されるので、換言すれば、メッシュ状編み構造体1の空隙部Gには樹脂は充填されないので、メッシュ状繊維強化複合材10の開口率はメッシュ状編み構造体1の開口率と実質的に同じとされる。
 開口率とは、一般には、例えば、スクリーン印刷のメッシュ織物やパンチングメタルなどで用いられている平面での孔の開いている率を意味するものであり、同様に、本発明にて、メッシュ状編み構造体1の開口率とは、メッシュ状ュ編み構造体1の平面での孔の開いている率を意味する。メッシュ状編み構造体1を2次元スキャナーで、読み込み、繊維の有る部分と無い部分の比率で計算する。実際には、2次元スキャナーで読み込み、画像ソフトを用いて、空隙部分と繊維部分に切り分けて開口率を計算する。例えば、このような開口率は、キヤノン株式会社製の2次元スキャナー(商品名「CanoScan4400F」を使用して効率よく求めることができる。
開口率(%)={(空隙部分の面積)/(繊維部分の面積+空隙部分の面積)}×100
 上述したように、本発明にて、メッシュ状編み構造体1の開口率は、20~60%とされる。開口率が20%未満だと、剛性は非常に良いが、成形後に孔が聞かず、通気性が悪く、非常に重くなる。開口率が60%を超えると、通気性は非常に良く、軽量であるが、全体として補強繊維の量が不足し剛性が不足する。好ましくは、20~50%、より好ましくは、30~50%とされる。
 なお、本発明にて、メッシュ状編み構造体1にて、開口部(孔)一個当たりの大きさもまた重要であり、一個当たりの開口部の面積が1.5~80mmとされることが重要である。一個当たりの開口部面積が1.5mm未満では、成形時に孔が空かない可能性があり、また、開口部面積が80mmを超えると、成形後のメッシュが大きくなり過ぎて、メシッュ状繊維強化複合材10としての剛性がなくなってしまう可能性が生じる。
 (含浸樹脂)
 本発明にて、メッシュ状編み構造体1は、上述したように、所定形状に賦形後に、又は、賦形前において、メッシュ状編み構造体1における編み組織20と、縦、横挿入糸4、3と、にのみ樹脂を含浸して硬化し、メッシュ状繊維強化複合材10とされる。メッシュ状繊維強化複合材10における繊維の含有量は、繊維の重量比率で30~70%、好ましくは、40~70%とされる。
 上記実施例などにて、熱可塑性樹脂としては、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂及びポリフェニレンサルファイド樹脂などを例示し、また、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂及びフェノール樹脂などを例示したが、好ましくは熱可塑性樹脂を使用することであり、より好ましくは破断伸度が4%以上の熱可塑性樹脂、さらに好ましくは破断伸度が10%以上の熱可塑性樹脂、最も好ましくは破断伸度が50%以上の熱可塑性樹脂を使用することである。
 (成形方法)
 次に、本発明に係るメッシュ状繊維強化複合材10の成形方法について説明する。
 メッシュ状繊維強化複合材10は、プレス成形やシートワインディング成形、テープワインディング成形、手曲げ成形など、従来公知の繊維強化複合材と同様の成形方法が使用できる。
 図5(a)~(c)に、成形方法の一つの実施例であるプレス成形法を示す。このプレス成形法によると、凸形状の雄型201にメッシュ状編み構造体1が適合され、押圧することにより、メッシュ状編み構造体1は、雄型201に倣って成形される(図5(a))。この時、本発明に従って作製されたメッシュ状編み構造体1は、上述したように、ドレープ性、伸縮性が良く、成形性が良く、作業が容易である。
 次に、メッシュ状編み構造体1の鎖編糸2からなる編み組織20と縦、横挿入糸4、3にのみ樹脂を含浸させるべく、含浸用刷毛(ブラシ)などを使用してメッシュ状編み構造体1に樹脂Rを塗布する(図5(b))。樹脂Rとしては、熱硬化性樹脂、或いは、熱可塑性樹脂であってよい。その後、凹状の雌型202を雄型201に適合して設置し、所定の押圧力にて加圧し、加熱することにより、樹脂Rが硬化され、所定形状に賦形されたメッシュ状繊維強化複合材10が成形される(図5(c))。メッシュ状繊維強化複合材10は、型より取出し(図5(d))、所定形状に仕上げる(図5(e))。
 図6(a)、(b)に、成形方法の他の実施例である真空成形法を示す。この真空成形法によると、メッシュ状編み構造体1は、鎖編糸2から成る編み組織20と縦、横挿入糸4、3にのみ樹脂を含浸して硬化させ、FRP材とされる平板状のメッシュ状編み構造体1aが形成される。樹脂しては、熱硬化性樹脂もBステージ状態とすることで適用することができるが、好ましくは熱可塑性樹脂が使用される。なお、メッシュ状編み構造体への樹脂含浸は事前に予め塗布又は含浸されていても良いし、成形の直前であっても良い。
 塗布または浸漬により予め樹脂Rを含浸され硬化されているメッシュ状編み構造体1は、メッシュ状繊維強化複合材成形用材料1aとして凹状の真空型(雌型)202の上に設置され、更に、樹脂フィルム60にて被覆される(図6(a))。雌型202を真空引きするとともに、樹脂フィルム60側より、雌型202に適合して雄型201を所定の押圧力にて加圧し、加熱する。これによりメッシュ状編み構造体1aに含浸硬化された樹脂が軟化(溶融)することにより、雌型202に倣って成形される。成形型を冷却することにより、所定形状に賦形されたメッシュ状繊維強化複合材10が得られる(図6(b))。その後は、プレス成形法と同様に、図5(d)、(e)に示すように、メッシュ状繊維強化複合材10は、型より取出して所定形状に仕上げる。
 この真空成形法においても、樹脂が軟化、或いは、溶融したときのメッシュ状編み構造体1は、ドレープ性、伸縮性が良く、成形性が良く、雄型に倣って成形され、作業が容易である。
 上記真空成形法によると、予め樹脂が塗布または含浸され硬化されているメッシュ状編み構造体1をメッシュ状繊維強化複合材成形用材料1aとしてプリプレグのように使用できるので生産性が良好であり、成形時にメッシュ状編み構造体1の孔が潰れることがなく、また、シート厚みが成形時に薄くならないため、断面が厚い複合材となり、高強度が得られ易いというメリットがある。
 (実験例1~2、比較例1~2)
 次に、本発明によるメッシュ状繊維強化複合材10及びメッシュ状編み構造体1の作用効果を立証するために、メッシュ状編み構造体1の鎖編糸2、横挿入糸3及び縦挿入糸4の種類などを変えてメッシュ状繊維強化複合材の衝撃強度を検証した。メッシュ状編み構造体1の詳細とメッシュ状強化複合材の衝撃強度の検証結果を表1に示す。
 なお、本実験では、メッシュ状編み構造体1に、含浸樹脂として熱可塑性エポキシ樹脂(ナガセケムテックス株式会社製、商品名「XNR6850V」)を含浸させたのち、オーブン内で120℃、10分間溶剤を乾燥させ、次いで金型を用いて160℃、30分で加熱することでメッシュ状繊維強化複合材を作製した。このとき、複合材における繊維の含有量は、繊維の重量比率で65%とした。
 衝撃強度の検証は、Instron製万能試験機「CEAST9310」にて平板状に成形したメッシュ状繊維複合材を試験体として打抜衝撃強度試験(落下質量:1.59kg、落下高さ:580mm、ストライカ:20mm 半球状)を行った。表1にて、「Peak Force/質量」は、単位質量あたりの最大荷重であり、この値が大きいほど耐衝撃性に優れた組織と判断できる。
 実験例1
 実験例1で使用したメッシュ状編み構造体1は、編地基材として具体例1で作製したメッシュ状編み構造体1を使用した。図1を参照して、形状として縦方向列の間隔(SB)は4mm、横方向列の間隔(SA)は5mmである。鎖編糸2はポリエステル繊維110tex、横挿入糸3はガラス長繊維合撚糸420tex、縦挿入糸4はガラス長繊維合撚糸420texであり、メッシュ状編み構造体1の質量は476g/m、開口率は45%であった。
 前記メッシュ状編み構造体1を用いて作成したメッシュ状繊維複合材料10は、打抜衝撃強度試験の結果、最大耐衝撃荷重は852Nを示し、試験後の編み組織20は破壊されていた。
 実験例2
 実験例2で使用したメッシュ状編み構造体1は、編地基材として具体例2で作製したメッシュ状編み構造体1を使用した。形状として縦方向列の間隔(SB)は4mm、横方向列の間隔(SA)は5mmである。鎖編糸2はアラミド長繊維合撚糸88tex、横挿入糸3はガラス長繊維合撚糸420tex、縦挿入糸4はガラス長繊維合撚糸420texであり、メッシュ状編み構造体1の質量461g/m、開口率は40%であった。
 本実験例のメッシュ状編み構造体1を用いて作製したメッシュ状繊維複合材料10は、打抜衝撃強度試験の結果、最大耐衝撃荷重は1748Nを示したほか、試験後の編み組織20は変形していたものの破壊されるまでには至らず、鎖編糸2の強度が耐衝撃荷重に大きく影響することが確認できた。
 比較例1
 比較例1で使用したメッシュ編み構造体1で使用した編地基材は、実験例1、2と同様の編み組織20を有しており、形状として縦方向列の間隔(SB)は4mm、横方向列の間隔(SA)は5mmである。鎖編糸2はアラミド長繊維合撚糸88texであるが、横挿入糸3は炭素繊維ストランド400tex、縦挿入糸4は炭素繊維ストランド400texであり、メッシュ状編み構造体1の質量は488g/m、開口率は29%であった。
 本比較例1のメッシュ状編み構造体1を用いて作製したメッシュ状繊維複合材料10は、打抜衝撃強度試験の結果、最大耐衝撃荷重は1254Nを示し、試験後の編み組織20は破壊されていた。
 本比較例は実験例2の横、縦挿入糸3、4のガラス長繊維を炭素繊維ストランドに変更したものでガラス長繊維と炭素繊維ストランドの耐衝撃荷重性能を比較するためのものであり、本比較例で用いた炭素繊維はガラス長繊維より番手が20少ないが、比重がガラス繊維2.6に対し炭素繊維1.8なので挿入糸体積は1.37倍大きいにも関わらず最大耐荷重が72%しかなく、炭素繊維ストランドがガラス長繊維よりも衝撃荷重に弱いことが確認できた。
 また、炭素繊維の体積がガラス繊維に体積よりも大きいことに起因して開口率も低減するため結果として通気が悪くなる。
 比較例2
 比較例2は、図4に示すメッシュ状編み構造体1Aを使用したメッシュ状繊維強化複合材であり、特許文献3(特許第6362454号公報)に記載し、本願添付の図8(a)、(b)を参照して説明したメッシュ状編み構造体1Aと同様の構成とされる。比較例2は、このメッシュ状編み構造体1Aにて、鎖編糸2、横挿入糸3に樹脂を含浸して硬化したメッシュ状繊維強化複合材10Aであった。
 比較例2で使用したメッシュ編み構造体1Aは、図4の編組織を使用しており、縦方向列の間隔(SB)は4mm、横方向列の間隔(SA)は5mmである。鎖編糸2はアラミド長繊維合撚糸88tex、横挿入糸3はガラス長繊維合撚糸1145texであり、メッシュ状編み構造体1Aの質量は674g/m、開口率は38%であった。
 本比較例2のメッシュ状編み構造体1Aを用いて作製したメッシュ状繊維強化複合材10Aは、打抜衝撃強度試験の結果、最大耐衝撃荷重は441Nであり、試験後の編み組織20は破壊されていた。
 本比較例2は伸縮性の良い編み組織20を鎖編糸2及び横挿入糸3を使用しての強化で耐荷重の性能を確認するものであり、実験例1に比較して鎖編糸2の強度が大きく、横挿入糸3の繊維量が多いにも拘わらず、耐衝撃荷重が実験例1の53%しかないことから実験例2に示すメッシュ状繊維強化複合材の編み組織20が耐衝撃荷重に対して有効であることが確認できた。
 本発明のメッシュ状繊維複合材は、保護帽などのプロテクタや義肢(義足、義手)の内外装部材として特に好適であるが、用途としてこれらに限られるものではない。例えば、患部固定用のギプスなどの医療用資材や、スポーツ・レジャー用の靴や帽子といった被服品や用具、フィルターやハウジング部材、配管・ホース等の補強若しくは保護部材、構造体の補強用部材としての用途や、高い剛性を保持したまま複雑な曲面形状へ成形加工することが要求される航空機やロケット、人工衛星、自動車、自動二輪車、鉄道列車、自転車、家屋、光学機器、家電、携帯電子機器などの構造部材や修飾部材に対して産業用途、民生用途問わず広く家屋などに対しても好適に用いることができる。
Figure JPOXMLDOC01-appb-T000001
 1     メッシュ状編み構造体
 1a    メッシュ状繊維強化複合材成形用材料
 2     鎖編糸
 2A    鎖編み目
 3     横挿入糸
 4     縦挿入糸
 10    メッシュ状繊維強化複合材
 20    編み組織

Claims (10)

  1.  縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体を有し、
     前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化されたメッシュ状の繊維強化複合材であって、
     前記鎖編糸は、
    (a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
    (c)ガラス長繊維、バサルト繊維などの無機繊維、
    であり、
     前記縦、横挿入糸は、
    (a)ガラス長繊維、バサルト繊維などの無機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
    であることを特徴とするメッシュ状繊維強化複合材。
  2.  縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横方向挿入糸の逆方向に毎コース1列振る複数列の縦方向に挿入する縦挿入糸の3種類の糸で形成されたシート状とされるメッシュ状編み構造体を有し、
     前記メッシュ状編み構造体を所定形状に賦形し、その後、前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化したメッシュ状の繊維強化複合材であって、
     前記鎖編糸は、
    (a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
    (c)ガラス長繊維、バサルト繊維などの無機繊維、
    であり、
     前記縦、横挿入糸は、
    (a)ガラス長繊維、バサルト繊維などの無機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
    であることを特徴とするメッシュ状繊維強化複合材。
  3.  前記メッシュ状の編み構造体に含浸する樹脂は、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂、若しくは、フェノール樹脂などの熱硬化性樹脂;又は、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、若しくは、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂が使用されることを特徴とする請求項1又は2に記載のメッシュ状繊維強化複合材。
  4.  縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横方向挿入糸の逆方向に毎コース1列振る複数列の縦方向に挿入する縦挿入糸の3種類の糸で形成されたシート状とされるメッシュ状編み構造体を有し、
     前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみ樹脂を含浸して硬化し、その後、所定形状に賦形されたメッシュ状の繊維強化複合材であって、
     前記鎖編糸は、
    (a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
    (c)ガラス長繊維、バサルト繊維などの無機繊維、
    であり、
     前記縦、横挿入糸は、
    (a)ガラス長繊維、バサルト繊維などの無機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
    であることを特徴とするメッシュ状繊維強化複合材。
  5.  前記メッシュ状の編み構造体に含浸する樹脂は、熱可塑性エポキシ樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、若しくは、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂が使用されることを特徴とする請求項4に記載のメッシュ状繊維強化複合材。
  6.  前記鎖編糸に使用する繊維は単糸又は合撚糸で40tex以上、前記縦、横挿入糸に使用する繊維は単糸又は合撚糸で80tex以上であることを特徴とする請求項1~5のいずれかの項に記載のメッシュ状繊維強化複合材。
  7.  前記メッシュ状編み構造体の開口率は20~60%であることを特徴とする請求項1~6のいずれかの項に記載のメッシュ状繊維強化複合材。
  8.  縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体。
  9.  縦方向に鎖編糸がループ状に連続して鎖編み目を形成した複数列の編み組織と、前記縦方向の編み組織を横方向に毎コース3列以上折返し振って挿入する複数列の横挿入糸と、前記鎖編糸を前記横挿入糸の逆方向に毎コース1列振る複数列の方向に挿入する縦挿入糸の3種類の糸で形成されたメッシュ状編み構造体を有し、
     前記メッシュ状編み構造体における前記編み組織と、前記縦、横挿入糸にのみに樹脂が含浸されており、
     前記鎖編糸は、
    (a)ポリエステル、ナイロン、ビニロンなどの有機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、又は
    (c)ガラス長繊維、バサルト繊維などの無機繊維、であり、
    前記縦、横挿入糸は、
    (a)ガラス長繊維、バサルト繊維などの無機繊維、又は
    (b)アラミド長繊維、PBO長繊維、超高分子量ポリエチレン繊維、高強力ポリアリレート長繊維などの高強度繊維、
    であることを特徴とするメッシュ状繊維強化複合材成形用材料。
  10.  請求項9のメッシュ状繊維強化複合材成形用材料を賦形したメッシュ状繊維強化複合材成形体。
PCT/JP2021/036025 2020-09-30 2021-09-29 メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体 WO2022071455A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022554075A JPWO2022071455A1 (ja) 2020-09-30 2021-09-29
CN202180066779.5A CN116348263A (zh) 2020-09-30 2021-09-29 网状纤维增强复合件、网状针织构造体、网状纤维增强复合件成形用材料及网状纤维增强复合件成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166605 2020-09-30
JP2020-166605 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071455A1 true WO2022071455A1 (ja) 2022-04-07

Family

ID=80951697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036025 WO2022071455A1 (ja) 2020-09-30 2021-09-29 メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体

Country Status (4)

Country Link
JP (1) JPWO2022071455A1 (ja)
CN (1) CN116348263A (ja)
TW (1) TW202223190A (ja)
WO (1) WO2022071455A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771052A (zh) * 2022-04-25 2022-07-22 叶金蕊 一种耐高电压复合材料用混编纤维布及其制备方法
CN115569234A (zh) * 2022-10-25 2023-01-06 北京连续玄武岩纤维科技有限公司 一种假肢接受腔用玄武岩纤维管套及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265445A (en) * 1992-09-01 1993-11-30 Shytles Douglas M Breathable elastic fabric and method of making same
JPH0662961U (ja) * 1993-02-08 1994-09-06 株式会社ダスキン レンタル用モップ
JP2011241505A (ja) * 2010-05-18 2011-12-01 Shindo Co Ltd 強化繊維シート材
JP2016172942A (ja) * 2015-03-17 2016-09-29 株式会社Shindo 高強度経編メッシュシート
WO2017212835A1 (ja) * 2016-06-07 2017-12-14 三菱重工業株式会社 複合材部品用の強化基材、複合材部品およびそれらの製造方法
JP6362454B2 (ja) * 2014-07-07 2018-07-25 新日鉄住金マテリアルズ株式会社 メッシュ状繊維強化複合材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265445A (en) * 1992-09-01 1993-11-30 Shytles Douglas M Breathable elastic fabric and method of making same
JPH0662961U (ja) * 1993-02-08 1994-09-06 株式会社ダスキン レンタル用モップ
JP2011241505A (ja) * 2010-05-18 2011-12-01 Shindo Co Ltd 強化繊維シート材
JP6362454B2 (ja) * 2014-07-07 2018-07-25 新日鉄住金マテリアルズ株式会社 メッシュ状繊維強化複合材
JP2016172942A (ja) * 2015-03-17 2016-09-29 株式会社Shindo 高強度経編メッシュシート
WO2017212835A1 (ja) * 2016-06-07 2017-12-14 三菱重工業株式会社 複合材部品用の強化基材、複合材部品およびそれらの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771052A (zh) * 2022-04-25 2022-07-22 叶金蕊 一种耐高电压复合材料用混编纤维布及其制备方法
WO2023206638A1 (zh) * 2022-04-25 2023-11-02 叶金蕊 一种耐高电压复合材料用混编纤维布及其制备方法
CN115569234A (zh) * 2022-10-25 2023-01-06 北京连续玄武岩纤维科技有限公司 一种假肢接受腔用玄武岩纤维管套及其制备方法

Also Published As

Publication number Publication date
CN116348263A (zh) 2023-06-27
TW202223190A (zh) 2022-06-16
JPWO2022071455A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2022071455A1 (ja) メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体
US9314060B2 (en) Enhanced recoil attenuating safety helmet
US5624386A (en) Thermoplastic orthopedic brace and method of manufacturing same
US6292954B1 (en) Protective headgear
DE69326962T2 (de) Verbundwerkstoff und verbundstruktur basiert auf eine dreidimensionale textilstruktur
US5075904A (en) Helmet with reinforcement
CN116035317A (zh) 头盔
US6012178A (en) Antiballistic protective helmet
JP2010530479A (ja) 保護用ヘルメット
JP6362454B2 (ja) メッシュ状繊維強化複合材
WO2015119091A1 (ja) 繊維多軸シート及びこれを用いた繊維強化プラスチック製造用プリフォーム
WO2022071454A1 (ja) メッシュ状繊維強化複合材、メッシュ状編み構造体、メッシュ状繊維強化複合材成形用材料及びメッシュ状繊維強化複合材成形体
JP5877431B2 (ja) 炭素繊維強化複合材料の製造方法
JP4664733B2 (ja) 球技用打具及び帽体
JP3214646B2 (ja) プリフォームおよびその製造方法
JP3187008U (ja) 防護用インナー付き帽子
JP2009107233A (ja) 繊維強化樹脂複合材料及びそれを成形してなる成形品
JP3011055B2 (ja) ヘルメット
JPH08269809A (ja) ヘルメット
CN220219980U (zh) 一种头盔用仿平纹碳布
JP3558177B2 (ja) ヘルメット
JP2624081B2 (ja) ヘルメット用帽体
CN106012236A (zh) 三维深角联机织柔性防刺织物及其制造方法
CN118024687A (zh) 一种柔性的运动防护护甲、护具及其成型方法
JPH08260219A (ja) ヘルメット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875751

Country of ref document: EP

Kind code of ref document: A1