WO2022071163A1 - 油膜の温度導出方法、温度導出装置、およびプログラム - Google Patents
油膜の温度導出方法、温度導出装置、およびプログラム Download PDFInfo
- Publication number
- WO2022071163A1 WO2022071163A1 PCT/JP2021/035205 JP2021035205W WO2022071163A1 WO 2022071163 A1 WO2022071163 A1 WO 2022071163A1 JP 2021035205 W JP2021035205 W JP 2021035205W WO 2022071163 A1 WO2022071163 A1 WO 2022071163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- lubricant
- oil film
- derivation
- relaxation time
- Prior art date
Links
- 238000009795 derivation Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000000314 lubricant Substances 0.000 claims abstract description 95
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims description 49
- 230000004913 activation Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 7
- 239000003921 oil Substances 0.000 description 62
- 238000003745 diagnosis Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000004519 grease Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/34—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements
- G01K7/343—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements the dielectric constant of which is temperature dependant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
- F16C19/525—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6603—Special parts or details in view of lubrication with grease as lubricant
- F16C33/6633—Grease properties or compositions, e.g. rheological properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6688—Lubricant compositions or properties, e.g. viscosity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
- G01K13/026—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2233/00—Monitoring condition, e.g. temperature, load, vibration
Definitions
- the present invention relates to an oil film temperature derivation method, a temperature derivation device, and a program.
- Patent Document 1 discloses a method for detecting the thickness of a film of a lubricating oil and the contact ratio of a metal in a rolling apparatus.
- the state around the lubricant includes the temperature of the oil film due to the lubricant.
- a method using infrared rays such as thermography needs to keep the heat radiation of an object constant.
- a temperature diagnosis method using a formula layer such as thermochromism needs to exist in a place where the subject can make a diagnosis.
- the present invention has the following configurations. That is, it is a temperature derivation method for deriving the oil film temperature of the lubricant in the device.
- another embodiment of the present invention has the following configuration. That is, it is a temperature derivation device that detects the oil film temperature of the lubricant in the device.
- another embodiment of the present invention has the following configuration. That is, it is a program On the computer A measurement step of measuring the dielectric constant of the lubricant in the device by applying an AC voltage while changing the frequency to the electric circuit composed of the device. A derivation step of applying the dielectric constant measured in the measurement step to the theoretical formula to derive the relaxation time of the lubricant, and a derivation step. Using the relaxation time, the calculation step of calculating the oil film temperature of the lubricant is executed.
- the schematic diagram which shows the example of the apparatus configuration which concerns on one Embodiment of this invention.
- a ball bearing will be described as an example of the rolling bearing, but the present invention is not limited to this, and the present invention can be applied to rolling bearings having other configurations.
- examples of the types of rolling bearings to which the present invention can be applied include deep groove ball bearings, angular contact ball bearings, conical roller bearings, cylindrical roller bearings, and self-aligning roller bearings.
- FIG. 1 is a schematic configuration diagram showing an example of an overall configuration when a diagnosis is performed by the diagnostic apparatus 1 according to the present embodiment.
- FIG. 1 is provided with a bearing device 2 to which the temperature derivation method according to the present embodiment is applied, and a diagnostic device 1 for performing temperature derivation and diagnosis of an oil film.
- the configuration shown in FIG. 1 is an example, and different configurations may be used depending on the configuration of the bearing device 2 and the like.
- the bearing device 2 shows a configuration including one rolling bearing, but the present invention is not limited to this, and one bearing device 2 may be provided with a plurality of rolling bearings.
- the rolling bearing rotatably supports the rotating shaft 7.
- the rotating shaft 7 is supported by a housing (not shown) that covers the outside of the rotating shaft 7 via a rolling bearing that is a rotating component.
- the rolling bearing is between an outer ring (outer member) 3 which is a fixed ring fitted inside the housing, an inner ring (inner member) 4, an inner ring 4 and an outer ring 3 which are rotating wheels outerly fitted to the rotating shaft 7. It is provided with a plurality of balls (rollers) which are a plurality of rolling elements 5 arranged in the above, and a cage (not shown) for holding the rolling elements 5 in a rollable manner.
- the outer ring 3 is fixed, but the inner ring 4 may be fixed and the outer ring 3 may rotate.
- a seal 6 which is a peripheral member for preventing dust from entering the periphery of the rolling element 5 and leakage of lubricating oil is provided.
- the lubrication method is not particularly limited, but for example, grease lubrication or oil lubrication is used and is supplied to the inside of the rolling bearing.
- the type of lubricant is not particularly limited.
- the motor 10 is a driving motor and supplies power by rotation to the rotating shaft 7.
- the rotary shaft 7 is connected to the LCR meter 8 via the rotary connector 9.
- the rotary connector 9 may be configured using, for example, a carbon brush, and is not limited thereto.
- the bearing device 2 is also electrically connected to the LCR meter 8, and at this time, the LCR meter 8 also functions as an AC power source for the bearing device 2.
- the diagnostic device 1 operates as a temperature derivation device capable of executing the temperature derivation method according to the present embodiment.
- the diagnostic device 1 instructs the LCR meter 8 to input the angular frequency ⁇ of the AC power supply and the AC voltage V as inputs, and the impedance of the bearing device 2 from the LCR meter 8
- the diagnostic device 1 uses these values to derive the temperature of the oil film by the lubricant in the bearing device 2.
- the oil film here corresponds to, for example, a film composed of a lubricant that has flowed between the outer ring 3 and the rolling element 5 or between the inner ring 4 and the rolling element 5. The details of the method for deriving the temperature of the oil film will be described later.
- the diagnostic device 1 may be realized by, for example, an information processing device including a control device, a storage device, and an output device (not shown).
- the control device may be composed of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Single Processor), a dedicated circuit, or the like.
- the storage device is composed of volatile and non-volatile storage media such as HDD (Hard Disk Drive), ROM (Read Only Memory) and RAM (Random Access Memory), and various information can be input and output according to instructions from the control device. It is possible.
- the output device is composed of a speaker, a light, a display device such as a liquid crystal display, or the like, and notifies the operator by an instruction from the control device.
- the notification method by the output device is not particularly limited, but may be, for example, auditory notification by voice or visual notification by screen output. Further, the output device may be a network interface having a communication function, and may perform a notification operation by transmitting data to an external device (not shown) via a network (not shown).
- the content of the notification here is not limited to the notification when the abnormality is detected when the abnormality diagnosis is performed based on the derivation result of the oil film temperature, for example, and the notification that the bearing device 2 is normal. May include.
- the bearing device 2 is configured to include a plurality of parts. With such a configuration, the bearing device 2 can be regarded as an electric circuit. Then, by applying an AC voltage to such an electric circuit by an AC power supply (not shown) provided in the LCR meter 8, the electrical characteristics of the bearing device 2 can be measured.
- the AC voltage V applied to the electric circuit of the bearing device 2, the current I flowing through the electric circuit, and the complex impedance Z of the entire electric circuit are represented by the following equations (1) to (3).
- V
- exp (j ⁇ t) ... (1) I
- exp (j ⁇ )
- (
- the electric circuit configured by the bearing device 2 differs depending on the structure of the bearing device 2. Therefore, although detailed description thereof is omitted here, it is assumed that the following processing is performed assuming an electric circuit corresponding to the structure of the bearing device 2.
- FIG. 2 is a diagram for explaining a tendency of a change in a dielectric constant (relative permittivity or a relative dielectric loss rate) according to a change in frequency.
- the relative dielectric constant ⁇ r'and the relative dielectric loss ratio ⁇ r'of the lubricant in the rolling bearing provided in the bearing device 2 are measured by conducting a test under the following conditions.
- the measurement is performed when the outer ring temperature is 23 ° C.
- the temperature is used as a comparison target for the oil film due to the lubricant in the rolling bearing. Shows the measurement result of the lubricant (bulk state) at 23 ° C. Note that the lubricants are all the same, and the bulk state lubricant has no temperature change at the time of measurement.
- FIG. 2A the horizontal axis represents the logarithm of the frequency [Hz], and the vertical axis represents the relative permittivity ⁇ r'.
- FIG. 2A shows the experimental values of the oil film due to the lubricant in the rolling bearing and the lubricant in the bulk state obtained as the above test results. As shown in FIG. 2A, in any of the measurement results, the relative permittivity ⁇ r'tends to decrease (monotonically decrease) as the frequency increases.
- FIG. 2 (b) shows the rolling bearing obtained as the above test result.
- the experimental values of the oil film due to the lubricant in the oil film and the lubricant in the bulk state are shown. It tends to decrease once, then increase, and then decrease again.
- the temperature of the oil film due to the lubricant in the rolling bearing is derived based on the correlation between the relaxation time and the temperature of the oil film due to the lubricant in the rolling bearing.
- FIG. 3 is a diagram for explaining the relationship between the relaxation time ⁇ and the absolute temperature T.
- the vertical axis indicates the relaxation time ⁇ [ ⁇ s]
- the horizontal axis indicates the absolute temperature T [K].
- an example of the measurement result of the lithium-based grease used in the test is shown.
- the absolute temperature T increases as the relaxation time ⁇ decreases.
- the relaxation time ⁇ can be defined as the following equation (4) based on the Eyring equation.
- the above equation (5) is used in deriving the temperature of the oil film by the lubricant in the rolling bearing under an axial load.
- the equilibrium constant K, Planck's constant h, gas constant R, and Boltzmann constant k B are preset.
- the values of the activation enthalpy ⁇ H ⁇ and the activation entropy ⁇ S ⁇ the values of the lubricant in the bulk state are measured in advance and used. More specifically, the values of the activation enthalpy ⁇ H ⁇ and the activation entropy ⁇ S ⁇ can be derived by applying the measured values using the following equation (6).
- 12-OH stearate Li-based grease shall be used as the lubricant.
- the activation enthalpy ⁇ H ⁇ and the activation entropy ⁇ S ⁇ were obtained from the relationship between the relaxation time ⁇ and the absolute temperature T for the bulk lubricant using the above equation (6). The value was obtained.
- ⁇ H ⁇ 39.5 [kJ ⁇ mol -1 ]
- ⁇ S ⁇ -2.5 [J ⁇ mol -1 ⁇ K -1 ]
- ⁇ r0 Relative permittivity in the low frequency limit
- ⁇ r ⁇ Relative permittivity in the high frequency limit
- ⁇ Relaxation time [s]
- ⁇ Constant representing the distribution of relaxation time
- ⁇ 0 DC conductivity [S / m]
- ⁇ 0 Permittivity of vacuum
- Pi f Frequency
- FIG. 4 compares the curve obtained by fitting the above theoretical formula with the experimental value obtained by using the configuration shown in FIG.
- the description will be focused on the relative permittivity ⁇ r ”for specifying the relaxation time ⁇ , which is the object of the present embodiment.
- the horizontal axis indicates the logarithm of the frequency [Hz], and the vertical axis represents the logarithmic.
- the axis shows the relative permittivity ⁇ r ”.
- the theoretical value can express the tendency of the experimental value with respect to the relative dielectric loss rate.
- the relaxation time ⁇ which is a parameter of the electrical characteristics of the lubricant.
- the relaxation time ⁇ was derived to 1.2 [ ⁇ s].
- the absolute temperature T [K] can be calculated.
- 46.3 [° C.] is derived as the temperature of the oil film of the lubricant in the rolling bearing.
- FIG. 5 is a diagram showing the results of measuring the specific dielectric loss rate by frequency sweep in the time-dependent temperature rise of the outer ring of the rolling bearing using the configuration shown in FIG. 1.
- the vertical axis indicates the relative permittivity ⁇ r ”, and the horizontal axis indicates the logarithm of the frequency [Hz].
- the temperature of the outer ring is 23 ° C, 25 ° C, 27 ° C, and 29.
- the relaxation time ⁇ peak position
- the temperature and the relaxation time are correlated. It can be read that there is.
- FIG. 6 is a diagram showing the correspondence between the oil film temperature calculated using the relaxation time ⁇ derived from the measurement result of FIG. 5 and the equation (5) and the outer ring temperature.
- the oil film temperature of the lubricant in the rolling bearing increases as the relaxation time ⁇ decreases.
- the values of all of these are calculated to be higher than the temperature of the outer ring actually measured. That is, as shown in FIG. 6, in the temperature derivation method according to the present embodiment, the temperature of the lubricant itself can be derived instead of the outer ring.
- FIG. 7 is a flowchart of the temperature detection process according to the present embodiment. This process is executed by the diagnostic device 1.
- a control device (not shown) included in the diagnostic device 1 reads a program for realizing the process according to the present embodiment from a storage device (not shown) and executes it. May be realized by.
- the diagnostic device 1 controls the bearing device 2 so that an axial load is applied in a predetermined load direction.
- the control for applying the axial load may be performed by a device other than the diagnostic device 1. At this time, the phase and impedance in the static contact state are measured.
- the diagnostic device 1 starts the rotation of the rotating shaft 7 by the motor 10. As a result, the rotation of the inner ring 4 connected to the rotation shaft 7 is started.
- the motor 10 may be controlled by a device other than the diagnostic device 1.
- the diagnostic device 1 controls the LCR meter 8 to apply an AC voltage V having an angular frequency ⁇ to the bearing device 2 by using an AC power supply (not shown) provided in the LCR meter 8. As a result, the AC voltage V having an angular frequency ⁇ is applied to the bearing device 2.
- the diagnostic apparatus 1 acquires the impedance
- the diagnostic device 1 reads out various parameters for deriving the temperature of the oil film from the storage unit. Specifically, the parameters used in the equation (5) are acquired corresponding to the lubricant used in the rolling bearing. It is assumed that these parameters are defined in advance and are stored in a storage device (not shown) or the like.
- the diagnostic apparatus 1 has the impedance
- the diagnostic apparatus 1 applies (fitting) the obtained measurement results to the theoretical formulas represented by the above formulas (7) to (9).
- the diagnostic device 1 derives the relaxation time ⁇ from the fitting result of S707.
- a method for deriving the relaxation time ⁇ here, a known method may be used.
- the diagnostic apparatus 1 derives the oil film temperature based on the relaxation time ⁇ derived in S708 and various parameters acquired in S705. Specifically, the diagnostic apparatus 1 calculates the absolute temperature T by substituting various parameters into the above equation (2) and converts it into the oil film temperature (Celsius temperature). The oil film temperature may be output as the absolute temperature [K].
- the diagnostic device 1 diagnoses the state of the lubricant based on the oil film temperature derived in S709.
- the content of the diagnosis is not particularly limited, but for example, a setting may be made in which a threshold value is set for the oil film temperature and normality or abnormality is diagnosed by comparison with the threshold value.
- the diagnostic device 1 notifies the user of the diagnostic result obtained in S710.
- the notification method here is not particularly limited, but for example, the value of the oil film temperature and the transition of the temperature may be displayed on the screen. Further, the configuration may be such that an abnormal temperature rise or the like is notified according to the operating conditions. Then, this processing flow is terminated.
- the oil film temperature can be derived even when it is difficult to directly measure the oil film temperature of the lubricant in a device using a lubricant such as a rolling bearing. Further, based on this, it becomes possible to easily perform the state diagnosis of the device.
- the oil film formed by the lubricant in the rolling bearing has been described as an example, but the present invention is not limited to this.
- the method is not limited to the lubricant, and the method according to the present invention can be applied.
- the device to be applied is not limited to rolling bearings, and the method according to the present invention can be applied to a rolling device using a substance that causes dielectric relaxation.
- lithium grease has been described as an example of a lubricant, but the present invention is not limited to this.
- the method according to the present invention can be applied to a lubricant or the like that causes dielectric relaxation.
- one or more programs or applications for realizing the functions of the above-mentioned one or more embodiments are supplied to the system or the device using a network or a storage medium, and the system or the device is used in a computer. It can also be realized by the process of reading and executing the program by the processor of.
- circuit for example, ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) that realizes one or more functions.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the mutual combination of the configurations of the embodiments, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.
- a temperature derivation method for deriving the oil film temperature of the lubricant in the device A measurement step of measuring the dielectric constant of the lubricant by applying an AC voltage while changing the frequency to the electric circuit configured by the device. A derivation step of applying the permittivity measured in the measurement step to the theoretical formula to derive the relaxation time of the lubricant, and a derivation step.
- a temperature derivation method comprising a calculation step of calculating the oil film temperature using the relaxation time. According to this configuration, even when it is difficult to directly measure the oil film temperature of the lubricant in an apparatus using the lubricant, the oil film temperature can be derived.
- the temperature derivation method according to (1) or 2, wherein the temperature is derived from According to this configuration, the electrical characteristics of the dielectric relaxation phenomenon due to the lubricant in the apparatus can be accurately specified, and the oil film temperature of the lubricant can be derived based on the value based on the electrical characteristics.
- a temperature derivation device that detects the oil film temperature of the lubricant in the device.
- a measuring means for measuring the dielectric constant of the lubricant by applying an AC voltage while changing the frequency to the electric circuit configured by the apparatus.
- a derivation means for deriving the relaxation time of the lubricant by applying the dielectric constant measured by the measuring means to the theoretical formula.
- a temperature derivation device comprising a calculation means for calculating the oil film temperature using the relaxation time. According to this configuration, even when it is difficult to directly measure the oil film temperature of the lubricant in an apparatus using the lubricant, the oil film temperature can be derived.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有する。
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有する。
コンピュータに、
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させる。
以下、本願発明の第1の実施形態について説明を行う。なお、以下の説明においては、転がり軸受として玉軸受を例に挙げて説明するが、これに限定するものではなく、本願発明は他の構成の転がり軸受にも適用可能である。例えば、本願発明が適用可能な転がり軸受の種類としては、深溝玉軸受、アンギュラ玉軸受、円錐ころ軸受、円筒ころ軸受、自動調心ころ軸受などが挙げられる。
図1は、本実施形態に係る診断装置1にて診断を行う際の全体構成の一例を示す概略構成図である。図1には、本実施形態に係る温度導出方法が適用される軸受装置2と、油膜の温度導出および診断を行う診断装置1が設けられる。なお、図1に示す構成は一例であり、軸受装置2の構成などに応じて、異なる構成が用いられてよい。また、図1においては、軸受装置2は、1の転がり軸受を備える構成を示したが、これに限定するものではなく、1の軸受装置2に複数の転がり軸受が備えられてもよい。
V=|V|exp(jωt) …(1)
I=|I|exp(jωt-jθ) …(2)
Z=V/I=|V/I|exp(jθ)=|Z|exp(jθ) …(3)
j:虚数
ω:交流電圧の角周波数
t:時間
θ:位相角(電圧と電流の位相のずれ)
図2は、周波数の変化に応じた誘電率(比誘電率や比誘電損率)の変化の傾向を説明するための図である。ここでは、図1に示す構成において、以下の条件により試験を行うことで軸受装置2に備えられた転がり軸受内の潤滑剤の比誘電率εr’および比誘電損率εr”を測定し、転がり軸受の潤滑剤による誘電緩和現象を確認している。ここでは、外輪温度が23℃の状態にて測定を行っている。また、転がり軸受内の潤滑剤による油膜に対する比較対象として、温度が23℃の潤滑剤(バルク状態)の測定結果を示す。なお、潤滑剤はいずれも同じものであり、バルク状態の潤滑剤は、測定時において温度変化は無いものとする。
軸受:深溝玉軸受(銘番:6306)
回転速度:997[min-1]
アキシアル荷重:1000[N]
ラジアル荷重:0[N]
温度:23[℃]
潤滑剤:リチウム系グリース
交流電圧:1.0[V]
交流電源の周波数:20~1M[Hz]
K:平衡定数
h:プランク定数
R:気体定数
kB:ボルツマン定数
T:絶対温度
ΔH‡:活性化エンタルピー
ΔS‡:活性化エントロピー
ΔG‡:活性化ギブズエネルギー(=ΔH‡-TΔS‡)
exp:指数関数
ΔH‡=39.5[kJ・mol-1]
ΔS‡=-2.5[J・mol-1・K-1]
次に、転がり軸受内の潤滑剤による誘電緩和現象に関するパラメータの導出について説明する。転がり軸受内の潤滑剤の誘電緩和現象に基づく電気特性は、図2にて示したような変化傾向を有する。この変化傾向の電気特性を特定するために実測値を理論式へ当てはめ(フィッティング)、各種パラメータを導出する。本実施形態では、転がり軸受内の潤滑剤の油膜の温度を導出するために、緩和時間τを特定する。本実施形態では、以下の式(7)~式(9)にて示す理論式を用いる。
εr∞:高周波極限での比誘電率
τ:緩和時間[s]
β:緩和時間の分布を表す定数
σ0:直流導電率[S/m]
ε0:真空の誘電率
π:円周率
f:周波数
図5は、図1に示す構成を用いて、転がり軸受の外輪の経時温度上昇において、周波数掃引により比誘電損率の測定を行った結果を示す図である。図5において、縦軸は比誘電損率εr”を示し、横軸は周波数[Hz]の対数を示す。また、ここでは、外輪の温度として、23℃、25℃、27℃、および29℃の4つを用いて説明する。図5に示すように、外輪の温度が高くなるに従って、緩和時間τ(ピーク位置)は高周波側に移動している。つまり、温度と緩和時間とは相関があることが読み取れる。
図7は、本実施形態に係る温度検出処理のフローチャートである。本処理は、診断装置1により実行され、例えば、診断装置1が備える制御装置(不図示)が本実施形態に係る処理を実現するためのプログラムを記憶装置(不図示)から読み出して実行することにより実現されてよい。
上記の実施形態では、転がり軸受内の潤滑剤による油膜を例に挙げて説明したが、これに限定するものではない。例えば、装置内において用いられており直接の温度検出が困難な物質であって、誘電緩和が生じる物質であれば、潤滑剤に限られず、本願発明に係る手法は適用可能である。また、適用する装置についても転がり軸受に限定するものではなく、その他、誘電緩和が生じる物質を利用した転動装置に本願発明に係る手法は適用可能である。
(1) 装置内の潤滑剤の油膜温度を導出する温度導出方法であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有することを特徴とする温度導出方法。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
活性化エンタルピーΔH‡、および活性化エントロピーΔS‡は、バルク状態における前記潤滑剤の値が用いられることを特徴とする(1)に記載の温度導出方法。
この構成によれば、バルク状態の潤滑剤の情報を用いて、潤滑剤の油膜温度を容易に導出することが可能となる。
この構成によれば、装置内の潤滑剤による誘電緩和現象の電気特性を精度よく特定し、この電気特性に基づく値に基づいて、潤滑剤の油膜温度を導出することができる。
この構成によれば、また、算出した油膜温度に基づき、装置の状態診断を容易に行うことが可能となる。
この構成によれば、転動装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
この構成によれば、転がり軸受において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有することを特徴とする温度導出装置。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させるためのプログラム。
この構成によれば、潤滑剤を用いる装置において直接潤滑剤の油膜温度の実測が困難な場合でも、油膜温度を導出することができる。
2…軸受装置
3…外輪(外方部材)
4…内輪(内方部材)
5…転動体
6…シール
7…回転軸
8…LCRメータ
9…回転コネクタ
10…モータ
Claims (8)
- 装置内の潤滑剤の油膜温度を導出する温度導出方法であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記油膜温度を算出する算出工程と
を有することを特徴とする温度導出方法。 - 前記算出工程にて算出した前記油膜温度を用いて前記装置の状態を診断する診断工程を更に有することを特徴とする請求項1~3のいずれか一項に記載の温度導出方法。
- 前記装置は、転動装置であることを特徴とする請求項1~4のいずれか一項に記載の温度導出方法。
- 前記装置は、転がり軸受であることを特徴とする請求項1~4のいずれか一項に記載の温度導出方法。
- 装置内の潤滑剤の油膜温度を検出する温度導出装置であって、
前記装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで前記潤滑剤の誘電率を測定する測定手段と、
前記測定手段にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出手段と、
前記緩和時間を用いて、前記油膜温度を算出する算出手段と
を有することを特徴とする温度導出装置。 - コンピュータに、
装置により構成される電気回路に周波数を変化させながら交流電圧を印加することで、前記装置内の潤滑剤の誘電率を測定する測定工程と、
前記測定工程にて測定された誘電率を理論式に適用し、前記潤滑剤の緩和時間を導出する導出工程と、
前記緩和時間を用いて、前記潤滑剤の油膜温度を算出する算出工程と
を実行させるためのプログラム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112023005688A BR112023005688A2 (pt) | 2020-09-29 | 2021-09-24 | Método de derivação de temperatura para filme de óleo, dispositivo e programa de derivação de temperatura |
US18/247,046 US20230366750A1 (en) | 2020-09-29 | 2021-09-24 | Temperature derivation method for oil film, temperature derivation device, and program |
KR1020237014210A KR20230078742A (ko) | 2020-09-29 | 2021-09-24 | 유막의 온도 도출 방법, 온도 도출 장치, 및 프로그램 |
EP21875465.3A EP4224136A4 (en) | 2020-09-29 | 2021-09-24 | TEMPERATURE DISSIPATION METHOD FOR OIL FILM, TEMPERATURE DISSIPATION DEVICE AND PROGRAM |
JP2022502567A JP7115658B1 (ja) | 2020-09-29 | 2021-09-24 | 油膜の温度導出方法、温度導出装置、およびプログラム |
CN202180080113.5A CN116547516A (zh) | 2020-09-29 | 2021-09-24 | 油膜的温度导出方法、温度导出装置以及程序 |
JP2022112530A JP2022160448A (ja) | 2020-09-29 | 2022-07-13 | 油膜の温度導出方法、温度導出装置、およびプログラム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020163962 | 2020-09-29 | ||
JP2020-163962 | 2020-09-29 | ||
JP2021-137563 | 2021-08-25 | ||
JP2021137563 | 2021-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071163A1 true WO2022071163A1 (ja) | 2022-04-07 |
Family
ID=80951627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035205 WO2022071163A1 (ja) | 2020-09-29 | 2021-09-24 | 油膜の温度導出方法、温度導出装置、およびプログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230366750A1 (ja) |
EP (1) | EP4224136A4 (ja) |
JP (2) | JP7115658B1 (ja) |
KR (1) | KR20230078742A (ja) |
BR (1) | BR112023005688A2 (ja) |
TW (1) | TW202235832A (ja) |
WO (1) | WO2022071163A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788376A (en) * | 1996-07-01 | 1998-08-04 | General Motors Corporation | Temperature sensor |
US20110265569A1 (en) * | 2009-01-28 | 2011-11-03 | Ali Ganji | Lubrication Condition Monitoring |
JP2012052941A (ja) * | 2010-09-02 | 2012-03-15 | Nihon Univ | 分布特定方法及び分布特定装置 |
WO2017188314A1 (ja) * | 2016-04-28 | 2017-11-02 | 日本精工株式会社 | 潤滑剤劣化検出装置、潤滑剤劣化状態評価方法 |
JP2019211317A (ja) | 2018-06-04 | 2019-12-12 | 日本精工株式会社 | 転動装置の診断方法 |
WO2020149233A1 (ja) * | 2019-01-15 | 2020-07-23 | 日本精工株式会社 | 転動装置の診断方法 |
JP2020163962A (ja) | 2019-03-29 | 2020-10-08 | 本田技研工業株式会社 | ギア装置 |
JP2021137563A (ja) | 2020-03-09 | 2021-09-16 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | パルスd級増幅器を使用する正弦波発生 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449580B1 (en) * | 1998-05-11 | 2002-09-10 | Entek Ird International Corporation | Evaluating properties of oil using dielectric spectroscopy |
DE102018203258B4 (de) * | 2018-03-05 | 2020-02-06 | Bombardier Transportation Gmbh | Antrieb, Schienenfahrzeug und Verfahren zum Verbessern des Schmiermitteleinsatzes in einem Antrieb eines Fahrzeugs |
-
2021
- 2021-09-24 BR BR112023005688A patent/BR112023005688A2/pt unknown
- 2021-09-24 US US18/247,046 patent/US20230366750A1/en active Pending
- 2021-09-24 EP EP21875465.3A patent/EP4224136A4/en active Pending
- 2021-09-24 JP JP2022502567A patent/JP7115658B1/ja active Active
- 2021-09-24 KR KR1020237014210A patent/KR20230078742A/ko unknown
- 2021-09-24 WO PCT/JP2021/035205 patent/WO2022071163A1/ja active Application Filing
- 2021-09-29 TW TW110136279A patent/TW202235832A/zh unknown
-
2022
- 2022-07-13 JP JP2022112530A patent/JP2022160448A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788376A (en) * | 1996-07-01 | 1998-08-04 | General Motors Corporation | Temperature sensor |
US20110265569A1 (en) * | 2009-01-28 | 2011-11-03 | Ali Ganji | Lubrication Condition Monitoring |
JP2012052941A (ja) * | 2010-09-02 | 2012-03-15 | Nihon Univ | 分布特定方法及び分布特定装置 |
WO2017188314A1 (ja) * | 2016-04-28 | 2017-11-02 | 日本精工株式会社 | 潤滑剤劣化検出装置、潤滑剤劣化状態評価方法 |
JP2019211317A (ja) | 2018-06-04 | 2019-12-12 | 日本精工株式会社 | 転動装置の診断方法 |
WO2020149233A1 (ja) * | 2019-01-15 | 2020-07-23 | 日本精工株式会社 | 転動装置の診断方法 |
JP2020163962A (ja) | 2019-03-29 | 2020-10-08 | 本田技研工業株式会社 | ギア装置 |
JP2021137563A (ja) | 2020-03-09 | 2021-09-16 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | パルスd級増幅器を使用する正弦波発生 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4224136A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022071163A1 (ja) | 2022-04-07 |
TW202235832A (zh) | 2022-09-16 |
JP7115658B1 (ja) | 2022-08-09 |
BR112023005688A2 (pt) | 2023-04-25 |
JP2022160448A (ja) | 2022-10-19 |
EP4224136A4 (en) | 2024-03-27 |
KR20230078742A (ko) | 2023-06-02 |
US20230366750A1 (en) | 2023-11-16 |
EP4224136A1 (en) | 2023-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7057868B1 (ja) | 油膜の状態検出方法、状態検出装置、およびプログラム | |
JP2023081983A (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
JP6088357B2 (ja) | モータ軸受の電食の度合いを推定するモータ制御装置、およびその方法 | |
WO2022071163A1 (ja) | 油膜の温度導出方法、温度導出装置、およびプログラム | |
CN116547516A (zh) | 油膜的温度导出方法、温度导出装置以及程序 | |
JP2003206925A (ja) | 軸受の予圧測定方法及び予圧測定装置並びにスピンドル装置。 | |
WO2024101322A1 (ja) | 状態測定方法、状態測定装置、およびプログラム | |
WO2023176603A1 (ja) | 状態診断方法、状態診断装置、およびプログラム | |
JP7347721B1 (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
JP2024140594A (ja) | 潤滑剤の温度および圧力の測定方法、測定装置、およびプログラム | |
CN116507814A (zh) | 油膜的状态检测方法、状态检测装置以及程序 | |
TW202400978A (zh) | 軸承裝置之狀態檢測方法、檢測裝置及程式 | |
WO2023199655A1 (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
JP7168139B1 (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
JP7347720B1 (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
WO2024101321A1 (ja) | 膜状態測定方法、膜状態測定装置、およびプログラム | |
WO2022250060A1 (ja) | 軸受装置の状態の検出方法、検出装置、およびプログラム | |
JP7367898B1 (ja) | 測定方法、測定装置、およびプログラム | |
WO2024019022A1 (ja) | 潤滑剤を用いる装置の水侵入検出方法、水侵入検出装置、およびプログラム | |
WO2024176861A1 (ja) | 回転装置の温度推定方法、温度推定装置、およびプログラム | |
WO2024071272A1 (ja) | 転動装置の診断方法、診断装置、およびプログラム | |
CN116601489A (zh) | 检测电机中润滑剂劣化的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022502567 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875465 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317022533 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023005688 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112023005688 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230328 |
|
ENP | Entry into the national phase |
Ref document number: 20237014210 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021875465 Country of ref document: EP Effective date: 20230502 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180080113.5 Country of ref document: CN |