WO2022070679A1 - 電気二重層キャパシタ - Google Patents

電気二重層キャパシタ Download PDF

Info

Publication number
WO2022070679A1
WO2022070679A1 PCT/JP2021/030971 JP2021030971W WO2022070679A1 WO 2022070679 A1 WO2022070679 A1 WO 2022070679A1 JP 2021030971 W JP2021030971 W JP 2021030971W WO 2022070679 A1 WO2022070679 A1 WO 2022070679A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
electric double
layer capacitor
activated carbon
amount
Prior art date
Application number
PCT/JP2021/030971
Other languages
English (en)
French (fr)
Inventor
俊貴 木村
覚 爪田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to US18/020,603 priority Critical patent/US20240038454A1/en
Priority to EP21874982.8A priority patent/EP4224501A1/en
Priority to CN202180058329.1A priority patent/CN116057655A/zh
Publication of WO2022070679A1 publication Critical patent/WO2022070679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Carbon dioxide compounds generate carbon dioxide and carbon monoxide gas by hydrolysis or electrolysis, which may increase the internal pressure of electric double layer capacitors.
  • the lactone compound generates less gas than the carbonate compound.
  • hydrophilic functional groups hereinafter referred to as surface functional groups
  • carboxyl group, hydroxy group and quinone group are present on the inner surface of the activated carbon, which promotes the decomposition reaction of the lactone compound and generates gas. Therefore, even if the lactone compound is used as the solvent of the electrolytic solution, it does not sufficiently suppress the gas generation.
  • An increase in the internal pressure of the electric double layer capacitor may activate the safety valve, in other words, it may shorten the service life. Therefore, conventionally, an attempt to install a gas absorption layer in a case of an electric double layer capacitor while using a lactone compound as a solvent has been used together (see, for example, Patent Document 2). Further, conventionally, while using a lactone compound as a solvent, an attempt to add a control agent for decomposing gas into an electrolytic solution and a control agent for controlling an intermediate product in a gas generation process has been used together (for example, Patent Document). 3).
  • the lactone compound may be ⁇ -butyrolactone.
  • the amount of gas generated can be suppressed while eliminating or reducing the amount of the gas absorption layer in the case, or eliminating or reducing the amount of the control agent that controls the gas generation in the electrolytic solution. Therefore, according to the present invention, the life of the electric double layer capacitor can be extended.
  • the initial capacitance Z (F / g) measures the initial capacitance Y (F) expressed in the polar electrode of the electric double layer capacitor and is also included in the polar electrode layer of the polar electrode.
  • the weight X (g) of the activated carbon is measured, and the weight is divided from the measured initial volume to obtain it by Y / X.
  • This coated electrode was cut to a predetermined size to prepare polar electrodes on the positive electrode side and the negative electrode side. Then, a rayon separator was sandwiched between the polar electrodes of the positive electrode and the negative electrode and superposed to form a winding type element having a diameter of 16.5 mm and a height of 43 mm.
  • Various electric double layer capacitors were produced by impregnating this element with an electrolytic solution, placing it in an aluminum outer case corresponding to A1070 specified in JIS H 4000: 2006, and enclosing it with a sealing body.
  • the exterior case has a dimensional size of 18 mm in diameter, 50 mm in height and 0.45 mm in thickness.
  • Table 2 the various electrolytic solutions used in the prepared electric double layer capacitor are as shown in Table 2 below.
  • Table 2 In Table 2, GBL indicates ⁇ -butyrolactone, PC indicates propylene carbonate, DEDMA / BF 4 indicates diethyldimethylammonium tetrafluoroborate, MEPy / BF 4 indicates methylethylpyrrolidinium tetrafluoroborate, and TEMA.
  • BF 4 represents the tetraethylammonium salt tetrafluoroborate.
  • 1.5M or 1.0M represents the number of moles (mol / L) of the electrolyte with respect to 1 L of the electrolytic solution.
  • the electric double layer capacitors of Examples 1 to 6 and Comparative Examples 1 to 4 use ⁇ -butyrolactone as the solvent of the electrolytic solution.
  • the swelling amount per capacity is 0.00287 mm /. It was F or less.
  • the electric double layer capacitors of Comparative Examples 1 to 4 in which the value of the index D is more than 2.5 the amount of swelling per capacity exceeded 0.00709 mm / F.
  • the electric double layer capacitors of Examples 10 to 12 and Comparative Examples 7 and 8 use TEMA / BF 4 as an electrolyte.
  • the amount of swelling per capacity can be suppressed to a low level even with the electric double layer capacitors of Comparative Examples 7 and 8, but the electric double layer capacitors of Examples 10 to 12 are used.
  • the amount of swelling is suppressed, exceeding the tendency of reducing the amount of swelling of the electric double layer capacitors of Comparative Examples 7 and 8. That is, in the electric double layer capacitors of Examples 10 to 12 in which the value of the index D is 2.5 or less, the amount of swelling per capacity was 0.00115 mm / F or less.
  • the amount of swelling per capacity exceeded 0.0039 mm / F. Even when the maximum value of the swelling amount of Examples 10 to 12 and the minimum value of the swelling amount of Comparative Examples 7 and 8 are compared, the value of the index D is 2.5 or less, and TEMA / BF 4 is used as the electrolyte.
  • the amount of swelling per capacity of the electric double layer capacitors of Examples 10 to 12 was about 30% of the amount of swelling per capacity of the electric double layer capacitors of Comparative Examples 7 and 8 in which the value of the index D was more than 2.5. Was suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

ガス発生を抑制して長寿命化を達成できる電気二重層キャパシタを提供する。正極及び負極は活性炭を含む分極性電極層を有し、電解液は、非プロトン性溶媒及び4級アンモニウム塩を含む。この電気二重層キャパシタは、活性炭の単位重量当たりの全酸性表面官能基量W(meq/g)と初期容量Z(F/g)と比表面積(m/g)を用いた以下式で算出される指標Dの値が2.5以下である。 (式) D=(W/S)×(Z/S)×10

Description

電気二重層キャパシタ
 本発明は、正極及び負極に分極性電極を備える電気二重層キャパシタに関する。
 電気二重層キャパシタは、分極性電極を電解液に含浸させた素子を容器に収容して成り、分極性電極と電解液との境界面に形成される電気二重層の蓄電作用を利用している。電気二重層キャパシタは、繰り返し充放電による電極活物質の劣化が少なく長寿命であるという利点を有する。
 電気二重層キャパシタには、代表的には、分極性電極の分極性電極層に活性炭が用いられ、分極性電極層が表面に形成される集電体にアルミニウム等の金属が用いられ、非プロトン系電解液が電解液として用いられる。電解液の電解質は、第4級アンモニウム塩が主に用いられる。電解液の溶媒は、代表的には、プロピレンカーボネート等のカーボネート化合物、γ-ブチロラクトン等のラクトン化合物が用いられる(例えば特許文献1参照)。
 カーボネート化合物は、加水分解や電気分解によって二酸化炭素や一酸化炭素ガスを発生させ、電気二重層キャパシタの内圧を上昇させる虞がある。ラクトン化合物は、カーボネート化合物と比べれば、ガス発生量が少ない。しかし、活性炭の内表面にはカルボキシル基、ヒドロキシ基及びキノン基等の親水性の官能基(以下、表面官能基という)が存在し、ラクトン化合物の分解反応を促進させ、ガスが発生する。そのため、ラクトン化合物を電解液の溶媒として用いたとしても、ガス発生を十分に抑制するには至らない。
 電気二重層キャパシタの内圧の上昇は安全弁を作動させる虞があり、換言すると、寿命を縮ませる虞がある。そこで、従来は、ラクトン化合物を溶媒に用いつつ、電気二重層キャパシタのケース内にガス吸収層を設置する試みが併用されている(例えば特許文献2参照)。また、従来は、ラクトン化合物を溶媒に用いつつ、電解液中にガスを分解する制御剤や、ガス発生過程における中間生成物を制御する制御剤を添加する試みが併用されている(例えば特許文献3参照)。
特開2001-217150号公報 特開2007-73809号公報 特開2013-149781号公報
 ケース内にガス吸収層を設けると、ケース内に収容できる電極及び電解液の収容スペースが削られ、電気二重層キャパシタの容量が小さくなる虞がある。また、電解液中にガス発生を制御する制御剤を添加すると、この制御剤は電気二重層キャパシタの容量発現の観点からは不純物質となるため、電気二重層キャパシタの電気的特性が低下する虞がある。
 従って、ガス吸収層を設けたり、制御剤を添加したりするといった措置は、好ましい措置とはいえない。そのため、ガス発生によって電気二重層キャパシタの寿命が縮む事象に対し、好適な解決方法は未だ提案されていない。
 本発明は、上記課題を解決するために提案されたものである。その目的は、ガス発生を抑制して長寿命化を達成できる電気二重層キャパシタを提供することにある。
 非プロトン性溶媒を用いた電解液を用いた電気二重層キャパシタにおけるガス発生メカニズムからすると、安易には分極性電極層である活性炭の全酸性表面官能基の量とガス発生量との間には相関性があると推測できる。そこで、本発明者等は、活性炭が有する全酸性表面官能基の量とガス発生量の相関性を精査したが、明確な相関関係を見出すに至らなかった。ところが、発明者等が、全酸性表面官能基の量と共に、活性炭の初期容量を加味した新規の指標D((meq/m×F/m)×10)を以下式のように定義し、各指標Dの値を有する電気二重層キャパシタを検討したところ、指標Dの値が2.5を境としてガス発生量に極端な差が生じることがわかった。
 (式)
 D=(W/S)×(Z/S)×10
W:活性炭の単位重量当たりの全酸性表面官能基量(meq/g)
Z:活性炭の単位重量当たりの初期容量(F/g)
S:活性炭の単位重量当たりの比表面積(m/g)
 即ち、発明者等は鋭意研究の結果、活性炭の単位重量当たりの全酸性表面官能基量W(meq/g)、活性炭の単位重量当たりの初期容量Z(F/g)、活性炭の単位重量当たりの比表面積(m/g)、又はこれらの複数を操作し、指標Dの値を2.5以下に調整することで、電気二重層キャパシタのガス発生量が抑制されるという知見を得た。
 そこで、上記の目標を達成するため、本発明に係る電気二重層キャパシタは、表面官能基を有する活性炭を含む分極性電極層を有する正極及び負極と、非プロトン性溶媒及び4級アンモニウム塩を含む電解液と、を備え、上記式で算出される指標D((meq/m×F/m)×10)の値が、2.5以下であること、を特徴とする。
 前記非プロトン性溶媒がラクトン化合物または、カーボネート化合物であるようにしてもよい。
 前記ラクトン化合物は、γ-ブチロラクトンであるようにしてもよい。
 前記カーボネート化合物は、プロピレンカーボネートであるようにしてもよい。
 前記4級アンモニウム塩は、ジエチルジメチルアンモニウム塩、メチルエチルピロリジニウム塩又はトリエチルメチルアンモニウム塩であるようにしてもよい。
 本発明によれば、ケース内のガス吸収層を排除若しくは減量し、又は電解液中のガス発生を制御する制御剤を排除若しくは減量しつつ、ガス発生量を抑制できる。従って、本発明によれば、電気二重層キャパシタの長寿命化を実現できる。
溶媒としてγ―ブチロラクトン、電解質としてDEDMA・BFを用いた場合、指標Dと容量当たりの膨れ量の関係を示すグラフである。 溶媒としてγ―ブチロラクトン、電解質としてMEPy・BFを用いた場合、指標Dと容量当たりの膨れ量の関係を示すグラフである。 溶媒としてプロピレンカーボネート、電解質としてMEPy・BFを用いた場合、指標Dと容量当たりの膨れ量の関係を示すグラフである。 溶媒としてγ―ブチロラクトン、電解質としてTEMA・BFを用いた場合、指標Dと容量当たりの膨れ量の関係を示すグラフである。
 (全体構成)
 本発明の実施形態に係る電気二重層キャパシタは、正極及び負極において、分極性電極と電解液との境界面に形成される電気二重層の蓄電作用を利用する。
 分極性電極は、主に集電体と分極性電極層により構成される。分極性電極層には、主として活性炭を含む。活性炭は多数の細孔を有し、細孔の内表面には親水性の酸性表面官能基が存在する。親水性の酸性表面官能基は、カルボキシル基、ヒドロキシ基及びキノン基等である。電解液には溶媒として非プロトン性溶媒を用いる。非プロトン性溶媒としては、ラクトン化合物及びカーボネート化合物が挙げられる。ラクトン化合物としては、γ-ブチロラクトン又はγ-バレロラクトン等が挙げられる。カーボネート化合物としてはプロピレンカーボネートやエチレンカーボネート等が挙げられる。電解液の電解質としては第4級アンモニウム塩が含まれる。
 指標D((meq/m×F/m)×10)を下記式1のように定義する。このとき、電気二重層キャパシタは、指標Dの値が2.5以下という条件を満たす。
 (式1)
 D=(W/S)×(Z/S)×10 ・・・式1
W:活性炭の単位重量当たりの全酸性表面官能基量(meq/g)
Z:活性炭の単位重量当たりの初期容量(F/g)
S:活性炭の単位重量当たりの比表面積(m/g)
 式1で示される指標Dと電気二重層キャパシタで発生するガスの発生量の関係によると、指標Dの値が2.5を境として、ガス発生量に顕著な差が生じる。指標Dが2.5以下である電気二重層キャパシタは、指標Dが2.5超である電気二重層キャパシタと比べて、ガス発生量が飛躍的に抑制される。
 推測であり、これに限られないが、指標Dとガス発生量との間に、このような規則性が発生する理由は、次の通り考えられる。
 上記式1の式中、(Z/S)は、活性炭の比表面積当たりの初期容量(F/m)であり、活性炭の全比表面積ではなく、溶媒和イオンが入り込んで吸着し、容量を発現させる活性炭の比表面積割合と相関性を有するはずである。そうすると、(Z/S)の乗算が組み込まれた指標Dは、活性炭の全比表面積の酸性表面官能基のうち、溶媒和イオンが入り込むことで容量に寄与するところにある表面官能基の量と相関性を有することになる。換言すれば、溶媒和イオンが入り込むことができないところにある酸性表面官能基は、指標Dから排除されている。
 そして、非プロトン性溶媒を構成要素に含む溶媒和イオンと酸性表面官能基が反応してガスが発生するのは、溶媒和イオンが入り込み可能な活性炭の表面に酸性表面官能基が存在する場合である。つまり、ガスの発生量は、溶媒和イオンが入り込み可能な活性炭の表面に存在する酸性表面官能基の量に関係する。そのため、指標Dとガス発生量との間に規則性が生じていると考えられる。即ち、指標Dは、活性炭の全表面の酸性表面官能基量のうち、容量に寄与するところにある活性炭の表面の酸性表面官能基量に関するものと言える。
 指標Dが2.5以下の電気二重層キャパシタは、上記式1に従い、全酸性表面官能基量W(meq/g)、初期容量Z(F/g)、活性炭の比表面積S(m/g)の一部若しくは複数を操作して作製すればよい。または、電解液内のカチオン種、アニオン種、溶媒種、組成比、濃度等によって初期容量Z(F/g)を変更し、指標Dを調整することもできる。
 尚、指標Dを計算する際、全酸性表面官能基量W(meq/g)は、Boehm法(文献「H.P.Boehm, Adzan. Catal, 16,179(1966)」)に従って定量する。また、指標Dを計算する際、比表面積(m/g)はBET法に従って定量する。
 指標Dを計算する際、初期容量Z(F/g)は、電気二重層キャパシタの分極性電極で発現する初期容量Y(F)を測定し、また分極性電極の分極性電極層に含まれる活性炭の重量X(g)を測定し、測定した初期容量から重量を除算してY/Xにより得る。
 初期容量Y(F)は、特性検査等を終えて出荷された未使用の電気二重層キャパシタに対して、定電流放電法に従って測定する。即ち、定電流Iで電気二重層キャパシタを充電し、充電完了から一定時間電圧を保持した後、定電流Iで放電する。放電の際、IRドロップを省いた測定開始電圧V1から測定終了電圧V2に降下するのに要した所要時間Tを測定する。そして、定電流Iと所要時間Tの積と、計測開始電圧V1と計測終了電圧V2の差(V)とから、容量(F)を算出する。
 活性炭の重量X(g)は、分極性電極層の重量を求め、分極性電極層に含まれる全物質のうち、活性炭の重量比率を乗じて算出する。例えば、分極性電極層の体積a(cc)、分極性電極層の密度b(g/cc)及びスラリー内活性炭重量比c(c)を乗算してX=a×b×cにより得る。スラリー内活性炭重量比とは、分極性電極層を形成する過程で作製されるスラリーに含まれる全成分のうち、揮発する溶媒を除いた合計重量に対する活性炭の重量比率である。
 (詳細構成)
 (分極性電極)
 このような電気二重層キャパシタは、分極性電極の集電体としてアルミニウム、白金、金、ニッケル、チタン及び鋼等の金属を用いればよい。集電体の形状は、膜状、箔状、板状などの任意の形状を採用することができる。また集電体の表面はエッチング処理などによる凹凸面を形成してもよく、またプレーン面であってもよい。
 集電体の表面には、集電体と分極性電極層との導通性を向上させるカーボンコート層を形成しておいてもよい。カーボンコート層は、導電性を有する炭素材を主とし、バインダー等を含むスラリーを塗布、乾燥することで形成される。この炭素材としては、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック等が挙げられる。
 また、集電体の表面には、集電体の水和や酸化を抑制するリンを付着させるようにしてもよい。例えば、集電体をリン酸水溶液又はリン酸塩水溶液に浸漬する。カーボンコート層とリンの両方を集電体に形成する場合には、集電体の表面にリンを保持させ、その上にカーボンコート層を形成する。
 分極性電極層は、集電体の表面、又はリン、カーボンコート層若しくは両方が積層されて覆われた集電体の最外表面に形成すればよい。分極性電極層に主として含まれる活性炭としては、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とし、水蒸気賦活、アルカリ賦活、塩化亜鉛賦活又は電界賦活等の賦活処理並びに開口処理が施されていればよい。
 分極性電極層には、導電助剤を含んでいてもよい。導電助剤としては、ケッチェンブラック、アセチレンブラック、天然/人造黒鉛、繊維状炭素等を用いることができ、繊維状炭素としては、カーボンナノチューブ、カーボンナノファイバなどの繊維状炭素を挙げることができる。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブ(SWCNT)でも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよく、それらが混合されていてもよい。
 このような分極性電極の分極性電極層は、例えば、活性炭と導電助剤とバインダーのスラリーをドクターブレード法等によって集電体上に塗工し、乾燥することにより電極を形成すればよい。バインダーとしては、例えばフッ素系ゴム、ジエン系ゴム、スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素ポリマー、カルボキシメチルセルロース、ニトロセルロース等のセルロース、その他、ポリオレフィン樹脂、ポリイミド樹脂、アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。これらのバインダーは、単独で使用しても良く、2種以上を混合して使用してもよい。
 (電解液)
 電解液の溶媒として選択される非プロトン性溶媒としては、γ-ブチロラクトン又はγ-バレロラクトンといったラクトン化合物や、プロピレンカーボネート又はエチレンカーボネートといったカーボネート化合物が挙げられる。溶媒としては、ラクトン化合物やカーボネート化合物に加えて他種の溶媒を混合して用いることができる。他種の溶媒としては、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、鎖状エステル、ニトリル化合物、アミド化合物、スルホランなどのスルホン化合物等を挙げることができる。
 電解液の電解質として選択される第4級アンモニウム塩としては、カチオンとしてテトラメチルアンモニウム、エチルトリメチルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム、ジエチルジメチルアンモニウム、メチルエチルピロリジニウム、スピロビピロリジニウム等を挙げることができ、アニオンとしては、BF 、PF 、ClO 、AsF 、SbF 、AlCl 、またはRfSO 、(RfSO、RfCO (Rfは炭素数1~8のフルオロアルキル基)等を挙げることができる。
 典型的には、第4級アンモニウム塩として、テトラメチルアンモニウムBF、エチルトリメチルアンモニウムBF4、ジエチルジメチルアンモニウムBF4、トリエチルメチルアンモニウムBF4、テトラエチルアンモニウムBF4、スピロビピロリジニウムBF4、メチルエチルピロリジニウムBF4、テトラメチルアンモニウムPF、エチルトリメチルアンモニウムPF6、ジエチルジメチルアンモニウムPF6、トリエチルメチルアンモニウムPF6、テトラエチルアンモニウムPF6、スピロビピロリジニウムPF6、メチルエチルピロリジニウムPF6、テトラメチルアンモニウムビス(オキサラト)ボレート、エチルトリメチルアンモニウムビス(オキサラト)ボレート、ジエチルジメチルアンモニウムビス(オキサラト)ボレート、トリエチルメチルアンモニウムビス(オキサラト)ボレート、テトラエチルアンモニウムビス(オキサラト)ボレート、スピロビピロリジニウムビス(オキサラト)ボレート、メチルエチルピロリジニウムビス(オキサラト)ボレート、テトラメチルアンモニウムジフルオロオキサラトボレート、エチルトリメチルアンモニウムジフルオロオキサラトボレート、ジエチルジメチルアンモニウムジフルオロオキサラトボレート、トリエチルメチルアンモニウムジフルオロオキサラトボレート、テトラエチルアンモニウムジフルオロオキサラトボレート、スピロビピロリジニウムジフルオロオキサラトボレート、メチルエチルピロリジニウムジフルオロオキサラトボレート等を用いることができる。
 (その他詳細構成)
 電気二重層キャパシタは、これら一対の分極性電極の間にセパレータを介在させた素子を作成し、また素子にリード端子を取り付け、素子に電解液を含浸させ、素子を外装ケースに入れて封口体で封止することで完成する。
 セパレータは、電解液の保持及び正極と負極の短絡阻止を担い、セルロース系セパレータ、合成繊維不織布系セパレータ、セルロースと合成繊維を混抄した混抄紙あるいは多孔質フィルムなどが使用できる。セルロースとしては、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨンなどがある。不織布としては、ポリエステル、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミド、フッ素樹脂、ポリプロピレンやポリエチレン等のポリオレフィン系樹脂、セラミクスやガラス等々の繊維がある。
 外装ケースは、例えばアルミニウム、アルミニウムやマンガンを含有するアルミニウム合金、又はステンレスからなり、一端が有底となっている。リード端子は、ステッチ、コールドウェルド、超音波溶接、レーザー溶接などにより素子に接続され、封口体を貫通して電気二重層キャパシタが外部に突出している。封口体は、例えばゴム又はゴムと硬質基板との積層体であり、素子が外装ケースに収納された状態で外装ケースに嵌め込まれる。尚、以上は円筒型の電気二重層キャパシタの例であるが、コイン型、フィルム型、円筒型、箱形などのように形状に特に限定されない。
 実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。以下のように、各種の分極性電極及び各種の電解液を作製して組み合わせることで、正極及び負極に分極性電極を備える各種実施例及び比較例の電気二重層キャパシタを作製した。
 まず、水蒸気賦活活性炭、カーボンブラック、分散剤としてカルボキシメチルセルロース、バインダーとしてSBR及び純水を混合してスラリーを得た。作製した集電体の両面に、同じく作製したスラリーを塗布して乾燥させることで、塗布電極とした。
 尚、集電体については、エッチング処理をしたアルミ箔に対しリン酸水溶液に浸漬し、表面にリンを付着させ、箔の表面に黒鉛を含む塗料を塗布し、アルミ箔表面のカーボンコート層をアルミ箔両面に形成させることで作製しておいた。
 この塗布電極を所定の大きさに裁断し、正極側及び負極側の分極性電極を作製した。そして、正極及び負極の分極性電極の間にレーヨンセパレータを挟んで重ね合わせ、直径16.5mm、高さ43mmの巻回型の素子を形成した。この素子に電解液を含浸させ、JIS H 4000:2006に規定されるA1070に該当するアルミニウム製の外装ケースに入れて封口体で封入することで、各種の電気二重層キャパシタを作製した。この外装ケースは、直径が18mm、高さが50mm及び厚さが0.45mmの寸法サイズを有する。
 作製した電気二重層キャパシタに用いられた各種水蒸気賦活活性炭の比表面積及び全酸性表面官能基量は、下表1に示す通りである。
 (表1)
Figure JPOXMLDOC01-appb-I000001
 次に、作製した電気二重層キャパシタに用いられた各種電解液は下表2に示す通りである。
 (表2)
Figure JPOXMLDOC01-appb-I000002
 表2中、GBLはγ-ブチロラクトンを示し、PCはプロピレンカーボネートを示し、DEDMA・BFはジエチルジメチルアンモニウムテトラフルオロボレートを示し、MEPy・BFはメチルエチルピロリジニウムテトラフルオロボレートを示し、TEMA・BFはテトラエチルアンモニウム塩テトラフルオロボレートを示す。1.5M又は1.0Mは、1Lの電解液に対する電解質のモル数(mol/L)を表す。
 (実施例1乃至12並びに比較例1乃至8)
 実施例1乃至12並びに比較例1乃至8の電気二重層キャパシタにおける活性炭及び電解液の組み合わせは下表3乃至下表5に示す通りである。下表3乃至下表5に示すように、実施例1乃至6並びに比較例1乃至4は、電解液の溶媒がγ-ブチロラクトンであり、実施例7乃至9並びに比較例5乃至6は、電解液の溶媒がプロピレンカーボネートであり、実施例10乃至12並びに比較例7乃至8は、電解液の溶媒がγ-ブチロラクトンである。
 (表3)
Figure JPOXMLDOC01-appb-I000003
 (表4)
Figure JPOXMLDOC01-appb-I000004
 (表5)
Figure JPOXMLDOC01-appb-I000005
 上表3乃至5に示す活性炭1乃至5の活性炭の重量X(g)については、分極性電極層の体積(cc)、分極性電極層の密度(g/cc)及びスラリー内活性炭重量比(c)を乗算して得た。スラリー内活性炭重量比は、スラリーに含まれる水蒸気賦活活性炭、カーボンブラック、カルボキシメチルセルロース及びSBRの合計重量、即ち純水を除く合計重量に対する水蒸気賦活活性炭の重量比率である
 上記表3乃至表5に示すように、実施例1乃至12並びに比較例1乃至8の電気二重層キャパシタの初期容量Y(F)を測定し、この初期容量Y(F)と重量Xに基づく活性炭の重量当たりの容量Z(Y/X)を算出し、この初期容量Yと容量Zを上表3乃至上表5に含めて記した。
 尚、上表3乃至上表5に示す実施例1乃至12並びに比較例1乃至8の電気二重層キャパシタの初期容量(F)については、20度の温度環境下において2.5Vの定電圧を印加し、20分間かけて電気二重層キャパシタを充電した。充電完了後に速やかに定電流放電を行い、放電の際、所要時間Tの計測開始電圧はIRドロップ後の電圧とし、計測終了電圧は1.25Vとした。
 上表1乃至3に基づき、γ-ブチロラクトンを電解液の溶媒とする実施例1乃至6並びに比較例1乃至4の電気二重層キャパシタについて指標Dの値を算出すると、下表6の通りである。
 (表6)
Figure JPOXMLDOC01-appb-I000006
 表1、2及び4に基づき、プロピレンカーボネートを電解液の溶媒とする実施例7乃至9並びに比較例5及び6の電気二重層キャパシタについて指標Dの値を算出すると、下表7の通りである。
 (表7)
Figure JPOXMLDOC01-appb-I000007
 表1、2及び5に基づき、γ-ブチロラクトンを電解液の溶媒とする実施例10乃至12並びに比較例7乃至8の電気二重層キャパシタについて指標Dの値を算出すると、下表8の通りである。
 (表8)
Figure JPOXMLDOC01-appb-I000008
 (ガス発生量の測定)
 実施例1乃至12並びに比較例1乃至8の電気二重層キャパシタについて、ガスの発生に起因する外装ケースの膨れ量を測定した。この測定に際し、発生するガスが電気二重層キャパシタから逃げないように、封口体で閉じた外装ケースの開口を封口体ごと、樹脂で完全に被覆した。樹脂は、封口体のゴム部分が負荷試験によっても変形することがない程度の硬さ及び厚みで被覆した。
 そして、樹脂で被覆した上で、電気二重層キャパシタに対して、摂氏70度の温度環境下で定電圧2.5Vを300時間連続して印加し続ける負荷試験を行った。そして、負荷試験前後のケースの最大長手寸法を測定し、膨れ量を求めた。また、この膨れ量の測定結果を初期容量Yで除算し、容量当たりの膨れ量を求めた。
 電解液の溶媒がγ-ブチロラクトンである実施例1乃至6及び比較例1乃至4の電気二重層キャパシタにおいて、負荷試験の結果得られる膨れ量を下表9に示す。
 (表9)
Figure JPOXMLDOC01-appb-I000009
 また、上表9に基づき、横軸を指標Dとし、縦軸を容量当たりの膨れ量としたグラフを図1及び図2に示す。図1と図2は、電解質によって分けてプロットしている。図1は、γ-ブチロラクトンを溶媒とし、DEDMA・BFを電解質とする電解液1を用いた系列であり、実施例1、3、5、比較例1及び3の結果をプロットしたグラフである。図1において丸印は実施例1、菱形印は実施例3、三角印は実施例5、四角印は比較例1、X印は比較例3である。図2は、γ-ブチロラクトンを溶媒とし、MEPy・BFを電解質とする電解液2を用いた系列であり、実施例2、4、6、比較例2及び4の結果をプロットしたグラフである。図2において丸印は実施例2、菱形印は実施例4、三角印は実施例6、四角印は比較例2、X印は比較例4である。
 また、電解液の溶媒がプロピレンカーボネートである実施例7乃至9並びに比較例5及び6の電気二重層キャパシタにおいて、負荷試験の結果得られる外装ケースの膨れ量の結果を下表10に示す。
 (表10)
Figure JPOXMLDOC01-appb-I000010
 また、上表10に基づき、横軸を指標Dとし、縦軸を容量当たりの膨れ量としたグラフを図3に示す。図3は、プロピレンカーボネートを溶媒とし、MEPy・BFを電解質とする電解液3を用いた系列であり、実施例7乃至9並びに比較例5及び6の結果をプロットしたグラフである。図3において丸印は実施例7、菱形印は実施例8、三角印は実施例9、四角印は比較例5、X印は比較例6である。
 また、電解液の溶媒がγ-ブチロラクトンである実施例10乃至12並びに比較例7及び8の電気二重層キャパシタにおいて、負荷試験の結果得られる外装ケースの膨れ量の結果を下表11に示す。
 (表11)
Figure JPOXMLDOC01-appb-I000011
 また、上表11に基づき、横軸を指標Dとし、縦軸を容量当たりの膨れ量としたグラフを図4に示す。図4は、γ-ブチロラクトンを溶媒とし、TEMA・BFを電解質とする電解液4を用いた系列であり、実施例10乃至12並びに比較例7及び8の結果をプロットしたグラフである。図4において丸印は実施例10、菱形印は実施例11、三角印は実施例12、四角印は比較例7、X印は比較例8である。
 実施例1乃至6並びに比較例1乃至4の電気二重層キャパシタは、電解液の溶媒としてγ-ブチロラクトンを用いている。この場合、表9、図1及び図2に示すように、指標Dの値が2.5以下である実施例1乃至6の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.00287mm/F以下であった。これに対して、指標Dの値が2.5超である比較例1乃至4の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.00709mm/Fを超えた。即ち、実施例1乃至6の膨れ量の最大値と比較例1乃至4の膨れ量の最小値とを比較しても、指標Dの値が2.5以下である実施例1乃至6の電気二重層キャパシタの容量当たりの膨れ量は、指標Dの値が2.5超である比較例1乃至4の電気二重層キャパシタの容量当たりの膨れ量の40%程度に抑制された。このように、指標Dの値が2.5以下である電気二重層キャパシタは、外装ケースの膨れ量、即ちガスの発生量が飛躍的に抑制されることが確認された。
 実施例7乃至9並びに比較例5及び6の電気二重層キャパシタは、プロピレンカーボネートを溶媒として用いている。この場合、表10及び図3に示すように、指標Dの値が2.5以下である実施例7乃至9の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.00431mm/F以下であった。これに対して、指標Dの値が2.5超である比較例5及び6の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.01106mm/Fを超えた。即ち、実施例7乃至9の膨れ量の最大値と比較例5及び6の膨れ量の最小値とを比較しても、指標Dの値が2.5以下である実施例7乃至9の電気二重層キャパシタの容量当たりの膨れ量は、指標Dの値が2.5超である比較例5及び6の電気二重層キャパシタの容量当たりの膨れ量の40%程度に抑制された。このように、指標Dの値が2.5以下である電気二重層キャパシタは、外装ケースの膨れ量、即ちガスの発生量が飛躍的に抑制されることが確認された。
 実施例10乃至12並びに比較例7及び8の電気二重層キャパシタは、TEMA・BFを電解質として用いている。この場合、表11及び図4に示すように、容量当たりの膨れ量は、比較例7及び8の電気二重層キャパシタでも低く抑えることができるが、実施例10乃至12の電気二重層キャパシタは、比較例7及び8の電気二重層キャパシタの膨れ量低減傾向を上回って、膨れ量が抑制されている。即ち、指標Dの値が2.5以下である実施例10乃至12の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.00115mm/F以下であった。これに対して、指標Dの値が2.5超である比較例7及び8の電気二重層キャパシタにおいて、容量当たりの膨れ量は、0.0039mm/Fを超えた。実施例10乃至12の膨れ量の最大値と比較例7及び8の膨れ量の最小値とを比較しても、指標Dの値が2.5以下であり、電解質にTEMA・BFを用いた実施例10乃至12の電気二重層キャパシタの容量当たりの膨れ量は、指標Dの値が2.5超である比較例7及び8の電気二重層キャパシタの容量当たりの膨れ量の30%程度に抑制された。
 また、指標Dの値が2.5以下である実施例1乃至12の電気二重層キャパシタにおいて、初期容量の最小値は52.14Fであり、指標Dの値が2.5超である比較例1乃至8の電気二重層キャパシタにおいて、初期容量の最大値は65.46であり、この最小値と最大値とを比較しても、指標Dの値が2.5以下である実施例1乃至12の電気二重層キャパシタの初期容量は、指標Dの値が2.5超である比較例1乃至8の電気二重層キャパシタの初期容量の80%程度に収まった。
 しかも、γ-ブチロラクトンを溶媒とした電解液を用いた実施例のうち初期容量が最大の実施例4の電気二重層キャパシタの膨れ量は、初期容量がほぼ同容量の比較例4の膨れ量の約20%程度である。同様に、プロピレンカーボネートを溶媒とした電解液を用いた実施例のうち初期容量が最大の実施例9の電気二重層キャパシタの膨れ量は、初期容量がほぼ同容量の比較例6の膨れ量の約20%程度である。このように、指標Dの値が2.5以下の電気二重層キャパシタは、良好な初期容量を維持しつつ、外装ケースの膨れ量、即ちガスの発生量が抑制されていることが確認された。
 尚、実施例1乃至6の電気二重層キャパシタは、電解質の種類が図1に纏めたDEDMA・BFか図2に纏めたMEPy・BFであるという相違点を有する。しかしながら、図1及び図2を比較するとわかるように、電解質の相違に関わりなく、指標Dの値が2.5以下の電気二重層キャパシタは、良好な初期容量を維持しつつ、ガスの発生量が抑制されている。
 また、実施例7乃至9の電気二重層キャパシタは、実施例2,4及び6の電気二重層キャパシタとの対比において、溶媒の種類が図1及び図2に纏めたGBLか図3に纏めたPCであるという相違点を有する。しかしながら、図1及び図2に対して図3を比較するとわかるように、溶媒の相違に関わりなく、指標Dの値が2.5以下の電気二重層キャパシタは、良好な初期容量を維持しつつ、外装ケースの膨れ量、即ちガスの発生量が抑制されている。
 実施例10乃至12の電気二重層キャパシタについては、実施例1乃至9の電気二重層キャパシタと電解質の種類がTEMA・BFであるという相違点を有する。このTEMA・BFを用いることにより、指標Dの値が2.5以下の電気二重層キャパシタは、良好な初期容量を維持しつつ、ガスの発生量が全体的に更に抑制されている。
 また、従来のようにケース内にガス吸収層を設ける必要がなく、その分、ケース内に収容できる電極及び電解液の収容スペースが向上する。そのため、同じ大きさの外装ケースを用いた場合、従来よりも素子を大きくすることができ、電気二重層キャパシタの体積当たりの容量を大きくすることができる。

Claims (5)

  1.  表面官能基を有する活性炭を含む分極性電極層を有する正極及び負極と、
     非プロトン性溶媒及び4級アンモニウム塩を含む電解液と、
     を備え、
     以下式で算出される指標D((meq/m×F/m)×10)の値が、2.5以下であること、
     を特徴とする電気二重層キャパシタ。
     (式) D=(W/S)×(Z/S)×10
    W:活性炭の単位重量当たりの全酸性表面官能基量(meq/g)
    Z:活性炭の単位重量当たりの初期容量(F/g)
    S:活性炭の単位重量当たりの比表面積(m/g)
  2.  前記非プロトン性溶媒は、ラクトン化合物又はカーボネート化合物であること、
     を特徴とする請求項1記載の電気二重層キャパシタ。
  3.  前記ラクトン化合物は、γ-ブチロラクトンであること、
     を特徴とする請求項2記載の電気二重層キャパシタ。
  4.  前記カーボネート化合物は、プロピレンカーボネートであること、
     を特徴とする請求項2記載の電気二重層キャパシタ。
  5.  前記4級アンモニウム塩は、ジエチルジメチルアンモニウム塩、メチルエチルピロリジニウム塩又はトリエチルメチルアンモニウム塩であること、
     を特徴とする請求項1乃至4の何れかに記載の電気二重層キャパシタ。
PCT/JP2021/030971 2020-09-29 2021-08-24 電気二重層キャパシタ WO2022070679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/020,603 US20240038454A1 (en) 2020-09-29 2021-08-24 Electrical double layer capacitor
EP21874982.8A EP4224501A1 (en) 2020-09-29 2021-08-24 Electrical double layer capacitor
CN202180058329.1A CN116057655A (zh) 2020-09-29 2021-08-24 电双层电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163601A JP2022055902A (ja) 2020-09-29 2020-09-29 電気二重層キャパシタ
JP2020-163601 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070679A1 true WO2022070679A1 (ja) 2022-04-07

Family

ID=80951346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030971 WO2022070679A1 (ja) 2020-09-29 2021-08-24 電気二重層キャパシタ

Country Status (6)

Country Link
US (1) US20240038454A1 (ja)
EP (1) EP4224501A1 (ja)
JP (1) JP2022055902A (ja)
CN (1) CN116057655A (ja)
TW (1) TW202232535A (ja)
WO (1) WO2022070679A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024956A1 (ja) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 電気化学デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217150A (ja) 2000-01-31 2001-08-10 Hitachi Maxell Ltd 電気二重層キャパシタ
JP2007073809A (ja) 2005-09-08 2007-03-22 Honda Motor Co Ltd 電気二重層キャパシタ
JP2010105836A (ja) * 2008-10-29 2010-05-13 Jfe Chemical Corp 電気二重層キャパシタ用活性炭およびその製造方法
JP2013149781A (ja) 2012-01-19 2013-08-01 Kurita Water Ind Ltd 電気二重層キャパシタ
JP2017208444A (ja) * 2016-05-18 2017-11-24 株式会社クラレ 改質活性炭の製造方法
WO2018207769A1 (ja) * 2017-05-10 2018-11-15 株式会社クラレ 改質活性炭およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217150A (ja) 2000-01-31 2001-08-10 Hitachi Maxell Ltd 電気二重層キャパシタ
JP2007073809A (ja) 2005-09-08 2007-03-22 Honda Motor Co Ltd 電気二重層キャパシタ
JP2010105836A (ja) * 2008-10-29 2010-05-13 Jfe Chemical Corp 電気二重層キャパシタ用活性炭およびその製造方法
JP2013149781A (ja) 2012-01-19 2013-08-01 Kurita Water Ind Ltd 電気二重層キャパシタ
JP2017208444A (ja) * 2016-05-18 2017-11-24 株式会社クラレ 改質活性炭の製造方法
WO2018207769A1 (ja) * 2017-05-10 2018-11-15 株式会社クラレ 改質活性炭およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.P.BOEHM, ADZAN. CATAL, vol. 16, 1966, pages 179

Also Published As

Publication number Publication date
EP4224501A1 (en) 2023-08-09
JP2022055902A (ja) 2022-04-08
CN116057655A (zh) 2023-05-02
US20240038454A1 (en) 2024-02-01
TW202232535A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US9997301B2 (en) Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode
JP4878881B2 (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
US7457101B2 (en) Electric double layer capacitor
JP5839303B2 (ja) 電気二重層キャパシタの製造方法
US10504661B2 (en) Hybrid capacitor and separator for hybrid capacitors
US20160104584A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
US8274780B2 (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
WO2022070679A1 (ja) 電気二重層キャパシタ
JP2005129924A (ja) 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ
JP2016197649A (ja) 電気二重層キャパシタ用セパレータおよび電気二重層キャパシタ
JP6782950B2 (ja) キャパシタ及びキャパシタ用電極
JP2008147283A (ja) 電気二重層キャパシタ、その電極用活性炭およびその製造方法
WO2018008713A1 (ja) 電気二重層キャパシタ
JP2017092303A (ja) 高電位キャパシタの電極用活性炭、その製造方法、及びその活性炭を備えた電気二重層キャパシタ
JP2016197647A (ja) ハイブリッドキャパシタ用セパレータおよびハイブリッドキャパシタ
JP5184013B2 (ja) 電気二重層キャパシタ用電解液
JP2016197648A (ja) 電気二重層キャパシタ
WO2024004740A1 (ja) 電気二重層キャパシタ及びその製造方法
WO2023176372A1 (ja) 電気二重層キャパシタ及びその製造方法
WO2018235546A1 (ja) キャパシタ用電極箔及びキャパシタ
JP2023049802A (ja) 電気二重層キャパシタ及びその製造方法
JP2018006625A (ja) 電気二重層キャパシタのキャパシタ性能評価方法
JP2003142348A (ja) 電気二重層キャパシタの製造方法および電気二重層キャパシタ用正極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18020603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874982

Country of ref document: EP

Effective date: 20230502