WO2022070260A1 - 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池 - Google Patents

双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池 Download PDF

Info

Publication number
WO2022070260A1
WO2022070260A1 PCT/JP2020/036934 JP2020036934W WO2022070260A1 WO 2022070260 A1 WO2022070260 A1 WO 2022070260A1 JP 2020036934 W JP2020036934 W JP 2020036934W WO 2022070260 A1 WO2022070260 A1 WO 2022070260A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
edge
cross
cell
groove
Prior art date
Application number
PCT/JP2020/036934
Other languages
English (en)
French (fr)
Inventor
毅 寒野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/028,371 priority Critical patent/US20230395837A1/en
Priority to CN202080105126.9A priority patent/CN116034502A/zh
Priority to EP20956190.1A priority patent/EP4224584A1/en
Priority to JP2022553263A priority patent/JP7461614B2/ja
Priority to PCT/JP2020/036934 priority patent/WO2022070260A1/ja
Publication of WO2022070260A1 publication Critical patent/WO2022070260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8694Bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to bipolar plates, cell frames, battery cells, cell stacks, and redox flow batteries.
  • Patent Document 1 discloses a bipolar plate having a plurality of grooves through which an electrolytic solution is circulated on at least one of the first surface and the second surface facing each other.
  • the bipolar plate has a frame formed on the outer periphery of the bipolar plate and is used for a redox flow battery in a form called a cell frame.
  • the bipolar plate of the present disclosure is It is a bipolar plate with a first side and a second side facing each other.
  • Each of the first and second surfaces comprises a first edge, a second edge, and a central region.
  • the first edge is an edge located on the side where the electrolytic solution is supplied.
  • the second edge is an edge located on the side where the electrolytic solution is discharged.
  • the central region is a region within 20% of the edge spacing from the central line toward each of the first edge and the second edge.
  • the center line is a line that bisects between the first edge and the second edge.
  • the edge spacing is the spacing between the first edge and the second edge.
  • the central region on at least one of the first surface and the second surface includes a plurality of grooves through which the electrolytic solution is circulated.
  • the central region comprises a specific cross section obtained by cutting the bipolar plate in a specific direction.
  • the specific direction is a direction orthogonal to the direction from the first edge to the second edge.
  • the specific cross section is a cross section in which the cross-sectional area ratio B / (A + B) is 0.05 or more and 0.60 or less.
  • A is the cross-sectional area of the bipolar plate, and is B is the total cross-sectional area of the plurality of grooves.
  • the cell frame of the present disclosure is The bipolar plate of this disclosure and It includes a frame body provided on the outer periphery of the bipolar plate.
  • the battery cell of the present disclosure includes the cell frame of the present disclosure.
  • the cell stack of the present disclosure includes a plurality of battery cells of the present disclosure.
  • the redox flow battery of the present disclosure includes the battery cell of the present disclosure or the cell stack of the present disclosure.
  • FIG. 1 is a plan view showing a bipolar plate according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a plan view showing a cell frame according to the embodiment.
  • FIG. 4 is an explanatory diagram schematically showing the basic structure of the redox flow battery according to the embodiment.
  • FIG. 5 is a perspective view showing an outline of the battery cell according to the embodiment and the cell stack according to the embodiment.
  • one of the purposes of the present disclosure is to provide a bipolar plate capable of suppressing damage to the cell frame due to thermal stress and obtaining a battery cell having high current efficiency.
  • Another object of the present disclosure is to provide a cell frame capable of suppressing damage to the cell frame due to thermal stress and obtaining a battery cell having high current efficiency.
  • one of the other objects of the present disclosure is to provide a battery cell, a cell stack, and a redox flow battery, which can suppress damage to the cell frame due to thermal stress and have high current efficiency.
  • the bipolar plate and cell frame of the present disclosure can suppress damage to the cell frame due to thermal stress, and a battery cell having high current efficiency can be obtained.
  • the battery cell, cell stack, and redox flow battery of the present disclosure can suppress damage to the cell frame due to thermal stress, and have high current efficiency.
  • the present disclosure defines a cross-sectional area ratio between the bipolar plate and a plurality of grooves in a specific cross section of the bipolar plate.
  • the bipolar plate according to one aspect of the present disclosure is It is a bipolar plate with a first side and a second side facing each other.
  • Each of the first and second surfaces comprises a first edge, a second edge, and a central region.
  • the first edge is an edge located on the side where the electrolytic solution is supplied.
  • the second edge is an edge located on the side where the electrolytic solution is discharged.
  • the central region is a region within 20% of the edge spacing from the central line toward each of the first edge and the second edge.
  • the center line is a line that bisects between the first edge and the second edge.
  • the edge spacing is the spacing between the first edge and the second edge.
  • the central region on at least one of the first surface and the second surface includes a plurality of grooves through which the electrolytic solution is circulated.
  • the central region comprises a specific cross section obtained by cutting the bipolar plate in a specific direction.
  • the specific direction is a direction orthogonal to the direction from the first edge to the second edge.
  • the specific cross section is a cross section in which the cross-sectional area ratio B / (A + B) is 0.05 or more and 0.60 or less.
  • A is the cross-sectional area of the bipolar plate, and is B is the total cross-sectional area of the plurality of grooves.
  • the bipolar plate having a cross-sectional area ratio of 0.05 or more has a certain amount of groove.
  • a bipolar plate having a cross-sectional area ratio of 0.05 or more has lower rigidity than a bipolar plate having extremely few grooves. Due to the low rigidity of the bipolar plate, even if thermal stress acts on the bipolar plate, it is possible to prevent damage to at least one of the bipolar plate and the frame in the joint portion between the bipolar plate and the frame and its vicinity. ..
  • the bipolar plate having a cross-sectional area ratio of 0.60 or less has a certain amount of substance constituting the bipolar plate. Therefore, it is possible to prevent the bipolar plate itself from being damaged due to the rigidity of the bipolar plate becoming too low. If a large number of grooves are secured, the area of the bipolar plate that gets wet with the electrolytic solution increases, and the electrolytic solution may permeate the bipolar plate. It can be said that the bipolar plate having a cross-sectional area ratio of 0.60 or less has a smaller area to be wetted with the electrolytic solution than the bipolar plate having a cross-sectional area ratio of more than 0.60, that is, the bipolar plate having an extremely large number of grooves.
  • bipolar plate of the present disclosure examples thereof include a form in which the thickness of the bipolar plate is 2 mm or more and 15 mm or less.
  • the thickness of the bipolar plate is 2 mm or more, it is easy to secure the actual portion constituting the bipolar plate, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate.
  • the thickness of the bipolar plate is 15 mm or less, it is easy to prevent the rigidity of the bipolar plate from becoming too high. Further, when the thickness of the bipolar plate is 15 mm or less, it is easy to suppress the thickening of the bipolar plate and it is easy to suppress the decrease in the current efficiency of the battery cell.
  • the cross-sectional area of each of the plurality of grooves is 0.8 mm 2 or more and 8 mm 2 or less.
  • each groove When the cross-sectional area of each groove is 0.8 mm 2 or more, it is easy to prevent the rigidity of the bipolar plate from becoming too high. Further, since the cross-sectional area of each groove is 0.8 mm 2 or more, it is easy to secure the flowability of the electrolytic solution. On the other hand, when the cross-sectional area of each groove is 8 mm 2 or less, it is easy to secure the actual portion constituting the bipolar plate, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate.
  • the groove depth in each of the plurality of groove portions may be 0.7 mm or more and 7 mm or less.
  • the groove depth is 0.7 mm or more, it is easy to prevent the rigidity of the bipolar plate from becoming too high. Further, since the groove depth is 0.7 mm or more, it is easy to secure the flowability of the electrolytic solution. On the other hand, when the groove depth is 7 mm or less, it is easy to secure the actual portion constituting the bipolar plate, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate.
  • the groove width in each of the plurality of groove portions may be 0.6 mm or more and 6 mm or less.
  • the groove width When the groove width is 0.6 mm or more, it is easy to prevent the rigidity of the bipolar plate from becoming too high. Further, when the groove width is 0.6 mm or more, it is easy to secure the flowability of the electrolytic solution. On the other hand, when the groove width is 6 mm or less, it is easy to secure the actual portion constituting the bipolar plate, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate.
  • the distance between the adjacent grooves is 1 mm or more and 10 mm or less.
  • the distance between the adjacent grooves is 1 mm or more, it is easy to secure the actual portion constituting the bipolar plate, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate.
  • the distance between the adjacent groove portions is 10 mm or less, it is easy to secure the groove portions and it is easy to prevent the rigidity of the bipolar plate from becoming too high.
  • 80% or more of the grooves in the plurality of grooves may have the same cross-sectional shape.
  • the above form makes it easy to manufacture a bipolar plate that satisfies the above cross-sectional area ratio.
  • the cell frame according to one aspect of the present disclosure is with any one of the bipolar plates (1) to (7) above, It includes a frame body provided on the outer periphery of the bipolar plate.
  • the cell frame of the present disclosure is provided with the bipolar plate of the present disclosure, so that even if thermal stress acts on the bipolar plate, at least one of the bipolar plate and the frame body is provided at the joint portion between the bipolar plate and the frame body and its vicinity. Can be prevented from being damaged. Further, the cell frame of the present disclosure is provided with the bipolar plate of the present disclosure, so that it is possible to suppress a decrease in the current efficiency of the battery cell.
  • the battery cell according to one aspect of the present disclosure includes the cell frame of (8) above.
  • the battery cell of the present disclosure can suppress damage to the cell frame due to thermal stress, and has high current efficiency.
  • the cell stack according to one aspect of the present disclosure includes a plurality of battery cells according to (9) above.
  • the cell stack of the present disclosure can suppress damage to the cell frame due to thermal stress, and has high current efficiency.
  • the redox flow battery according to one aspect of the present disclosure includes the battery cell of (9) above or the cell stack of (10) above.
  • the redox flow battery of the present disclosure can suppress damage to the cell frame due to thermal stress, and has high current efficiency.
  • FIG. 1 is a plan view of the bipolar plate 1 as viewed from the first surface 1a side.
  • the bipolar plate 1 includes a plurality of groove portions 2. In FIG. 1, among a plurality of groove portions 2, only three adjacent groove portions 2 are shown, and the other groove portions are omitted by “... (dots)”. In FIG. 1, hatching is provided in a region other than the groove 2 for easy understanding.
  • FIG. 2 shows a specific cross section 14 in the central region 13 (FIG. 1) of the bipolar plate 1.
  • the cross-sectional area of the bipolar plate is A, and the total cross-sectional area of the plurality of groove portions 2 is B.
  • the cross-sectional area ratio represented by B / (A + B) is 0.05 or more and 0.60 or less in the specific cross-section 14.
  • the bipolar plate 1 is a component of the RF battery 100 (FIG. 4).
  • the bipolar plate 1 is a conductive flat plate that partitions the positive electrode electrolytic solution and the negative electrode electrolytic solution distributed in the battery cell 100C (FIG. 4).
  • the bipolar plate 1 includes a first surface 1a and a second surface 1b facing each other.
  • the first surface 1a includes a first edge 11, a second edge 12, and a central region 13.
  • the second surface 1b also includes a first edge, a second edge, and a central region, similarly to the first surface 1a.
  • the bipolar plate 1 is formed by arranging a frame body 80 (FIG. 3) described later on the outer periphery of the bipolar plate 1 to form a cell frame 8.
  • the first edge 11 is an edge located on the side to which the electrolytic solution is supplied. As shown in FIG. 3, the first edge 11 is an edge of the edges of the bipolar plate 1 located on the side of the edge of the bipolar plate 1 having a supply path provided in the frame body 80 when the cell frame 8 is configured.
  • the supply path in the frame 80 includes liquid supply manifolds 82 and 83, liquid supply slits 82s and 83s, and a liquid supply rectifying unit 86.
  • the second edge 12 is an edge located on the side where the electrolytic solution is discharged. As shown in FIG. 3, the second edge 12 is an edge of the edges of the bipolar plate 1 located on the side of the edge of the bipolar plate 1 having the discharge path provided in the frame body 80 when the cell frame 8 is configured.
  • the drainage path in the frame 80 includes drainage manifolds 84 and 85, drainage slits 84s and 85s, and a drainage rectifying unit 87.
  • the first edge 11 and the second edge 12 are located facing each other.
  • the bipolar plate 1 of this example is a rectangular flat plate. Therefore, in this example, the first edge 11 and the second edge 12 are linear edges facing each other. Therefore, in this example, the distance between the first edge 11 and the second edge 12 is uniform along the longitudinal direction of the first edge 11 or the second edge 12.
  • the distance between the first edge 11 and the second edge 12 is referred to as an edge spacing 6.
  • the planar shape of the bipolar plate 1 may be a polygonal shape such as a hexagonal shape or an octagonal shape, a circular shape, an elliptical shape, or the like, in addition to the rectangular shape.
  • the first edge 11 and the second edge 12 may be a polygonal line or a curved edge instead of a linear edge.
  • the edge spacing 6 may differ along the longitudinal direction of the first edge 11 or the second edge 12.
  • the central region 13 is an region within 20% of the edge spacing 6 from the central line 5 toward each of the first edge 11 and the second edge 12.
  • the central line 5 is a line that bisects between the first edge 11 and the second edge 12.
  • the center line 5 of this example is a straight line.
  • the center line 5 may be a polygonal line or a curved line instead of a straight line.
  • a constant value is adopted for the edge spacing 6.
  • the edge spacing 6 differs along the longitudinal direction of the first edge 11 or the second edge 12
  • the maximum value is adopted as the edge spacing 6.
  • the edge spacing 6 adopts a diameter.
  • the length of the central region 13 in the direction orthogonal to the longitudinal direction of the central line 5 is uniform along the longitudinal direction of the central line 5.
  • the central region 13 on at least one of the first surface 1a and the second surface 1b includes a plurality of groove portions 2.
  • a plurality of groove portions 2 are provided in the central region 13 (FIG. 1) of each of the first surface 1a and the second surface 1b.
  • An electrolytic solution is circulated in the plurality of grooves 2.
  • the positive electrode electrolytic solution is circulated in the plurality of grooves 2 provided on the first surface 1a.
  • the negative electrode electrolytic solution is circulated in the plurality of grooves 2 provided on the second surface 1b.
  • each groove 2 of this example is configured to connect the first edge 11 and the second edge 12.
  • Each groove portion 2 of this example is composed of a single groove connecting the first edge 11 and the second edge 12.
  • Each groove 2 in the central region 13 is a part of each single groove 2.
  • all the groove portions 2 are composed of linear grooves along the direction from the first edge 11 to the second edge 12.
  • the width of each groove portion 2 may be uniform in the longitudinal direction of the groove portion 2, may be widened from the first edge 11 toward the second edge 12, or conversely narrowed, or may be narrowed in the longitudinal direction of the groove portion 2. It may be different in the direction. Further, each groove portion 2 may be divided in the longitudinal direction of the groove portion 2.
  • each groove portion 2 may be bent or curved in the longitudinal direction of the groove portion 2.
  • the depth of each groove portion 2 may be uniform in the longitudinal direction of the groove portion 2, may be deeper from the first edge 11 toward the second edge 12, or conversely may be shallower, or the depth of the groove portion 2 may be uniform. It may be different in the longitudinal direction.
  • the plurality of groove portions 2 are provided side by side along the longitudinal direction of the first edge 11 or the second edge 12.
  • the bipolar plate 1 has a frame body 80 arranged on the outer periphery of the bipolar plate 1 and is used in a form called a cell frame 8 (FIGS. 3 to 5).
  • the electrolytic solution circulates in the exposed region exposed from the frame 80 in the bipolar plate 1. Therefore, it can be mentioned that the plurality of groove portions 2 are uniformly provided in the exposed region. No electrolytic solution is circulated in the covering region 15 (FIG. 2) overlapping the frame 80 in the bipolar plate 1.
  • the frame body 80 may overlap on both sides of the first surface 1a and the second surface 1b, or the frame body 80 may overlap only on either surface of the first surface 1a and the second surface 1b. .. It can be mentioned that the plurality of groove portions 2 are provided not only in the center of the exposed region but also in the vicinity of the covering region 15.
  • a ridge 3 is formed between the adjacent grooves 2.
  • the ridge 3 constitutes most of the outermost surface of the bipolar plate 1.
  • the battery cell 100C FIGS. 4 and 5 described later is constructed, the ridge portion 3 on the first surface 1a comes into contact with the positive electrode 104, and the ridge portion 3 on the second surface 1b comes into contact with the negative electrode electrode 105.
  • the flow of the electrolytic solution on the bipolar plate 1 constitutes a flow along each groove portion 2 and a flow across the ridge portion 3 and across the adjacent groove portions 2.
  • the central region 13 of the bipolar plate 1 has a specific cross section 14 (FIG. 2) obtained by cutting the bipolar plate 1 in a specific direction.
  • the specific direction is a direction orthogonal to the direction from the first edge 11 to the second edge 12.
  • the direction from the first edge 11 to the second edge 12 is the flow direction of the electrolytic solution when viewed as a whole of the bipolar plate 1.
  • the electrolytic solution flows in the direction from the lower side in the vertical direction to the upper side. Therefore, the specific direction of this example is the horizontal direction.
  • the specific cross section 14 is composed of a plane regardless of whether the center line 5 is a straight line, a polygonal line, a curved line, or the like.
  • the specific cross section 14 is composed of a plane even when the edge spacing 6 is different along the longitudinal direction of the first edge 11 or the second edge 12.
  • the specific cross section 14 does not partially include a region other than the central region 13, but includes the central region 13 over the entire area.
  • the specific cross section 14 includes a plurality of groove portions 2 on at least one of the first surface 1a and the second surface 1b. As shown in FIG. 2, the specific cross section 14 of this example includes a plurality of groove portions 2 on each of the first surface 1a and the second surface 1b.
  • the groove portion 2 provided on the first surface 1a and the groove portion 2 provided on the second surface 1b may partially overlap each other or may not overlap each other. good.
  • the cross-sectional area of the bipolar plate 1 is A.
  • the cross-sectional area A of the bipolar plate 1 is the cross-sectional area of the actual portion of the bipolar plate 1.
  • the cross-sectional area A of the bipolar plate 1 is the cross-sectional area of the hatched portion shown in FIG.
  • the total cross-sectional area of the plurality of groove portions 2 is B.
  • the cross-sectional area of each groove portion 2 is a cross-sectional area in which the opening edges of the groove portions 2 are connected by a straight line and surrounded by the straight line and the inner peripheral edge of the groove portion 2.
  • the cross-sectional area of each groove portion 2 is the cross-sectional area of the white rectangular portion shown in FIG.
  • the total cross-sectional area B of the plurality of groove portions 2 is the total cross-sectional area of each groove portion 2.
  • the cross-sectional area ratio represented by B / (A + B) is 0.05 or more and 0.60 or less. It can be said that the groove portion 2 is secured to some extent in the bipolar plate 1 having a cross-sectional area ratio of 0.05 or more. By securing the groove 2 to some extent, it is easy to secure the flowability of the electrolytic solution. Further, by securing the groove portion 2 to some extent, it is possible to prevent the rigidity of the bipolar plate 1 from becoming too high due to the presence of the groove portion 2.
  • the bipolar plate 1 having a cross-sectional area ratio of 0.60 or less has a certain amount of the actual portion constituting the bipolar plate 1. Therefore, it is possible to prevent the bipolar plate 1 itself from being damaged due to the rigidity of the bipolar plate 1 becoming too low. Further, it can be said that the bipolar plate 1 having a cross-sectional area ratio of 0.60 or less suppresses an increase in the area wetted with the electrolytic solution.
  • the bipolar plate 1 is made of a material that does not allow the electrolytic solution to pass through. However, when the bipolar plate 1 is provided with the groove portion 2, the area of the bipolar plate 1 that gets wet with the electrolytic solution increases, and the electrolytic solution may permeate the bipolar plate 1.
  • the cross-sectional area ratio is further preferably 0.10 or more and 0.40 or less, particularly preferably 0.15 or more and 0.30 or less.
  • the central region 13 can collect a plurality of cross sections cut in the specific direction. Of the plurality of cross sections, at least one cross section may be a specific cross section 14 that satisfies the cross section area ratio. In the central region 13, five or more cross sections may be collected at equal intervals. In this case, it is preferable that 80% or more, more 90% or more, particularly all the cross sections of the five or more cross sections are the specific cross sections 14 satisfying the cross-sectional area ratio.
  • any shape can be selected as the cross-sectional shape of each groove portion 2.
  • the cross-sectional shape of each groove 2 is, for example, rectangular, semicircular, V-shaped, U-shaped, trapezoidal in which the opening width of the groove 2 is wider than the width of the bottom surface, and the opening width of the groove portion 2 is the width of the bottom surface. A narrower dovetail shape or the like can be mentioned.
  • the cross-sectional shapes of all the groove portions 2 may be the same, or the groove portions 2 having different cross-sectional shapes may be included. When the number of the plurality of groove portions 2 is 100%, it is preferable that 80% or more of the groove portions 2 in the plurality of groove portions 2 have the same cross-sectional shape.
  • the same cross-sectional shape means that the cross-sectional shapes at the same position in the longitudinal direction in each groove 2 are congruent or similar. Since 80% or more of the plurality of groove portions 2 have the same cross-sectional shape, it is easy to manufacture the bipolar plate 1 satisfying the cross-sectional area ratio. In particular, when the number of the plurality of groove portions 2 is 100%, it is preferable that 80% or more of the groove portions 2 in the plurality of groove portions 2 are congruent. When 80% or more of the plurality of groove portions 2 are congruent, the flow state of the electrolytic solution tends to be uniform. From the viewpoint of ease of manufacture described above, 85% or more, more 90% or more of the plurality of groove portions 2 may have the same cross-sectional shape.
  • 85% or more, and further 90% or more of the plurality of groove portions 2 may be congruent.
  • the cross-sectional shape of all the grooves 2 may be the same.
  • the cross-sectional area of each groove 2 is preferably 0.8 mm 2 or more and 8 mm 2 or less. Since the cross-sectional area of each groove 2 is 0.8 mm 2 or more, it is easy to secure the flowability of the electrolytic solution. Further, when the cross-sectional area of each groove 2 is 0.8 mm 2 or more, it is easy to prevent the rigidity of the bipolar plate 1 from becoming too high. On the other hand, since the cross-sectional area of each groove 2 is 8 mm 2 or less, the groove 2 can be easily positioned uniformly over the entire bipolar plate 1. By doing so, it is easy to suppress the occurrence of rigidity bias in the bipolar plate 1.
  • each groove 2 is preferably 1 mm 2 or more and 4 mm 2 or less, particularly preferably 1.5 mm 2 or more and 3 mm 2 or less.
  • each of the specific cross sections 14 fills the cross-sectional area of each groove portion 2.
  • the groove depth D of each groove portion 2 is preferably 0.7 mm or more and 7 mm or less.
  • the groove depth D is the length from the straight line connecting the opening edges of the groove portion 2 to the farthest portion of the groove bottom.
  • the groove depth D is 0.7 mm or more, it is easy to secure the flowability of the electrolytic solution.
  • the groove depth D is 0.7 mm or more, it is easy to prevent the rigidity of the bipolar plate 1 from becoming too high.
  • the groove depth D is 7 mm or less, it is easy to secure the actual portion constituting the bipolar plate 1, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate 1.
  • each groove portion 2 is further preferably 1 mm or more and 4 mm or less, 1 mm or more and 3 mm or less, and particularly preferably 1 mm or more and 2 mm or less.
  • the groove depth D of each groove portion 2 may be 1.4 mm or more.
  • the groove depth D of each groove portion 2 is preferably 12% or more and 39% or less of the thickness T of the bipolar plate 1.
  • the groove depth D of each groove portion 2 is further preferably 15% or more and 33% or less, particularly preferably 18% or more and 25% or less of the thickness T of the bipolar plate 1.
  • the groove width W of each groove portion 2 is preferably 0.6 mm or more and 6 mm or less.
  • the groove width W is the widest when it has a non-uniform width from the opening edge of the groove portion 2 toward the groove bottom.
  • the groove width W is 0.6 mm or more, it is easy to secure the flowability of the electrolytic solution.
  • the groove width W is 0.6 mm or more, it is easy to prevent the rigidity of the bipolar plate 1 from becoming too high.
  • the groove width W is 6 mm or less, it is easy to secure the actual portion constituting the bipolar plate 1, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate 1.
  • each groove portion 2 is further preferably 1 mm or more and 4 mm or less, particularly preferably 1.2 mm or more and 3 mm or less.
  • each of the specific cross sections 14 satisfies the groove width W of each of the groove portions 2.
  • the groove distance M between the adjacent groove portions 2 is preferably 1 mm or more and 10 mm or less.
  • the inter-groove distance M is the width of the ridge portion 3.
  • the inter-groove distance M is 1 mm or more, it is easy to secure the actual portion constituting the bipolar plate 1, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate 1.
  • the inter-groove distance M is 10 mm or less, it is easy to secure the groove portion 2, and it is easy to suppress that the rigidity of the bipolar plate 1 becomes too high.
  • the inter-groove distance M is further preferably 1.1 mm or more and 7 mm or less, particularly preferably 1.2 mm or more and 5 mm or less.
  • the inter-groove distance M may be 1.5 mm or more and 7 mm or less, particularly 2 mm or more and 5 mm or less.
  • the thickness T of the bipolar plate 1 is preferably 2 mm or more and 15 mm or less.
  • the thickness T of the bipolar plate 1 is the length between the outermost surfaces of the first surface 1a and the second surface 1b in the exposed region from the frame body 80 (FIGS. 4 and 5) in the bipolar plate 1.
  • the thickness T of the bipolar plate 1 is 2 mm or more, it is easy to secure the actual portion constituting the bipolar plate 1, and it is easy to suppress the permeation of the electrolytic solution into the bipolar plate 1.
  • the thickness T of the bipolar plate 1 is 15 mm or less, it is easy to prevent the rigidity of the bipolar plate 1 from becoming too high.
  • the thickness T of the bipolar plate 1 is further preferably 3 mm or more and 10 mm or less, particularly preferably 4 mm or more and 8 mm or less.
  • the covering region 15 in which the frame body 80 (FIGS. 4 and 5) is arranged and the exposed region exposed from the frame body 80 are configured to have substantially the same thickness T.
  • the covering region 15 may be configured to be thinner than the exposed region.
  • the bipolar plate 1 and the frame body 80 are integrated by fitting the covering region 15 formed of the thin-walled portion into the recess. Can be done.
  • Examples of the constituent material of the bipolar plate 1 include an organic composite material, a so-called conductive plastic, and the like.
  • Examples of the organic composite material include those containing a conductive material such as a carbon-based material or a metal and an organic material such as a thermoplastic resin.
  • the bipolar plate 1 can be obtained, for example, by molding it into a plate shape by a known method. Examples of the molding method of the conductive plastic include injection molding, press molding, vacuum forming and the like.
  • the plurality of groove portions 2 may be formed at the same time when the bipolar plate 1 is formed into a plate shape. In addition, a plurality of groove portions 2 can be formed by cutting a flat flat plate material or the like.
  • the cell frame 8 of the embodiment will be described with reference to FIG.
  • the cell frame 8 includes a bipolar plate 1 and a frame body 80.
  • the bipolar plate 1 is the bipolar plate 1 of the above-described embodiment.
  • the frame body 80 is provided on the outer periphery of the bipolar plate 1.
  • the frame 80 supports the bipolar plate 1.
  • the frame 80 supplies the electrolytic solution to the positive electrode 104 and the negative electrode 105 (FIGS. 4 and 5) arranged on the front and back surfaces of the bipolar plate 1, and discharges the electrolytic solution from the positive electrode 104 and the negative electrode 105.
  • the frame 80 includes a window portion 81, an electrolytic solution supply path, and an electrolytic solution discharge path.
  • the window portion 81 is provided in the central portion of the frame body 80, and exposes a region of the bipolar plate 1 in which the positive electrode electrode 104 and the negative electrode electrode 105 are arranged.
  • FIG. 2 illustrates a case where the frame body 80 has a rectangular outer shape and the shape of the window portion 81 is also rectangular. The outer shape of the frame 80 and the shape of the window 81 can be appropriately selected.
  • the frame 80 is provided with a supply path and a discharge path for the positive electrode electrolyte on the first surface, and is provided with a supply path and a discharge path for the negative electrode electrolyte on the second surface.
  • the positive electrode electrolytic solution supply path includes a liquid supply manifold 82, a liquid supply slit 82s, and a liquid supply rectifying unit 86.
  • the liquid supply rectifying unit 86 of this example is composed of a notch formed on the inner peripheral edge of the frame body 80.
  • the liquid supply slit 82s connects the liquid supply manifold 82 and the liquid supply rectifying unit 86.
  • the liquid supply rectifying unit 86 diffuses the positive electrode electrolyte supplied from the liquid supply slit 82s along the longitudinal direction of the first edge 11 of the bipolar plate 1.
  • the drainage path of the positive electrode electrolytic solution includes a drainage manifold 84, a drainage slit 84s, and a drainage rectifying unit 87.
  • the drainage rectifying unit 87 of this example is composed of a notch formed on the inner peripheral edge of the frame body 80.
  • the drainage slit 84s connects the drainage manifold 84 and the drainage rectifying unit 87.
  • the drainage rectifying unit 87 collects the positive electrode electrolyte discharged from the bipolar plate 1 and guides it to the drainage slit 84s.
  • the supply path of the negative electrode electrolytic solution includes a liquid supply manifold 83, a liquid supply slit 83s, and a liquid supply rectifying unit (not shown), similarly to the supply path of the positive electrode electrolytic solution.
  • the discharge path of the negative electrode electrolytic solution includes a drainage manifold 85, a drainage slit 85s, and a drainage rectifying unit (not shown), similarly to the discharge path of the positive electrode electrolytic solution.
  • the frame body 80 of this example is provided with a seal groove 88 along the circumferential direction.
  • a seal member 89 (FIGS. 4 and 5) is arranged in the seal groove 88.
  • the frame 80 is made of an electrically insulating material.
  • the electrically insulating material include various resins such as thermoplastic resins.
  • the thermoplastic resin include vinyl chloride.
  • the frame body 80 can be configured by, for example, combining divided pieces.
  • the cell frame 8 can be configured, for example, by combining and appropriately joining the divided pieces so as to sandwich the bipolar plate 1. Examples of the joining method include heat fusion and compression via a sealing member (not shown).
  • the cell frame 8 can be configured by fitting the bipolar plate 1 into the window portion 81 of the frame body 80.
  • the cell frame 8 can be configured by molding a frame body 80 on the outer periphery of the bipolar plate 1 by injection molding or the like.
  • the RF battery 100 of the embodiment will be described with reference to FIGS. 4 and 5.
  • the RF battery 100 is one of the electrolytic solution circulation type storage batteries.
  • the RF battery 100 includes a battery cell 100C or a cell stack 200, and a circulation mechanism for supplying an electrolytic solution to the battery cell 100C.
  • the RF battery 100 charges and discharges while supplying an electrolytic solution to the battery cell 100C.
  • the RF battery 100 is typically connected to the power generation unit 800 and the load 900 via the substation equipment 700 and the AC / DC converter 600.
  • the RF battery 100 charges using the power generation unit 800 as a power supply source, and discharges the load 900 as a power supply target.
  • Examples of the power generation unit 800 include a solar power generator, a wind power generator, and other general power plants.
  • the load 900 may be, for example, an electric power system, an electric power consumer, or the like.
  • the RF battery 100 is used for load leveling, instantaneous low compensation, emergency power supply, output smoothing of natural energy power generation such as solar power generation and wind power generation, and the like.
  • the battery cell 100C is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101.
  • the positive electrode cell 102 contains a positive electrode 104 to which a positive electrode electrolytic solution is supplied.
  • the negative electrode cell 103 contains a negative electrode 105 to which a negative electrode electrolytic solution is supplied.
  • the battery cell 100C is configured to be sandwiched between a set of cell frames 8.
  • the cell frame 8 is the cell frame 8 of the above-described embodiment.
  • Examples of the positive electrode 104 and the negative electrode 105 include a fiber aggregate of a carbon-based material, a porous metal member, and the like. Examples of the fiber aggregate of the carbon-based material include carbon felt, carbon paper, carbon cloth and the like.
  • Examples of the diaphragm 101 include an ion exchange membrane and the like.
  • the RF battery 100 When the RF battery 100 is a single cell battery including one battery cell 100C, the RF battery 100 includes a laminate in which the cell frame 8, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 8 are laminated in this order. ..
  • the RF battery 100 When the RF battery 100 is a multi-cell battery including a plurality of battery cells 100C, the RF battery 100 includes a laminate in which the cell frame 8, the positive electrode 104, the diaphragm 101, and the negative electrode 105 are repeatedly laminated in this order.
  • This laminate is the cell stack 200. In the cell stack 200, the battery cells 100C having the above structure are stacked and connected in series in order to obtain a predetermined output voltage.
  • the cell stack 200 typically includes the above-mentioned laminate comprising a plurality of battery cells 100C, a pair of end plates 210 and 220, and a fastening member 230.
  • the fastening member 230 include connecting members such as long bolts and nuts.
  • the pair of end plates 210, 220 are fastened by the fastening member 230. Due to this tightening force, the laminated body is held in a laminated state.
  • the cell stack 200 is used in a form in which a predetermined number of battery cells 100C are used as sub-stacks (not shown) and a plurality of sub-stacks are stacked.
  • supply / discharge plates (not shown) are arranged in contact with the cell frames 8 located at both ends of the battery cells 100C in the sub-stack and the cell stack 200 in the stacking direction.
  • the circulation mechanism includes a positive electrode circulation mechanism for circulating the positive electrode electrolyte in the positive electrode cell 102 and a negative electrode circulation mechanism for circulating the negative electrode electrolyte in the negative electrode cell 103.
  • the positive electrode circulation mechanism includes a positive electrode electrolyte tank 106, an outward pipe 108, a return pipe 110, and a pump 112.
  • the positive electrode electrolyte tank 106 stores the positive electrode electrolyte.
  • the outward pipe 108 and the return pipe 110 connect the positive electrode electrolyte tank 106 and the positive electrode cell 102.
  • the pump 112 is provided in the outbound pipe 108 on the supply side.
  • the negative electrode circulation mechanism includes a negative electrode electrolyte tank 107, an outward pipe 109, a return pipe 111, and a pump 113.
  • the negative electrode electrolyte tank 107 stores the negative electrode electrolyte.
  • the outward pipe 109 and the return pipe 111 connect the negative electrode electrolyte tank 107 and the negative electrode cell 103.
  • the pump 113 is provided in the outbound pipe 109 on the supply side.
  • the positive electrode electrolyte is supplied from the positive electrode electrolyte tank 106 to the positive electrode 104 via the outward pipe 108, and is returned from the positive electrode 104 to the positive electrode tank 106 via the return pipe 110.
  • the negative electrode electrolytic solution is supplied from the negative electrode electrolyte tank 107 to the negative electrode electrode 105 via the outward path pipe 109, and is returned from the negative electrode electrode 105 to the negative electrode electrolyte tank 107 via the return path pipe 111.
  • a solution containing ions as an active substance can be used.
  • a typical electrolytic solution is an aqueous solution containing the above ions and an acid.
  • the electrolytic solution has a known composition such as an all vanadium-based RF battery containing vanadium ions as a positive and negative active material, a Mn—Ti-based RF battery containing manganese ions as a positive electrode active material and titanium ions as a negative electrode active material, and the like. Can be used.
  • a plurality of RF batteries were manufactured using a bipolar plate having a plurality of grooves in the central region of the front and back surfaces.
  • the plurality of groove portions provided on the front and back surfaces of the bipolar plate are composed of linear grooves along the direction from the first edge to the second edge.
  • the plurality of grooves satisfy the following conditions (1) to (3).
  • the number of grooves provided on the front surface of the bipolar plate is the same as the number of grooves provided on the back surface.
  • the number of grooves shown in Table 1 is the total number of the grooves on the front surface and the grooves on the back surface of the bipolar plate.
  • each groove is provided so that the groove provided on the front surface and the groove provided on the back surface overlap when the bipolar plate is viewed in a plan view.
  • the cross-sectional shape of each groove is rectangular. In this example, all the grooves have the same cross-sectional shape and the same dimensions.
  • the test body H was prepared from the test body A in which the thickness T of the bipolar plate, the groove depth D of each groove portion, the groove width W, and the number of groove portions were changed.
  • the cross-sectional area of each groove is represented by the product of the groove depth D and the groove width W.
  • Each numerical value shown in Table 1 includes an approximate value rounded off. Refer to FIG. 2 for the dimensions of each groove.
  • the width of the bipolar plate was 600 mm in each case.
  • the width of the bipolar plate is the length in the left-right direction in FIG.
  • Charging and discharging were performed using the RF battery of each test piece, and the degree of penetration of the electrolytic solution into the bipolar plate and the degree of bonding between the bipolar plate and the frame were examined. Charging and discharging were performed at 50 ° C. with a differential pressure between the positive and negative electrodes set to 0.1 MPa. The degree of penetration of the electrolytic solution was examined by observing the cross section of the bipolar plate to see if the elements contained in the electrolytic solution were contained in the bipolar plate after charging and discharging. Specifically, the cross section is elementally analyzed using an energy dispersive X-ray analyzer (EDX), and the elements contained in the electrolytic solution are mapped.
  • EDX energy dispersive X-ray analyzer
  • the depth of the element contained in the electrolytic solution from the front surface or the back surface of the bipolar plate was measured. Sulfur in sulfuric acid was used as the element contained in the electrolytic solution.
  • the case where the electrolytic solution does not permeate is evaluated as A
  • the case where the permeation is observed in the region less than 70% of the cross section is evaluated as B
  • the case where the permeation is observed in 70% or more of the cross section is evaluated as C.
  • the joint condition between the bipolar plate and the frame was visually confirmed after charging and discharging.
  • the case where no peeling is observed between the bipolar plate and the frame is evaluated as A
  • the case where small peeling is observed is evaluated as B
  • the case where large peeling is observed is evaluated as C.
  • the current efficiency when charging and discharging was performed was measured. The current efficiency was determined by (discharge time / charge time) ⁇ 100 (%). The results are shown in Table 2.
  • the rigidity of the bipolar plate is not too high, even if thermal stress acts on the region exposed from the frame body in the bipolar plate, damage to the bipolar plate and the frame body can be suppressed, and the bipolar plate and the frame body can be prevented from being damaged. It is considered that the peeling of the material was suppressed.
  • test body B to the test body G having the cross-sectional area ratio of 0.05 or more and 0.60 or less have a current efficiency of 90% or more and a high current efficiency. It is considered that the test bodies B to G were able to appropriately secure the rigidity of the bipolar plate and suppress the permeation of the electrolytic solution into the bipolar plate.
  • the electrolytic solution permeated the bipolar plate so that the positive electrode electrolytic solution distributed on the first surface of the bipolar plate and the negative electrode electrolytic solution distributed on the second surface were mixed, and self-discharge occurred. it is conceivable that.
  • the test piece H having a cross-sectional area ratio of 0.04 a large peeling was observed between the bipolar plate and the frame body. Therefore, the current efficiency of the test body H was as low as 77%. It is probable that in the test body H, the positive electrode and the negative electrode electrolytic solution were mixed at the joint portion between the bipolar plate and the frame due to the large peeling of the bipolar plate and the frame, and self-discharge occurred.
  • the width and thickness T of the bipolar plate, the groove depth D of each groove portion, the groove width W, the number, the shape, the inter-groove distance M, and the like can be appropriately changed.
  • Bipolar plate 1a 1st surface 1b 2nd surface 11 1st edge, 12 2nd edge 13 Central area, 14 Specific cross section, 15 Covered area 2 Groove, 3 Ridge 5 Center line, 6 Edge spacing T Thickness, D Groove Depth, W Groove Width, M Groove Distance 8 Cell Frame 80 Frame, 81 Window 82, 83 Liquid Supply Manifold, 84, 85 Drainage Manifold 82s, 83s Liquid Supply Slit, 84s, 85s Drainage Slit 86 Supply Liquid rectifying unit, 87 Drainage rectifying unit 88 Seal groove, 89 Sealing member 100 RF battery 100C Battery cell 101 Diaphragm 102 Positive electrode cell, 103 Negative electrode cell 104 Positive electrode, 105 Negative electrode 106 Positive electrode electrolyte tank, 107 Negative electrode electrolyte tank 108 , 109 Outbound piping, 110, 111 Inbound piping 112, 113 Pump 200 Cell stack, 210, 220 End plate, 230 Fasten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

互いに向かい合う第一面と第二面とを備える双極板であって、第一面及び第二面の各々は、第一縁と、第二縁と、中央領域とを備え、第一縁は、電解液が供給される側に位置する縁であり、第二縁は、電解液が排出される側に位置する縁であり、中央領域は、中央線から第一縁及び第二縁の各々に向かって縁間隔の20%以内の領域であり、中央線は、第一縁と第二縁との間を二等分する線であり、縁間隔は、第一縁と第二縁との間隔であり、第一面及び第二面の少なくとも一方における中央領域は、電解液が流通される複数の溝部を備え、中央領域は、双極板を特定方向に切断した特定断面を備え、特定方向は、第一縁から第二縁に向かう方向と直交する方向であり、特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、Aは、双極板の断面積であり、Bは、複数の溝部の合計断面積である、双極板。

Description

双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
 本開示は、双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池に関する。
 特許文献1は、互いに向かい合う第一面及び第二面の少なくとも一方の面に、電解液が流通される複数の溝部を備える双極板を開示する。双極板は、双極板の外周に枠体が配置されて、セルフレームと呼ばれる形態でレドックスフロー電池に利用される。
国際公開第2016/208482号
 本開示の双極板は、
 互いに向かい合う第一面と第二面とを備える双極板であって、
 前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
 前記第一縁は、電解液が供給される側に位置する縁であり、
 前記第二縁は、前記電解液が排出される側に位置する縁であり、
 前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
 前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
 前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
 前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
 前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
 前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
 前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
 前記Aは、前記双極板の断面積であり、
 前記Bは、前記複数の溝部の合計断面積である。
 本開示のセルフレームは、
 本開示の双極板と、
 前記双極板の外周に設けられる枠体とを備える。
 本開示の電池セルは、本開示のセルフレームを備える。
 本開示のセルスタックは、本開示の電池セルを複数備える。
 本開示のレドックスフロー電池は、本開示の電池セル、又は本開示のセルスタックを備える。
図1は、実施形態に係る双極板を示す平面図である。 図2は、図1のII-II線で切断した断面図である。 図3は、実施形態に係るセルフレームを示す平面図である。 図4は、実施形態に係るレドックスフロー電池の基本構造を模式的に示す説明図である。 図5は、実施形態に係る電池セル及び実施形態に係るセルスタックの概略を示す斜視図である。
 [本開示が解決しようとする課題]
 レドックスフロー電池の運転時、双極板には、電解液が流通されることによる熱応力が作用する。この双極板の熱応力に対して、セルフレームが損傷しないことが求められる。また、レドックスフロー電池では、電流効率が高いことが求められる。
 そこで、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られる双極板を提供することを目的の一つとする。また、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られるセルフレームを提供することを別の目的の一つとする。更に、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セル、セルスタック、及びレドックスフロー電池を提供することを別の目的の一つとする。
 [本開示の効果]
 本開示の双極板及びセルフレームは、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られる。本開示の電池セル、セルスタック、及びレドックスフロー電池は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
 [本開示の実施形態の説明]
 単体の双極板は、厚いと剛性を含む機械的特性が高くなり、熱応力によって損傷が生じ難くなる。しかし、双極板を枠体と組み合わせてセルフレームとして電池セルに利用する場合、双極板が厚いと、双極板と枠体との接合部及びその近傍に損傷が生じ得ることが判明した。他に、双極板が厚いと、電池セルの電流効率が低くなる傾向にある。
 溝部を備える双極板において、特定の領域における溝部の大きさを検討したところ、双極板と枠体との接合部及びその近傍に熱応力による損傷が生じることを抑制でき、かつ電流効率が高い電池セルが得られることがわかった。本開示は、上記知見に基づき、双極板の特定断面において、双極板と複数の溝部との断面積比を規定する。
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る双極板は、
 互いに向かい合う第一面と第二面とを備える双極板であって、
 前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
 前記第一縁は、電解液が供給される側に位置する縁であり、
 前記第二縁は、前記電解液が排出される側に位置する縁であり、
 前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
 前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
 前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
 前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
 前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
 前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
 前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
 前記Aは、前記双極板の断面積であり、
 前記Bは、前記複数の溝部の合計断面積である。
 断面積比が0.05以上である双極板は、溝部がある程度確保されていると言える。断面積比が0.05以上である双極板は、溝部が極めて少ない双極板に比較して、剛性が低い。双極板の剛性が低いことで、双極板に熱応力が作用したとしても、双極板と枠体との接合部及びその近傍において、双極板及び枠体の少なくとも一方に損傷が生じることを抑制できる。
 断面積比が0.60以下である双極板は、双極板を構成する実体部分がある程度確保されていると言える。よって、双極板の剛性が低くなり過ぎて、双極板自体に損傷が生じることを抑制できる。溝部が多く確保されると、双極板における電解液で濡れる面積が増加し、電解液が双極板に浸透することがあり得る。断面積比が0.60以下である双極板は、断面積比が0.60超である双極板即ち溝部が極めて多い双極板に比較して、電解液に濡れる面積が小さいと言える。この濡れる面積が小さいことで、電解液が双極板に浸透し難い。結果として、双極板の第一面と第二面との間で電解液が流通することを抑制できる。よって、第一面に流通される電解液と第二面に流通される電解液とが混合することを抑制できる。上記混合に起因して、電池セルにおいて自己放電が生じることを抑制できる。その結果、電池セルの電流効率が低くなることを抑制できる。
 (2)本開示の双極板の一例として、
 前記双極板の厚さが2mm以上15mm以下である形態が挙げられる。
 双極板の厚さが2mm以上であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。一方、双極板の厚さが15mm以下であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、双極板の厚さが15mm以下であることで、双極板の厚肉化を抑制し易く、電池セルの電流効率が低くなることを抑制し易い。
 (3)本開示の双極板の一例として、
 前記複数の溝部の各々における断面積は、0.8mm以上8mm以下である形態が挙げられる。
 各溝部の断面積が0.8mm以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、各溝部の断面積が0.8mm以上であることで、電解液の流通性を確保し易い。一方、各溝部の断面積が8mm以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
 (4)本開示の双極板の一例として、
 前記複数の溝部の各々における溝深さは、0.7mm以上7mm以下である形態が挙げられる。
 溝深さが0.7mm以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、溝深さが0.7mm以上であることで、電解液の流通性を確保し易い。一方、溝深さが7mm以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
 (5)本開示の双極板の一例として、
 前記複数の溝部の各々における溝幅は、0.6mm以上6mm以下である形態が挙げられる。
 溝幅が0.6mm以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、溝幅が0.6mm以上であることで、電解液の流通性を確保し易い。一方、溝幅が6mm以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
 (6)本開示の双極板の一例として、
 隣り合う前記溝部間の距離は、1mm以上10mm以下である形態が挙げられる。
 隣り合う溝部間の距離が1mm以上であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。一方、隣り合う溝部間の距離が10mm以下であることで、溝部を確保し易く、双極板の剛性が高くなり過ぎることを抑制し易い。
 (7)本開示の双極板の一例として、
 前記複数の溝部における80%以上の溝部は、同じ断面形状を有する形態が挙げられる。
 上記形態は、上記断面積比を満たす双極板を製造し易い。
 (8)本開示の一態様に係るセルフレームは、
 上記(1)から(7)のいずれか一つの双極板と、
 前記双極板の外周に設けられる枠体とを備える。
 本開示のセルフレームは、本開示の双極板を備えることで、双極板に熱応力が作用したとしても、双極板と枠体との接合部及びその近傍において、双極板及び枠体の少なくとも一方に損傷が生じることを抑制できる。また、本開示のセルフレームは、本開示の双極板を備えることで、電池セルの電流効率が低くなることを抑制できる。
 (9)本開示の一態様に係る電池セルは、上記(8)のセルフレームを備える。
 本開示の電池セルは、本開示のセルフレームを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
 (10)本開示の一態様に係るセルスタックは、上記(9)の電池セルを複数備える。
 本開示のセルスタックは、本開示の電池セルを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
 (11)本開示の一態様に係るレドックスフロー電池は、上記(9)の電池セル、又は上記(10)のセルスタックを備える。
 本開示のレドックスフロー電池は、本開示の電池セル又は本開示のセルスタックを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
 [本開示の実施形態の詳細]
 本開示の実施形態の双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池の詳細を、図面を参照して説明する。以下、レドックスフロー電池をRF電池と呼ぶ。図中の同一符号は、同一名称物を示す。
 <双極板>
 〔概要〕
 図1及び図2を参照して、実施形態の双極板1を説明する。図1は、双極板1を第一面1a側から見た平面図である。双極板1は、複数の溝部2を備える。図1では、複数の溝部2のうち、隣り合う三つの溝部2のみを図示し、その他の溝部を「…(ドット)」で省略して示す。図1では、分かり易いように、溝部2以外の領域にハッチングを付している。図2は、双極板1の中央領域13(図1)における特定断面14を示す。特定断面14において、双極板の断面積をAとし、複数の溝部2の合計断面積をBとする。実施形態の双極板1の特徴の一つは、特定断面14において、B/(A+B)で表される断面積比が、0.05以上0.60以下である点にある。
 〔基本構成〕
 双極板1は、RF電池100(図4)の構成部材である。双極板1は、電池セル100C(図4)内に流通される正極電解液と負極電解液とを区画する導電性の平板である。双極板1は、図1及び図2に示すように、互いに向かい合う第一面1aと第二面1bとを備える。第一面1aは、図1に示すように、第一縁11と第二縁12と中央領域13とを備える。第二面1bも、図示しないが、第一面1aと同様に、第一縁と第二縁と中央領域とを備える。
 双極板1は、双極板1の外周に後述する枠体80(図3)が配置されて、セルフレーム8を構成する。第一縁11は、電解液が供給される側に位置する縁である。第一縁11は、セルフレーム8を構成した際、図3に示すように、双極板1の縁のうち、枠体80に設けられる供給路のある側に位置する縁である。枠体80における供給路は、給液マニホールド82、83と、給液スリット82s、83sと、給液整流部86とを備える。
 第二縁12は、電解液が排出される側に位置する縁である。第二縁12は、セルフレーム8を構成した際、図3に示すように、双極板1の縁のうち、枠体80に設けられる排出路のある側に位置する縁である。枠体80における排出路は、排液マニホールド84、85と、排液スリット84s、85sと、排液整流部87とを備える。
 第一縁11と第二縁12とは、向かい合って位置する。本例の双極板1は、図1に示すように、矩形状の平板である。そのため、本例では、第一縁11及び第二縁12は、互いに向かい合う直線状の縁である。よって、本例では、第一縁11と第二縁12との間隔は、第一縁11又は第二縁12の長手方向に沿って一様である。以下、第一縁11と第二縁12との間隔を縁間隔6と呼ぶ。
 双極板1の平面形状は、矩形状以外に、六角形状や八角形状等の多角形状や、円形状、楕円形状等でもよい。双極板1の平面形状によっては、第一縁11及び第二縁12は、直線状の縁ではなく、折れ線状や曲線状の縁であることもある。この場合、縁間隔6は、第一縁11又は第二縁12の長手方向に沿って異なることがある。
 中央領域13は、図1に示すように、中央線5から第一縁11及び第二縁12の各々に向かって縁間隔6の20%以内の領域である。中央線5は、第一縁11と第二縁12との間を二等分する線である。本例の中央線5は、直線である。双極板1の平面形状によっては、中央線5は、直線ではなく、折れ線や曲線であることもある。縁間隔6は、一定の値を採用する。縁間隔6が第一縁11又は第二縁12の長手方向に沿って異なる場合、縁間隔6として最大値を採用する。例えば、双極板1の平面形状が円形状の場合、縁間隔6は直径を採用する。中央領域13における中央線5の長手方向と直交する方向の長さは、中央線5の長手方向に沿って一様である。
 第一面1a及び第二面1bの少なくとも一方における中央領域13は、複数の溝部2を備える。本例では、図2に示すように、第一面1a及び第二面1bの各々の中央領域13(図1)に、複数の溝部2が設けられている。
 〔溝部〕
 複数の溝部2には、電解液が流通される。第一面1aに設けられる複数の溝部2には、正極電解液が流通される。第二面1bに設けられる複数の溝部2には、負極電解液が流通される。各溝部2の形状や寸法が調整されることで、電解液の流れが調整される。
 本例の各溝部2は、図1に示すように、第一縁11と第二縁12とをつなぐように構成されている。本例の各溝部2は、第一縁11と第二縁12とをつなぐ単一の溝で構成されている。中央領域13における各溝部2は、上記単一の各溝部2の一部である。本例では、全ての溝部2が、第一縁11から第二縁12に向かう方向に沿った直線状の溝で構成されている。各溝部2の幅は、溝部2の長手方向に一様であってもよいし、第一縁11から第二縁12に向かって広くなっていたり、逆に狭くなっていたり、溝部2の長手方向に異なっていてもよい。また、各溝部2は、溝部2の長手方向に分断されていてもよい。また、各溝部2は、溝部2の長手方向に屈曲していたり、湾曲していたりしてもよい。各溝部2の深さは、溝部2の長手方向に一様であってもよいし、第一縁11から第二縁12に向かって深くなっていたり、逆に浅くなっていたり、溝部2の長手方向に異なっていてもよい。
 複数の溝部2は、第一縁11又は第二縁12の長手方向に沿って並んで設けられている。双極板1は、後述するように、双極板1の外周に枠体80が配置されて、セルフレーム8と呼ばれる形態で利用される(図3から図5)。電解液は、双極板1における枠体80から露出される露出領域を流通する。よって、複数の溝部2は、上記露出領域に均一的に設けられていることが挙げられる。双極板1における枠体80に重なる被覆領域15(図2)には、電解液は流通されない。被覆領域15は、第一面1aと第二面1bの両面に枠体80が重なる場合と、第一面1aと第二面1bのいずれかの面にのみ枠体80が重なる場合とがある。複数の溝部2は、上記露出領域の中央は勿論、被覆領域15近傍にまで設けられていることが挙げられる。
 隣り合う溝部2間には、畝部3が構成される。畝部3は、双極板1の最表面の大部分を構成する。後述する電池セル100C(図4、図5)を構築すると、第一面1aにおける畝部3が正極電極104に接触し、第二面1bにおける畝部3が負極電極105に接触する。電池セル100Cにおいて、双極板1上での電解液の流れは、各溝部2に沿った流れと、畝部3を跨いで隣り合う溝部2間をわたるような流れとを構成する。
 双極板1の中央領域13は、双極板1を特定方向に切断した特定断面14(図2)を備える。特定方向は、第一縁11から第二縁12に向かう方向と直交する方向である。第一縁11から第二縁12に向かう方向とは、双極板1全体でみたときの電解液の流通方向である。本例の電池セル100Cでは、図5に示すように、鉛直方向下側から上側に向かう方向に電解液が流れる。よって、本例の特定方向は、水平方向である。特定断面14は、中央線5が直線、折れ線、曲線等のいずれの場合であっても、平面で構成される。また、特定断面14は、縁間隔6が第一縁11又は第二縁12の長手方向に沿って異なる場合であっても、平面で構成される。特定断面14は、部分的に中央領域13以外の領域を含まず、全域にわたって中央領域13を含む。
 特定断面14は、第一面1a及び第二面1bの少なくとも一方に、複数の溝部2を備える。本例の特定断面14は、図2に示すように、第一面1a及び第二面1bの各々に、複数の溝部2を備える。
 第一面1a及び第二面1bの双方に複数の溝部2を備える場合、双極板1を平面視したときに、第一面1aに設けられる溝部2と第二面1bに設けられる溝部2とは、図2に示すように、重なる位置にあってもよい。双極板1を平面視したときに、第一面1aに設けられる溝部2と第二面1bに設けられる溝部2とは、一部が重なっていてもよいし、互いにずれて重ならなくてもよい。
 特定断面14において、双極板1の断面積をAとする。双極板1の断面積Aは、双極板1の実体部分の断面積である。双極板1の断面積Aは、図2に示すハッチング部分の断面積である。
 特定断面14において、複数の溝部2の合計断面積をBとする。各溝部2の断面積は、溝部2の開口縁同士を直線でつなぎ、その直線と溝部2の内周縁とで囲まれる断面積である。各溝部2の断面積は、図2に示す白抜きの矩形状の部分の断面積である。複数の溝部2の合計断面積Bは、各溝部2の断面積の合計である。
 ≪断面積比≫
 特定断面14において、B/(A+B)で表される断面積比は、0.05以上0.60以下である。断面積比が0.05以上である双極板1は、溝部2がある程度確保されていると言える。溝部2がある程度確保されることで、電解液の流通性を確保し易い。また、溝部2がある程度確保されることで、溝部2の存在によって双極板1の剛性が高くなり過ぎることを抑制できる。双極板1の剛性が高過ぎないことで、双極板1に熱応力が作用したとしても、双極板1と枠体80との接合部及びその近傍において、双極板1及び枠体80の少なくとも一方に損傷が生じることを抑制できる。
 一方、断面積比が0.60以下である双極板1は、双極板1を構成する実体部分がある程度確保されていると言える。よって、双極板1の剛性が低くなり過ぎて、双極板1自体に損傷が生じることを抑制できる。また、断面積比が0.60以下である双極板1は、電解液に濡れる面積の増加が抑制されていると言える。双極板1は、電解液を通さない材料で構成されている。しかし、双極板1に溝部2を備える場合、双極板1における電解液に濡れる面積が増加し、電解液が双極板1に浸透することがあり得る。断面積比が0.60以下であることで、電解液が双極板1に浸透し難い。結果として、双極板1の第一面1aと第二面1bとの間で電解液が流通することを抑制できる。よって、第一面1aに流通される電解液と第二面1bに流通される電解液とが混合することを抑制できる。その結果、上記混合に起因して、電池セル100C(図4、図5)に自己放電が生じることを抑制できる。自己放電を抑制できることで、電池セル100Cの電流効率が低くなることを抑制できる。
 断面積比は、更に0.10以上0.40以下、特に0.15以上0.30以下であることが好ましい。
 中央領域13は、上記特定方向に切断した複数の断面を採取することができる。複数の断面のうち、少なくとも一つの断面が、上記断面積比を満たす特定断面14であればよい。中央領域13において、等間隔に5つ以上の断面を採取することが挙げられる。この場合、5つ以上の断面のうち、80%以上、更に90%以上、特に全ての断面が、上記断面積比を満たす特定断面14であることが好ましい。
 ≪溝形状≫
 特定断面14において、各溝部2の断面形状は、任意の形状を選択できる。各溝部2の断面形状としては、例えば、矩形状、半円形状、V字形状、U字形状、溝部2の開口幅が底面の幅よりも広い台形状、溝部2の開口幅が底面の幅よりも狭い蟻溝形状等が挙げられる。全ての溝部2の断面形状が同じであってもよいし、異なる断面形状の溝部2が含まれていてもよい。複数の溝部2の本数を100%とするとき、複数の溝部2における80%以上の溝部2が同じ断面形状であることが好ましい。同じ断面形状とは、各溝部2における長手方向の同じ位置での断面形状が合同又は相似であることである。複数の溝部2の80%以上が同じ断面形状を有することで、上記断面積比を満たす双極板1を製造し易い。特に、複数の溝部2の本数を100%とするとき、複数の溝部2における80%以上の溝部2が合同であることが好ましい。複数の溝部2の80%以上が合同であることで、電解液の流通状態が均一的になり易い。上述の製造の容易性の観点から、複数の溝部2の85%以上、更に90%以上が同じ断面形状を有してもよい。また、上述の製造の容易性、及び電解液の流通状態の均一性の観点から、複数の溝部2の85%以上、更に90%以上が合同であってもよい。全ての溝部2の断面形状が同じでもよい。
 ≪溝断面積≫ 
 特定断面14において、各溝部2の断面積は、0.8mm以上8mm以下であることが好ましい。各溝部2の断面積が0.8mm以上であることで、電解液の流通性を確保し易い。また、各溝部2の断面積が0.8mm以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、各溝部2の断面積が8mm以下であることで、双極板1の全体にわたって均一的に溝部2が位置し易い。そうすることで、双極板1に剛性の偏りが生じることを抑制し易い。各溝部2の断面積は、更に1mm以上4mm以下、特に1.5mm以上3mm以下であることが好ましい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の断面積を満たすことが好ましい。
 ≪溝深さ≫
 特定断面14において、各溝部2の溝深さDは、0.7mm以上7mm以下であることが好ましい。溝深さDは、溝部2の開口縁同士をつないだ直線から溝底の最も遠い箇所までの長さとする。溝深さDが0.7mm以上であることで、電解液の流通性を確保し易い。また、溝深さDが0.7mm以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝深さDが7mm以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝深さDは、更に、1mm以上4mm以下、1mm以上3mm以下、特に1mm以上2mm以下であることが好ましい。各溝部2の溝深さDは、1.4mm以上でもよい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の溝深さDを満たすことが好ましい。
 特定断面14において、各溝部2の溝深さDは、双極板1の厚さTの12%以上39%以下であることが好ましい。溝深さDが双極板1の厚さTの12%以上であることで、電解液の流通性を確保し易い。また、溝深さDが双極板1の厚さTの12%以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝深さDが双極板1の厚さTの39%以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝深さDは、更に、双極板1の厚さTの15%以上33%以下、特に18%以上25%以下であることが好ましい。
 ≪溝幅≫
 特定断面14において、各溝部2の溝幅Wは、0.6mm以上6mm以下であることが好ましい。溝幅Wは、溝部2の開口縁から溝底に向かって一様でない幅を有する場合、最も広い幅とする。溝幅Wが0.6mm以上であることで、電解液の流通性を確保し易い。また、溝幅Wが0.6mm以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝幅Wが6mm以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝幅Wは、更に、1mm以上4mm以下、特に1.2mm以上3mm以下であることが好ましい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の溝幅Wを満たすことが好ましい。
 ≪溝間距離≫
 特定断面14において、隣り合う溝部2間の溝間距離Mは、1mm以上10mm以下であることが好ましい。溝間距離Mは、畝部3の幅である。溝間距離Mが1mm以上であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。一方、溝間距離Mが10mm以下であることで、溝部2を確保し易く、双極板1の剛性が高くなり過ぎることを抑制し易い。溝間距離Mは、更に、1.1mm以上7mm以下、特に1.2mm以上5mm以下であることが好ましい。溝間距離Mは、1.5mm以上7mm以下、特に2mm以上5mm以下であってもよい。複数の特定断面14を採取した場合、特定断面14の各々が、上記溝間距離Mを満たすことが好ましい。
 ≪双極板の厚さ≫
 双極板1の厚さTは、2mm以上15mm以下であることが好ましい。双極板1の厚さTは、双極板1における枠体80(図4、図5)からの露出領域での第一面1a及び第二面1bの最表面間の長さである。双極板1の厚さTが2mm以上であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。一方、双極板1の厚さTが15mm以下であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。また、双極板1の厚さが15mm以下であることで、双極板1の厚肉化を抑制し易く、電池セル100C(図4、図5)の電流効率が低くなることを抑制し易い。双極板1の厚さTは、更に、3mm以上10mm以下、特に4mm以上8mm以下であることが好ましい。
 本例の双極板1は、枠体80(図4、図5)が配置される被覆領域15と、枠体80から露出される露出領域とが、実質的に同じ厚さTで構成されている。他に、被覆領域15は、露出領域よりも薄く構成されていてもよい。例えば、枠体80に凹部(図示せず)が設けられている場合、この凹部に薄肉部で構成された被覆領域15を嵌め込むことで、双極板1と枠体80とを一体化することができる。
 ≪双極板の構成材料≫
 双極板1の構成材料は、例えば有機複合材、いわゆる導電性プラスチック等が挙げられる。有機複合材は、例えば、炭素系材料や金属等の導電性材料と熱可塑性樹脂等の有機材とを含むものが挙げられる。双極板1は、例えば公知の方法によって板状に成形することで得られる。導電性プラスチックの成形方法は、例えば射出成形、プレス成形、真空成形等が挙げられる。複数の溝部2は、双極板1を板状に成形する際に同時に成形することが挙げられる。他に、平坦な平板材に切削加工等を行って複数の溝部2を形成することもできる。
 <セルフレーム>
 図3を参照して、実施形態のセルフレーム8を説明する。セルフレーム8は、双極板1と枠体80とを備える。双極板1は、上述した実施形態の双極板1である。枠体80は、双極板1の外周に設けられる。枠体80は、双極板1を支持する。
 枠体80は、双極板1の表裏に配置される正極電極104及び負極電極105(図4、図5)へ電解液を供給すると共に、正極電極104及び負極電極105から電解液を排出することに利用される。枠体80は、窓部81と、電解液の供給路と、電解液の排出路とを備える。窓部81は、枠体80の中央部に設けられて、双極板1における正極電極104及び負極電極105が配置される領域を露出させる。図2は、枠体80として、外形が長方形であり、かつ窓部81の形状も長方形である場合を例示する。枠体80の外形、及び窓部81の形状は適宜選択できる。
 代表的には、枠体80は、第一面に正極電解液の供給路及び排出路を備え、第二面に負極電解液の供給路及び排出路を備える。正極電解液の供給路は、給液マニホールド82と、給液スリット82sと、給液整流部86とを備える。本例の給液整流部86は、枠体80の内周縁に形成された切欠きで構成されている。給液スリット82sは、給液マニホールド82と給液整流部86とをつなぐ。給液整流部86は、給液スリット82sから供給される正極電解液を双極板1における第一縁11の長手方向に沿って拡散させる。正極電解液の排出路は、排液マニホールド84と、排液スリット84sと、排液整流部87とを備える。本例の排液整流部87は、枠体80の内周縁に形成された切欠きで構成されている。排液スリット84sは、排液マニホールド84と排液整流部87とをつなぐ。排液整流部87は、双極板1から排出される正極電解液を集約して排液スリット84sに導く。負極電解液の供給路は、正極電解液の供給路と同様に、給液マニホールド83と、給液スリット83sと、給液整流部(図示せず)とを備える。また、負極電解液の排出路は、正極電解液の排出路と同様に、排液マニホールド85と、排液スリット85sと、排液整流部(図示せず)とを備える。本例の枠体80には、周方向に沿ってシール溝88が設けられている。シール溝88には、シール部材89(図4、図5)が配置される。
 枠体80は、電気絶縁材料からなる。電気絶縁材料は、例えば、熱可塑性樹脂といった各種の樹脂が挙げられる。熱可塑性樹脂は、例えば、塩化ビニルが挙げられる。枠体80は、例えば、分割片を組み合わせることで構成できる。セルフレーム8は、例えば、双極板1を挟むように分割片を組み合わせて適宜接合することで構成できる。接合方法としては、熱融着や、シール部材(図示せず)を介して圧縮することが挙げられる。他に、セルフレーム8は、枠体80の窓部81に双極板1を嵌め込むことで構成できる。他に、セルフレーム8は、双極板1の外周に枠体80を射出成形等で成形することで構成できる。
 <RF電池>
 図4及び図5を参照して、実施形態のRF電池100を説明する。RF電池100は、電解液循環型の蓄電池の一つである。RF電池100は、電池セル100C又はセルスタック200と、電池セル100Cに電解液を供給する循環機構とを備える。RF電池100は、電池セル100Cに電解液を供給しながら、充放電を行う。
 RF電池100は、代表的には、変電設備700、交流/直流変換器600を介して、発電部800と負荷900とに接続される。RF電池100は、発電部800を電力供給源として充電を行い、負荷900を電力提供対象として放電を行う。発電部800は、例えば、太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。負荷900は、例えば、電力系統や電力の需要家等が挙げられる。RF電池100は、負荷平準化、瞬低補償や非常用電源、太陽光発電や風力発電といった自然エネルギー発電の出力平滑化等に利用される。
 <電池セル>
 電池セル100Cは、隔膜101で正極セル102と負極セル103とに分離されている。正極セル102には、正極電解液が供給される正極電極104が内蔵されている。負極セル103には、負極電解液が供給される負極電極105が内蔵されている。電池セル100Cは、一組のセルフレーム8に挟まれて構成される。セルフレーム8は、上述した実施形態のセルフレーム8である。正極電極104及び負極電極105は、例えば、炭素系材料の繊維集合体、多孔質の金属部材等が挙げられる。炭素系材料の繊維集合体は、例えば、カーボンフェルト、カーボンペーパー、カーボンクロス等が挙げられる。隔膜101は、例えば、イオン交換膜等が挙げられる。
 RF電池100が一つの電池セル100Cを備える単セル電池である場合、RF電池100は、セルフレーム8、正極電極104、隔膜101、負極電極105、セルフレーム8という順に積層された積層物を備える。RF電池100が複数の電池セル100Cを備える多セル電池である場合、RF電池100は、セルフレーム8、正極電極104、隔膜101、負極電極105という順に繰り返し積層された積層物を備える。この積層物がセルスタック200である。セルスタック200は、所定の出力電圧を得るために、上記の構造の電池セル100Cが積層されて直列接続される。
 <セルスタック>
 セルスタック200は、代表的には、複数の電池セル100Cを備える上述の積層物と、一対のエンドプレート210、220と、締結部材230とを備える。締結部材230は、長ボルト等の連結材及びナット等が挙げられる。一対のエンドプレート210、220は、締結部材230によって締め付けられる。この締付力によって、上記積層体は、積層された状態に保持される。
 セルスタック200は、所定数の電池セル100Cをサブスタック(図示せず)とし、複数のサブスタックを積層した形態で利用される。セルスタック200では、サブスタックやセルスタック200における電池セル100Cの積層方向の両端に位置するセルフレーム8に接して、給排板(図示せず)が配置される。
 <循環機構>
 循環機構は、正極セル102に正極電解液を循環させる正極循環機構と、負極セル103に負極電解液を循環させる負極循環機構とを備える。正極循環機構は、正極電解液タンク106と、往路配管108と、復路配管110と、ポンプ112とを備える。正極電解液タンク106は、正極電解液を貯留する。往路配管108及び復路配管110は、正極電解液タンク106と正極セル102との間をつなぐ。ポンプ112は、供給側の往路配管108に設けられる。負極循環機構は、負極電解液タンク107と、往路配管109と、復路配管111と、ポンプ113とを備える。負極電解液タンク107は、負極電解液を貯留する。往路配管109及び復路配管111は、負極電解液タンク107と負極セル103との間をつなぐ。ポンプ113は、供給側の往路配管109に設けられる。
 正極電解液は、正極電解液タンク106から往路配管108を介して正極電極104に供給され、正極電極104から復路配管110を介して正極電解液タンク106に戻される。負極電解液は、負極電解液タンク107から往路配管109を介して負極電極105に供給され、負極電極105から復路配管111を介して負極電解液タンク107に戻される。正極電極104に正極電解液を循環させると共に、負極電極105に負極電解液を循環させることで、電池セル100Cは、各極の電解液中の活物質イオンの価数変化反応に伴って充放電を行う。
 上述したRF電池100の基本構成は、公知の構成を適宜利用できる。
 <電解液>
 電解液には、活物質となるイオンを含む溶液が利用できる。代表的な電解液は、上記イオンと、酸とを含む水溶液が挙げられる。電解液は、正負の活物質としてバナジウムイオンを含む全バナジウム系RF電池、正極活物質としてマンガンイオンを含み、負極活物質としてチタンイオンを含むMn-Ti系RF電池等、公知の組成の電解液を利用することができる。
 [試験例]
 表裏面の中央領域に複数の溝部を備える双極板を用いて、複数のRF電池を作製した。本例では、図1に示すように、双極板の表裏面の各面に設けられる複数の溝部は、第一縁から第二縁に向かう方向に沿った直線状の溝で構成した。また、本例では、図2に示すように、複数の溝部は、以下の条件(1)から(3)を満たす。(1)双極板の表面に設けられる溝部の個数と裏面に設けられる溝部の個数とが同じである。表1に記載の溝部の個数は、双極板の表面の溝部と裏面の溝部との合計数である。(2)双極板を平面視したときに、表面に設けられる溝部と裏面に設けられる溝部とが重なるように各溝部が設けられている。(3)各溝部の断面形状は矩形状である。本例では、全ての溝部を同じ断面形状かつ同じ寸法とした。本例では、表1に示すように、双極板の厚さT、各溝部の溝深さD、溝幅W、溝部の個数を変えた試験体Aから試験体Hを作製した。各溝部の断面積は、溝深さDと溝幅Wとの積で表される。表1に示す各数値は、四捨五入した概算値を含む。各溝部の寸法は、図2を参照する。双極板の幅は、いずれも600mmとした。双極板の幅は、図2の左右方向の長さである。
Figure JPOXMLDOC01-appb-T000001
 各試験体のRF電池を用いて充放電を行い、双極板への電解液の浸透具合と、双極板と枠体との接合具合とを調べた。充放電は、50℃にて、正負極間の差圧を0.1MPaとして行った。電解液の浸透具合は、充放電を行った後に、電解液に含まれる元素が双極板中に含まれるか否かを、双極板の断面を観察することで調べた。具体的には、エネルギー分散型X線分析装置(EDX)を用いて上記断面を元素分析し、電解液に含まれる元素をマッピングする。電解液に含まれる元素における双極板の表面又は裏面からの深さを測定した。電解液に含まれる元素としては、硫酸中の硫黄を用いた。上記断面において電解液の浸透が見られない場合をA、断面の70%未満の領域に浸透が見られる場合をB、断面の70%以上に浸透が見られる場合をCと評価する。双極板と枠体との接合具合は、充放電を行った後に、目視にて確認した。双極板と枠体との間に剥離が見られない場合をA、小さな剥離が見られる場合をB、大きな剥離が見られる場合をCと評価する。また、充放電を行ったときの電流効率を測定した。電流効率は、(放電時間/充電時間)×100(%)で求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表1及び表2より、断面積比が0.05以上である試験体Aから試験体Gは、双極板と枠体との間に大きな剥離は見られなかった。特に、断面積比が0.15以上である試験体Aから試験体Eは、双極板と枠体との間に実質的に剥離は見られなかった。断面積比が大きいほど、溝部が多く確保され、溝部の存在によって双極板の剛性が高くなり過ぎることを抑制できたからと考えられる。双極板の剛性が高過ぎないことで、双極板における枠体から露出される領域に熱応力が作用したとしても、双極板や枠体に損傷が生じることを抑制でき、双極板と枠体との剥離が抑制されたと考えられる。
 表1及び表2より、断面積比が0.60以下である試験体Bから試験体Hは、双極板の全域にわたる電解液の浸透は見られなかった。特に、断面積比が0.30以下である試験体Dから試験体Hは、双極板への電解液の浸透は実質的に見られなかった。断面積比が小さいほど、双極板を構成する実体部分が多く確保され、かつ双極板における電解液で濡れる面積が増加することが抑制できたからと考えられる。
 表2に示す電流効率を見ると、断面積比が0.05以上0.60以下である試験体Bから試験体Gは、電流効率が90%以上であり、電流効率が高いことがわかる。試験体Bから試験体Gは、双極板の剛性を適度に確保できると共に、双極板への電解液の浸透を抑制できたからと考えられる。
 断面積比が0.69である試験体Aは、双極板の全域にわたって電解液が浸透していた。そのため、試験体Aは、電流効率が65%と低かった。試験体Aは、双極板に電解液が浸透したことで、双極板の第一面に流通される正極電解液と第二面に流通される負極電解液とが混合し、自己放電が生じたからと考えられる。断面積比が0.04である試験体Hは、双極板と枠体との間に大きな剥離が見られた。そのため、試験体Hは、電流効率が77%と低かった。試験体Hは、双極板と枠体とが大きく剥離したことで、双極板と枠体との接合部分で正極電極と負極電解液とが混合し、自己放電が生じたからと考えられる。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、試験例において、双極板の幅及び厚さT、各溝部の溝深さD、溝幅W、個数、形状、溝間距離M等を適宜変更できる。
 1 双極板
 1a 第一面、1b 第二面
 11 第一縁、12 第二縁
 13 中央領域、14 特定断面、15 被覆領域
 2 溝部、3 畝部
 5 中央線、6 縁間隔
 T 厚さ、D 溝深さ、W 溝幅、M 溝間距離
 8 セルフレーム
 80 枠体、81 窓部
 82、83 給液マニホールド、84、85 排液マニホールド
 82s、83s 給液スリット、84s、85s 排液スリット
 86 給液整流部、87 排液整流部
 88 シール溝、89 シール部材
 100 RF電池
 100C 電池セル
 101 隔膜
 102 正極セル、103 負極セル
 104 正極電極、105 負極電極
 106 正極電解液タンク、107 負極電解液タンク
 108、109 往路配管、110、111 復路配管
 112、113 ポンプ
 200 セルスタック、 210、220 エンドプレート、230 締結部材
 600 交流/直流変換器、700 変電設備、800 発電部、900 負荷

Claims (11)

  1.  互いに向かい合う第一面と第二面とを備える双極板であって、
     前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
     前記第一縁は、電解液が供給される側に位置する縁であり、
     前記第二縁は、前記電解液が排出される側に位置する縁であり、
     前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
     前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
     前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
     前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
     前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
     前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
     前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
     前記Aは、前記双極板の断面積であり、
     前記Bは、前記複数の溝部の合計断面積である、
     双極板。
  2.  前記双極板の厚さが2mm以上15mm以下である請求項1に記載の双極板。
  3.  前記複数の溝部の各々における断面積は、0.8mm以上8mm以下である請求項1又は請求項2に記載の双極板。
  4.  前記複数の溝部の各々における溝深さは、0.7mm以上7mm以下である請求項1から請求項3のいずれか1項に記載の双極板。
  5.  前記複数の溝部の各々における溝幅は、0.6mm以上6mm以下である請求項1から請求項4のいずれか1項に記載の双極板。
  6.  隣り合う前記溝部間の距離は、1mm以上10mm以下である請求項1から請求項5のいずれか1項に記載の双極板。
  7.  前記複数の溝部における80%以上の溝部は、同じ断面形状を有する請求項1から請求項6のいずれか1項に記載の双極板。
  8.  請求項1から請求項7のいずれか1項に記載の双極板と、
     前記双極板の外周に設けられる枠体とを備える、
     セルフレーム。
  9.  請求項8に記載のセルフレームを備える、
     電池セル。
  10.  請求項9に記載の電池セルを複数備える、
     セルスタック。
  11.  請求項9に記載の電池セル、又は請求項10に記載のセルスタックを備える、
     レドックスフロー電池。
PCT/JP2020/036934 2020-09-29 2020-09-29 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池 WO2022070260A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/028,371 US20230395837A1 (en) 2020-09-29 2020-09-29 Bipolar Plate, Cell Frame, Battery Cell, Cell Stack, and Redox Flow Battery
CN202080105126.9A CN116034502A (zh) 2020-09-29 2020-09-29 双极板、单元框架、电池单元、电池堆以及氧化还原液流电池
EP20956190.1A EP4224584A1 (en) 2020-09-29 2020-09-29 Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
JP2022553263A JP7461614B2 (ja) 2020-09-29 2020-09-29 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
PCT/JP2020/036934 WO2022070260A1 (ja) 2020-09-29 2020-09-29 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036934 WO2022070260A1 (ja) 2020-09-29 2020-09-29 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2022070260A1 true WO2022070260A1 (ja) 2022-04-07

Family

ID=80951538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036934 WO2022070260A1 (ja) 2020-09-29 2020-09-29 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池

Country Status (5)

Country Link
US (1) US20230395837A1 (ja)
EP (1) EP4224584A1 (ja)
JP (1) JP7461614B2 (ja)
CN (1) CN116034502A (ja)
WO (1) WO2022070260A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148659A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd レドックスフロー型電池
JP2015505147A (ja) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 混合流を用いるフローバッテリ
WO2016208482A1 (ja) * 2015-06-23 2016-12-29 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148659A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd レドックスフロー型電池
JP2015505147A (ja) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 混合流を用いるフローバッテリ
WO2016208482A1 (ja) * 2015-06-23 2016-12-29 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池

Also Published As

Publication number Publication date
EP4224584A1 (en) 2023-08-09
US20230395837A1 (en) 2023-12-07
CN116034502A (zh) 2023-04-28
JP7461614B2 (ja) 2024-04-04
JPWO2022070260A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6008226B1 (ja) レドックスフロー電池用セルフレーム、レドックスフロー電池用セルスタック、レドックスフロー電池
AU2016284157B2 (en) Bipolar plate, cell frame, cell stack and redox-flow battery
JP6701514B2 (ja) レドックスフロー電池用電極、及びレドックスフロー電池
US11108057B2 (en) Bipolar plate, cell stack, and redox flow battery
US11367880B2 (en) Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
US20180316017A1 (en) Electrode for redox flow battery, and redox flow battery
JP2019121562A (ja) 燃料電池及び燃料電池スタック
WO2022070260A1 (ja) 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
US11769886B2 (en) Battery cell, cell stack, and redox flow battery
US11749813B2 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
US20180108930A1 (en) Redox flow battery frame body, redox flow battery, and cell stack
US20190245238A1 (en) Cell frame, battery cell, cell stack, and redox flow battery
US20220109166A1 (en) Battery cell, cell stack, and redox flow battery
WO2020136721A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020129459A (ja) 電池セル、セルスタック、及びレドックスフロー電池
WO2018134927A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP2020170694A (ja) 双極板、電池セル、セルスタック、及びレドックスフロー電池
JPWO2019234867A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553263

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18028371

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020956190

Country of ref document: EP

Effective date: 20230502