WO2022068798A1 - 传输处理方法、装置、终端及可读存储介质 - Google Patents

传输处理方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2022068798A1
WO2022068798A1 PCT/CN2021/121248 CN2021121248W WO2022068798A1 WO 2022068798 A1 WO2022068798 A1 WO 2022068798A1 CN 2021121248 W CN2021121248 W CN 2021121248W WO 2022068798 A1 WO2022068798 A1 WO 2022068798A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
transmission
symbols
repeated transmission
actual
Prior art date
Application number
PCT/CN2021/121248
Other languages
English (en)
French (fr)
Inventor
吴凯
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022068798A1 publication Critical patent/WO2022068798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a transmission processing method, device, terminal and readable storage medium.
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • an optimization method is to introduce a new PUCCH repeated transmission mode, which does not require the same number of PUCCH symbols to be repeatedly transmitted each time.
  • Embodiments of the present application provide a transmission processing method, apparatus, terminal, and readable storage medium, to solve the problem of which transmission parameters to be determined are not yet clearly defined when a new PUCCH repeated transmission mode is introduced.
  • a transmission processing method including:
  • the terminal determines the number of first symbols of the first PUCCH that are actually repeatedly transmitted; wherein, the first PUCCH is the PUCCH that is repeatedly transmitted.
  • a transmission processing device including:
  • a first determining module configured to determine the number of first symbols that are actually repeatedly transmitted on the first PUCCH; wherein, the first PUCCH is a PUCCH that is repeatedly transmitted.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect A step of.
  • the terminal may determine the number of first symbols that are actually repeatedly transmitted on the first PUCCH, where the first PUCCH is the PUCCH that is repeatedly transmitted. Therefore, in the case of introducing a new PUCCH repeated transmission mode, the terminal can determine the transmission parameters such as the number of symbols of the actual repeated transmission of the repeatedly transmitted PUCCH. Some specific transmission parameters of repeated transmission, so as to ensure the progress of the repeated transmission process of PUCCH.
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a transmission processing method provided by an embodiment of the present application.
  • 3A is one of the schematic diagrams of time slots in an embodiment of the present application.
  • FIG. 3B is the second schematic diagram of the time slot in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, these techniques are also applicable to applications other than NR system applications, such as 6th Generation (6th Generation ) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • the symbol may refer to an Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol.
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing, OFDM
  • FIG. 2 is a flowchart of a transmission processing method provided by an embodiment of the present application. The method is applied to a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 21 The terminal determines the number of first symbols actually repeatedly transmitted for the first PUCCH.
  • the first PUCCH is a PUCCH that is repeatedly transmitted.
  • the terminal may determine the number of first symbols actually repeatedly transmitted for each first PUCCH, and the number of first symbols may be the same or different.
  • the number of symbols in transmission 1 and the number of symbols in transmission 2 may be the same or different.
  • the terminal may determine the number of first symbols that are actually repeatedly transmitted in the first PUCCH, where the first PUCCH is the PUCCH that is repeatedly transmitted. Therefore, in the case of introducing a new PUCCH repeated transmission mode, the terminal can determine the transmission parameters such as the number of symbols of the actual repeated transmission of the repeatedly transmitted PUCCH. Some specific transmission parameters of repeated transmission, so as to ensure the progress of the repeated transmission process of PUCCH.
  • the above-mentioned process of determining the number of first symbols actually repeatedly transmitted in the first PUCCH may include:
  • the terminal determines, according to at least one of the following items, the number of first symbols actually repeatedly transmitted in the first PUCCH:
  • the second symbol number of the nominal repeated transmission of the first PUCCH is configured by high-layer signaling;
  • SFI Slot Format Indicator
  • the nominal repeated transmission may be a nominal repeated transmission determined according to an indication message or a notification message sent by the network side device, and the repeated transmission may be understood as the PUCCH transmitted with the second symbol number. transmission.
  • some actual repeated transmissions have the same number of symbols as the second nominal repeated transmission, while other nominal repeated transmissions can be divided into one or more actual repeated transmissions, that is, the nominal PUCCH repeated transmission of symbols The number is greater than or equal to the actual number of symbols that the PUCCH repeatedly transmits.
  • the division of actual repeated transmission may be obtained by dividing nominal repeated transmission based on time slot boundaries, uplink and downlink switching points, unavailable symbols, or symbols with conflicting transmission directions. For example, unavailable symbols can split a nominal repeat transmission into one or more actual repeat transmissions with a smaller number of symbols.
  • the divided symbols for actual repeated transmission may be 4, 7, and so on.
  • the above-mentioned uplink and downlink configuration information may represent configuration information of uplink and downlink symbols in a certain time slot.
  • the uplink and downlink configuration information it can be known which symbols in the corresponding time slot are uplink symbols, which symbols are downlink symbols and/or which symbols are flexible symbols, so as to determine the number of symbols actually repeatedly transmitted by the PUCCH.
  • the above-mentioned symbol configuration information for uplink transmission may be used to indicate which uplink symbols are available and/or which uplink symbols are unavailable in the uplink symbols of a certain time slot.
  • the actual repeated transmission of the PUCCH can be divided according to the symbol configuration information of the uplink transmission, and the number of symbols of the actual repeated transmission of the PUCCH can be determined.
  • the above-mentioned SFI may be sent through a downlink control channel.
  • the above SFI can be used to indicate that the flexible symbols are uplink symbols or downlink symbols.
  • DCI Downlink Control Information
  • the above-mentioned cancellation indication of uplink transmission indicated by the downlink control channel may be used to cancel the indicated uplink transmission.
  • the network side device instructs to perform uplink transmission on part of the symbols, with the help of the cancellation transmission instruction, it is possible to cancel the instructed part of symbols to perform uplink transmission.
  • the above-mentioned downlink control channel indication information can be used to specify that the number of symbols of the actual repeated transmission of the first PUCCH is 1 in the number of N symbols, wherein the number of N symbols is the N nominal number configured by the high layer. Or the actual number of symbols of the first PUCCH.
  • the downlink control channel indication information may be used to dynamically specify that the number of symbols in the actual repeated transmission of the first PUCCH is 1 in the number of N symbols.
  • a target code rate R can be configured for each PUCCH format or PUCCH resource.
  • the UE Before sending the PUCCH, the UE can determine the required number of RBs according to the number of UCI bits and/or the number of symbols of the UCI, so that the determined RB The number is the minimum number of RBs below the target code rate.
  • the number of resource blocks (Resource Block, RB) of the PUCCH is determined based on the number of OFDM symbols of the PUCCH and a preset code rate.
  • the terminal can The number of RBs that are actually repeatedly transmitted on the first PUCCH is determined according to the number of second symbols that are repeatedly transmitted in the name of the first PUCCH, or the preset number of symbols.
  • the terminal may further determine the transmit power of the actual repeated transmission of the first PUCCH according to the number of the second symbols repeatedly transmitted in the name of the first PUCCH, or the preset number of symbols. In this way, the transmission power of the actual repeated transmission of each PUCCH can be consistent, and the transmission process can be ensured smoothly.
  • the preset number of symbols may be indicated by the network side device, and the preset number of symbols is different from the second number of symbols.
  • the above-mentioned first PUCCH is a PUCCH that supports transmission with different numbers of RBs.
  • the format of the above-mentioned first PUCCH includes PUCCH format 2 or PUCCH format 3. That is to say, the above method for determining the number of RBs and/or transmission power is applicable to PUCCH format 2 and PUCCH format 3.
  • the number of UCI bits supported by these two formats is greater than 2, and the number of RBs occupied by PUCCH is greater than 1.
  • the terminal may determine the small number of RBs that satisfy the target code rate R for the actual repeated transmission of the PUCCH according to the following formulas 1 and 2:
  • Q m is the modulation order of PUCCH
  • R is the target bit rate
  • O UCI is the number of bits of UCI; the UCI may include at least one of the following: Hybrid Automatic Repeat reQuest Acknowledgment (HARQ-ACK) information, CSI, and Scheduling Request (Scheduling Request, SR) information;
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgment
  • CSI CSI
  • Scheduling Request Scheduling Request, SR
  • o CRC is the number of bits of cyclic redundancy check (Cyclic Redundancy Check, CRC);
  • the total number of symbols of the PUCCH is the number of symbols of the transmitted UCI in the PUCCH, that is, the total number of symbols of the PUCCH minus the number of symbols of the PUCCH DMRS; wherein, the total number of symbols of the PUCCH can be selected as the number of symbols repeatedly transmitted in the name of PUCCH or the number of preset symbols;
  • PUCCH formats for example, in PUCCH format 2, In PUCCH format 3, In PUCCH format 2, The number of bearers for each resource block.
  • the number of symbols of PUCCH transmission UCI and the number of symbols of DMRS transmission are also determined, and the sum of the two is the number of symbols transmitted by PUCCH, so in the above formula value is determined.
  • the terminal may determine the transmit power of the actual repeated transmission of the PUCCH according to the following existing formula:
  • ⁇ TF,b,f,c (i) is an offset value used to determine the PUCCH transmission power.
  • ⁇ TF ,b,f,c (i) is related to the number of symbols transmitted by the PUCCH.
  • P O_PUCCH,b,f,c (q u ) is a carrier (carrier) f, and a parameter determined on the primary cell (primary cell) c according to high-level signaling, represents the target value of the power of the receiving end.
  • PL b,f,c (q d ) represents path loss estimation.
  • ⁇ F_PUCCH (F) is a value related to the PUCCH format.
  • g b,f,c (i,l) is the adjustment value determined according to the power control command.
  • ⁇ TF,b,f,c (i) 10log 10 (K 1 ⁇ (n HARQ-ACK (i)+O SR (i)+O CSI (i ))/N RE (i)).
  • K1 is equal to 6
  • n HARQ-ACK (i) is the number of bits of HARQ-ACK information determined by the UE
  • OSR(i) is the number of bits of scheduling request (Scheduling Request, SR) information determined by the UE.
  • OCSI(i) is the number of bits of channel state information (Channel State Information, CSI) determined by the UE.
  • NRE(i) is the number of resource particles, and The number of bearers to transmit UCI in each resource block. is the number of symbols for transmitting UCI in PUCCH.
  • PUCCH format 2 PUCCH format 3 or PUCCH format 4.
  • N RE (i) In order to determine the number of symbols repeatedly transmitted according to the name of PUCCH or the number of preset symbols, and further according to N RE (i) is determined, thereby determining the value of ⁇ TF,b,f,c (i), and determining the transmit power of the actual repeated transmission of the PUCCH.
  • DMRS Demodulation Reference Signal
  • the existing PUCCH repeatedly transmits the same number of symbols, and the pattern of the DMRS is also the same. Since the DMRS pattern is related to the number of PUCCH symbols, in the case of introducing a new PUCCH repeated transmission mode, that is, when the number of PUCCH symbols of different actual repeated transmissions is different, the DMRS pattern is also different. How to determine the DMRS pattern requires clear.
  • different PUCCH formats such as PUCCH format1, PUCCH format3, and PUCCH format4 currently do not support transmission with a number of symbols less than 4, and how to support PUCCH transmission with a number of symbols less than 4 needs to be resolved.
  • the terminal may determine the corresponding DMRS pattern pattern in different ways.
  • the first threshold value may be a preset value or a value configured for the network side device,
  • the terminal can do any of the following:
  • the terminal determines that the position of the DMRS in the actual repeated transmission of the first PUCCH is one or more preset symbols in the L symbols of the actual repeated transmission of the first PUCCH; the L symbols are consecutive symbols;
  • the terminal determines that the actual repeated transmission of the first PUCCH does not include DMRS;
  • the terminal does not perform the actual repeated transmission of the first PUCCH; in this case, the L symbols of the actual repeated transmission of the first PUCCH are consecutive symbols in a slot; for example, the format of the first PUCCH is PUCCH format 3 or PUCCH format 4.
  • the process for the terminal to determine that the DMRS is not included in the actual repeated transmission of the first PUCCH may be: when the time interval between the actual repeated transmission of the first PUCCH and the first transmission is less than or equal to the second threshold value, the terminal determines that the first The DMRS is not included in the actual repeated transmission of a PUCCH.
  • the first transmission is the actual repeated transmission of the first PUCCH including the DMRS.
  • the second threshold value may be set based on actual requirements or configured by the network side device.
  • the second threshold value is 0. That is, the actual repeated transmission of the first PUCCH and the first transmission are two consecutive transmissions.
  • the network side device can receive the PUCCH not including the DMRS based on the channel estimation of the adjacent PUCCH including the DMRS transmission.
  • the technology involved in this process is also called DMRS sharing (DMRS sharing), DMRS bundling (DMRS bundling), cross-slot (cross-slot) channel estimation, and so on.
  • the actual repeated transmission of the first PUCCH and the first transmission are two consecutive transmissions
  • the actual repeated transmission of the first PUCCH is the same as the first transmission of the first PUCCH. At least one of the following can be satisfied between transfers:
  • the actual repeated transmission of the first PUCCH uses the same antenna port as the first transmission
  • the difference between the actual repeated transmission of the first PUCCH and the transmission power of the first transmission is less than or equal to a third threshold value;
  • the third threshold value may be set based on actual requirements or configured by the network side device; for example, the third threshold value The value is equal to 0, that is, the transmission power of the actual repeated transmission of the first PUCCH is equal to the transmission power of the first transmission;
  • the phase between the actual repeated transmission of the first PUCCH and the first transmission is continuous to use the same spatial Tx filter.
  • the terminal may perform any one of the following:
  • the terminal determines the DMRS pattern in the uplink time slot and the special time slot of the first PUCCH respectively;
  • the terminal determines the DMRS pattern of the first PUCCH according to the first symbol number. For example, in this case, the terminal may determine the DMRS pattern of the first PUCCH according to the first symbol number and in combination with the DMRS location table, that is, determine the DMRS location of the first PUCCH.
  • the DMRS location table may be used to represent the DMRS locations in different PUCCH symbol numbers and in different situations (for example, whether there is frequency hopping, etc.), and the DMRS location table may be agreed upon in a protocol or pre-configured.
  • the above process of respectively determining the DMRS pattern in the uplink time slot and the special time slot of the first PUCCH may include:
  • the terminal determines the DMRS pattern in the uplink time slot according to the number of symbols used for PUCCH transmission included in the uplink time slot. For example, in this case, the terminal can determine the DMRS pattern in the uplink time slot, that is, determine the DMRS location, according to the number of symbols used for PUCCH transmission included in the uplink time slot and in combination with the DMRS location table.
  • the DMRS location table may be agreed in a protocol or pre-configured.
  • the terminal determines that the position of the DMRS in the special time slot is one or more preset symbols in the symbols used for PUCCH transmission included in the special time slot; or, the terminal determines that the special time slot does not include DMRS. Location.
  • the number of symbols included in the above-mentioned uplink time slot may be equal to the number of symbols repeatedly transmitted in the name of the first PUCCH.
  • the number of symbols used for PUCCH transmission in the above-mentioned uplink time slot may be equal to the number of symbols included in one time slot, such as 14.
  • the terminal can determine the DMRS pattern in the uplink time slot according to L_sym_slot, and can determine that the position of the DMRS in the Special slot is one or more preset symbols in the N symbols, or It is determined that DMRS is not included in the N symbols.
  • Uplink Control Information, UCI Uplink Control Information
  • PUCCH does not support UCI multiplexing with another PUCCH in the case of repeated transmission, and only part of UCI transmission can be discarded according to priority.
  • UCI Uplink Control Information
  • PUCCH does not support UCI multiplexing with another PUCCH in the case of repeated transmission, and only part of UCI transmission can be discarded according to priority.
  • UCI Uplink Control Information
  • the terminal may Do any of the following:
  • the terminal determines whether to discard the first PUCCH according to the actual repeated transmission of the first PUCCH and the priority of the type of UCI in the transmission of the second PUCCH.
  • the terminal does not discard the first PUCCH; or, if the priority of the type of UCI in the transmission of the second PUCCH is high, the terminal The discarding of the first PUCCH is not performed.
  • the above-mentioned UCI can be selected from, but not limited to, the following types: HARQ-ACK, CSI reporting, SR, and the like.
  • the above UCI may be transmitted on periodic PUCCH resources.
  • the above-mentioned CSI may be transmitted on the PUCCH in a DCI-triggered manner.
  • different UCI types may correspond to different priorities.
  • the priority of HARQ-ACK and SR is higher than that of CSI
  • the priority of CSI part1 is higher than that of CSI part2.
  • it also includes the following priority relationships: 1) Priority from high to low: aperiodic CSI (A-CSI) in Physical Uplink Shared Channel (PUSCH), semi-persistent in PUSCH CSI (SP-CSI), persistent CSI (P-CSI) in PUCCH; 2)
  • the priority of CSI reporting that includes L1-RSRP is higher than the priority of CSI reporting that does not include L1-RSRP; 3) CSI reporting corresponds to The lower the serving cell index is, the higher the priority; 4) the lower the CSI report ID (report ID), the higher the priority.
  • the network device may also configure the priority, and the terminal determines the priority according to the configuration of the network.
  • the terminal may discard the first PUCCH in units of the first PUCCH that is actually repeatedly transmitted or nominally repeatedly transmitted.
  • the terminal multiplexes the UCI in the second PUCCH to the first PUCCH for transmission.
  • the terminal may multiplex the UCI in the second PUCCH to the actual repeated transmission of the first PUCCH for transmission under the condition that at least one of the following is satisfied:
  • the number of first symbols of the actual repeated transmission of the first PUCCH is greater than or equal to the fifth threshold value; optionally, the fifth threshold value may be set based on actual requirements or configured by the network side device; the fifth threshold value is the same as The above-mentioned first threshold value may be the same or different;
  • the actual repeated transmission of the first PUCCH includes the DMRS.
  • the terminal When the number of first symbols of the actual repeated transmission of the first PUCCH is less than the fourth threshold value, or the actual repeated transmission of the first PUCCH does not include DMRS, the terminal performs or does not perform the actual repeated transmission of the first PUCCH.
  • the fourth threshold value may be set based on actual requirements or configured by the network-side device, and the fifth threshold value may be the same as or different from the aforementioned fifth threshold value.
  • the time slot in which the repeatedly transmitted PUCCH#1 is located includes the uplink Slot1 and the special Slot2, and the nominally repeatedly transmitted symbols of the PUCCH#1 include all the symbols in the uplink Slot1 and the last two symbols in the special Slot2.
  • the transmission corresponding to the last two symbols in the special Slot2 is the first actual repeated transmission (tans1) of PUCCH#1
  • the transmission corresponding to all symbols in the uplink Slot1 is the second actual repeated transmission of PUCCH#1 (tans2)
  • the UE may not perform the first actual repeated transmission of PUCCH#1, but perform transmission of PUCCH#2.
  • the UE may not perform PUCCH The second actual repeat transmission of #1 is performed while the transmission of PUCCH #2 is performed.
  • the UE may multiplex the UE in PUCCH#2 into the actual repeated transmission for transmission.
  • the above-mentioned process of multiplexing the UCI in the second PUCCH to the first PUCCH for transmission may include any one of the following: item:
  • the terminal multiplexes the UCI in the second PUCCH to the transmission with the earliest or latest transmission time in the actual repeated transmission of the at least two first PUCCHs;
  • the terminal multiplexes the UCI in the second PUCCH into the actual repeated transmission of the at least two first PUCCHs for transmission, that is, multiplexes the UCI in the second PUCCH into the actual repeated transmission of all overlapping first PUCCHs for transmission.
  • the UCI in the second PUCCH when the UCI in the second PUCCH is multiplexed on the first PUCCH for transmission, the UCI in the second PUCCH may be multiplexed into the transmission of the second PUCCH in the actual repeated transmission of the first PUCCH The transmission is performed corresponding to the overlapped portion.
  • the terminal may perform any one of the following:
  • the above situation may be a situation that the UE does not expect, and this situation will not occur when PUCCH transmission is performed through the network.
  • the above sharing can be understood as using the same antenna port, the transmission power difference is less than a preset value, using the same spatial transmission filter, etc., and the techniques involved include DMRS sharing, DMRS bundling, and cross-slot channel estimation. In this way, the network side can use the PUCCH containing the DMRS to perform channel estimation and detection on other PUCCHs.
  • the time slot where the repeatedly transmitted PUCCH#3 is located includes the uplink Slot3 and the special Slot4, and the nominally repeatedly transmitted symbols of the PUCCH#3 include all the symbols in the uplink Slot3 and the last two symbols in the special Slot4 , the transmission corresponding to the last two symbols in the special Slot4 is the first actual repeated transmission (tans1) of PUCCH#3, and the transmission corresponding to all symbols in the uplink Slot3 is the second actual repeated transmission of PUCCH#3 (tans2) , the DMRS in the second actual repeated transmission is shared by the first actual repeated transmission, then as shown in FIG.
  • the UE can perform the second actual repeated transmission of PUCCH#3, that is, the second actual repeated transmission of PUCCH#3 is not discarded; or, the UE can discard PUCCH#3
  • the execution body may be a transmission processing apparatus, or a control module in the transmission processing apparatus for executing the transmission processing method.
  • the transmission processing device provided by the embodiment of the present application is described by taking the transmission processing device executing the transmission processing method as an example.
  • FIG. 4 is a schematic structural diagram of a transmission processing apparatus provided by an embodiment of the present application.
  • the apparatus is applied to a terminal.
  • the transmission processing apparatus 40 includes:
  • the first determination module 41 is configured to determine the first symbol number of the actual repeated transmission of the first PUCCH; wherein, the first PUCCH is the PUCCH of repeated transmission.
  • the first determining module 41 is specifically configured to:
  • the downlink control channel indication information is used to specify that the number of symbols of the actual repeated transmission of the first PUCCH is 1 in the number of N symbols, where the number of N symbols is the N nominal number configured by the high layer or The actual number of symbols of the first PUCCH.
  • the transmission processing device 40 further includes:
  • a second determining module configured to determine the number of resource blocks RBs that are actually repeatedly transmitted on the first PUCCH according to the number of second symbols that are repeatedly transmitted in the name of the first PUCCH, or a preset number of symbols;
  • the preset number of symbols is indicated by the network side device, and the preset number of symbols is different from the second number of symbols.
  • the first PUCCH is a PUCCH that supports transmission with different RB numbers.
  • the device further includes:
  • a first execution module configured to execute any one of the following when the first symbol number L is less than the first threshold value:
  • the first execution module is further configured to: when the time interval between the actual repeated transmission of the first PUCCH and the first transmission is less than or equal to a second threshold value, the terminal determines the first PUCCH DMRS is not included in the actual repeated transmissions;
  • the first transmission is the actual repeated transmission of the first PUCCH including the DMRS.
  • the actual repeated transmission of the first PUCCH and the first transmission are two consecutive transmissions.
  • At least one of the following is satisfied between the actual repeated transmission of the first PUCCH and the first transmission:
  • the actual repeated transmission of the first PUCCH uses the same antenna port as the first transmission
  • the difference between the transmission power of the actual repeated transmission of the first PUCCH and the transmission power of the first transmission is less than or equal to a third threshold value
  • the phase between the actual repeated transmission of the first PUCCH and the first transmission is continuous.
  • the transmission processing device 40 further includes:
  • the second execution module is configured to, when the first symbol number L is greater than the number of symbols included in one time slot, and the time slot occupied by the actual repeated transmission of the first PUCCH includes an uplink time slot and a special time slot , do any of the following:
  • a DMRS pattern of the first PUCCH is determined according to the first symbol number.
  • the second execution module includes:
  • a first determining unit configured to determine a DMRS pattern in the uplink time slot according to the number of symbols used for PUCCH transmission included in the uplink time slot;
  • a second determining unit configured to determine the position of the DMRS in the special time slot as one or more preset symbols in the symbols used for PUCCH transmission included in the special time slot, or determine the The location of the DMRS is not included in the special slot.
  • the number of symbols included in the uplink time slot is equal to the number of symbols repeatedly transmitted in the name of the first PUCCH.
  • the transmission processing device 40 further includes:
  • a third execution module configured to execute any one of the following when the actual repeated transmission of the first PUCCH and the transmission of the second PUCCH overlap in time:
  • the number of first symbols of the actual repeated transmission of the first PUCCH is less than the fourth threshold value, or the actual repeated transmission of the first PUCCH does not include DMRS, perform or not perform the actual repetition of the first PUCCH transmission.
  • the third execution module is further configured to: multiplex the UCI in the second PUCCH to the actual repeated transmission of the first PUCCH for transmission under the condition that at least one of the following is satisfied:
  • the number of first symbols of the actual repeated transmission of the first PUCCH is greater than or equal to a fifth threshold
  • the actual repeated transmission of the first PUCCH includes DMRS.
  • the third execution module is further configured to execute any one of the following:
  • the UCI in the second PUCCH is multiplexed for transmission on the actual repeated transmission of the at least two first PUCCHs.
  • the third execution module is further configured to: in a case where it is determined to discard the first PUCCH, the terminal takes the actual repeated transmission or the nominal repeated transmission of the first PUCCH as a unit to perform the first PUCCH. Discard of a PUCCH.
  • the transmission processing device 40 further includes:
  • a fourth execution module configured to overlap in time the actual repeated transmission of the first PUCCH and the transmission of the second PUCCH, the actual repeated transmission of the first PUCCH includes a DMRS, and the DMRS is replaced by another first PUCCH
  • the actual repeated transmission of the other first PUCCH is shared, and the actual repeated transmission of the other first PUCCH and the transmission of the second PUCCH do not overlap in time, perform any one of the following:
  • the transmission processing device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the transmission processing device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the transmission processing apparatus 40 provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a terminal 50, including a processor 51, a memory 52, a program or instruction stored in the memory 52 and executable on the processor 51, the When the program or the instruction is executed by the processor 51, each process of the above-mentioned embodiment of the transmission processing method is implemented, and the same technical effect can be achieved to avoid repetition, which is not repeated here.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610 and other components .
  • the terminal 600 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 6041 and a microphone 6042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072 .
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 601 receives the downlink data from the network side device, and then processes it to the processor 610; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 610.
  • the processor 610 is configured to determine the first symbol number of the actual repeated transmission of the first PUCCH; the first PUCCH is the PUCCH of repeated transmission.
  • the terminal 600 provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the terminal in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above transmission processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above transmission processing method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输处理方法、装置、终端及可读存储介质,属于通信技术领域。具体实现方案包括:终端确定第一PUCCH的实际重复传输的第一符号数,该第一PUCCH为重复传输的PUCCH。

Description

传输处理方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2020年9月29日在中国提交的中国专利申请号No.202011057987.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输处理方法、装置、终端及可读存储介质。
背景技术
现有技术中,对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的重复传输,通常支持在多个时隙slot或者子时隙sub-slot中以相同的PUCCH格式以及相同的PUCCH符号数进行传输。由此在一些时隙上下行配置下,会导致上行传输资源无法得到充分的利用。为了充分利用上行资源进行PUCCH的重复传输,一种优化方式为引入新的PUCCH重复传输方式,该新的PUCCH重复传输方式不要求每次重复传输的PUCCH的符号数相同。然而,在引入新的PUCCH重复传输方式的情况下,目前尚未明确要确定哪些传输参数,以保证PUCCH重复传输过程的进行。
发明内容
本申请实施例提供一种传输处理方法、装置、终端及可读存储介质,以解决在引入新的PUCCH重复传输方式的情况下,目前尚未明确要确定哪些传输参数的问题。
第一方面,提供了一种传输处理方法,包括:
终端确定第一PUCCH的实际重复传输的第一符号数;其中,所述第一PUCCH为重复传输的PUCCH。
第二方面,提供了一种传输处理装置,包括:
第一确定模块,用于确定第一PUCCH的实际重复传输的第一符号数;其中,所述第一PUCCH为重复传输的PUCCH。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
在本申请实施例中,终端可以确定第一PUCCH的实际重复传输的第一符号数,该第一PUCCH为重复传输的PUCCH。由此在引入新的PUCCH重复传输方式的情况下,可以实现终端确定重复传输的PUCCH的实际重复传输的传输参数比如符号数,进一步的通过该实际重复传输的符号数,还可以灵活的确定PUCCH重复传输的一些具体传输参数,从而保证PUCCH重复传输过程的进行。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的传输处理方法的流程图;
图3A是本申请实施例中的时隙示意图之一;
图3B是本申请实施例中的时隙示意图之二;
图4是本申请实施例提供的传输处理装置的结构示意图;
图5是本申请实施例提供的终端的结构示意图;
图6是本申请实施例提供的另一终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计 算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇。
本申请实施例中,符号可以指的是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的传输处理方法进行详细地说明。
请参见图2,图2是本申请实施例提供的一种传输处理方法的流程图,该方法应用于终端,如图2所示,该方法包括如下步骤:
步骤21:终端确定第一PUCCH的实际重复传输的第一符号数。
本实施例中,第一PUCCH为重复传输的PUCCH。对于第一PUCCH,终端可以确定每一个第一PUCCH的实际重复传输的第一符号数,该第一符号数可以相同也可以不同。
比如,以第一PUCCH为PUCCH#1为例,如果该PUCCH#1的实际重复传输包括传输1和传输2,则:传输1的符号数和传输2的符号数可以相同也可以不同。
本申请实施例的传输处理方法,终端可以确定第一PUCCH的实际重复传输的第一符号数,该第一PUCCH为重复传输的PUCCH。由此在引入新的PUCCH重复传输方式的情况下,可以实现终端确定重复传输的PUCCH的实 际重复传输的传输参数比如符号数,进一步的通过该实际重复传输的符号数,还可以灵活的确定PUCCH重复传输的一些具体传输参数,从而保证PUCCH重复传输过程的进行。
本申请实施例中,上述确定第一PUCCH的实际重复传输的第一符号数的过程可以包括:
终端根据以下至少一项,确定第一PUCCH的实际重复传输的第一符号数:
第一PUCCH的名义重复传输的第二符号数;可选的,该第二符号数由高层信令配置;
上下行配置信息;
上行传输的符号配置信息;
时隙格式指示(Slot Format Indicator,SFI);
下行控制信道指示的上行传输的取消传输指示;
下行控制信道指示信息。
需说明的是,在本申请实施例中,名义重复传输可以是根据网络侧设备发送的指示消息或者通知消息确定的名义上的重复传输,该重复传输可以理解为以第二符号数传输的PUCCH传输。在重复传输过程中,一些实际重复传输的符号数和名义重复传输的第二符号数相同,而另一些名义重复传输可以被划分为一次或多次实际重复传输,即名义的PUCCH重复传输的符号数大于或等于实际的PUCCH重复传输的符号数。对于实际重复传输的划分,可以是基于时隙边界、上下行切换点、不可用符号或者传输方向冲突的符号等,对名义重复传输进行划分得到。比如,不可用的符号可以将一个名义重复传输,分为一个或者多个符号数较少的实际重复传输。
比如,如果高层信令配置的第一PUCCH的名义重复传输的第二符号数为14,则经过划分后的实际重复传输的符号可以为4、7等。
可选的,上述的上下行配置信息可以表示的是某时隙中的上下行符号的配置信息。根据该上下行配置信息,可以获知相应时隙中哪些符号为上行符 号、哪些符号为下行符号和/或哪些符号为灵活符号,从而确定出PUCCH实际重复传输的符号数。
可选的,上述的上行传输的符号配置信息可以用于指示某时隙的上行符号中,哪些上行符号可用,和/或哪些上行符号不可用。这样在PUCCH重复传输中,可以根据该上行传输的符号配置信息,划分PUCCH的实际重复传输,并确定出PUCCH实际重复传输的符号数。
可选的,上述SFI可以是通过下行控制信道发送。上述SFI可以用于指示灵活符号为上行符号或下行符号。这样结合SFI和下行控制信息(Downlink Control Information,DCI),确定PUCCH的实际重复传输以及相应的符号数。
可选的,上述的下行控制信道指示的上行传输的取消传输指示可以用于取消已指示的上行传输。比如,如果网络侧设备指示了在部分符号上进行上行传输,借助该取消传输指示,可以取消已指示的该部分符号上进行上行传输。
可选的,上述的下行控制信道指示信息可以用于指定第一PUCCH的实际重复传输的符号数为N个符号数中的1个,其中该所述N个符号数为高层配置的N个名义或者实际的第一PUCCH的符号数。比如,该下行控制信道指示信息可以用于动态的指定第一PUCCH的实际重复传输的符号数为N个符号数中的1个。
现有技术中,对于每一个PUCCH format或者PUCCH资源可以配置目标码率R,UE在发送PUCCH前,可以根据UCI的比特数和/或UCI的符号数,确定需要的RB数量,使得确定的RB数为低于目标码率的最小RB数量。PUCCH的资源块(Resource Block,RB)数是基于PUCCH的OFDM符号数和预设码率确定的。在引入新的PUCCH重复传输方式的情况下,每一个PUCCH的实际重复传输的符号数可以不同,若仍采用现有方法确定PUCCH的RB数,可能导致每个实际重复传输的RB数不同。
为了避免每一个PUCCH的实际重复传输的RB数不相同,可选的,在引入新的PUCCH重复传输方式的情况下,即每一个PUCCH的实际重复传输的 符号数可以不同的情况下,终端可以根据第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定第一PUCCH的实际重复传输的RB数量。
可选的,终端还可以根据第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定第一PUCCH的实际重复传输的发送功率。这样可以使得每一个PUCCH的实际重复传输的发送功率一致,保证传输过程顺利进行。
可选的,上述预设符号数可以是由网络侧设备指示的,且该预设符号数与第二符号数不同。
可选的,上述的第一PUCCH为支持以不同RB数量传输的PUCCH。
优选的,上述的第一PUCCH的格式包括PUCCH format 2或者PUCCH format 3。也就是说,上述确定RB数量和/或发送功率的方法适用于PUCCH format2和PUCCH format3,这两种格式支持的UCI比特数大于2,且PUCCH的占用的RB数量大于1。
一种实施方式中,终端可以根据如下公式一和公式二,确定PUCCH的实际重复传输的满足目标码率R的小的RB数
Figure PCTCN2021121248-appb-000001
Figure PCTCN2021121248-appb-000002
Figure PCTCN2021121248-appb-000003
其中,Q m为PUCCH的调制阶数;
R为目标码率;
O UCI为UCI的比特数;该UCI可以包括以下至少其中之一:混合自动重传请求确定应答(Hybrid Automatic Repeat reQuest Acknowledgment,HARQ-ACK)信息、CSI、调度请求(Scheduling Request,SR)信息;
O CRC为循环冗余校验(Cyclic Redundancy Check,CRC)的比特数;
Figure PCTCN2021121248-appb-000004
为PUCCH中的传输UCI的符号数,即PUCCH总的符号数减去PUCCH DMRS的符号数;其中,该PUCCH总的符号数可选为PUCCH的名义重复传输的符号数或者预设符号数;
Figure PCTCN2021121248-appb-000005
对于不同的PUCCH format为不同的数值;比如,PUCCH format 2中,
Figure PCTCN2021121248-appb-000006
PUCCH format 3中,
Figure PCTCN2021121248-appb-000007
PUCCH format 2中,
Figure PCTCN2021121248-appb-000008
为每个资源块承载数目。
由于PUCCH总的符号数确定的同时,也确定了PUCCH的传输UCI的符号数及传输DMRS的符号数,两者的和为PUCCH传输的符号数,因此上述公式中的
Figure PCTCN2021121248-appb-000009
的数值是确定的。即
Figure PCTCN2021121248-appb-000010
为根据PUCCH的名义重复传输的符号数或者预设符号数确定的。优选的,
Figure PCTCN2021121248-appb-000011
为根据PUCCH的名义重复传输的符号数确定。
另一种实施方式中,终端可以根据如下现有公式,确定PUCCH的实际重复传输的发送功率:
Figure PCTCN2021121248-appb-000012
其中,Δ TF,b,f,c(i)为用于确定PUCCH发送功率的偏移值。Δ TF,b,f,c(i)与PUCCH传输的符号数相关。
P O_PUCCH,b,f,c(q u)为载体(carrier)f,主小区(primary cell)c上根据高层信令确定的参数,表示接收端功率的目标值。
PL b,f,c(q d)表示路损估计。
Figure PCTCN2021121248-appb-000013
表示PUCCH传输的RB数目。
Δ F_PUCCH(F)为与PUCCH format相关的数值。
g b,f,c(i,l)为根据功率控制命令确定的调整值。
对于PUCCH format 0或者PUCCH format 1,
Figure PCTCN2021121248-appb-000014
其中,
Figure PCTCN2021121248-appb-000015
为PUCCH format 0或者PUCCH format 1下,PUCCH传输的符号数。在PUCCH format 0下,
Figure PCTCN2021121248-appb-000016
Δ UCI(i)=0。在PUCCH format 1下,
Figure PCTCN2021121248-appb-000017
Δ UCI(i)=10log 10(O UCI(i))。O UCI(i)为在PUCCH传输机会i中传输UCI的比特数。这样,对于PUCCH format 0或者PUCCH format 1,
Figure PCTCN2021121248-appb-000018
为根据PUCCH的名义重复传输的符号数或者预 设符号数确定,从而确定Δ TF,b,f,c(i)的数值,以及确定PUCCH的实际重复传输的发送功率。
对于PUCCH format 2、PUCCH format 3或者PUCCH format 4,Δ TF,b,f,c(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))。其中,K1等于6,n HARQ-ACK(i)为UE确定的HARQ-ACK信息的比特数, OSR(i)为UE确定的调度请求(Scheduling Request,SR)信息的比特数。 OCSI(i)为UE确定的信道状态信息(Channel State Information,CSI)的比特数。 NRE(i)为资源粒子的数目,且
Figure PCTCN2021121248-appb-000019
为每个资源块中的传输UCI的承载数目。
Figure PCTCN2021121248-appb-000020
为PUCCH中的传输UCI的符号数。这样,对于PUCCH format 2、PUCCH format 3或者PUCCH format 4,
Figure PCTCN2021121248-appb-000021
为根据PUCCH的名义重复传输的符号数或者预设符号数确定,进一步的根据
Figure PCTCN2021121248-appb-000022
确定N RE(i),从而确定Δ TF,b,f,c(i)的数值,以及确定PUCCH的实际重复传输的发送功率。
对于解调参考信号(Demodulation Reference Signal,DMRS)图样(pattern),现有的PUCCH多次重复传输的符号数相同,则DMRS的pattern也相同。由于DMRS pattern和PUCCH的符号数有关,那么在引入新的PUCCH重复传输方式的情况下,即不同的实际重复传输的PUCCH的符号数不同的情况下,DMRS的pattern也不同,如何确定DMRS pattern需要明确。此外,不同的PUCCH格式(format),例如PUCCH format1、PUCCH format3和PUCCH format4目前不支持符号数小于4的传输,如何支持符号数小于4的PUCCH传输需要解决。
可选的,本申请实施例中,基于确定的第一PUCCH的实际重复传输的第一符号数的不同,终端可以采用不同方式确定相应的DMRS图样pattern。
可选的,在确定的第一PUCCH的实际重复传输的第一符号数L小于第一门限值的情况下,该第一门限值可以为预设值或者为网络侧设备配置的值,终端可以执行以下任意一项:
终端确定该第一PUCCH的实际重复传输中的DMRS的位置为,该第一PUCCH的实际重复传输的L个符号中的预设的1个或者多个符号;该L个符号为连续符号;
终端确定该第一PUCCH的实际重复传输中不包括DMRS;
终端不进行该第一PUCCH的实际重复传输;此情况下,该第一PUCCH的实际重复传输的L个符号为在一个时隙slot内的连续符号;比如,该第一PUCCH的格式为PUCCH format 3或者PUCCH format 4。
进一步的,终端确定第一PUCCH的实际重复传输中不包括DMRS的过程可以是:当第一PUCCH的实际重复传输与第一传输的时间间隔小于或等于第二门限值时,终端确定该第一PUCCH的实际重复传输中不包括DMRS。其中,该第一传输为包括DMRS的第一PUCCH的实际重复传输。该第二门限值可以基于实际需求设置或者由网络侧设备配置。
一种实施方式中,该第二门限值为0。也就是说,该第一PUCCH的实际重复传输与第一传输为连续的两个传输。这样,网络侧设备可以基于相邻的包含DMRS传输的PUCCH的信道估计,对不包含DMRS的PUCCH进行接收。此过程中涉及的技术也称为DMRS共享(DMRS sharing)、DMRS绑定(DMRS bundling)、跨时隙(cross-slot)信道估计等。
可选的,在第一PUCCH的实际重复传输与第一传输(即包括DMRS的第一PUCCH的实际重复传输)为连续的两个传输的情况下,该第一PUCCH的实际重复传输与第一传输之间可以满足以下至少一项:
第一PUCCH的实际重复传输与第一传输使用相同的天线端口;
第一PUCCH的实际重复传输与第一传输的发送功率差值小于或等于第三门限值;该第三门限值可以基于实际需求设置或者由网络侧设备配置;比如,该第三门限值等于0,即第一PUCCH的实际重复传输的发送功率与第一传输的发送功率相等;
第一PUCCH的实际重复传输与第一传输之间的相位连续,以使用相同的空间发送滤波器(spatial Tx filter)。
可选的,在确定的第一PUCCH的实际重复传输的第一符号数L大于一个时隙所包括的符号数(比如14)的情况下,即该第一PUCCH的实际重复传输是跨时隙传输的情况下,该第一PUCCH的实际重复传输所占的时隙可以包括上行时隙和特殊时隙,终端可以执行以下任意一项:
终端分别确定该第一PUCCH的上行时隙和特殊时隙中的DMRS图样;
终端根据该第一符号数,确定第一PUCCH的DMRS图样。比如此情况下,终端可以根据该第一符号数,结合DMRS位置表格,确定第一PUCCH的DMRS图样,即确定第一PUCCH的DMRS位置。该DMRS位置表格可用于表征不同PUCCH符号数、不同情况(比如是否存在跳频hopping等)下的DMRS位置,该DMRS位置表格可以协议约定或者预配置等。
可选的,上述分别确定该第一PUCCH的上行时隙和特殊时隙中的DMRS图样的过程可以包括:
1)终端根据上行时隙包括的用于PUCCH传输的符号数,确定上行时隙中的DMRS图样。比如,此情况下,终端可以根据上行时隙包括的用于PUCCH传输的符号数,结合DMRS位置表格,确定上行时隙中的DMRS图样,即确定DMRS位置。该DMRS位置表格可以协议约定或者预配置等。
2)终端确定特殊时隙中的DMRS的位置为,该特殊时隙包括的用于PUCCH传输的符号中的预设的1个或者多个符号;或者,终端确定特殊时隙中不包括DMRS的位置。
可选的,上述上行时隙包括的符号数可以等于第一PUCCH的名义重复传输的符号数。
可选的,上述上行时隙中的用于PUCCH传输的符号数可以等于一个时隙所包括的符号数比如14。
比如,假设某第一PUCCH的实际重复传输的符号数L等于L_sym_slot加上N,L_sym_slot为一个完整的上行时隙内的符号数,N为与该完整的上行时隙相邻的Special slot内的连续的上行符号的数量,则终端可以根据L_sym_slot确定该上行时隙中的DMRS图样,同时可以确定该Special slot中 的DMRS的位置为N个符号中的预设的1个或者多个符号,或者确定该N个符号中不包括DMRS。
对于上行控制信息(Uplink Control Information,UCI)复用,目前PUCCH在重复传输的情况下不支持和另外一个PUCCH进行UCI复用,只能按优先级进行丢弃部分UCI的传输。而本申请实施例中,在引入新的PUCCH重复传输方式的情况下,可以考虑支持新的UCI复用方式或者UCI的丢弃规则。
可选的,本申请实施例中,对于UCI复用,在第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠的情况下,该第二PUCCH不同于第一PUCCH,终端可以执行以下任意一项:
1)终端根据第一PUCCH的实际重复传输和第二PUCCH的传输中的UCI的类型的优先级,确定是否进行第一PUCCH的丢弃。
比如,若第一PUCCH的实际重复传输中的UCI的类型的优先级高,则终端不进行第一PUCCH的丢弃;或者,若第二PUCCH的传输中的UCI的类型的优先级高,则终端不进行第一PUCCH的丢弃。
可选的,上述UCI可选为但不限于如下类型:HARQ-ACK、CSI上报、SR等。上述UCI可以在周期PUCCH资源上传输。上述CSI可以通过DCI触发的方式在PUCCH传输。
可选的,不同的UCI类型可以对应不同的优先级。例如HARQ-ACK和SR的优先级高于CSI的优先级,CSI part1的优先级高于CSI part2的优先级。此外对于CSI,还包括如下的优先级关系:1)优先级从高到低:物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的非周期性CSI(A-CSI)、PUSCH中的半持续CSI(SP-CSI)、PUCCH中的持续CSI(P-CSI);2)包含L1-RSRP的CSI上报的优先级高于不包含L1-RSRP的CSI上报的优先级;3)CSI上报对应的服务小区索引低的优先级越高;4)CSI的报告标识(report ID)越低的优先级越高。此外,对于HARQ-ACK和SR,网络设备也可以对优先级进行配置,终端根据网络的配置确定优先级。
可选的,在进行第一PUCCH的丢弃的情况下,终端可以以实际重复传 输或者名义重复传输的第一PUCCH为单位,进行第一PUCCH的丢弃。
2)终端将第二PUCCH中的UCI复用到第一PUCCH上传输。
可选的,终端可以在满足以下至少一项的情况下,将第二PUCCH中的UCI复用到第一PUCCH的实际重复传输上传输:
第一PUCCH的实际重复传输的第一符号数大于或等于第五门限值;可选的,该第五门限值可以基于实际需求设置或者由网络侧设备配置;该第五门限值与上述的第一门限值可以相同或者不同;
第一PUCCH的实际重复传输中包括DMRS。
3)当第一PUCCH的实际重复传输的第一符号数小于第四门限值,或者第一PUCCH的实际重复传输中不包括DMRS时,终端进行或者不进行第一PUCCH的实际重复传输。
可选的,该第四门限值可以基于实际需求设置或者由网络侧设备配置,该第五门限值与上述的第五门限值可以相同或者不同。
比如,参见图3A所示,重复传输的PUCCH#1所在的时隙包括上行Slot1和特殊Slot2,PUCCH#1的名义重复传输的符号包括上行Slot1内的所有符号以及特殊Slot2内的后两个符号,特殊Slot2内的后两个符号对应的传输为PUCCH#1的第一个实际重复传输(tans1),上行Slot1内的所有符号对应的传输为PUCCH#1的第二个实际重复传输(tans2),则:在图3A中Alt-1情况下,若PUCCH#2的传输与PUCCH#1的第一个实际重复传输在时间上交叠,且该第一个实际重复传输中不包括DMRS的情况下,则UE可以不进行PUCCH#1的第一个实际重复传输,而进行PUCCH#2的传输。此外,若PUCCH#2的传输与PUCCH#1的第二个实际重复传输在时间上交叠,且该第二个实际重复传输的符号数小于预设阈值的情况下,则UE可以不进行PUCCH#1的第二个实际重复传输,而进行PUCCH#2的传输。
或者,在图3A中Alt-2情况下,若PUCCH#1的名义重复传输为实际重复传输,PUCCH#2的传输与PUCCH#1的实际重复传输在时间上交叠,且该实际重复传输的符号数大于或等于预设阈值,或者该实际重复传输中包括 DMRS的情况下,则UE可以将PUCCH#2中的UE复用到该实际重复传输中传输。
进一步的,当第二PUCCH的传输与至少两个第一PUCCH的实际重复传输在时间上交叠时,上述将第二PUCCH中的UCI复用到第一PUCCH上传输的过程可以包括以下任意一项:
终端将第二PUCCH中的UCI复用到,该至少两个第一PUCCH的实际重复传输中的传输时间最早或者最晚的传输上传输;
终端将第二PUCCH中的UCI复用到该至少两个第一PUCCH的实际重复传输上传输,即将第二PUCCH中的UCI复用到所有重叠的第一PUCCH的实际重复传输上传输。
一种实施方式中,在将第二PUCCH中的UCI复用到第一PUCCH上传输时,可以将第二PUCCH中的UCI复用到第一PUCCH的实际重复传输中的与第二PUCCH的传输对应交叠部分进行传输。
可选的,在第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠,该第一PUCCH的实际重复传输中包括DMRS,该DMRS被其他第一PUCCH的实际重复传输共享,且其他第一PUCCH的实际重复传输与第二PUCCH的传输在时间上没有交叠的情况下,终端可以执行以下任意一项:
-进行该第一PUCCH的实际重复传输,即不丢弃该第一PUCCH的实际重复传输,丢弃第二PUCCH的传输。也就是说,即使第二PUCCH的优先级更高,也丢弃第二PUCCH的传输。这样可以保证第一PUCCH的传输性能,即认为进行DMRS共享的PUCCH的优先级高于没有DMRS共享的优先级。
-丢弃该第一PUCCH实际重复传输和其他第一PUCCH的实际重复传输,仅进行第二PUCCH的传输。
需指出的,上述情况可以是UE不期望出现的情况,通过网络进行PUCCH传输时不会出现这种情况。上述共享可以理解为使用相同的天线端口、发送功率差值小于预设值、使用相同的空间发送滤波器等,涉及的技术包括DMRS共享、DMRS绑定、跨时隙信道估计等。这样网络侧可以使用包含DMRS的 PUCCH对其它PUCCH进行信道估计并进行检测。
比如,参见图3B所示,重复传输的PUCCH#3所在的时隙包括上行Slot3和特殊Slot4,PUCCH#3的名义重复传输的符号包括上行Slot3内的所有符号以及特殊Slot4内的后两个符号,特殊Slot4内的后两个符号对应的传输为PUCCH#3的第一个实际重复传输(tans1),上行Slot3内的所有符号对应的传输为PUCCH#3的第二个实际重复传输(tans2),该第二个实际重复传输中的DMRS被第一个实际重复传输共享,则如图3B所示,若PUCCH#4的传输与PUCCH#3的第二个实际重复传输在时间上交叠,且与第一个实际重复在时间上没有交叠,UE可以进行PUCCH#3的第二个实际重复传输,即不丢弃PUCCH#3的第二个实际重复传输;或者,UE可以丢弃PUCCH#3的第一个实际重复传输和第二个实际重复传输,仅进行PUCCH#4的传输。
需要说明的是,本申请实施例提供的传输处理方法,执行主体可以为传输处理装置,或者,该传输处理装置中的用于执行传输处理方法的控制模块。本申请实施例中以传输处理装置执行传输处理方法为例,说明本申请实施例提供的传输处理装置。
请参见图4,图4是本申请实施例提供的一种传输处理装置的结构示意图,该装置应用于终端,如图4所示,该传输处理装置40包括:
第一确定模块41,用于确定第一PUCCH的实际重复传输的第一符号数;其中,所述第一PUCCH为重复传输的PUCCH。
可选的,所述第一确定模块41具体用于:
根据以下至少一项,确定所述第一PUCCH的实际重复传输的第一符号数:
第一PUCCH的名义重复传输的第二符号数;
上下行配置信息;
上行传输的符号配置信息;
时隙格式指示;
下行控制信道指示的上行传输的取消传输指示;
下行控制信道指示信息。
可选的,所述下行控制信道指示信息用于指定第一PUCCH的实际重复传输的符号数为N个符号数中的1个,其中,所述N个符号数为高层配置的N个名义或者实际的第一PUCCH的符号数。
可选的,该传输处理装置40还包括:
第二确定模块,用于根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的资源块RB数量;
和/或,根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的发送功率。
可选的,所述预设符号数是由网络侧设备指示的,且所述预设符号数与所述第二符号数不同。
可选的,所述第一PUCCH为支持以不同RB数量传输的PUCCH。
可选的,所述装置还包括:
第一执行模块,用于在所述第一符号数L小于第一门限值的情况下,执行以下任意一项:
确定所述第一PUCCH的实际重复传输中的DMRS的位置为,所述第一PUCCH的实际重复传输的L个符号中的预设的1个或者多个符号;
确定所述第一PUCCH的实际重复传输中不包括DMRS;
不进行所述第一PUCCH的实际重复传输。
可选的,所述第一执行模块还用于:当所述第一PUCCH的实际重复传输与第一传输的时间间隔小于或等于第二门限值时,所述终端确定所述第一PUCCH的实际重复传输中不包括DMRS;
其中,所述第一传输为包括DMRS的第一PUCCH的实际重复传输。
可选的,所述第一PUCCH的实际重复传输与第一传输为连续的两个传输。
可选的,所述第一PUCCH的实际重复传输与所述第一传输之间满足以 下至少一项:
所述第一PUCCH的实际重复传输与所述第一传输使用相同的天线端口;
所述第一PUCCH的实际重复传输与所述第一传输的发送功率差值小于或等于第三门限值;
所述第一PUCCH的实际重复传输与所述第一传输之间的相位连续。
可选的,该传输处理装置40还包括:
第二执行模块,用于在所述第一符号数L大于一个时隙所包括的符号数,所述第一PUCCH的实际重复传输所占的时隙包括上行时隙和特殊时隙的情况下,执行以下任意一项:
分别确定所述第一PUCCH的所述上行时隙和特殊时隙中的DMRS图样;
根据所述第一符号数,确定所述第一PUCCH的DMRS图样。
可选的,所述第二执行模块包括:
第一确定单元,用于根据所述上行时隙包括的用于PUCCH传输的符号数,确定所述上行时隙中的DMRS图样;
第二确定单元,用于确定所述特殊时隙中的DMRS的位置为,所述特殊时隙包括的用于PUCCH传输的符号中的预设的1个或者多个符号,或者,确定所述特殊时隙中不包括DMRS的位置。
可选的,所述上行时隙包括的符号数等于所述第一PUCCH的名义重复传输的符号数。
可选的,该传输处理装置40还包括:
第三执行模块,用于在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠的情况下,执行以下任意一项:
根据所述第一PUCCH的实际重复传输和所述第二PUCCH的传输中的上行控制信息UCI的类型的优先级,确定是否进行所述第一PUCCH的丢弃;
将所述第二PUCCH中的UCI复用到所述第一PUCCH上传输;
当所述第一PUCCH的实际重复传输的第一符号数小于第四门限值,或者所述第一PUCCH的实际重复传输中不包括DMRS时,进行或者不进行所 述第一PUCCH的实际重复传输。
可选的,所述第三执行模块还用于:在满足以下至少一项的情况下,将所述第二PUCCH中的UCI复用到所述第一PUCCH的实际重复传输上传输:
所述第一PUCCH的实际重复传输的第一符号数大于或等于第五门限值;
所述第一PUCCH的实际重复传输中包括DMRS。
可选的,当所述第二PUCCH的传输与至少两个第一PUCCH的实际重复传输在时间上交叠时,所述第三执行模块还用于执行以下任意一项:
将所述第二PUCCH中的UCI复用到,所述至少两个第一PUCCH的实际重复传输中的传输时间最早或者最晚的传输上传输;
将所述第二PUCCH中的UCI复用到所述至少两个第一PUCCH的实际重复传输上传输。
可选的,所述第三执行模块还用于:在确定进行所述第一PUCCH的丢弃的情况下,所述终端以实际重复传输或者名义重复传输的第一PUCCH为单位,进行所述第一PUCCH的丢弃。
可选的,该传输处理装置40还包括:
第四执行模块,用于在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠,所述第一PUCCH的实际重复传输中包括DMRS,所述DMRS被其他第一PUCCH的实际重复传输共享,且所述其他第一PUCCH的实际重复传输与所述第二PUCCH的传输在时间上没有交叠的情况下,执行以下任意一项:
进行所述第一PUCCH的实际重复传输;
丢弃第一PUCCH实际重复传输和其他第一PUCCH的实际重复传输。
本申请实施例中的传输处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机 等,本申请实施例不作具体限定。
本申请实施例中的传输处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置40能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图5所示,本申请实施例还提供一种终端50,包括处理器51,存储器52,存储在存储器52上并可在所述处理器51上运行的程序或指令,该程序或指令被处理器51执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果为避免重复,这里不再赘述。
图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关 按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601将来自网络侧设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络侧设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于定第一PUCCH的实际重复传输的第一符号数;所述第一PUCCH为重复传输的PUCCH。
本申请实施例提供的终端600能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求 所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种传输处理方法,包括:
    终端确定第一物理上行控制信道PUCCH的实际重复传输的第一符号数;其中,所述第一PUCCH为重复传输的PUCCH。
  2. 根据权利要求1所述的方法,其中,所述确定第一物理上行控制信道PUCCH的实际重复传输的第一符号数,包括:
    所述终端根据以下至少一项,确定所述第一PUCCH的实际重复传输的第一符号数:
    第一PUCCH的名义重复传输的第二符号数;
    上下行配置信息;
    上行传输的符号配置信息;
    时隙格式指示;
    下行控制信道指示的上行传输的取消传输指示;
    下行控制信道指示信息。
  3. 根据权利要求2所述的方法,其中,所述下行控制信道指示信息用于指定第一PUCCH的实际重复传输的符号数为N个符号数中的1个,其中,所述N个符号数为高层配置的N个名义或者实际的第一PUCCH的符号数。
  4. 根据权利要求1所述的方法,还包括:
    所述终端根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的资源块RB数量;
    和/或,
    所述终端根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的发送功率。
  5. 根据权利要求4所述的方法,其中,所述预设符号数是由网络侧设备指示的,且所述预设符号数与所述第二符号数不同。
  6. 根据权利要求4所述的方法,其中,所述第一PUCCH为支持以不同 RB数量传输的PUCCH。
  7. 根据权利要求1所述的方法,其中,在所述第一符号数L小于第一门限值的情况下,所述方法还包括以下任意一项:
    所述终端确定所述第一PUCCH的实际重复传输中的解调参考信号DMRS的位置为,所述第一PUCCH的实际重复传输的L个符号中的预设的1个或者多个符号;
    所述终端确定所述第一PUCCH的实际重复传输中不包括DMRS;
    所述终端不进行所述第一PUCCH的实际重复传输。
  8. 根据权利要求7所述的方法,其中,所述确定所述第一PUCCH的实际重复传输中不包括DMRS,包括:
    当所述第一PUCCH的实际重复传输与第一传输的时间间隔小于或等于第二门限值时,所述终端确定所述第一PUCCH的实际重复传输中不包括DMRS;
    其中,所述第一传输为包括DMRS的第一PUCCH的实际重复传输。
  9. 根据权利要求8所述的方法,其中,所述第一PUCCH的实际重复传输与所述第一传输为连续的两个传输。
  10. 根据权利要求9所述的方法,其中,所述第一PUCCH的实际重复传输与所述第一传输之间满足以下至少一项:
    所述第一PUCCH的实际重复传输与所述第一传输使用相同的天线端口;
    所述第一PUCCH的实际重复传输与所述第一传输的发送功率差值小于或等于第三门限值;
    所述第一PUCCH的实际重复传输与所述第一传输之间的相位连续。
  11. 根据权利要求1所述的方法,其中,在所述第一符号数L大于一个时隙所包括的符号数,所述第一PUCCH的实际重复传输所占的时隙包括上行时隙和特殊时隙的情况下,所述方法还包括以下任意一项:
    所述终端分别确定所述第一PUCCH的所述上行时隙和特殊时隙中的DMRS图样;
    所述终端根据所述第一符号数,确定所述第一PUCCH的DMRS图样。
  12. 根据权利要求11所述的方法,其中,所述分别确定所述第一PUCCH的所述上行时隙和特殊时隙中的DMRS图样,包括:
    所述终端根据所述上行时隙包括的用于PUCCH传输的符号数,确定所述上行时隙中的DMRS图样;
    所述终端确定所述特殊时隙中的DMRS的位置为,所述特殊时隙包括的用于PUCCH传输的符号中的预设的1个或者多个符号;或者,所述终端确定所述特殊时隙中不包括DMRS的位置。
  13. 根据权利要求11所述的方法,其中,所述上行时隙包括的符号数等于所述第一PUCCH的名义重复传输的符号数。
  14. 根据权利要求1所述的方法,其中,在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠的情况下,所述方法还包括以下任意一项:
    所述终端根据所述第一PUCCH的实际重复传输和所述第二PUCCH的传输中的上行控制信息UCI的类型的优先级,确定是否进行所述第一PUCCH的丢弃;
    所述终端将所述第二PUCCH中的UCI复用到所述第一PUCCH上传输;
    当所述第一PUCCH的实际重复传输的第一符号数小于第四门限值,或者所述第一PUCCH的实际重复传输中不包括DMRS时,所述终端进行或者不进行所述第一PUCCH的实际重复传输。
  15. 根据权利要求14所述的方法,其中,所述将所述第二PUCCH中的UCI复用到所述第一PUCCH上传输,包括:
    所述终端在满足以下至少一项的情况下,将所述第二PUCCH中的UCI复用到所述第一PUCCH的实际重复传输上传输:
    所述第一PUCCH的实际重复传输的第一符号数大于或等于第五门限值;
    所述第一PUCCH的实际重复传输中包括DMRS。
  16. 根据权利要求14所述的方法,其中,当所述第二PUCCH的传输与 至少两个第一PUCCH的实际重复传输在时间上交叠时,所述将所述第二PUCCH中的UCI复用到所述第一PUCCH上传输,包括以下任意一项:
    所述终端将所述第二PUCCH中的UCI复用到,所述至少两个第一PUCCH的实际重复传输中的传输时间最早或者最晚的传输上传输;
    所述终端将所述第二PUCCH中的UCI复用到所述至少两个第一PUCCH的实际重复传输上传输。
  17. 根据权利要求14所述的方法,其中,在确定进行所述第一PUCCH的丢弃的情况下,所述方法还包括:
    所述终端以实际重复传输或者名义重复传输的第一PUCCH为单位,进行所述第一PUCCH的丢弃。
  18. 根据权利要求1所述的方法,其中,在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠,所述第一PUCCH的实际重复传输中包括DMRS,所述DMRS被其他第一PUCCH的实际重复传输共享,且所述其他第一PUCCH的实际重复传输与所述第二PUCCH的传输在时间上没有交叠的情况下,所述方法还包括以下任意一项:
    进行所述第一PUCCH的实际重复传输;
    丢弃所述第一PUCCH实际重复传输和所述其他第一PUCCH的实际重复传输。
  19. 一种传输处理装置,包括:
    第一确定模块,用于确定第一PUCCH的实际重复传输的第一符号数;其中,所述第一PUCCH为重复传输的PUCCH。
  20. 根据权利要求19所述的装置,其中,
    所述第一确定模块具体用于:根据以下至少一项,确定所述第一PUCCH的实际重复传输的第一符号数:
    第一PUCCH的名义重复传输的第二符号数;
    上下行配置信息;
    上行传输的符号配置信息;
    时隙格式指示;
    下行控制信道指示的上行传输的取消传输指示;
    下行控制信道指示信息。
  21. 根据权利要求20所述的装置,其中,所述下行控制信道指示信息用于指定第一PUCCH的实际重复传输的符号数为N个符号数中的1个,其中,所述N个符号数为高层配置的N个名义或者实际的第一PUCCH的符号数。
  22. 根据权利要求19所述的装置,还包括:
    第二确定模块,用于根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的资源块RB数量;
    和/或,根据所述第一PUCCH的名义重复传输的第二符号数,或者预设符号数,确定所述第一PUCCH的实际重复传输的发送功率。
  23. 根据权利要求22所述的装置,其中,所述预设符号数是由网络侧设备指示的,且所述预设符号数与所述第二符号数不同。
  24. 根据权利要求22所述的装置,其中,所述第一PUCCH为支持以不同RB数量传输的PUCCH。
  25. 根据权利要求19所述的装置,还包括:
    第一执行模块,用于在所述第一符号数L小于第一门限值的情况下,执行以下任意一项:
    确定所述第一PUCCH的实际重复传输中的DMRS的位置为,所述第一PUCCH的实际重复传输的L个符号中的预设的1个或者多个符号;
    确定所述第一PUCCH的实际重复传输中不包括DMRS;
    不进行所述第一PUCCH的实际重复传输。
  26. 根据权利要求25所述的装置,其中,
    所述第一执行模块还用于:当所述第一PUCCH的实际重复传输与第一传输的时间间隔小于或等于第二门限值时,所述终端确定所述第一PUCCH的实际重复传输中不包括DMRS;
    其中,所述第一传输为包括DMRS的第一PUCCH的实际重复传输。
  27. 根据权利要求26所述的装置,其中,所述第一PUCCH的实际重复传输与所述第一传输为连续的两个传输。
  28. 根据权利要求27所述的装置,其中,所述第一PUCCH的实际重复传输与所述第一传输之间满足以下至少一项:
    所述第一PUCCH的实际重复传输与所述第一传输使用相同的天线端口;
    所述第一PUCCH的实际重复传输与所述第一传输的发送功率差值小于或等于第三门限值;
    所述第一PUCCH的实际重复传输与所述第一传输之间的相位连续。
  29. 根据权利要求19所述的装置,还包括:
    第二执行模块,用于在所述第一符号数L大于一个时隙所包括的符号数,所述第一PUCCH的实际重复传输所占的时隙包括上行时隙和特殊时隙的情况下,执行以下任意一项:
    分别确定所述第一PUCCH的所述上行时隙和特殊时隙中的DMRS图样;
    根据所述第一符号数,确定所述第一PUCCH的DMRS图样。
  30. 根据权利要求29所述的装置,其中,所述第二执行模块包括:
    第一确定单元,用于根据所述上行时隙包括的用于PUCCH传输的符号数,确定所述上行时隙中的DMRS图样;
    第二确定单元,用于确定所述特殊时隙中的DMRS的位置为,所述特殊时隙包括的用于PUCCH传输的符号中的预设的1个或者多个符号,或者,确定所述特殊时隙中不包括DMRS的位置。
  31. 根据权利要求29所述的装置,其中,所述上行时隙包括的符号数等于所述第一PUCCH的名义重复传输的符号数。
  32. 根据权利要求19所述的装置,还包括:
    第三执行模块,用于在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠的情况下,执行以下任意一项:
    根据所述第一PUCCH的实际重复传输和所述第二PUCCH的传输中的上 行控制信息UCI的类型的优先级,确定是否进行所述第一PUCCH的丢弃;
    将所述第二PUCCH中的UCI复用到所述第一PUCCH上传输;
    当所述第一PUCCH的实际重复传输的第一符号数小于第四门限值,或者所述第一PUCCH的实际重复传输中不包括DMRS时,进行或者不进行所述第一PUCCH的实际重复传输。
  33. 根据权利要求32所述的装置,其中,
    所述第三执行模块还用于:在满足以下至少一项的情况下,将所述第二PUCCH中的UCI复用到所述第一PUCCH的实际重复传输上传输:
    所述第一PUCCH的实际重复传输的第一符号数大于或等于第五门限值;
    所述第一PUCCH的实际重复传输中包括DMRS。
  34. 根据权利要求32所述的方法,其中,当所述第二PUCCH的传输与至少两个第一PUCCH的实际重复传输在时间上交叠时,所述第三执行模块还用于执行以下任意一项:
    将所述第二PUCCH中的UCI复用到,所述至少两个第一PUCCH的实际重复传输中的传输时间最早或者最晚的传输上传输;
    将所述第二PUCCH中的UCI复用到所述至少两个第一PUCCH的实际重复传输上传输。
  35. 根据权利要求32所述的装置,其中,
    所述第三执行模块还用于:在确定进行所述第一PUCCH的丢弃的情况下,所述终端以实际重复传输或者名义重复传输的第一PUCCH为单位,进行所述第一PUCCH的丢弃。
  36. 根据权利要求19所述的装置,还包括:
    第四执行模块,用于在所述第一PUCCH的实际重复传输与第二PUCCH的传输在时间上交叠,所述第一PUCCH的实际重复传输中包括DMRS,所述DMRS被其他第一PUCCH的实际重复传输共享,且所述其他第一PUCCH的实际重复传输与所述第二PUCCH的传输在时间上没有交叠的情况下,执行以下任意一项:
    进行所述第一PUCCH的实际重复传输;
    丢弃所述第一PUCCH实际重复传输和所述其他第一PUCCH的实际重复传输。
  37. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的传输处理方法的步骤。
  38. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18任一项所述的传输处理方法的步骤。
PCT/CN2021/121248 2020-09-29 2021-09-28 传输处理方法、装置、终端及可读存储介质 WO2022068798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011057987.2A CN114337950B (zh) 2020-09-29 2020-09-29 传输处理方法、装置、终端及可读存储介质
CN202011057987.2 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068798A1 true WO2022068798A1 (zh) 2022-04-07

Family

ID=80949654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121248 WO2022068798A1 (zh) 2020-09-29 2021-09-28 传输处理方法、装置、终端及可读存储介质

Country Status (2)

Country Link
CN (1) CN114337950B (zh)
WO (1) WO2022068798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024168485A1 (zh) * 2023-02-13 2024-08-22 Oppo广东移动通信有限公司 信息指示方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557238A (zh) * 2019-08-19 2019-12-10 西安理工大学 一种用于5g系统的数据传输方法及装置
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247766B (zh) * 2018-04-05 2022-09-09 Lg电子株式会社 在无线通信系统中发送或接收信号的方法及其设备
EP3925149A1 (en) * 2019-02-13 2021-12-22 IDAC Holdings, Inc. Physical uplink shared channel transmissions
CN110460419B (zh) * 2019-08-09 2022-05-31 北京紫光展锐通信技术有限公司 上行数据发送方法及装置、存储介质、终端、基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质
CN110557238A (zh) * 2019-08-19 2019-12-10 西安理工大学 一种用于5g系统的数据传输方法及装置

Also Published As

Publication number Publication date
CN114337950A (zh) 2022-04-12
CN114337950B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
KR20210147025A (ko) 중복 송신 기회들에 기초하여 송신을 취소하기 위한 방법 및 장치
JP2016530761A (ja) Fdd−tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
CN114363986A (zh) Pucch重复传输次数确定方法、装置及终端
WO2022017353A1 (zh) 物理上行控制信道资源重叠的处理方法及装置
WO2022078288A1 (zh) Harq-ack的传输方法、终端及网络侧设备
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
WO2022148389A1 (zh) 编码调制符号数的确定方法、装置及通信设备
US20180102930A1 (en) Data transmisson method and device
US20230254867A1 (en) Uplink transmission processing method and apparatus, and terminal
US20230199761A1 (en) Uplink channel transmission method and apparatus, and terminal
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
US20240155615A1 (en) Method and apparatus for handling overlapping of pucch time domain resources
WO2022012417A1 (zh) 冲突处理方法及装置
WO2022068798A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2022188737A1 (zh) 上行传输方法、装置及终端
WO2022148368A1 (zh) 信息传输方法、装置、终端及网络设备
WO2022028604A1 (zh) 上行传输方法、装置及终端设备
WO2022143491A1 (zh) Uci复用的方法、装置、设备及可读存储介质
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
CN115334676A (zh) 上行传输的复用指示方法、装置、终端及网络侧设备
WO2022017342A1 (zh) 上行传输方法、装置及设备
WO2022068869A1 (zh) 传输处理方法、装置及相关设备
WO2023046162A1 (zh) Pucch传输功率的控制方法、装置及终端
EP4311152A1 (en) Method and apparatus for determining uplink transmission time window, terminal, and network side device
WO2023006026A1 (zh) 上行传输方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874458

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21874458

Country of ref document: EP

Kind code of ref document: A1