WO2022188737A1 - 上行传输方法、装置及终端 - Google Patents

上行传输方法、装置及终端 Download PDF

Info

Publication number
WO2022188737A1
WO2022188737A1 PCT/CN2022/079510 CN2022079510W WO2022188737A1 WO 2022188737 A1 WO2022188737 A1 WO 2022188737A1 CN 2022079510 W CN2022079510 W CN 2022079510W WO 2022188737 A1 WO2022188737 A1 WO 2022188737A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
time slot
uplink
symbol
symbols
Prior art date
Application number
PCT/CN2022/079510
Other languages
English (en)
French (fr)
Inventor
李娜
吴凯
拉盖施塔玛拉卡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023555577A priority Critical patent/JP2024510589A/ja
Priority to EP22766261.6A priority patent/EP4307802A1/en
Publication of WO2022188737A1 publication Critical patent/WO2022188737A1/zh
Priority to US18/464,755 priority patent/US20230421318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application belongs to the technical field of mobile communication, and specifically relates to an uplink transmission method, device and terminal.
  • the maximum number of repeated transmissions of the Physical Uplink Shared Channel is 16.
  • TDD Time Division Duplex
  • the carrier configuration dominated by downlink time slots makes the uplink time slots very limited, and the actual number of repeated transmissions of PUSCH is much less than the configured number of repetitions, resulting in limited coverage.
  • PUSCH repeated transmission type A it is required that the transmissions carrying PUSCH in each time slot have the same time domain resources, which leads to some time slots that do not have the same time domain resource allocation and thus abandon the transmission of PUSCH in this time slot, although The slot still has a certain number of upstream symbols. This also results in limited coverage.
  • InvalidSymbolPattern under the invalid symbol pattern (InvalidSymbolPattern), it can only be applied to PUSCH repetition transmission type (Repetition Type) B, and cannot be applied to Repetition Type A or multi-slot co-transmission of a transmission block (TBProcessingOverMulti-slots, TBoMS), which will As a result, in order to protect other transmissions or perform other physical processes, PUSCHs with conflicting resources can only be discarded.
  • the embodiments of the present application provide an uplink transmission method, device, and terminal, which can solve the problem of low uplink transmission efficiency.
  • an uplink transmission method executed by a terminal, and the method includes:
  • the actual transmission behavior in the first time slot is determined.
  • an uplink transmission device comprising:
  • a judging module used to determine the available or valid or nominal first time slot for uplink transmission before sending the first symbol of uplink transmission
  • a transmission module configured to determine the actual transmission behavior in the first time slot.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a fifth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method described in the first aspect. method described.
  • the efficiency of uplink transmission can be effectively improved.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 shows a schematic flowchart of an uplink transmission method provided by an embodiment of the present application
  • FIG. 3 shows another schematic flowchart of an uplink transmission method provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a time slot scheduling solution provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of another time slot scheduling solution provided by an embodiment of the present application.
  • FIG. 6 shows another schematic flowchart of an uplink transmission method provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of another time slot scheduling solution provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of an uplink transmission apparatus provided by an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal implementing an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), PDA, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) ) access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that , in the embodiments of the present application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • Fig. 2 shows a schematic flow chart of the uplink transmission method provided by the present application.
  • the method can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal. As shown in Figure 2, the method may include the following steps.
  • Step S201 Before sending the first symbol of uplink transmission, determine an available or valid or nominal first time slot for uplink transmission.
  • the uplink transmission may include physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission and physical uplink control channel transmission. Specifically, it may include PUSCH transmission indicated by a time domain resource allocation table (Time domain resource allocation, TDRA).
  • the first time slot may be a slot or a sub-slot.
  • Step S202 Determine the actual transmission behavior in the first time slot.
  • the terminal Before performing uplink transmission, the terminal first determines whether each first time slot used for uplink transmission is an available or valid or nominal first time slot. After the available or valid or nominal first time slot is determined, the actual transmission behavior of the current uplink transmission in the first time slot is determined, that is, how to realize the current uplink transmission in the first time slot, For example, perform rate-matching (Rate-Matching) uplink transmission on the first symbol, perform uplink transmission after deleting or puncturing the first symbol, perform uplink transmission after segmenting the uplink transmission in the first symbol, or give up Uplink transmission of the first time slot, etc.
  • rate-matching Rate-matching
  • the uplink transmission method provided by the embodiments of the present application can effectively determine the available or valid or nominal first time slot for uplink transmission, and then determine the actual transmission behavior in the first time slot. Improve the efficiency of uplink transmission.
  • FIG. 3 shows another schematic flowchart of an uplink transmission method provided by an embodiment of the present application. As shown in FIG. 3 , the method may include the following steps.
  • Step S301 Obtain a first number of symbols that meet a first condition in all the first symbols included in the first time slot; wherein, the first symbols are symbols used for uplink transmission in the first time slot. Meeting the first condition makes the first symbol an invalid symbol resource for the PUSCH or physical uplink control channel (Physical Uplink Control Channel, PUCCH) currently transmitted in the uplink.
  • PUCCH Physical Uplink Control Channel
  • the first symbol includes at least one of the following:
  • TDRA The symbols used for PUSCH transmission are indicated by TDRA;
  • the high-level configuration is specifically configured by a radio resource control (Radio Resource Control, RRC) message or a system information block (System Information Block, SIB) message configuration;
  • RRC Radio Resource Control
  • SIB System Information Block
  • the symbol used for PUCCH transmission indicated by the Physical Uplink Control Channel Resource Indicator (PRI) information.
  • PRI Physical Uplink Control Channel Resource Indicator
  • the first condition includes at least one of the following:
  • CORESET control resource set for the common search space (Type0-PDCCH CSS) of the Type 0 physical downlink control channel
  • the symbol cannot be used for the current uplink transmission
  • the semi-static downlink symbols include time division multiplexing uplink and downlink conventional configuration (tdd-UL-DL-ConfigurationCommon) information and/or time division multiplexing uplink and downlink dedicated configuration (tdd-UL-DL-ConfigurationDedicated) information configured. semi-static downlink symbols;
  • the SSB includes an SSB indicated by the synchronization signal block burst position (ssb-PositionsInBurst) in the system information block SIB1 or the ssb-PositionsInBurst in the serving cell common configuration (ServingCellConfigCommon);
  • control resource set for Type0-PDCCH CSS includes the system information block configuration (pdcch-ConfigSIB1) of the physical downlink control channel in the master information block (Master Information Block, MIB) for Type0-PDCCH configuration CSS control resource set;
  • the semi-static flexible includes time division multiplexing uplink and downlink conventional configuration (tdd-UL-DL-ConfigurationCommon) information and/or time division multiplexing uplink and downlink dedicated configuration information (tdd-UL-DL-ConfigurationDedicated) configuration.
  • tdd-UL-DL-ConfigurationCommon time division multiplexing uplink and downlink dedicated configuration information
  • tdd-UL-DL-ConfigurationDedicated time division multiplexing uplink and downlink dedicated configuration information
  • the symbols that are unavailable or invalid for uplink transmission include symbols that are unavailable or invalid for uplink transmission configured by an invalid symbol pattern, including symbols that are unavailable or invalid for PUSCH transmission.
  • the symbols that cannot be used for current uplink transmission include at least one of the following:
  • DownLink Used to schedule downlink (DownLink, DL) symbols
  • the other uplink multi-slot transmission is TBoMS
  • the symbol that cannot be used for current uplink transmission is indicated by at least one of the following:
  • Dynamic slot format (dynamic Slot Format Indication, dynamic SFI); the dynamic slot format is used to indicate that the first symbol is DL and/or dynamic flexible;
  • Downlink Control Information Downlink Control Information
  • the DCI is used to indicate that the first symbol is used for scheduling downlink transmission or, higher priority uplink transmission, other uplink repeated transmission or other uplink multi-slot transmission or It is an unavailable or invalid symbol, that is, the resource occupied for repeated transmission overlaps with the first symbol;
  • the high-layer configuration is used to configure the first symbol to be used for other uplink repeated transmission or other uplink multi-slot transmission;
  • Uplink transmission cancellation signaling (UL Cancellation indication, UL CI).
  • the other uplink repeated transmissions include at least one of the following:
  • the physical uplink control channel includes: physical uplink control channel for channel state information and/or scheduling request and/or hybrid automatic repeat request;
  • the target information is repeatedly transmitted; wherein, the target information includes information 3 (Msg3) and/or information A (MsgA repetition);
  • the first factor that can interrupt the current uplink transmission of the first symbol includes at least one of the following:
  • the time resource of scheduling restriction caused by the first measurement is used for at least one of the following: radio link monitoring (Radio Link Monitoring, RLM), connection recovery (link recovery), radio resource management (Radio resource management) management, RRM), the reference signal received power (Reference Signal Received Power, RSRP) of the L1 layer.
  • radio link monitoring Radio Link Monitoring, RLM
  • connection recovery link recovery
  • radio resource management Radio resource management
  • RRM the reference signal received power
  • RSRP Reference Signal Received Power
  • the switching or switching time between uplink and downlink that is, the switching or switching time from DL to UL or from UL to DL;
  • BWP Bandwidth Part handover of the current cell or other cells, activation of the secondary cell (Scell), deactivation of the secondary cell, addition of the secondary cell (addicion), and release of the secondary cell (release);
  • Non-DRX non-discontinuous reception
  • DRX discontinuous reception
  • the readjustment time of the radio frequency front end between the same or different uplink transmissions is used for at least one of the following:
  • Frequency hopping transmission performed by a bandwidth-constrained terminal on a bandwidth that exceeds its own maximum bandwidth.
  • the half-duplex rule that can cancel the current uplink transmission includes at least one of the following:
  • TDD Half-duplex CA Terminal behavior of half-duplex time division multiplexing carrier aggregation
  • the corresponding first conditions can be selected from the above first conditions, and based on the corresponding first conditions, it is determined whether each first symbol is an invalid symbol resource, and then it is determined whether the first time slot is available or valid. or the nominal first time slot.
  • the first condition is determined based on at least one of the following:
  • Uplink Control Information carried by the physical uplink control channel.
  • Different first conditions may be employed for PUSCH transmission based on different classifications of PUSCH.
  • Different first conditions may be employed for PUCCH transmission based on PUCCH formats and/or different UCIs carried by PUCCH. Specific examples are as follows:
  • the corresponding first conditions include the above conditions 1), 2), 5), 7) and 8);
  • the PUCCH bears a Hybrid automatic repeat request acknowledgement (HARQ-ACK) for the dynamically scheduled downlink
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • the corresponding first conditions include the above conditions 1), 2), and 5) , 7) and 8).
  • the UE For the UE in the RRC connected state (RRC-connected), it configures the authorized PUSCH (Configured Grant PUSCH, CG PUSCH), and the corresponding first conditions include the above conditions 1), 2), 3), 5), 6), 7) and 8).
  • the authorized PUSCH Configured Grant PUSCH, CG PUSCH
  • the corresponding first conditions include the above conditions 1), 2), 3), 5), 6), 7) and 8).
  • the corresponding first conditions include the above conditions 1), 2), 3), 5), 6), 7) and 8).
  • the corresponding first conditions include the above-mentioned conditions 1), 2), 3), 7) and 8).
  • the corresponding first conditions include the above-mentioned conditions 1), 2) and 8).
  • Step S302 in the case that the first number is less than a first threshold X, determine that the first time slot is available or valid or a nominal first time slot.
  • the first threshold X is determined by at least one of the following:
  • the first time slot is a time slot without uplink and downlink switching
  • the first time slot is a time slot with uplink and downlink switching
  • the time slot is unavailable.
  • a first threshold X may be fixed for each transmission length L, and the first threshold X may also be recorded in the TDRA.
  • a specific example for the configuration of the first threshold is as follows:
  • the first threshold can be configured in TDRA, as shown in Table 1.
  • Table 1 is an example of PUSCH time domain resource allocation for normal CP (PUSCH time domain resource allocation for normal CP), wherein S and L in each row indicate the start symbol and Transmission length, PUSCH Mapping Type indicates the mapping type (Mapping Type) of the dedicated demodulation reference signal (Demodulation Reference Signal, DM-RS); K 2 parameter indicates the time slot where the first PUSCH is located relative to the time slot where the DCI is scheduled gap offset.
  • PUSCH Mapping Type indicates the mapping type (Mapping Type) of the dedicated demodulation reference signal (Demodulation Reference Signal, DM-RS);
  • K 2 parameter indicates the time slot where the first PUSCH is located relative to the time slot where the DCI is scheduled gap offset.
  • the first threshold can be configured by RRC, and a fixed first threshold X is configured for each transmission length L of uplink transmission of different priorities, as shown in Table 2 and Table 3 below, where Table 2 is a high-priority PUSCH, Table 3 shows the low priority PUSCH.
  • Table 5 Table 6 and Table 7 are the time slots with uplink and downlink switching.
  • the first threshold is greater than or equal to 0 and less than or equal to 13.
  • FIG. 4 shows a schematic diagram of a time slot scheduling scheme provided by an embodiment of the present application.
  • time slot 0 (Slot#0) and time slot 1 (Slot#1) are configured by tdd-UL-DL-ConfigurationCommon and/or Configured by tdd-UL-DL-ConfigurationDedicated, there are 14 OFDM symbols in each slot, of which symbol D is used for downlink transmission, symbol F is a flexible symbol, and symbol U is a symbol used for uplink transmission.
  • the symbol corresponding to T1 is configured as SSB
  • the symbol corresponding to T2 is indicated by dynamic signaling that PUSCH cannot be transmitted.
  • the first condition includes conditions 1) and 2), it can be determined that slot#0 in FIG. 4 is an unavailable time slot, and slot#1 is an available slot.
  • the first condition includes conditions 1), 2), 3) and 4
  • Slot#0 in FIG. 4 is an unavailable slot
  • slot#1 is an unavailable slot
  • the first condition includes conditions 1), 2), 3) and 6
  • Slot#0 in FIG. 4 is an unavailable slot
  • slot#1 is an available slot
  • the first condition includes conditions 1), 2), 3) and 6
  • Slot#0 in FIG. 4 is an unavailable slot
  • slot#1 is an unavailable slot
  • the first condition includes conditions 1), 2), 3) and 6
  • Slot#0 in FIG. 4 is an unavailable slot
  • slot#1 is an available slot
  • Figure 5 shows a schematic diagram of another time slot scheduling scheme provided by an embodiment of the present application.
  • the symbol corresponding to T1 is configured as SSB, and the symbol corresponding to T3 is indicated by dynamic signaling as downlink receiving DL.
  • Slot#0 There are measurement intervals.
  • the uplink and downlink switching time is 2 symbols, it can be determined that Slot#0 in FIG. 5 is an unavailable slot, and slot#1 is unavailable. slot.
  • the uplink and downlink switching time is 1 symbol
  • the uplink and downlink switching time is 2 symbols, it can be determined that Slot#0 in FIG. 5 is an unavailable slot, and slot#1 is an available slot. .
  • Step S303 Determine the actual transmission behavior in the first time slot.
  • Step S303 can implement the method embodiment of step S202 in FIG. 2 , and obtain the same or similar technical effects, and for the sake of brevity, the same parts will not be repeated here.
  • an uplink transmission method provided by an embodiment of the present application, by obtaining the first number of symbols that meet the first condition among all the first symbols included in the first time slot, and according to the first number and the preset
  • the comparison result of the first threshold value determines whether the first time slot is available, and then determines the actual transmission behavior in the first time slot, so that the judgment on whether the first time slot is available is more accurate, and the efficiency of uplink transmission is effectively improved.
  • FIG. 6 shows another schematic flowchart of an uplink transmission method provided by an embodiment of the present application. As shown in FIG. 6 , the method may include the following steps.
  • Step S601 Obtain a first number of symbols that meet a first condition among all the first symbols included in the first time slot.
  • Step S602 in the case that the first number is less than a first threshold X, determine that the first time slot is an available or valid or nominal first time slot.
  • the steps S601-S602 can implement the method embodiment of the steps S301-S302 in FIG. 3, and obtain the same or similar technical effects, and the same parts will not be repeated here for the sake of brevity.
  • Step S603 Determine the second number Y of symbols that meet the second condition in all the first symbols.
  • the second condition is a condition for removing the semi-static downlink symbols from the first condition, that is, if the first condition includes condition 1), it is the first condition for removing condition 1), if the first condition If condition 1) is not included, the second condition is the same as the first condition.
  • Step S604 based on the second quantity Y, determine the actual transmission behavior in the first time slot.
  • step S604 includes:
  • the terminal abandons the transmission in the first time slot.
  • the second number is smaller than the first number, that is, Y ⁇ X
  • determine the actual transmission behavior in the first time slot which specifically includes at least one of the following:
  • the actual transmission behavior of the target includes at least one of the following:
  • the current uplink transmission performs rate-matching (Rate-matching) transmission on invalid symbol resources;
  • the current uplink transmission is segmented by invalid symbol resources
  • performing the target actual transmission behavior based on the second quantity includes:
  • the second number is greater than the third number X1 and less than the first number, that is, X1 ⁇ Y ⁇ X, rate-matched transmission is performed on the invalid symbol resources in the first time slot;
  • the second number is less than or equal to the third number, that is, Y ⁇ X1, perform uplink transmission in the first time slot after deleting or puncturing invalid symbol resources;
  • the third quantity is specified by a high-level configuration or a protocol.
  • determining the actual transmission behavior of each symbol in the first time slot based on the processing time includes at least one of the following:
  • the uplink transmission is performed after deleting or puncturing the dynamically indicated unavailable or invalid first symbol in the first time slot.
  • the determining the actual transmission behavior of each symbol in the first time slot based on the processing time further includes:
  • the dynamic indication is used for rate-matched uplink transmission;
  • the dynamic indication in the first time slot is unavailable or invalid. Perform uplink transmission after deleting or puncturing the first symbol of the dynamic indication, or perform uplink transmission after ignoring the unavailable or invalid first symbol of the dynamic indication.
  • FIG. 7 shows a schematic diagram of another time slot scheduling scheme provided by an embodiment of the present application.
  • the symbol corresponding to T1 is configured as SSB, and the symbol corresponding to T4 is indicated by dynamic signaling that PUSCH cannot be transmitted.
  • the first condition includes conditions 1), 2) and 3
  • both slot#0 and slot#1 are available time slots.
  • the actual transmission in the first time slot is determined based on the second number by determining the second number of symbols that meet the second condition in all the first symbols.
  • the execution body may be an uplink transmission apparatus, or a control module in the uplink transmission apparatus for executing the uplink transmission method.
  • the method for performing uplink transmission by an uplink transmission apparatus is taken as an example to describe the uplink transmission apparatus provided by the embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of an uplink transmission apparatus provided by an embodiment of the present application. As shown in FIG. 8 , the apparatus includes: a judgment module 801 and a transmission module 802 .
  • the judging module 801 is used to determine the available or valid or nominal first time slot for uplink transmission before sending the first symbol of the uplink transmission; the transmission module 802 is used to determine the first time slot at the first time the actual transmission behavior of the slot.
  • the uplink transmission apparatus provided by the embodiments of the present application can effectively determine the available or valid or nominal first time slot for uplink transmission, and then determine the actual transmission behavior in the first time slot. Improve the efficiency of uplink transmission.
  • the judging module is configured to obtain the first number of symbols that meet the first condition among all the first symbols included in the first time slot; wherein, the first symbol is the The symbol used for uplink transmission in the first time slot; when the first number is less than the first threshold, the first time slot is determined to be an available or valid or nominal first time slot.
  • the first symbol includes at least one of the following:
  • the symbols used for physical uplink shared channel transmission are indicated by the time domain resource allocation table
  • the symbol used for physical uplink control channel transmission indicated by the physical uplink control channel resource indication information is the symbol used for physical uplink control channel transmission indicated by the physical uplink control channel resource indication information.
  • the first threshold is determined by at least one of the following:
  • the first time slot is a time slot without uplink and downlink switching
  • the first time slot is a time slot with uplink and downlink switching
  • the first threshold is greater than or equal to 0 and less than or equal to 13.
  • the first condition includes at least one of the following:
  • control resource set used for the common search space of type 0 physical downlink control channels
  • the current upstream transmission is canceled according to the half-duplex rule.
  • the semi-static downlink symbols are configured by time division multiplexing uplink and downlink regular configuration information and/or time division multiplexing uplink and downlink dedicated configuration information.
  • the synchronization signal block is indicated and configured by ssb-PositionsInBurst in the system information block or ssb-PositionsInBurst in ServingCellConfigCommon.
  • control resource set for the common search space of the type 0 physical downlink control channel is configured by pdcch-ConfigSIB1 in the main information block.
  • the semi-static flexible symbols are configured by time division multiplexing uplink and downlink conventional configuration information and/or time division multiplexing uplink and downlink dedicated configuration information.
  • the symbols that are unavailable or invalid for uplink transmission are configured by an invalid symbol pattern.
  • the symbols that cannot be used for current uplink transmission include at least one of the following:
  • the symbol that cannot be used for current uplink transmission is indicated by at least one of the following:
  • the other uplink repeated transmissions include at least one of the following:
  • the physical uplink control channels include: physical uplink control channels used for channel state information and/or scheduling requests and/or hybrid automatic repeat requests;
  • the target information is repeatedly transmitted; wherein, the target information includes information 3 and/or information A;
  • the other uplink multi-slot transmission is TBoMS.
  • the first factor includes at least one of the following:
  • the first measurement is used for at least one of the following: radio link monitoring, connection recovery, radio resource management, and reference signal received power of the L1 layer.
  • the readjustment time of the radio frequency front end between the same or different uplink transmissions is used for at least one of the following:
  • Frequency hopping transmission performed by a bandwidth-constrained terminal on a bandwidth that exceeds its own maximum bandwidth.
  • the half-duplex rule includes at least one of the following:
  • the first condition is determined based on at least one of the following:
  • Uplink control information carried by the physical uplink control channel is carried by the physical uplink control channel.
  • an uplink transmission apparatus determines the actual transmission in the first time slot based on the second number by determining the second number of symbols that meet the second condition in all the first symbols The behavior makes it possible to flexibly perform uplink transmission in the first time slot, and effectively improve the efficiency of uplink transmission.
  • the transmission module is configured to determine a second number of symbols that meet the second condition in all the first symbols; based on the second number, determine the actual transmission behavior in the first time slot .
  • the second condition is the condition that the downlink symbols configured as semi-static are removed from the first condition.
  • the determining, based on the second quantity, the actual transmission behavior in the first time slot includes:
  • the actual transmission behavior in the first time slot is determined.
  • determining that the actual transmission behavior in the first time slot includes at least one of the following:
  • the transmission in the first time slot is abandoned;
  • the actual transmission behavior of the target includes at least one of the following:
  • the current uplink transmission performs rate-matched transmission on invalid symbol resources
  • the current uplink transmission is segmented by invalid symbol resources
  • performing the target actual transmission behavior based on the second quantity includes:
  • the second quantity is less than or equal to the third quantity, perform uplink transmission in the first time slot after deleting or puncturing invalid symbol resources;
  • the third quantity is specified by a high-level configuration or a protocol.
  • determining the actual transmission behavior of each symbol in the first time slot based on the processing time includes at least one of the following:
  • the uplink transmission is performed after deleting or puncturing the dynamically indicated unavailable or invalid first symbol in the first time slot.
  • the determining the actual transmission behavior of each symbol in the first time slot based on the processing time further includes:
  • the first time slot is used for the dynamically indicated unavailable or invalid first symbol Do rate-matched uplink transmission
  • the first time slot in the dynamically indicated unavailable or invalid first symbol will The uplink transmission is performed after deletion or puncturing, or the uplink transmission is performed after ignoring the unavailable or invalid first symbol of the dynamic indication.
  • an uplink transmission apparatus determines the actual transmission in the first time slot based on the second number by determining the second number of symbols that meet the second condition in all the first symbols It can flexibly perform uplink transmission in the first time slot, and effectively improve the efficiency of uplink transmission.
  • the uplink transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the uplink transmission device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the uplink transmission apparatus provided in the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 7 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the foregoing uplink transmission method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network side device
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned uplink transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110 and other components .
  • the terminal 100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 101 receives the downlink data from the network side device, and then processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 110 .
  • the processor 110 is configured to, before sending the first symbol of uplink transmission, determine an available or valid or nominal first time slot for uplink transmission; and determine the actual transmission behavior in the first time slot.
  • the efficiency of uplink transmission can be effectively improved.
  • the processor 110 is further configured to obtain the first number of symbols that meet the first condition in all the first symbols included in the first time slot; wherein, the first symbol is one of the first symbols in the first time slot A symbol used for uplink transmission; in the case that the first number is less than a first threshold, the first time slot is determined to be an available or valid or nominal first time slot.
  • the first symbol includes at least one of the following:
  • the symbols used for physical uplink shared channel transmission are indicated by the time domain resource allocation table
  • the symbol used for physical uplink control channel transmission indicated by the physical uplink control channel resource indication information is the symbol used for physical uplink control channel transmission indicated by the physical uplink control channel resource indication information.
  • the first threshold is determined by at least one of the following:
  • the first time slot is a time slot without uplink and downlink switching
  • the first time slot is a time slot with uplink and downlink switching
  • the first threshold is greater than or equal to 0 and less than or equal to 13.
  • the first condition includes at least one of the following:
  • control resource set used for the common search space of type 0 physical downlink control channels
  • the current upstream transmission is canceled according to the half-duplex rule.
  • the semi-static downlink symbols are configured by time division multiplexing uplink and downlink regular configuration information and/or time division multiplexing uplink and downlink dedicated configuration information.
  • the synchronization signal block is indicated and configured by ssb-PositionsInBurst in the system information block or ssb-PositionsInBurst in ServingCellConfigCommon.
  • control resource set for the common search space of the type 0 physical downlink control channel is configured by pdcch-ConfigSIB1 in the main information block.
  • the semi-static flexible symbols are configured by time division multiplexing uplink and downlink conventional configuration information and/or time division multiplexing uplink and downlink dedicated configuration information.
  • the symbols that are unavailable or invalid for uplink transmission are configured by an invalid symbol pattern.
  • the symbols that cannot be used for current uplink transmission include at least one of the following:
  • the symbol that cannot be used for current uplink transmission is indicated by at least one of the following:
  • the other uplink repeated transmissions include at least one of the following:
  • the physical uplink control channels include: physical uplink control channels used for channel state information and/or scheduling requests and/or hybrid automatic repeat requests;
  • the target information is repeatedly transmitted; wherein, the target information includes information 3 and/or information A;
  • the other uplink multi-slot transmission is TBoMS.
  • the first factor includes at least one of the following:
  • the first measurement is used for at least one of the following: radio link monitoring, connection recovery, radio resource management, and reference signal received power of the L1 layer.
  • the readjustment time of the radio frequency front end between the same or different uplink transmissions is used for at least one of the following:
  • Frequency hopping transmission performed by a bandwidth-constrained terminal on a bandwidth that exceeds its own maximum bandwidth.
  • the half-duplex rule includes at least one of the following:
  • the first condition is determined based on at least one of the following:
  • Uplink control information carried by the physical uplink control channel is carried by the physical uplink control channel.
  • uplink transmission can be flexibly performed in the first time slot, thereby effectively improving the efficiency of uplink transmission.
  • the processor 110 is further configured to determine a second number of symbols that meet the second condition in all the first symbols; and based on the second number, determine the actual transmission behavior in the first time slot.
  • the second condition is the condition that the downlink symbols configured as semi-static are removed from the first condition.
  • the determining, based on the second quantity, the actual transmission behavior in the first time slot includes:
  • the actual transmission behavior in the first time slot is determined.
  • determining that the actual transmission behavior in the first time slot includes at least one of the following:
  • the transmission in the first time slot is abandoned;
  • the actual transmission behavior of the target includes at least one of the following:
  • the current uplink transmission performs rate-matched transmission on invalid symbol resources
  • the current uplink transmission is segmented by invalid symbol resources
  • performing the target actual transmission behavior based on the second quantity includes:
  • the second quantity is less than or equal to the third quantity, perform uplink transmission in the first time slot after deleting or puncturing invalid symbol resources;
  • the third quantity is specified by a high-level configuration or a protocol.
  • determining the actual transmission behavior of each symbol in the first time slot based on the processing time includes at least one of the following:
  • the uplink transmission is performed after deleting or puncturing the dynamically indicated unavailable or invalid first symbol in the first time slot.
  • the determining the actual transmission behavior of each symbol in the first time slot based on the processing time further includes:
  • the first time slot is used for the dynamically indicated unavailable or invalid first symbol Do rate-matched uplink transmission
  • the first time slot in the dynamically indicated unavailable or invalid first symbol will The uplink transmission is performed after deletion or puncturing, or the uplink transmission is performed after ignoring the unavailable or invalid first symbol of the dynamic indication.
  • uplink transmission can be flexibly performed in the first time slot, thereby effectively improving the efficiency of uplink transmission.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing uplink transmission method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above uplink transmission method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above uplink transmission method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行传输方法、装置及终端,属于移动通信领域。该方法包括:在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;确定在所述第一时隙的实际传输行为。

Description

上行传输方法、装置及终端
交叉引用
本发明要求在2021年03月12日提交中国专利局、申请号为202110269812.6、发明名称为“上行传输方法、装置及终端”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于移动通信技术领域,具体涉及一种上行传输方法、装置及终端。
背景技术
在第五代移动通信技术(5 th Generation Mobile Communication Technology,5G)通信过程中,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的最大重复传输次数为16,在时分复用(Time Division Duplex,TDD)模式下,由下行时隙主导的载波配置,使得上行时隙非常有限,PUSCH实际发生的重复传输次数比配置的重复次数要少得多,导致其覆盖受限。另外,对于PUSCH重复传输类型A,要求每个时隙承载PUSCH的传输具有相同的时域资源,这导致某些时隙因不具有相同时域资源分配从而放弃PUSCH在该时隙的传输,虽然该时隙仍然具有一定数量的上行符号。这也导致其覆盖受限。另外,在无效符号模式(InvalidSymbolPattern)下,只能应用于对PUSCH重复传输类型(Repetition Type)B,不能应用于Repetition Type A或多时隙共同传输一个传输块(TBProcessingOverMulti-slots,TBoMS),这将导致为保护其他传输或执行其他物理过程,在资源上有冲突的PUSCH只能丢弃。
可见,由于大量的时隙资源被放弃,使得上行传输效率低下。
发明内容
本申请实施例提供一种上行传输方法、装置及终端,能够解决上行传输效率低下的问题。
第一方面,提供了一种上行传输方法,由终端执行,该方法包括:
在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效的或名义上的第一时隙;
确定在所述第一时隙的实际传输行为。
第二方面,提供了一种上行传输装置,该装置包括:
判断模块,用于在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;
传输模块,用于确定在所述第一时隙的实际传输行为。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法。
在本申请实施例中,通过确定用于上行传输的可用或有效或名义上的第一时隙,再确定在所述第一时隙的实际传输行为,能够有效提高上行传输的效率。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的结构示意图;
图2示出本申请实施例提供的上行传输方法的一种流程示意图;
图3示出本申请实施例提供的上行传输方法的另一种流程示意图;
图4示出本申请实施例提供的一种时隙调度方案示意图;
图5示出本申请实施例提供的另一种时隙调度方案示意图;
图6示出本申请实施例提供的上行传输方法的另一种流程示意图;
图7示出本申请实施例提供的另一种时隙调度方案示意图;
图8示出本申请实施例提供的上行传输装置的一种结构示意图;
图9示出本申请实施例提供的一种通信设备结构示意图;
图10为实现本申请实施例的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier  Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的上行传输方法进行详细地说明。
图2示出本申请提供的上行传输方法的一种流程示意图,该方法可以由 终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行。如图2所示,该方法可以包括以下步骤。
步骤S201、在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙。
应理解的是,所述上行传输可以包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输和物理上行控制信道传输。具体可以包括由时域资源分配表(Time domain resource allocation,TDRA)指示的PUSCH传输。所述第一时隙可以为时隙(slot)或子时隙(sub-slot)。
步骤S202、确定在所述第一时隙的实际传输行为。
终端在进行上行传输前,先判断用于上行传输的各第一时隙是否为可用或有效或名义上的第一时隙。在确定了可用或有效或名义上的第一时隙后,再确定本次上行传输在所述第一时隙的实际传输行为,即确定如何在所述第一时隙实现本次上行传输,例如,在第一符号做速率匹配(Rate-Matching)的上行传输,对第一符号进行删除或打孔后进行上行传输,在第一符号对上行传输进行分段后进行上行传输,或者放弃在所述第一时隙的上行传输等。
由此,本申请实施例提供的一种上行传输方法,通过确定用于上行传输的可用或有效或名义上的第一时隙,再确定在所述第一时隙的实际传输行为,能够有效提高上行传输的效率。
图3示出本申请实施例提供的上行传输方法的另一种流程示意图,如图3所示,该方法可以包括以下步骤。
步骤S301、得到所述第一时隙包含的所有第一符号中符合第一条件的符号的第一数量;其中,所述第一符号为所述第一时隙中用于上行传输的符号。所述符合第一条件使得该第一符号成为对当前上行传输的PUSCH或物理上行控制信道(Physical Uplink Control Channel,PUCCH)的无效符号资源。
进一步地,所述第一符号包括以下至少一项:
由TDRA指示用于PUSCH传输的符号;
由高层配置指示的用于上行传输的符号;其中,所述高层配置具体为通 过无线资源控制(Radio Resource Control,RRC)消息或系统信息块(System Information Block,SIB)消息配置;
由物理上行控制信道资源指示(Physical Uplink Control Channel Resource Indicator,PRI)信息指示的用于PUCCH传输的符号。
进一步地,所述第一条件包括以下至少一项:
1)配置为半静态下行符号(semi-static DL);
2)配置为同步信号块(Synchronization Signal and PBCH block,SSB);
3)用于0类物理下行控制信道公共搜索空间(Type0-PDCCH CSS)的控制资源集(Control resource set,CORESET);
4)配置为半静态灵活(semi-static flexible)符号;
5)由高层配置的上行传输不可用或无效的符号;
6)根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号;
7)根据第一因素导致中断当前的物理上行共享传输;
8)根据半双工的规则而取消当前的上行传输。
进一步地,所述半静态下行符号包括由时分复用上下行常规配置(tdd-UL-DL-ConfigurationCommon)信息和/或时分复用上下行专用配置(tdd-UL-DL-ConfigurationDedicated)信息配置的半静态下行符号;
进一步地,所述SSB包括由系统信息块SIB1中的同步信号块突发位置(ssb-PositionsInBurst)或服务单元通用配置(ServingCellConfigCommon)中的ssb-PositionsInBurst指示配置的SSB;
进一步地,所述用于Type0-PDCCH CSS的控制资源集包括由主信息块(Master Information Block,MIB)中的物理下行控制信道的系统信息块配置(pdcch-ConfigSIB1)配置的用于Type0-PDCCH CSS的控制资源集;
进一步地,所述semi-static flexible包括由时分复用上下行常规配置(tdd-UL-DL-ConfigurationCommon)信息和/或时分复用上下行专用配置信息(tdd-UL-DL-ConfigurationDedicated)配置的semi-static flexible;
进一步地,所述上行传输不可用或无效的符号包括由无效符号模式配置 的上行传输不可用或无效的符号,包括PUSCH传输不可用或无效的符号。
进一步地,所述根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号包括以下至少一项:
用于调度下行(DownLink,DL)符号;
用于调度动态灵活(dynamic flexible)符号;
用于调度下行传输;
用于调度其它上行的重复传输;
用于调度其他上行的多时隙传输,所述其他上行的多时隙传输为TBoMS;
为不可用或无效的符号。
进一步地,所述不能为当前上行传输所使用的符号由以下至少一项指示;
动态时隙格式(dynamic Slot Format Indication,dynamic SFI);所述动态时隙格式用于指示所述第一符号为DL和/或dynamic flexible;
下行控制信息(Downlink Control Information,DCI);所述DCI用于指示所述第一符号用于调度下行传输或、更高优先级的上行传输、其他上行的重复传输或其他上行的多时隙传输或为不可用或无效的符号,即用于重复传输所占用的资源和第一符号相重叠;
高层配置;所述高层配置用于将所述第一符号配置为用于其它上行的重复传输或其他上行的多时隙传输;
上行传输取消信令(UL Cancellation indication,UL CI)。
进一步地,所述其它上行的重复传输包括以下至少一项:
物理上行控制信道的重复传输(PUCCH repetition);其中,所述物理上行控制信道包括:用于信道状态信息和/或调度请求和/或混合自动重传请求的物理上行控制信道;
目标信息重复传输;其中,所述目标信息包括信息3(Msg3)和/或信息A(MsgA repetition);
比当前上行传输更高优先级的上行传输的重复传输。
进一步地,可中断第一符号的当前上行传输的第一因素包括以下至少一 项:
第一测量导致的调度限制的时间资源;其中,所述第一测量用于以下至少一项:无线链路监测(Radio Link Monitoring,RLM)、连接恢复(link recovery)、无线资源管理(Radio resource management,RRM)、L1层的参考信号接收功率(Reference Signal Received Power,RSRP)。具体包括:SSB信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)传输的符号,或者上述符号的前后多个符号;
上下行之间的切换或转换时间,即DL到UL或者UL到DL的切换或转换时间;
相同或不同的上行传输之间的射频前端的重调时间(RF retuning),其中,相同或不同上行输是指传输内容和/或传输的信道或参考信号的相同或不同;
当前小区或其他小区的带宽部分(Bandwidth Part,BWP)切换、辅小区(Scell)的激活、辅小区的去激活、辅小区的添加(addicion)、辅小区的释放(release);
其它服务小区(serving cell)的非不连续接收(Non-DRX)和不连续接收(DRX)之间的转换,即其它serving cell发生了Non-DRX到DRX的转换,或发生DRX到Non-DRX的转换;
测量间隔(Measurement gap)。
进一步地,所述相同或不同的上行传输之间的射频前端的重调时间用于以下至少一项:
不同时隙的上行传输空间(spatial relation)关系变化;
带宽受限的终端在超出自己最大带宽的带宽上执行的跳频传输。
进一步地,所述第一条件中可取消当前的上行传输的半双工的规则包括以下至少一项:
半双工时分复用载波聚合(TDD Half-duplex CA)的终端行为;
低能力设备(Reduced Capability devices,RedCap)的半双工频分复用(Half-duplex FDD)的终端行为。
对于不同的上行传输,可以从上述各第一条件中选择对应的第一条件,并基于对应的第一条件来判断各第一符号是否为无效符号资源,进而确定第一时隙是可用或有效或名义上的第一时隙。所述第一条件基于以下至少一项确定:
物理上行共享信道的分类;
物理上行控制信道的格式;
物理上行控制信道所携带的上行控制信息(Uplink Control Information,UCI)。
对于PUSCH传输可基于不同分类的PUSCH采用不同的第一条件。对于PUCCH传输可基于PUCCH格式和/或PUCCH所携带的不同的UCI采用不同的第一条件。具体举例如下:
对于动态调度的PUSCH,其对应的第一条件包括上述条件1)、2)、5)、7)和8);
对于动态调度的PUCCH,例如PUCCH承载针对动态调度的下行的混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK),其对应的第一条件包括上述条件1)、2)、5)、7)和8)。
对于RRC连接状态(RRC-connected)的UE,其配置授权的PUSCH(Configured Grant PUSCH,CG PUSCH),其对应的第一条件包括上述条件1)、2)、3)、5)、6)、7)和8)。
对于RRC连接状态(RRC-connected)的UE,其半静态配置的PUCCH传输,例如调度请求(Scheduling Request,SR),持续信道状态信息(Persistent Channel State Information,P-CSI),半持续信道状态信息(Semi-Persistnet CSI,SP-CSI)等,其对应的第一条件包括上述条件1)、2)、3)、5)、6)、7)和8)。
对于RRC空闲/非活动(RRC-idle/inactive)的UE,其配置授权的PUSCH,其对应的第一条件包括上述条件1)、2)、3)、7)和8)。
对于MsgA PUSCH消息,其对应的第一条件包括上述条件1)、2)和8)。
步骤S302、在所述第一数量少于第一阈值X的情况下,确定所述第一时隙可用或有效或名义上的第一时隙。
进一步地,所述第一阈值X由以下至少一项确定:
由高层配置,包括RRC和SIB;
由动态指示;
基于TDRA中的传输长度;
基于物理上行控制信道的传输长度;
基于上行传输的传输长度;
由所述时域资源分配表配置;
由无线资源控制信息配置;
基于所述第一时隙为无上下行切换的时隙;
基于所述第一时隙为有上下行切换的时隙;
根据由高层配置和/或协议规定的码率(Coding Rate)R,若当前传输的数据在L-X个符号上的码率>R,则该时隙不可用。
其中,基于传输长度L确定第一阈值X可通过为每个传输长度L固定一个第一阈值X,在TDRA中也可同样记录所述第一阈值X。对于第一阈值的配置具体举例如下:
第一阈值可配置在TDRA中,如表1所示。
Figure PCTCN2022079510-appb-000001
Figure PCTCN2022079510-appb-000002
表1
表1为用于普通循环前缀的PUSCH时域资源分配(PUSCH time domain resource allocation for normal CP)的一种举例说明,其中,每一行中的S,L指示了该调度的PUSCH的起始符号和传输长度,PUSCH Mapping Type指示了专用解调参考信号(Demodulation Reference Signal,DM-RS)的映射类型(Mapping Type);K 2参数指示第一个PUSCH所在时隙相对于调度DCI所在时隙的时隙偏移。
第一阈值可由RRC配置,并为不同优级的上行传输的每个传输长度L配置一个固定的第一阈值X,如下表2和表3所示,所述表2为高优先级的PUSCH,表3为低优先级的PUSCH。
L 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 1 1 1 1 1 1 1 1 1 1 2 2 2 2
表2
L 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 1 1 1 1 1 1 1 2 2 3 3 3 4 4
表3
对于无上下行切换的时隙和有上下行切换的时隙,配置对应的第一阈值X,如下表4-表7所示。
Figure PCTCN2022079510-appb-000003
表4
Figure PCTCN2022079510-appb-000004
表5
Figure PCTCN2022079510-appb-000005
表6
Figure PCTCN2022079510-appb-000006
表7
其中,表4为上行时隙,其对应的第一阈值X=1。表5、表6和表7为有上下行切换的时隙。表5对应的时隙中DL:Flexible:UL=6:2:6,其对应的第一阈值X=7;表6对应的时隙中DL:Flexible:UL=9:3:2,其对应的第一阈值X=1;表7对应的时隙中DL:Flexible:UL=2:2:10,其对应的第一阈值X=4。
进一步地,所述第一阈值大于等于0小于等于13。
图4示出本申请实施例提供的一种时隙调度方案示意图,图4中时隙0(Slot#0)和时隙1(Slot#1)为由tdd-UL-DL-ConfigurationCommon和/或tdd-UL-DL-ConfigurationDedicated配置的,每个时隙共有14个OFDM符号,其中符号D用于下行传输的符号,符号F为灵活的符号,符号U为用于上行传输的符号,并且基于需求,T1对应的符号配置为SSB,T2对应的符号被动态信令指示为不可传输PUSCH。
假设PUSCH传输长度L为5,第一阈值x=1:
在第一条件包含条件1)和2)的情况下,可确定图4中Slot#0为不可用时隙,slot#1为可用slot。
在第一条件包含条件1)、2)、3)和4)的情况下,可确定图4中Slot#0为不可用slot,slot#1为不可用slot。
在第一条件包含条件1)、2)、3)和6)的情况下,可确定图4中Slot#0为不可用slot,slot#1为可用slot。
假设PUSCH传输长度L为6,第一阈值X=1:
在第一条件包含条件1)、2)、3)和6)的情况下,可确定图4中Slot#0为不可用slot,slot#1为不可用slot。
假设PUSCH传输长度L为6,第一阈值X=2:
在第一条件包含条件1)、2)、3)和6)的情况下,可确定图4中Slot#0为不可用slot,slot#1为可用slot。
图5示出本申请实施例提供的另一种时隙调度方案示意图,图5中,T1对应的符号配置为SSB,T3对应的符号被动态信令指示为下行接收DL,在Slot#0中存在测量间隔。
假设PUSCH传输长度L为4,第一阈值X=1:
在第一条件包含条件1)、2)、3)和7),且上下行切换时间为2个符号的情况下,可确定图5中Slot#0为不可用slot,slot#1为不可用slot。
在第一条件包含条件1)、2)、3)和7),且上下行切换时间为1个符号的情况下,可确定图5中Slot#0为不可用slot,slot#1为可用slot。
假设PUSCH传输长度为4,第一阈值X=2:
在第一条件包含条件1)、2)、3)和7),且上下行切换时间为2个符号的情况下,可确定图5中Slot#0为不可用slot,slot#1为可用slot。
步骤S303、确定在所述第一时隙的实际传输行为。
步骤S303可实现图2中步骤S202的方法实施例,并得到相同或相似的技术效果,为了简便起见相同部分此处不再赘述。
由此,本申请实施例提供的一种上行传输方法,通过得到所述第一时隙包含的所有第一符号中符合第一条件的符号的第一数量,并根据第一数量与预设的第一阈值的比较结果,确定所述第一时隙是否可用,再确定在所述第一时隙的实际传输行为,使得对第一时隙是否可用的判断更加准确,有效提高上行传输的效率。
图6示出本申请实施例提供的上行传输方法的另一种流程示意图,如图6所示,所述方法可以包括以下步骤。
步骤S601、得到所述第一时隙包含的所有第一符号中符合第一条件的符号的第一数量。
步骤S602、在所述第一数量少于第一阈值X的情况下,确定所述第一时隙为可用或有效或名义上的第一时隙。
所述步骤S601-S602可实现图3中步骤S301-S302的方法实施例,并得到相同或相似的技术效果,为简便起见相同部分此处不再赘述。
步骤S603、确定所有第一符号中符合第二条件的符号的第二数量Y。
其中,所述第二条件为在所述第一条件中去除配置为半静态下行符号的条件,即若第一条件包含条件1),则为去除条件1)的第一条件,若第一条件不包含条件1),则第二条件与第一条件相同。
步骤S604、基于所述第二数量Y,确定在所述第一时隙的实际传输行为。
进一步地,所述步骤S604包括:
在所述第二数量大于等于所述第一数量,即Y≥X的情况下,终端放弃在第一时隙的传输。
在所述第二数量小于所述第一数量,即Y<X的情况下,确定在所述第一时隙的实际传输行为,具体包括以下至少之一:
在所述第一时隙执行目标实际传输行为;
若所述第一时隙的除了无效符号资源的第一符号中不包含DMRS,则放弃在第一时隙的传输;
基于所述第二数量Y执行目标实际传输行为;
由高层配置确定在所述第一时隙执行目标实际传输行为;
基于处理时间确定在所述第一时隙中的各符号的实际传输行为;
其中,所述目标实际传输行为包括以下至少一项:
当前上行传输对无效符号资源做速率匹配(Rate-matching)的传输;
当前上行传输在删除或打孔(Puncturing)无效符号资源后的传输;
当前上行传输被无效符号资源进行分段(Segmentation)传输;
放弃在第一时隙的传输。
其中,所述基于所述第二数量执行目标实际传输行为包括:
在所述第二数量大于第三数量X1,且小于第一数量的情况下,即X1≤Y≤X,在所述第一时隙对无效符号资源做速率匹配的传输;
在所述第二数量小于等于第三数量的情况下,即Y≤X1,在所述第一时隙做上行传输在删除或打孔无效符号资源后的传输;
其中,所述第三数量由高层配置或协议约定。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为包括以下至少一项:
在所述第一时隙对半静态指示的不可用或无效的第一符号做速率匹配的上行传输;
在所述第一时隙对动态指示的不可用或无效的第一符号做删除或打孔后做上行传输。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为还包括:
在上行传输的起始符号j与接收到的动态信令所在最后一个符号i的间隔大于等于终端的处理能力值T_process的情况下,即j-i≥T_process,在所述第一时隙对动态指示的不可用或无效的第一符号做速率匹配的上行传输;
在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔小于终端的处理能力值的情况下,即j-i<T_process,在所述第一时隙在动态指示的不可用或无效的第一符号做删除或打孔后进行上行传输,或者忽略所述动态指示的不可用或无效的第一符号后进行上行传输。
图7示出本申请实施例提供的另一种时隙调度方案示意图,如图7所示,T1对应的符号配置为SSB,T4对应的符号被动态信令指示为不可以传输PUSCH。
假设第一条件包含条件1)、2)和3),则可确定Slot#0和slot#1均为可用时隙。
在确定了的可用时隙中,Slot#1中,PUSCH传输于符号8至13,其中 符号8和符号9不可以为PUSCH传输,即(Y=2)=(X=2),终端放弃在时隙slot#1的PUSCH传输。Slot#0中,PUSCH传输于符号8至13,其中符号8不可以为PUSCH传输,即(Y=1)<(X=2),终端可以在时隙slot#0中传输。
由此,本申请实施例提供的一种上行传输方法,通过确定所有第一符号中符合第二条件的符号的第二数量,基于所述第二数量确定在所述第一时隙的实际传输行为,使得能够灵活得在第一时隙进行上行传输,有效提高上行传输的效率。
需要说明的是,本申请实施例提供的上行传输方法,执行主体可以为上行传输装置,或者,该上行传输装置中的用于执行上行传输方法的控制模块。本申请实施例中以上行传输装置执行上行传输的方法为例,说明本申请实施例提供的上行传输装置。
图8示出本申请实施例提供的上行传输装置的一种结构示意图,如图8所示,所述装置包括:判断模块801和传输模块802。
所述判断模块801用于在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;所述传输模块802用于确定在所述第一时隙的实际传输行为。
由此,本申请实施例提供的一种上行传输装置,通过确定用于上行传输的可用或有效或名义上的第一时隙,再确定在所述第一时隙的实际传输行为,能够有效提高上行传输的效率。
基于上述实施例,进一步地,所述判断模块,用于得到所述第一时隙包含的所有第一符号中符合第一条件的符号的第一数量;其中,所述第一符号为所述第一时隙中用于上行传输的符号;在所述第一数量少于第一阈值的情况下,确定所述第一时隙为可用或有效或名义上的第一时隙。
进一步地,所述第一符号包括以下至少一项:
由时域资源分配表指示用于物理上行共享信道传输的符号;
由高层配置指示的用于上行传输的符号;
由物理上行控制信道资源指示信息指示的用于物理上行控制信道传输的 符号。
进一步地,所述第一阈值由以下至少一项确定:
由高层配置;
由动态指示;
基于时域资源分配表中的传输长度;
基于物理上行控制信道的传输长度;
基于上行传输的传输长度;
由所述时域资源分配表配置;
由无线资源控制信息配置;
基于所述第一时隙为无上下行切换的时隙;
基于所述第一时隙为有上下行切换的时隙;
根据由高层配置和/或协议规定的码率。
进一步地,所述第一阈值大于等于0小于等于13。
进一步地,所述第一条件包括以下至少一项:
配置为半静态下行符号;
配置为同步信号块;
用于0类物理下行控制信道公共搜索空间的控制资源集;
配置为半静态灵活符号;
由高层配置的上行传输不可用或无效的符号;
根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号;
根据第一因素导致中断当前的物理上行共享传输;
根据半双工的规则而取消当前的上行传输。
进一步地,所述半静态下行符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
进一步地,所述同步信号块由系统信息块中的ssb-PositionsInBurst或ServingCellConfigCommon中的ssb-PositionsInBurst指示配置。
进一步地,所述用于0类物理下行控制信道公共搜索空间的控制资源集 由主信息块中的pdcch-ConfigSIB1配置。
进一步地,所述半静态灵活符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
进一步地,所述上行传输不可用或无效的符号由无效符号模式配置。
进一步地,所述不能为当前上行传输所使用的符号包括以下至少一项:
用于调度下行符号;
用于调度动态灵活符号;
用于调度下行传输;
用于调度其它上行的重复传输;
用于调度其他上行的多时隙传输;
为不可用或无效的符号。
进一步地,所述不能为当前上行传输所使用的符号由以下至少一项指示;
动态时隙格式;
下行控制信息;
高层配置;
上行传输取消信令。
进一步地,所述其它上行的重复传输包括以下至少一项:
物理上行控制信道的重复传输;其中,所述物理上行控制信道包括:用于信道状态信息和/或调度请求和/或混合自动重传请求的物理上行控制信道;
目标信息重复传输;其中,所述目标信息包括信息3和/或信息A;
比当前上行传输更高优先级的上行传输的重复传输。
进一步地,所述其他上行的多时隙传输为TBoMS。
进一步地,所述第一因素包括以下至少一项:
第一测量导致的调度限制的时间资源;
上下行之间的切换或转换时间;
相同或不同的上行传输之间的射频前端的重调时间;
当前小区或其他小区的带宽部分切换、辅小区的激活、辅小区的去激活、 辅小区的添加、辅小区的释放;
其它服务小区的非不连续接收和不连续接收之间的转换;
测量间隔。
进一步地,所述第一测量用于以下至少一项:无线链路监测、连接恢复、无线资源管理、L1层的参考信号接收功率。
进一步地,所述相同或不同的上行传输之间的射频前端的重调时间用于以下至少一项:
不同时隙的上行传输空间关系变化;
带宽受限的终端在超出自己最大带宽的带宽上执行的跳频传输。
进一步地,所述半双工的规则包括以下至少一项:
半双工时分复用载波聚合的终端行为;
低能力设备的半双工频分复用的终端行为。
进一步地,所述第一条件基于以下至少一项确定:
物理上行共享信道的分类;
物理上行控制信道的格式;
物理上行控制信道所携带的上行控制信息。
由此,本申请实施例提供的一种上行传输装置,通过确定所有第一符号中符合第二条件的符号的第二数量,基于所述第二数量确定在所述第一时隙的实际传输行为,使得能够灵活得在第一时隙进行上行传输,有效提高上行传输的效率。
基于上述实施例,进一步地,所述传输模块用于确定所有第一符号中符合第二条件的符号的第二数量;基于所述第二数量,确定在所述第一时隙的实际传输行为。
进一步地,所述第二条件为在所述第一条件中去除配置为半静态下行符号的条件。
进一步地,所述基于所述第二数量,确定在所述第一时隙的实际传输行为包括:
在所述第二数量大于等于所述第一数量的情况下,放弃在第一时隙的传输;
在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为。
进一步地,在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为包括以下至少之一:
在所述第一时隙执行目标实际传输行为;
若所述第一时隙的除了无效符号资源的第一符号中不包含解调参考信号,则放弃在第一时隙的传输;
基于所述第二数量执行目标实际传输行为;
由高层配置确定在所述第一时隙执行目标实际传输行为;
基于处理时间确定在所述第一时隙中的各符号的实际传输行为;
其中,所述目标实际传输行为包括以下至少一项:
当前上行传输对无效符号资源做速率匹配的传输;
当前上行传输在删除或打孔无效符号资源后的传输;
当前上行传输被无效符号资源进行分段传输;
放弃在第一时隙的传输。
进一步地,所述基于所述第二数量执行目标实际传输行为包括:
在所述第二数量大于第三数量,且小于第一数量的情况下,在所述第一时隙对无效符号资源做速率匹配的传输;
在所述第二数量小于等于第三数量的情况下,在所述第一时隙做上行传输在删除或打孔无效符号资源后的传输;
其中,所述第三数量由高层配置或协议约定。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为包括以下至少一项:
在所述第一时隙对半静态指示的不可用或无效的第一符号做速率匹配的上行传输;
在所述第一时隙对动态指示的不可用或无效的第一符号做删除或打孔后做上行传输。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为还包括:
在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔大于等于终端的处理能力值的情况下,在所述第一时隙对动态指示的不可用或无效的第一符号做速率匹配的上行传输;
在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔小于终端的处理能力值的情况下,在所述第一时隙在动态指示的不可用或无效的第一符号做删除或打孔后进行上行传输,或者忽略所述动态指示的不可用或无效的第一符号后进行上行传输。
由此,本申请实施例提供的一种上行传输装置,通过确定所有第一符号中符合第二条件的符号的第二数量,基于所述第二数量确定在所述第一时隙的实际传输行为,能够灵活得在第一时隙进行上行传输,有效提高上行传输的效率。
本申请实施例中的上行传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的上行传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的上行传输装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处 理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放 大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,处理器110,用于在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;确定在所述第一时隙的实际传输行为。
通过本申请实施例,能够有效提高上行传输的效率。
进一步地,处理器110,还用于得到所述第一时隙包含的所有第一符号中符合第一条件的符号的第一数量;其中,所述第一符号为所述第一时隙中用于上行传输的符号;在所述第一数量少于第一阈值的情况下,确定所述第一时隙为可用或有效或名义上的第一时隙。
进一步地,所述第一符号包括以下至少一项:
由时域资源分配表指示用于物理上行共享信道传输的符号;
由高层配置指示的用于上行传输的符号;
由物理上行控制信道资源指示信息指示的用于物理上行控制信道传输的符号。
进一步地,所述第一阈值由以下至少一项确定:
由高层配置;
由动态指示;
基于时域资源分配表中的传输长度;
基于物理上行控制信道的传输长度;
基于上行传输的传输长度;
由所述时域资源分配表配置;
由无线资源控制信息配置;
基于所述第一时隙为无上下行切换的时隙;
基于所述第一时隙为有上下行切换的时隙;
根据由高层配置和/或协议规定的码率。
进一步地,所述第一阈值大于等于0小于等于13。
进一步地,所述第一条件包括以下至少一项:
配置为半静态下行符号;
配置为同步信号块;
用于0类物理下行控制信道公共搜索空间的控制资源集;
配置为半静态灵活符号;
由高层配置的上行传输不可用或无效的符号;
根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号;
根据第一因素导致中断当前的物理上行共享传输;
根据半双工的规则而取消当前的上行传输。
进一步地,所述半静态下行符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
进一步地,所述同步信号块由系统信息块中的ssb-PositionsInBurst或ServingCellConfigCommon中的ssb-PositionsInBurst指示配置。
进一步地,所述用于0类物理下行控制信道公共搜索空间的控制资源集由主信息块中的pdcch-ConfigSIB1配置。
进一步地,所述半静态灵活符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
进一步地,所述上行传输不可用或无效的符号由无效符号模式配置。
进一步地,所述不能为当前上行传输所使用的符号包括以下至少一项:
用于调度下行符号;
用于调度动态灵活符号;
用于调度下行传输;
用于调度其它上行的重复传输;
用于调度其他上行的多时隙传输;
为不可用或无效的符号。
进一步地,所述不能为当前上行传输所使用的符号由以下至少一项指示;
动态时隙格式;
下行控制信息;
高层配置;
上行传输取消信令。
进一步地,所述其它上行的重复传输包括以下至少一项:
物理上行控制信道的重复传输;其中,所述物理上行控制信道包括:用于信道状态信息和/或调度请求和/或混合自动重传请求的物理上行控制信道;
目标信息重复传输;其中,所述目标信息包括信息3和/或信息A;
比当前上行传输更高优先级的上行传输的重复传输。
进一步地,所述其他上行的多时隙传输为TBoMS。
进一步地,所述第一因素包括以下至少一项:
第一测量导致的调度限制的时间资源;
上下行之间的切换或转换时间;
相同或不同的上行传输之间的射频前端的重调时间;
当前小区或其他小区的带宽部分切换、辅小区的激活、辅小区的去激活、辅小区的添加、辅小区的释放;
其它服务小区的非不连续接收和不连续接收之间的转换;
测量间隔。
进一步地,所述第一测量用于以下至少一项:无线链路监测、连接恢复、无线资源管理、L1层的参考信号接收功率。
进一步地,所述相同或不同的上行传输之间的射频前端的重调时间用于以下至少一项:
不同时隙的上行传输空间关系变化;
带宽受限的终端在超出自己最大带宽的带宽上执行的跳频传输。
进一步地,所述半双工的规则包括以下至少一项:
半双工时分复用载波聚合的终端行为;
低能力设备的半双工频分复用的终端行为。
进一步地,所述第一条件基于以下至少一项确定:
物理上行共享信道的分类;
物理上行控制信道的格式;
物理上行控制信道所携带的上行控制信息。
通过本申请实施例,能够灵活得在第一时隙进行上行传输,有效提高上行传输的效率。
进一步地,所述处理器110还用于确定所有第一符号中符合第二条件的符号的第二数量;基于所述第二数量,确定在所述第一时隙的实际传输行为。
进一步地,所述第二条件为在所述第一条件中去除配置为半静态下行符号的条件。
进一步地,所述基于所述第二数量,确定在所述第一时隙的实际传输行为包括:
在所述第二数量大于等于所述第一数量的情况下,放弃在第一时隙的传输;
在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为。
进一步地,在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为包括以下至少之一:
在所述第一时隙执行目标实际传输行为;
若所述第一时隙的除了无效符号资源的第一符号中不包含解调参考信号,则放弃在第一时隙的传输;
基于所述第二数量执行目标实际传输行为;
由高层配置确定在所述第一时隙执行目标实际传输行为;
基于处理时间确定在所述第一时隙中的各符号的实际传输行为;
其中,所述目标实际传输行为包括以下至少一项:
当前上行传输对无效符号资源做速率匹配的传输;
当前上行传输在删除或打孔无效符号资源后的传输;
当前上行传输被无效符号资源进行分段传输;
放弃在第一时隙的传输。
进一步地,所述基于所述第二数量执行目标实际传输行为包括:
在所述第二数量大于第三数量,且小于第一数量的情况下,在所述第一时隙对无效符号资源做速率匹配的传输;
在所述第二数量小于等于第三数量的情况下,在所述第一时隙做上行传输在删除或打孔无效符号资源后的传输;
其中,所述第三数量由高层配置或协议约定。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为包括以下至少一项:
在所述第一时隙对半静态指示的不可用或无效的第一符号做速率匹配的上行传输;
在所述第一时隙对动态指示的不可用或无效的第一符号做删除或打孔后做上行传输。
进一步地,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为还包括:
在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔大于等于终端的处理能力值的情况下,在所述第一时隙对动态指示的不可用或无效的第一符号做速率匹配的上行传输;
在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔小于终端的处理能力值的情况下,在所述第一时隙在动态指示的不可用或无效的第一符号做删除或打孔后进行上行传输,或者忽略所述动态指示的不可用或无效的第一符号后进行上行传输。
通过本申请实施例,能够灵活得在第一时隙进行上行传输,有效提高上行传输的效率。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、 方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种上行传输方法,由终端执行,包括:
    在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;
    确定在所述第一时隙的实际传输行为。
  2. 根据权利要求1所述的方法,其中,所述确定用于上行传输的可用或有效或名义上的第一时隙,包括:
    得到第一时隙包含的所有第一符号中符合第一条件的符号的第一数量;其中,所述第一符号为所述第一时隙中用于上行传输的符号;
    在所述第一数量少于第一阈值的情况下,确定所述第一时隙为可用或有效或名义上的第一时隙。
  3. 根据权利要求2所述的方法,其中,所述第一符号包括以下至少一项:
    由时域资源分配表指示用于物理上行共享信道传输的符号;
    由高层配置指示的用于上行传输的符号;
    由物理上行控制信道资源指示信息指示的用于物理上行控制信道传输的符号。
  4. 根据权利要求2所述的方法,其中,所述第一阈值由以下至少一项确定:
    由高层配置;
    由动态指示;
    基于时域资源分配表中的传输长度;
    基于物理上行控制信道的传输长度;
    基于上行传输的传输长度;
    由所述时域资源分配表配置;
    由无线资源控制信息配置;
    基于所述第一时隙为无上下行切换的时隙;
    基于所述第一时隙为有上下行切换的时隙;
    根据由高层配置和/或协议规定的码率。
  5. 根据权利要求2所述的方法,其中,所述第一阈值大于等于0小于等于13。
  6. 根据权利要求2所述的方法,其中,所述第一条件包括以下至少一项:
    配置为半静态下行符号;
    配置为同步信号块;
    用于0类物理下行控制信道公共搜索空间的控制资源集;
    配置为半静态灵活符号;
    由高层配置的上行传输不可用或无效的符号;
    根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号;
    根据第一因素导致中断当前的物理上行共享传输;
    根据半双工的规则而取消当前的上行传输。
  7. 根据权利要求6所述的方法,其中,所述半静态下行符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
  8. 根据权利要求6所述的方法,其中,所述同步信号块由系统信息块中的ssb-PositionsInBurst或ServingCellConfigCommon中的ssb-PositionsInBurst指示配置。
  9. 根据权利要求6所述的方法,其中,所述用于0类物理下行控制信道公共搜索空间的控制资源集由主信息块中的pdcch-ConfigSIB1配置。
  10. 根据权利要求6所述的方法,其中,所述半静态灵活符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
  11. 根据权利要求6所述的方法,其中,所述上行传输不可用或无效的符号由无效符号模式配置。
  12. 根据权利要求6所述的方法,其中,所述不能为当前上行传输所使用的符号包括以下至少一项:
    用于调度下行符号;
    用于调度动态灵活符号;
    用于调度下行传输;
    用于调度其它上行的重复传输;
    用于调度其他上行的多时隙传输;
    为不可用或无效的符号。
  13. 根据权利要求12所述的方法,其中,所述不能为当前上行传输所使用的符号由以下至少一项指示;
    动态时隙格式;
    下行控制信息;
    高层配置;
    上行传输取消信令。
  14. 根据权利要求12所述的方法,其中,所述其它上行的重复传输包括以下至少一项:
    物理上行控制信道的重复传输;其中,所述物理上行控制信道包括:用于信道状态信息和/或调度请求和/或混合自动重传请求的物理上行控制信道;
    目标信息重复传输;其中,所述目标信息包括信息3和/或信息A;
    比当前上行传输更高优先级的上行传输的重复传输。
  15. 根据权利要求12所述的方法,其中,所述其他上行的多时隙传输为TBoMS。
  16. 根据权利要求6所述的方法,其中,所述第一因素包括以下至少一项:
    第一测量导致的调度限制的时间资源;
    上下行之间的切换或转换时间;
    相同或不同的上行传输之间的射频前端的重调时间;
    当前小区或其他小区的带宽部分切换、辅小区的激活、辅小区的去激活、辅小区的添加、辅小区的释放;
    其它服务小区的非不连续接收和不连续接收之间的转换;
    测量间隔。
  17. 根据权利要求16所述的方法,其中,所述第一测量用于以下至少一项:无线链路监测、连接恢复、无线资源管理、L1层的参考信号接收功率。
  18. 根据权利要求16所述的方法,其中,所述相同或不同的上行传输之间的射频前端的重调时间用于以下至少一项:
    不同时隙的上行传输空间关系变化;
    带宽受限的终端在超出自己最大带宽的带宽上执行的跳频传输。
  19. 根据权利要求6所述的方法,其中,所述半双工的规则包括以下至少一项:
    半双工时分复用载波聚合的终端行为;
    低能力设备的半双工频分复用的终端行为。
  20. 根据权利要求6所述的方法,其中,所述第一条件基于以下至少一项确定:
    物理上行共享信道的分类;
    物理上行控制信道的格式;
    物理上行控制信道所携带的上行控制信息。
  21. 根据权利要求1所述的方法,其中,所述确定在所述第一时隙的实际传输行为,包括:
    在第一时隙进行传输或放弃在第一时隙的传输。
  22. 根据权利要求2所述的方法,其中,所述确定在所述第一时隙的实际传输行为,包括:
    确定所有第一符号中符合第二条件的符号的第二数量;
    基于所述第二数量,确定在所述第一时隙的实际传输行为。
  23. 根据权利要求22所述的方法,其中,所述第二条件为在所述第一条件中去除配置为半静态下行符号的条件。
  24. 根据权利要求23所述的方法,其中,所述基于所述第二数量,确定在所述第一时隙的实际传输行为包括:
    在所述第二数量大于等于所述第一数量的情况下,放弃在第一时隙的传 输;
    在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为。
  25. 根据权利要求24所述的方法,其中,在所述第二数量小于所述第一数量的情况下,确定在所述第一时隙的实际传输行为包括以下至少之一:
    在所述第一时隙执行目标实际传输行为;
    若所述第一时隙的除了无效符号资源的第一符号中不包含解调参考信号,则放弃在第一时隙的传输;
    基于所述第二数量执行目标实际传输行为;
    由高层配置确定在所述第一时隙执行目标实际传输行为;
    基于处理时间确定在所述第一时隙中的各符号的实际传输行为;
    其中,所述目标实际传输行为包括以下至少一项:
    当前上行传输对无效符号资源做速率匹配的传输;
    当前上行传输在删除或打孔无效符号资源后的传输;
    当前上行传输被无效符号资源进行分段传输;
    放弃在第一时隙的传输。
  26. 根据权利要求25所述的方法,其中,所述基于所述第二数量执行目标实际传输行为包括:
    在所述第二数量大于第三数量,且小于第一数量的情况下,在所述第一时隙对无效符号资源做速率匹配的传输;
    在所述第二数量小于等于第三数量的情况下,在所述第一时隙做上行传输在删除或打孔无效符号资源后的传输;
    其中,所述第三数量由高层配置或协议约定。
  27. 根据权利要求24所述的方法,其中,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为包括以下至少一项:
    在所述第一时隙对半静态指示的不可用或无效的第一符号做速率匹配的上行传输;
    在所述第一时隙对动态指示的不可用或无效的第一符号做删除或打孔后做上行传输。
  28. 根据权利要求27所述的方法,其中,所述基于处理时间确定在所述第一时隙中的各符号的实际传输行为还包括:
    在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔大于等于终端的处理能力值的情况下,在所述第一时隙对动态指示的不可用或无效的第一符号做速率匹配的上行传输;
    在上行传输的起始符号与接收到的动态信令所在最后一个符号的间隔小于终端的处理能力值的情况下,在所述第一时隙在动态指示的不可用或无效的第一符号做删除或打孔后进行上行传输,或者忽略所述动态指示的不可用或无效的第一符号后进行上行传输。
  29. 一种上行传输装置,包括:
    判断模块,用于在发送上行传输的第一个符号之前,确定用于上行传输的可用或有效或名义上的第一时隙;
    传输模块,用于确定在所述第一时隙的实际传输行为。
  30. 根据权利要求29所述的装置,其中,所述判断模块,用于:
    得到第一时隙包含的所有第一符号中符合第一条件的符号的第一数量;其中,所述第一符号为所述第一时隙中用于上行传输的符号;
    在所述第一数量少于第一阈值的情况下,确定所述第一时隙为可用或有效或名义上的第一时隙。
  31. 根据权利要求30所述的装置,其中,所述第一符号包括以下至少一项:
    由时域资源分配表指示用于物理上行共享信道传输的符号;
    由高层配置指示的用于上行传输的符号;
    由物理上行控制信道资源指示信息指示的用于物理上行控制信道传输的符号。
  32. 根据权利要求30所述的装置,其中,所述第一阈值由以下至少一项 确定:
    由高层配置;
    由动态指示;
    基于时域资源分配表中的传输长度;
    基于物理上行控制信道的传输长度;
    基于上行传输的传输长度;
    由所述时域资源分配表配置;
    由无线资源控制信息配置;
    基于所述第一时隙为无上下行切换的时隙;
    基于所述第一时隙为有上下行切换的时隙;
    根据由高层配置和/或协议规定的码率。
  33. 根据权利要求30所述的装置,其中,所述第一条件包括以下至少一项:
    配置为半静态下行符号;
    配置为同步信号块;
    用于0类物理下行控制信道公共搜索空间的控制资源集;
    配置为半静态灵活符号;
    由高层配置的上行传输不可用或无效的符号;
    根据动态信令或高层配置的指示,不能为当前上行传输所使用的符号;
    根据第一因素导致中断当前的物理上行共享传输;
    根据半双工的规则而取消当前的上行传输。
  34. 根据权利要求33所述的装置,其中,所述半静态下行符号由时分复用上下行常规配置信息和/或时分复用上下行专用配置信息配置。
  35. 根据权利要求33所述的装置,其中,所述同步信号块由系统信息块中的ssb-PositionsInBurst或ServingCellConfigCommon中的ssb-PositionsInBurst指示配置。
  36. 根据权利要求33所述的装置,其中,所述半双工的规则包括以下至少一项:
    半双工时分复用载波聚合的终端行为;
    低能力设备的半双工频分复用的终端行为。
  37. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至28任一项所述的上行传输方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-28任一项所述的上行传输方法。
PCT/CN2022/079510 2021-03-12 2022-03-07 上行传输方法、装置及终端 WO2022188737A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023555577A JP2024510589A (ja) 2021-03-12 2022-03-07 上りリンク伝送方法、装置及び端末
EP22766261.6A EP4307802A1 (en) 2021-03-12 2022-03-07 Uplink transmission method and apparatus, and terminal
US18/464,755 US20230421318A1 (en) 2021-03-12 2023-09-11 Uplink transmission method and apparatus, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110269812.6A CN115087118A (zh) 2021-03-12 2021-03-12 上行传输方法、装置及终端
CN202110269812.6 2021-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/464,755 Continuation US20230421318A1 (en) 2021-03-12 2023-09-11 Uplink transmission method and apparatus, and terminal

Publications (1)

Publication Number Publication Date
WO2022188737A1 true WO2022188737A1 (zh) 2022-09-15

Family

ID=83227391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079510 WO2022188737A1 (zh) 2021-03-12 2022-03-07 上行传输方法、装置及终端

Country Status (5)

Country Link
US (1) US20230421318A1 (zh)
EP (1) EP4307802A1 (zh)
JP (1) JP2024510589A (zh)
CN (1) CN115087118A (zh)
WO (1) WO2022188737A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116095836A (zh) * 2021-11-04 2023-05-09 维沃移动通信有限公司 可用时隙的确定方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备
CN111435907A (zh) * 2019-03-28 2020-07-21 维沃移动通信有限公司 传输处理方法、装置、终端和介质
US20210029737A1 (en) * 2017-11-27 2021-01-28 Idac Holdings, Inc. Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)
WO2021027957A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 确定上行传输时域资源的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
CN109565840B (zh) * 2018-02-13 2020-11-03 Oppo广东移动通信有限公司 探测参考信号传输方法、终端设备和网络设备
CN111757501A (zh) * 2019-03-29 2020-10-09 北京三星通信技术研究有限公司 用户设备、基站及数据传输的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210029737A1 (en) * 2017-11-27 2021-01-28 Idac Holdings, Inc. Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备
CN111435907A (zh) * 2019-03-28 2020-07-21 维沃移动通信有限公司 传输处理方法、装置、终端和介质
WO2021027957A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 确定上行传输时域资源的方法和装置
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质

Also Published As

Publication number Publication date
JP2024510589A (ja) 2024-03-08
US20230421318A1 (en) 2023-12-28
CN115087118A (zh) 2022-09-20
EP4307802A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2022089565A1 (zh) 辅小区组信息的配置、获取方法及通信设备
WO2022089349A1 (zh) Pdcp重复的配置、激活或去激活方法和终端
US10560979B2 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
US20230239896A1 (en) Transmission mode determining method and apparatus, and communications device
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
US20230421318A1 (en) Uplink transmission method and apparatus, and terminal
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022143644A1 (zh) Ue行为的确定方法、装置及ue
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
KR20230087534A (ko) 무선 디바이스에 대한 사이드링크 웨이크업 신호
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022022402A1 (zh) 确定目标资源类型的方法、装置和通信设备
WO2022017342A1 (zh) 上行传输方法、装置及设备
WO2022194216A1 (zh) 信息确定方法和设备
WO2022028458A1 (zh) 确定数据处理时间的方法、终端设备和网络设备
CN113747559B (zh) 功率余量的上报方法、装置、终端及可读存储介质
WO2022207000A1 (zh) 物理下行控制信道重复传输方法、装置及用户设备
US20230275704A1 (en) Resource allocation method and apparatus, and terminal
WO2023246615A1 (zh) 共享信道的方法、设备及可读存储介质
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022068798A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555577

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022766261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766261

Country of ref document: EP

Effective date: 20231012