WO2022068869A1 - 传输处理方法、装置及相关设备 - Google Patents

传输处理方法、装置及相关设备 Download PDF

Info

Publication number
WO2022068869A1
WO2022068869A1 PCT/CN2021/121660 CN2021121660W WO2022068869A1 WO 2022068869 A1 WO2022068869 A1 WO 2022068869A1 CN 2021121660 W CN2021121660 W CN 2021121660W WO 2022068869 A1 WO2022068869 A1 WO 2022068869A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time slot
pusch
sliv
frequency resource
Prior art date
Application number
PCT/CN2021/121660
Other languages
English (en)
French (fr)
Inventor
王勇
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022068869A1 publication Critical patent/WO2022068869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to a transmission processing method, device and related equipment.
  • uplink and downlink transmission can usually be performed by scheduling time-frequency resources.
  • physical uplink shared channel (PUSCH) transmission can be scheduled by dynamic scheduling or semi-persistent scheduling.
  • time-domain scheduling is based on time slots, that is to say, PUSCH is usually scheduled for transmission in one time slot (slot).
  • OFDM orthogonal frequency division multiplexing
  • Embodiments of the present application provide a transmission processing method, apparatus, and related equipment, which can solve the problem that the limited number of OFDM symbols in a scheduled time slot may result in limited coverage capability.
  • an embodiment of the present application provides a transmission processing method, which is executed by a sending end, including:
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • an embodiment of the present application provides a transmission processing method, which is executed by a receiving end, including
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • an embodiment of the present application provides a transmission processing device, including:
  • a first determining module configured to determine a scheduled target time-frequency resource according to the time-domain resource allocation indication
  • mapping module configured to map the transport block to the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • an embodiment of the present application provides a transmission processing device, including:
  • a second determining module configured to determine the scheduled target time-frequency resource according to the time-domain resource allocation indication
  • a receiving module configured to receive a transport block on the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • an embodiment of the present application provides a terminal, the terminal includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The steps of the method according to the first aspect are implemented when the processor is executed, or the steps of the method according to the second aspect are implemented when the program or instructions are executed by the processor.
  • an embodiment of the present application provides a network device, the network device includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being The processor implements the steps of the method of the first aspect when executed, or the program or instructions implements the steps of the method of the second aspect when executed by the processor.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented , or implement the steps of the method described in the second aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The method of one aspect or the second aspect.
  • an embodiment of the present application provides a computer program product, wherein the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the first aspect or The method described in the second aspect.
  • an embodiment of the present application provides a communication device, wherein the communication device is configured to execute the method according to the first aspect or the second aspect.
  • the target time-frequency resource for scheduling is determined according to the time-domain resource allocation indication; the transport block is mapped to the target time-frequency resource; wherein, the target time-frequency resource occupies N time slots in the time domain, N is an integer greater than 1.
  • the transmission code rate can be reduced, and the transmission reliability can be improved, so that it can be Improve transmission coverage.
  • the transmission throughput rate can be improved. Therefore, the embodiments of the present application can improve transmission performance.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flowchart of a transmission processing method provided by an embodiment of the present application.
  • 3 to 8 are schematic diagrams of PUSCH transmission
  • FIG. 19 is a structural diagram of a transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 20 is a structural diagram of another transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 21 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 22 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 23 is a structural diagram of a network device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • mapping type For repetition type A (repetition type A) transmission, the corresponding mapping type (mapping type) can be mapping type A and mapping type B;
  • Start and length indicator value (SLIV), or start symbol (start symbol) index S and allocation length (allocation length) L; wherein, the indication mode of SLIV is used for repetition type A, S and the indication of L is used for repetition type B;
  • UCI Uplink Control Information
  • UCI includes the following types: Hybrid automatic repeat request acknowledgement (HARQ-ACK), channel state information (Channel State Information, CSI) reporting and scheduling request (scheduling request, SR).
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • CSI Channel State Information
  • SR scheduling request
  • the above-mentioned UCI may be transmitted on a periodic physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource, and the CSI may be transmitted on the PUSCH in a manner triggered by downlink control information (Downlink Control Information, DCI). If the resources used to transmit the PUCCH and/or PUSCH of different UCIs overlap in time. Then the UE needs to multiplex the UCI transmitted on multiple channels on the same PUCCH or PUSCH resource.
  • PUCCH Physical Uplink Control Channel
  • DCI Downlink Control Information
  • the UE If there is overlap in the time domain of the PUCCH transmitted by the UCI and the PUSCH transmitted by the UE, the UE multiplexes the UCI on the PUSCH for transmission, and the PUSCH may be a scheduled PUSCH or a configured grant (configured grant) PUSCH.
  • the information bits transmitted on the two PUCCHs are concatenated and then encoded and transmitted together.
  • the network device will configure a beta-offset value for the PUSCH to determine the number of modulation symbols occupied by the UCI in the PUCCH. More resources are occupied on the used PUSCH. However, the final number of modulation symbols occupied by UCI cannot exceed a certain threshold.
  • the threshold is obtained by scaling the number of all available resource elements (REs) after deducting overhead from PUSCH resources.
  • the scaling factor is alpha, which is determined by high-level parameters. configuration.
  • FIG. 2 is a flowchart of a transmission processing method provided by an embodiment of the present application. The method is executed by a sending end, as shown in FIG. 2, and includes the following steps:
  • Step 201 Determine a scheduled target time-frequency resource according to the time-domain resource allocation indication
  • the above-mentioned time-frequency resource allocation indication refers to a scheduling indication sent by the network device to the terminal for scheduling uplink or downlink transmission.
  • the above-mentioned sending end may be understood as a terminal, and may also be understood as a network device.
  • the transmitting end is a terminal
  • the method may further include: receiving the time-domain resource allocation indication sent by the network device.
  • the sending end is a network device
  • the method may further include: sending the time domain resource allocation indication.
  • the above-mentioned target time-frequency resource is used for uplink transmission, and at this time, the above-mentioned time-domain resource allocation indication can be understood as a scheduling instruction for scheduling uplink transmission; when the sender is a network device, The above target resource is used for downlink transmission, and at this time, the above time-frequency resource allocation indication can be understood as a scheduling indication for scheduling downlink transmission.
  • Step 202 mapping the transport block to the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • the data to be sent may be mapped onto a transport block, and after preprocessing the transport block, modulation symbols before mapping are obtained, and the modulation symbols before mapping are mapped onto target time-frequency resources for transmission.
  • the receiving end can receive the corresponding signal based on the target time-frequency resource, and then demodulate to obtain the data transmitted by the transmitting end.
  • the target time-frequency resource occupies N time slots in the time domain: the above-mentioned time domain resource allocation indication is used for scheduling one uplink transmission or downlink transmission, occupying at least two time slots. That is to say, the target time-frequency resource is used to schedule the target transmission to be transmitted in multiple time slots or to be transmitted across time slots, and the target transmission can be uplink transmission or downlink transmission.
  • the target time-frequency resource for scheduling is determined according to the time-domain resource allocation indication; the transport block is mapped to the target time-frequency resource; wherein, the target time-frequency resource occupies N time slots in the time domain, N is an integer greater than 1.
  • the transmission code rate can be reduced, and the transmission reliability can be improved, so that it can be Improve transmission coverage.
  • the transmission throughput rate can be improved. Therefore, the embodiments of the present application can improve transmission performance.
  • the time-domain resource allocation indication is used to indicate an index value S of a start symbol of the target time-frequency resource and an allocation length L of the target time-frequency resource.
  • the above-mentioned time-domain resource allocation indication may include the SLIV 1 value, or may include the values of S and L corresponding to the SLIV 1 value.
  • the above-mentioned second indication information can be understood as an existing time-domain resource allocation indication, which may specifically indicate the first allocation lengths L1 and S.
  • the second indication information may include:
  • the values of L1 and S determined by the SLIV calculation method of the existing protocol may also include the SLIV value determined according to the SLIV calculation method of the existing protocol.
  • SLIV is calculated as follows:
  • each SLIV 3 corresponds to a uniquely determined S and L.
  • the above-mentioned time domain resource allocation indication may include a SLIV 3 value, or may include the values of S and L corresponding to the SLIV 3 value, which are not further limited herein.
  • the time-domain resource allocation indication may also be determined based on SLIV 3 .
  • the time-domain resource allocation indication includes third indication information and fourth indication information, where the third indication information is used to determine the value relationship between S and L; the fourth indication information is used to determine the value relationship between S and L.
  • SLIV 4 is indicated for indicating the fourth start and length, and SLIV 4 is used to determine the S and L.
  • the calculation methods of SLIV 4 are different, and optionally, the SLIV 4 satisfies at least one of the following:
  • the third indication information includes at least one bit of indication information, and the highest or lowest bit of the at least one bit is used to indicate the value relationship between S and L;
  • the value relationship between S and L includes at least one of the following:
  • the above-mentioned third indication information may also be used to determine the value of N. That is, the value of N can be determined first, and the first bit can be determined; then the second bit can be determined according to the value relationship between S and L, and the third indication information can be obtained by concatenating the first bit and the second bit.
  • the first bit may be located before the second bit, or may be located after the second bit. No further limitation is made here.
  • the second bit may use the first value to represent (14*(N-1)-S) ⁇ L ⁇ 14*(N-1), and the second value to represent 14*(N-1) ⁇ L ⁇ 14*N-S.
  • the first value may be one of 0 and 1
  • the second value may be the other.
  • the size of the transport block may be calculated according to the traditional transport block size (TBS) calculation method.
  • TBS transport block size
  • the traditional TBS calculation method can be understood as the size of the transmission block calculated according to the OFDM symbols actually occupied in the time domain. That is to say, the above-mentioned intermediate transmission block size is calculated according to the traditional TBS calculation method to occupy a maximum of 14 OFDM symbols, and then the calculated B is scaled according to the size of ⁇ to obtain the final transmission block size.
  • the above step of mapping the transport block to the target time-frequency resource includes:
  • Each sub-transport block is preprocessed to obtain modulation symbols corresponding to the N sub-transport blocks;
  • the first number of symbols does not include the number of OFDM symbols occupied by a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS Demodulation Reference Signal
  • the modulation symbol corresponding to the sub-transport block should be understood as the modulation symbol of the sub-transport block before mapping, that is, the modulation symbol obtained after layer mapping and precoding processing.
  • preprocessing can be performed in units of sub-transmission blocks in each time slot to obtain the pre-mapping modulation symbols corresponding to each sub-transmission, and finally mapped to the time-frequency resources of each time slot corresponding to the target time-frequency resource. to transmit.
  • the size of each sub-transport block may be set according to actual needs.
  • the N sub-transport blocks have the same size.
  • the size of each of the sub-transport blocks is proportional to the number of the first symbols allocated in the time slot in which the sub-transport block is located.
  • the larger the number of the first symbols allocated in the time slot the larger the size of the corresponding sub-transmission block, so that the code rate transmitted in each time slot can be guaranteed to be consistent, Guarantee the reliability of transmission.
  • the step of mapping the transport block to the target time-frequency resource includes:
  • the modulation symbols corresponding to the transport block are sequentially mapped to the target time-frequency resource.
  • the transport block may be regarded as a whole, and no splitting is performed. Thereby, preprocessing is performed to obtain the modulation symbols before mapping, and finally the modulation symbols before mapping are sequentially mapped to the time-frequency resources of each time slot in the target time-frequency resource for transmission.
  • preprocessing may include operations such as cyclic redundancy check (Cyclic redundancy check, CRC), channel coding, rate matching, scrambling, modulation, layer mapping and precoding to obtain the modulation symbols before mapping, and then perform resource mapping.
  • CRC cyclic redundancy check
  • CRC Cyclic redundancy check
  • the method further includes:
  • the method for determining the time domain position of the first DMRS includes any of the following:
  • the time domain position of the first DMRS is determined according to the number of OFDM symbols of the target time-frequency resource.
  • the number of OFDM symbols of the target time-frequency resource may be understood as the total number of scheduled OFDM symbols, or the total number of symbols allocated by the target time-frequency resource in the N time slots.
  • the above-mentioned first DMRS can be understood as the DMRS that needs to be transmitted on the target time-frequency resource for this scheduling and transmission.
  • the manner for determining the time domain position of the first DMRS may include the following two.
  • the time-domain position of the DMRS corresponding to each time slot may be determined in units of time slots. That is, the DMRS mapping can be performed in units of slots.
  • the time domain position of the DMRS may be determined according to the total number of allocated OFDM symbols.
  • the total number of OFDM symbols allocated is 17, the 17 OFDM symbols occupy two time slots, the first time slot occupies 10 OFDM symbols, and the second time slot occupies 7 OFDM symbols.
  • the time domain position of the DMRS symbol in the time slot is determined according to 10 OFDM symbols in the first time slot; the time domain position of the DMRS symbol in the time slot is determined according to 7 OFDM symbols in the second time slot.
  • the position of each group of DMRS symbols can be determined according to each group of 14 symbols.
  • the Determining the time domain position of the first DMRS by the number of OFDM symbols of the target time-frequency resource includes:
  • the time domain position of the DMRS corresponding to each symbol group is determined according to the number of OFDM symbols in the symbol group.
  • two OFDM symbol groups can be obtained by grouping, that is, the first 14 OFDM symbols are the first group of OFDM symbols, and the last three OFDM symbols are the second group of OFDM symbols.
  • the time domain position of the DMRS mapped on the 14 OFDM symbols is determined according to the number of 14 OFDM symbols in the first group of OFDM symbols.
  • the first group of OFDM symbols determines the time domain position of the DMRS mapped on the three OFDM symbols according to the number of three OFDM symbols.
  • mapping mode of the DMRS satisfies any of the following:
  • Mapping type B is used by default
  • mapping type A has a higher priority than mapping type B.
  • the DMRS mapping mode can be understood as the DMRS mapping mode in each time slot, and for the above-mentioned mode 2, the DMRS mapping mode can be understood as the DMRS mapping mode in each OFDM symbol grouping Way.
  • the priority of the mapping type A is greater than the priority of the mapping type B can be understood as, if the conditions corresponding to the mapping type A are satisfied, the DMRS mapping is performed according to the mapping type A, otherwise, the DMRS mapping is performed according to the mapping type B.
  • the DMRS corresponding to each time slot when the time domain position of the DMRS corresponding to the time slot is determined according to the number of OFDM symbols allocated to each time slot, the DMRS corresponding to each time slot also satisfies: at the first time When the number of OFDM symbols allocated by the slot is 1, and the first time slot and the second time slot meet the preset conditions, the first time slot is not mapped with DMRS or only the corresponding first time slot is mapped. the DMRS;
  • the DMRS is not mapped in the first time slot, and only data is mapped in the first time slot, and frequency hopping is not supported in the first time slot.
  • the DMRS symbols transmitted in the second time slot may be reduced.
  • the above-mentioned preset conditions include at least one of the following:
  • the first time slot and the second time slot use the same antenna port
  • the power deviation between the antenna ports used by the first time slot and the second time slot is less than or equal to a first preset value
  • the phase between the antenna ports used by the first time slot and the second time slot is continuous
  • the first time slot and the second time slot use the same precoding parameters
  • the first time slot and the second time slot use the same spatial filtering parameters.
  • the above-mentioned target time-frequency resources can be used for uplink transmission or downlink transmission.
  • uplink transmission is taken as an example to describe the situation of resource conflict.
  • the transport block is carried on the first physical uplink shared channel PUSCH, and in the case that the first PUSCH and the physical uplink control channel PUCCH overlap in the time domain (overlapping), when the transport block is mapped to the target
  • steps of frequency resources including:
  • the target information includes at least one of the following:
  • the number of modulation symbols available for PUSCH transmission in each of the N slots is the number of modulation symbols available for PUSCH transmission in each of the N slots.
  • the P is determined by the second symbol number when the first PUSCH and PUCCH are multiplexed, and the second symbol number is the following minimum number of OFDM symbols:
  • the number of OFDM symbols actually allocated by the first PUSCH is the number of OFDM symbols actually allocated by the first PUSCH.
  • the above transmission method includes at least one of the following:
  • the fourth time slot does not exist in the N time slots, at least one of the PUCCH and the first PUSCH is not sent;
  • the third time slot is a time slot overlapping the first PUSCH and the PUCCH
  • the fourth time slot is a time slot in which the number of modulation symbols available for PUSCH transmission is greater than P.
  • the PUSCH is not sent in the third time slot, which can be understood as that the PUSCH on the third time slot is not sent only in the third time slot, that is, the third time slot is punctured.
  • the first PUSCH is scheduled to be transmitted in time slot 1 and time slot 2, assuming that the PUSCH transmitted in time slot 1 overlaps with the above PUCCH, at this time, only the PUSCH in time slot 2 is sent. It can also be understood that the above-mentioned first PUSCH starts to be sent one time slot after the third time slot.
  • the first PUSCH is scheduled to be transmitted in time slot 1 and time slot 2, and it is assumed that the PUSCH transmitted in time slot 1 overlaps with the above-mentioned PUCCH.
  • the first PUSCH is transmitted in time slot 2 and time slot 3, wherein time slot 1 , time slot 2 and time slot 3 are three consecutive time slots, and time slot 1 is located before time slot 2 .
  • the N timeslots may include one or more fourth timeslots.
  • the PUCCH may be multiplexed with the PUSCH of any fourth timeslot, and the specific multiplexing transmission position is not described here. further restrictions.
  • the transmission mode includes any of the following:
  • the PUCCH is preferentially multiplexed on the second PUSCH, and the second PUSCH is scheduled to be transmitted on one time slot.
  • the above-mentioned first PUSCH may be understood as a multi-slot PUSCH
  • the above-mentioned second PUSCH may be understood as a single-slot PUSCH.
  • the scheduling is transmitted in 2 time slots, and SLIV 1 is used to determine the time domain resource allocation indication.
  • Step 1 Calculate SLIV 2.
  • the SLIV 2 satisfies:
  • the value range of L is 1 to 42 and the value of S is 0 to 13
  • the value of SLIV 3 and the corresponding relationship between S and L are shown in Table 5 below.
  • the scheduling is transmitted in 2 time slots, and SLIV 4 is used to determine the time domain resource allocation indication.
  • the intermediate TBS is first calculated according to the time domain occupying 14 symbols, which is represented as TBS_temp, and the intermediate TBS is scaled to obtain the final TBS.
  • the TB can be directly subjected to subsequent processing (such as CRC, channel coding, rate matching, scrambling, modulation, layer mapping, precoding, etc.) to obtain the modulation symbols before mapping, and sequentially
  • subsequent processing such as CRC, channel coding, rate matching, scrambling, modulation, layer mapping, precoding, etc.
  • the fifth embodiment is shown in FIG. 5 .
  • the PUCCH overlaps with the PUSCH of Part A.
  • the overhead is removed, for example, the DMRS occupies 2 OFDM symbols and there is no phase tracking reference signal (PTRS).
  • PTRS phase tracking reference signal
  • the corresponding PUSCH transmission part is not sent in the A region of the time slot 1, and the corresponding PUSCH transmission part is continuously sent in the B region of the time slot 2.
  • the corresponding PUSCH transmission part is not sent in the A region of the time slot 1, and the corresponding PUSCH transmission part is also not sent in the B region of the time slot 2.
  • the PUSCH is not sent in the A region of the time slot 1, and the PUSCH is sent in the B region of the time slot 2.
  • Embodiment 6 as shown in FIG. 6 , the PUCCH overlaps with the PUSCH of part A.
  • the A and B regions of time slot 1 and time slot 2 of PUSCH transmission respectively remove the overhead
  • the number of available modulation symbols is greater than P, for example, the DMRS occupies 2 OFDM symbols, and there is no overhead such as PTRS.
  • the PUCCH may be multiplexed with the PUSCH in time slot 1 for transmission.
  • Embodiment 7 as shown in FIG. 7 , the PUCCH overlaps with the PUSCH of part A.
  • the number of available modulation symbols is greater than P, for example, the DMRS occupies one OFDM symbol, and there is no overhead such as PTRS.
  • the PUCCH can be multiplexed with the PUSCH in time slot 2 for transmission.
  • Embodiment 8 as shown in FIG. 8 , the PUCCH overlaps with the PUSCH of part A. If the number of modulation symbols available in the A region of time slot 1 and the B region of time slot 2 in PUSCH transmission is not greater than P after the overhead is removed, for example, the DMRS occupies one OFDM symbol and there is no overhead such as PTRS. At this time, the PUSCH is not sent, neither the A region nor the B region is sent, and the PUCCH is preferentially sent; or, the PUCCH is not sent, and the PUSCH is preferentially sent.
  • Embodiment 9 as shown in FIG. 9 , if the PUCCH and the component carriers (Component Carrier, CC) 1 and CC2 are overlapped on the time-domain time slot 1, and the single-slot PUSCH transmission is scheduled on CC1, and the multi-slot PUSCH transmission is scheduled on CC2 .
  • the PUCCH is preferentially multiplexed and transmitted on the PUSCH of CC1; or the PUCCH is preferentially multiplexed and transmitted on the PUSCH of CC2.
  • the channel estimation result in time slot 1 can be used when data is transmitted in time slot 2; if DMRS is transmitted in time slot 2, it can be used. Joint channel estimation is performed using the DMRS in slot 1 and slot 2.
  • the channel estimation result in time slot 2 can be used; if DMRS is transmitted in time slot 1, it can be used. Joint channel estimation is performed using the DMRS in slot 1 and slot 2.
  • the high-level parameter indicates single-symbol DMRS, and frequency hopping is disabled. If mapping type B is used for DMRS mapping by default, the transmission state can be as shown in FIG. 16 .
  • the high-level parameter dmrs-AdditionalPosition is configured as 'pos2', and indicates a single-symbol DMRS, and frequency hopping is disabled. If the priority of mapping type A is higher than that of mapping type B for DMRS mapping, the transmission status can be as shown in Figure 17.
  • FIG. 18 is a flowchart of another transmission processing method provided by an embodiment of the present application. The method is executed by the receiving end, as shown in FIG. 18, and includes the following steps:
  • Step 1801 Determine a scheduled target time-frequency resource according to the time-domain resource allocation indication
  • Step 1802 receiving a transport block on the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • the time-domain resource allocation indication is used to indicate an index value S of a start symbol of the target time-frequency resource and an allocation length L of the target time-frequency resource.
  • the time domain resource allocation indication includes first indication information and second indication information, the first indication information is used to indicate the N, and the second indication information is used to indicate the first allocation length L1,
  • the time domain resource allocation indication includes third indication information and fourth indication information, where the third indication information is used to determine the value relationship between S and L; the fourth indication information is used to indicate The fourth start and length indicates SLIV4 , which is used to determine the S and L.
  • the SLIV 4 satisfies at least one of the following:
  • the third indication information includes at least one bit of indication information, and the highest or lowest bit of the at least one bit is used to indicate the value relationship between S and L; the values of S and L A relationship contains at least one of the following:
  • the method further includes:
  • the method for determining the time domain position of the first DMRS includes any of the following:
  • the time domain position of the first DMRS is determined according to the number of OFDM symbols of the target time-frequency resource.
  • mapping mode of the DMRS satisfies any of the following:
  • Mapping type B is used by default
  • mapping type A has a higher priority than mapping type B.
  • the DMRS corresponding to each time slot when the time domain position of the DMRS corresponding to the time slot is determined according to the number of OFDM symbols allocated to each time slot, the DMRS corresponding to each time slot also satisfies: in the first The number of OFDM symbols allocated to the time slot is 1, and the first time slot and the second time slot satisfy a preset condition, the DMRS corresponding to the first time slot is not mapped or only the first time slot is mapped. the DMRS corresponding to the time slot;
  • both the first time slot and the second time slot are one time slot among the N time slots, and the first time slot is adjacent to the second time slot.
  • the preset conditions include at least one of the following:
  • the first time slot and the second time slot use the same antenna port
  • the power deviation between the antenna ports used by the first time slot and the second time slot is less than or equal to a first preset value
  • the phase between the antenna ports used by the first time slot and the second time slot is continuous
  • the first time slot and the second time slot use the same precoding parameters
  • the first time slot and the second time slot use the same spatial filtering parameters.
  • the determining the time domain position of the first DMRS according to the number of OFDM symbols of the target time-frequency resource includes:
  • the time domain position of the DMRS corresponding to each symbol group is determined according to the number of OFDM symbols in the symbol group.
  • the transport block is carried on the first physical uplink shared channel PUSCH, and in the case where the first PUSCH and the physical uplink control channel PUCCH overlap in the time domain, the transport block is mapped to the target time-frequency
  • the resource steps include:
  • the target information includes at least one of the following:
  • the number of modulation symbols available for PUSCH transmission in each of the N slots is the number of modulation symbols available for PUSCH transmission in each of the N slots.
  • the P is determined by the second symbol number when the first PUSCH and PUCCH are multiplexed, and the second symbol number is the following minimum number of OFDM symbols:
  • the number of OFDM symbols actually allocated by the first PUSCH is the number of OFDM symbols actually allocated by the first PUSCH.
  • the transmission method includes at least one of the following:
  • the fourth time slot does not exist in the N time slots, at least one of the PUCCH and the first PUSCH is not sent;
  • the third time slot is a time slot overlapping the first PUSCH and the PUCCH
  • the fourth time slot is a time slot in which the number of modulation symbols available for PUSCH transmission is greater than P.
  • the transmission mode includes any of the following:
  • the second PUSCH is scheduled to be transmitted in one time slot.
  • this embodiment is an implementation of the receiving end corresponding to the embodiment shown in FIG. 2 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 2 to achieve the same beneficial effects. In order to avoid repetition description, which will not be repeated here.
  • the execution body may be a transmission processing apparatus, or a control module in the transmission processing apparatus for executing the transmission processing method.
  • the transmission processing device provided by the embodiment of the present application is described by taking the transmission processing device executing the transmission processing method as an example.
  • FIG. 19 is a structural diagram of a transmission processing apparatus provided by an embodiment of the present application. As shown in FIG. 19, the transmission processing apparatus 1900 includes:
  • a first determining module 1901 configured to determine a scheduled target time-frequency resource according to the time-domain resource allocation indication
  • mapping module 1902 configured to map the transport block to the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • the time-domain resource allocation indication is used to indicate an index value S of a start symbol of the target time-frequency resource and an allocation length L of the target time-frequency resource.
  • the time domain resource allocation indication includes first indication information and second indication information, the first indication information is used to indicate the N, and the second indication information is used to indicate the first allocation length L1,
  • the time domain resource allocation indication includes third indication information and fourth indication information, where the third indication information is used to determine the value relationship between S and L; the fourth indication information is used to indicate The fourth start and length indicates SLIV4 , which is used to determine the S and L.
  • the SLIV 4 satisfies at least one of the following:
  • the third indication information includes at least one bit of indication information, and the highest or lowest bit of the at least one bit is used to indicate the value relationship between S and L; the values of S and L A relationship contains at least one of the following:
  • mapping module 1902 includes:
  • a dividing unit configured to divide the transport block into N sub-transport blocks according to the number of first symbols allocated in each time slot
  • a processing unit for preprocessing each sub-transport block to obtain modulation symbols corresponding to the N sub-transport blocks
  • mapping unit configured to map the modulation symbols corresponding to the N sub-transport blocks to the time-frequency resources of each time slot of the target time-frequency resource
  • the first number of symbols does not include the number of orthogonal frequency division multiplexing OFDM symbols occupied by the demodulation reference signal DMRS.
  • the N sub-transport blocks satisfy any one of the following:
  • the N sub-transport blocks have the same size
  • the size of each of the sub-transport blocks is proportional to the number of the first symbols allocated in the time slot in which the sub-transport block is located.
  • mapping module 1902 includes:
  • a processing unit configured to preprocess the transport block to obtain modulation symbols corresponding to the transport block
  • a mapping unit configured to sequentially map the modulation symbols corresponding to the transport block to the target time-frequency resource.
  • mapping module 1902 is further configured to: map the first DMRS to the target time-frequency resource;
  • the method for determining the time domain position of the first DMRS includes any of the following:
  • the time domain position of the first DMRS is determined according to the number of OFDM symbols of the target time-frequency resource.
  • mapping mode of the DMRS satisfies any of the following:
  • Mapping type B is used by default
  • mapping type A has a higher priority than mapping type B.
  • the DMRS corresponding to each time slot when the time domain position of the DMRS corresponding to the time slot is determined according to the number of OFDM symbols allocated to each time slot, the DMRS corresponding to each time slot also satisfies: in the first When the number of OFDM symbols allocated to a time slot is 1, and the first time slot and the second time slot meet the preset conditions, no DMRS is mapped to the first time slot or only the corresponding first time slot is mapped of the DMRS;
  • both the first time slot and the second time slot are one time slot among the N time slots, and the first time slot is adjacent to the second time slot.
  • the preset conditions include at least one of the following:
  • the first time slot and the second time slot use the same antenna port
  • the power deviation between the antenna ports used by the first time slot and the second time slot is less than or equal to a first preset value
  • the phase between the antenna ports used by the first time slot and the second time slot is continuous
  • the first time slot and the second time slot use the same precoding parameters
  • the first time slot and the second time slot use the same spatial filtering parameters.
  • the determining the time domain position of the first DMRS according to the number of OFDM symbols of the target time-frequency resource includes:
  • the time domain position of the DMRS corresponding to each symbol group is determined according to the number of OFDM symbols in the symbol group.
  • the transport block is carried on the first physical uplink shared channel PUSCH, and in the case where the first PUSCH and the physical uplink control channel PUCCH overlap in the time domain, the transport block is mapped to the target time-frequency
  • the resource steps include:
  • the target information includes at least one of the following:
  • the number of modulation symbols available for PUSCH transmission in each of the N slots is the number of modulation symbols available for PUSCH transmission in each of the N slots.
  • the P is determined by the second symbol number when the first PUSCH and PUCCH are multiplexed, and the second symbol number is the following minimum number of OFDM symbols:
  • the number of OFDM symbols actually allocated by the first PUSCH is the number of OFDM symbols actually allocated by the first PUSCH.
  • the transmission method includes at least one of the following:
  • the fourth time slot does not exist in the N time slots, at least one of the PUCCH and the first PUSCH is not sent;
  • the third time slot is a time slot overlapping the first PUSCH and the PUCCH
  • the fourth time slot is a time slot in which the number of modulation symbols available for PUSCH transmission is greater than P.
  • the transmission mode includes any of the following:
  • the second PUSCH is scheduled to be transmitted in one time slot.
  • the transmission processing apparatus 1900 provided in this embodiment of the present application can implement each process implemented by the transmitting end in the method embodiment of FIG. 2 , and to avoid repetition, details are not described here.
  • FIG. 20 is a structural diagram of a transmission processing apparatus provided by an embodiment of the present application. As shown in FIG. 20, the transmission processing apparatus 2000 includes:
  • the second determining module 2001 is configured to determine the scheduled target time-frequency resource according to the time-domain resource allocation indication
  • a receiving module 2002 configured to receive a transport block on the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • the time-domain resource allocation indication is used to indicate an index value S of a start symbol of the target time-frequency resource and an allocation length L of the target time-frequency resource.
  • the time domain resource allocation indication includes first indication information and second indication information, the first indication information is used to indicate the N, and the second indication information is used to indicate the first allocation length L1,
  • the time domain resource allocation indication includes third indication information and fourth indication information, where the third indication information is used to determine the value relationship between S and L; the fourth indication information is used to indicate The fourth start and length indicates SLIV4 , which is used to determine the S and L.
  • the SLIV 4 satisfies at least one of the following:
  • the third indication information includes at least one bit of indication information, and the highest bit or the lowest bit of the at least one bit is used to indicate the value relationship between S and L; the value of S and L A relationship contains at least one of the following:
  • the method further includes:
  • the method for determining the time domain position of the first DMRS includes any of the following:
  • the time domain position of the first DMRS is determined according to the number of OFDM symbols of the target time-frequency resource.
  • mapping mode of the DMRS satisfies any of the following:
  • Mapping type B is used by default
  • mapping type A has a higher priority than mapping type B.
  • the DMRS corresponding to each time slot when the time domain position of the DMRS corresponding to the time slot is determined according to the number of OFDM symbols allocated to each time slot, the DMRS corresponding to each time slot also satisfies: in the first The number of OFDM symbols allocated to the time slot is 1, and the first time slot and the second time slot satisfy a preset condition, the DMRS corresponding to the first time slot is not mapped or only the first time slot is mapped. the DMRS corresponding to the time slot;
  • both the first time slot and the second time slot are one time slot among the N time slots, and the first time slot is adjacent to the second time slot.
  • the preset conditions include at least one of the following:
  • the first time slot and the second time slot use the same antenna port
  • the power deviation between the antenna ports used by the first time slot and the second time slot is less than or equal to a first preset value
  • the phase between the antenna ports used by the first time slot and the second time slot is continuous
  • the first time slot and the second time slot use the same precoding parameters
  • the first time slot and the second time slot use the same spatial filtering parameters.
  • the determining the time domain position of the first DMRS according to the number of OFDM symbols of the target time-frequency resource includes:
  • the time domain position of the DMRS corresponding to each symbol group is determined according to the number of OFDM symbols in the symbol group.
  • the transport block is carried on the first physical uplink shared channel PUSCH, and when the first PUSCH and the physical uplink control channel PUCCH overlap in the time domain, the second determining module 2001 is further configured to:
  • the target information includes at least one of the following:
  • the number of modulation symbols available for PUSCH transmission in each of the N slots is the number of modulation symbols available for PUSCH transmission in each of the N slots.
  • the P is determined by the second symbol number when the first PUSCH and PUCCH are multiplexed, and the second symbol number is the following minimum number of OFDM symbols:
  • the number of OFDM symbols actually allocated by the first PUSCH is the number of OFDM symbols actually allocated by the first PUSCH.
  • the transmission method includes at least one of the following:
  • the fourth time slot does not exist in the N time slots, at least one of the PUCCH and the first PUSCH is not sent;
  • the third time slot is a time slot overlapping the first PUSCH and the PUCCH
  • the fourth time slot is a time slot in which the number of modulation symbols available for PUSCH transmission is greater than P.
  • the transmission mode includes any of the following:
  • the second PUSCH is scheduled to be transmitted in one time slot.
  • the transmission processing apparatus 2000 provided in this embodiment of the present application can implement each process implemented by the receiving end in the method embodiment of FIG. 18 , and to avoid repetition, details are not repeated here.
  • the transmission processing device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the transmission processing device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the transmission processing apparatus provided in the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 1 to FIG. 18 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 2100, including a processor 2101, a memory 2102, a program or instruction stored in the memory 2102 and executable on the processor 2101,
  • a communication device 2100 including a processor 2101, a memory 2102, a program or instruction stored in the memory 2102 and executable on the processor 2101,
  • the program or instruction is executed by the processor 2101, each process of the above-mentioned embodiment of the transmission processing method is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • FIG. 22 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 2200 includes but is not limited to: a radio frequency unit 2201, a network module 2202, an audio output unit 2203, an input unit 2204, a sensor 2205, a display unit 2206, a user input unit 2207, an interface unit 2208, a memory 2209, a processor 2210 and other components.
  • the terminal 2200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 2210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 22 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 2204 may include a graphics processor (Graphics Processing Unit, GPU) 22041 and a microphone 22042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 2206 may include a display panel 22061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2207 includes a touch panel 22071 and other input devices 22072 .
  • the touch panel 22071 is also called a touch screen.
  • the touch panel 22071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 22072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 2201 receives the downlink data from the network side device, and then processes it to the processor 2210; in addition, sends the uplink data to the network device.
  • the radio frequency unit 2201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 2209 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 2209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 2210 may include one or more processing units; optionally, the processor 2210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 2210.
  • the processor 2210 is configured to: determine the target time-frequency resource for scheduling according to the time-domain resource allocation indication; map the transport block to the target time-frequency resource; wherein the target time-frequency resource occupies N time-frequency resources in the time domain slot, N is an integer greater than 1.
  • the processor 2210 is configured to determine the scheduled target time-frequency resource according to the time-domain resource allocation indication
  • a radio frequency unit 2201 configured to receive a transport block on the target time-frequency resource
  • the target time-frequency resource occupies N time slots in the time domain, and N is an integer greater than 1.
  • the above-mentioned processor 2210 and the radio frequency unit 2201 can implement various processes implemented by the terminal in the method embodiment of FIG. 2 or FIG. 18 , which are not repeated here to avoid repetition.
  • the network device 2300 includes: an antenna 2301 , a radio frequency device 2302 , and a baseband device 2303 .
  • the antenna 2301 is connected to the radio frequency device 2302 .
  • the radio frequency device 2302 receives information through the antenna 2301, and sends the received information to the baseband device 2303 for processing.
  • the baseband device 2303 processes the information to be sent and sends it to the radio frequency device 2302
  • the radio frequency device 2302 processes the received information and sends it out through the antenna 2301 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 2303 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 2303 , and the baseband apparatus 2303 includes a processor 2304 and a memory 2305 .
  • the baseband device 2303 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 23 , one of the chips is, for example, the processor 2304, which is connected to the memory 2305 to call the program in the memory 2305 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 2303 may further include a network interface 2306 for exchanging information with the radio frequency device 2302, the interface being, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: an instruction or program stored in the memory 2305 and executable on the processor 2304, and the processor 2304 invokes the instruction or program in the memory 2305 to execute the instruction or program shown in FIG. 19 or FIG. 20 . In order to avoid repetition, it is not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement the above transmission processing method In order to avoid repetition, the details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输处理方法、装置及相关设备。该方法包括:根据时域资源分配指示,确定调度的目标时频资源;将传输块映射至所述目标时频资源;其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。由于将传输块映射到至少两个时隙上进行传输,从而在传输块大小相同的情况下,相比于单时隙传输,可以降低传输的码率,提高传输的可靠性,从而可以提高传输的覆盖能力。

Description

传输处理方法、装置及相关设备
相关申请的交叉引用
本申请主张在2020年9月30日在中国提交的中国专利申请No.202011060974.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种传输处理方法、装置及相关设备。
背景技术
在通信系统中,通常可以通过调度时频资源,进行上行和下行传输,例如,可以通过动态调度或者半静态调度的方式调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。目前,时域调度都是基于时隙的,也就是说PUSCH通常被调度在一个时隙(slot)上进行传输。当信道条件一定,而一个时隙上传输的传输块(Transport Block,TB)的大小(size)增大时,由于受调度的时隙的正交频分复用(Orthogonal frequency division multiplex,OFDM)符号数限制,可能会导致覆盖能力受限。
发明内容
本申请实施例提供一种传输处理方法、装置及相关设备,能够解决受调度的时隙OFDM符号数限制,可能会导致覆盖能力受限的问题。
第一方面,本申请实施例提供了一种传输处理方法,由发送端执行,包括:
根据时域资源分配指示,确定调度的目标时频资源;
将传输块映射至所述目标时频资源;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
第二方面,本申请实施例提供了一种传输处理方法,由接收端执行,包括
根据时域资源分配指示,确定调度的目标时频资源;
在所述目标时频资源上接收传输块;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
第三方面,本申请实施例提供了一种传输处理装置,包括:
第一确定模块,用于根据时域资源分配指示,确定调度的目标时频资源;
映射模块,用于将传输块映射至所述目标时频资源;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
第四方面,本申请实施例提供了一种传输处理装置,包括:
第二确定模块,用于根据时域资源分配指示,确定调度的目标时频资源;
接收模块,用于在所述目标时频资源上接收传输块;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
第五方面,本申请实施例提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第六方面,本申请实施例提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面或第二方面所述的方法。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法。
第十方面,本申请实施例提供了一种通信设备,其中,所述通信设备被 配置为执行如第一方面或第二方面所述的方法。
本申请实施例,通过根据时域资源分配指示,确定调度的目标时频资源;将传输块映射至所述目标时频资源;其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。这样,由于将传输块映射到至少两个时隙上进行传输,从而在传输块大小相同的情况下,相比于单时隙传输,可以降低传输的码率,提高传输的可靠性,从而可以提高传输的覆盖能力。另一方面,在采用相同码率传输的情况下,可以提高传输的吞吐率。因此,本申请实施例可以提高传输性能。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例提供的一种传输处理方法的流程图;
图3至图8是PUSCH传输示意图;
图9至图17是传输状态示意图;
图18是本申请实施例提供的另一种传输处理方法的流程图;
图19是本申请实施例提供的一种传输处理装置的结构图;
图20是本申请实施例提供的另一种传输处理装置的结构图;
图21是本申请实施例提供的一种通信设备的结构图;
图22是本申请实施例提供的一种终端的结构图;
图23是本申请实施例提供的一种网络设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述 的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接 入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
应理解,本申请的传输处理方法可以应用于上行传输,也可以应用于下行传输,为了方便理解,以下将以针对PUSCH的情形,对本申请实施例涉及的一些内容进行说明:
一、时域资源分配的符号起始位置和长度。
对于重复类型A(repetition type A)传输,其对应的映射类型(mapping type)可以是mapping type A和mapping type B;
若为mapping type A,则,S=0,L=4~14,S+L=4~14;其中,S表示起始符号的索引值,L表示分配长度;
若为mapping type B,则,S=0~13,L=1~14,S+L=1~14。
对于repetition type B传输,其对应的mapping type只能是mapping type B,S=0~13,L=1~14,S+L=1~27。
二、时频资源配置。
在时域资源配置中,包含以下部分:
(1)时隙偏移(slot offset)K2;
(2)起始和长度指示(Start and length indicator value,SLIV),或起始符号(start symbol)索引S和分配长度(allocation length)L;其中,SLIV的指示方式用于repetition type A,S和L的指示方式用于repetition type B;
(3)mapping type;
(4)重复次数(the number of repetitions),若配置repetition传输。
三、对于repetition type A传输,按照第一计算方式得到的SLIV值,基于该SLIV值确定S和L。其中第一计算方式表示为:
若(L-1)≤7,则SLIV=14*(L-1)+S;
否则,SLIV=14*(14-L+1)+(14-1-S);
其中,0<L≤14-S。
根据以上式子可以得到SLIV的取值、S和L的对应关系如下表一所示。
表一:
Figure PCTCN2021121660-appb-000001
四、上行控制信息(Uplink Control Information,UCI)。
UCI包括如下类型:混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)、信道状态信息(Channel State Information,CSI)上报和调度请求(scheduling request,SR)。
上述UCI可以在周期物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源上传输,CSI可以通过下行控制信息(Downlink Control Information,DCI)触发的方式在PUSCH传输。如果用于传输不同UCI的PUCCH和/或PUSCH的资源在时间上存在交叠。则UE需要将在多个信道上传输的UCI在复用在同一个PUCCH或PUSCH资源上。
如果UCI传输的PUCCH和UE传输数据的PUSCH时域上存在交叠,则UE将UCI复用在PUSCH上传输,该PUSCH可以是调度的PUSCH或者配置授权(configured grant)PUSCH。
可选地,如果一个PUCCH上的UCI复用到另外一个PUCCH资源上,则两个PUCCH上传输的信息比特进行级联之后一起进行编码传输。
而如果PUCCH上的UCI复用到PUSCH上传输,则UCI和PUSCH传输的数据部分是分开编码并进行映射传输的。当UCI复用到PUSCH上传输时,网络设备会给PUSCH配置一个beta偏移(beta-offset)值用于确定UCI 在PUCCH中占用的调制符号数,beta-offset值越大,则UCI在复用后的PUSCH上占用的资源更多。但最终UCI占用的调制符号数不能超过一定的阈值,该阈值通过对PUSCH资源除去开销后所有可用资源单元(Resource element,RE)数进行一定的比例缩放后得到,缩放因子为alpha,由高层参数配置。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的传输处理方法进行详细地说明。
请参见图2,图2是本申请实施例提供的一种传输处理方法的流程图,该方法由发送端执行,如图2所示,包括以下步骤:
步骤201,根据时域资源分配指示,确定调度的目标时频资源;
在本实施例中,上述时频资源分配指示是指网络设备发送给终端的调度指示,用于调度上行或者下行传输。可选地,上述发送端可以理解为终端,也可以理解为网络设备。当发送端为终端时,根据时域资源分配指示,确定调度的目标时频资源的步骤之前,该方法还可以包括:接收网络设备发送的所述时域资源分配指示。当发送端为网络设备时,该方法还可以包括:发送所述时域资源分配指示。
可选地,当发送端为终端时,则上述目标时频资源用于上行传输,此时上述时域资源分配指示可以理解为用于调度上行传输的调度指示;当发送端为网络设备时,则上述目标资源用于下行传输,此时上述时频资源分配指示可以理解为用于调度下行传输的调度指示。
步骤202,将传输块映射至所述目标时频资源;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
本申请实施例中,可以将待发送的数据映射到传输块上,将传输块进行预处理后,得到映射前的调制符号,将映射前的调制符号映射到目标时频资源上进行发送。接收端可以基于该目标时频资源接收相应的信号,然后解调获得发送端传输的数据。
目标时频资源时域上占用N个时隙可以理解为:上述时域资源分配指示用于调度一次上行传输或下行传输,占用至少两个时隙。也就是说,目标时频资源用于调度目标传输在多个时隙传输或者跨时隙传输,目标传输可以为 上行传输或者下行传输。
本申请实施例,通过根据时域资源分配指示,确定调度的目标时频资源;将传输块映射至所述目标时频资源;其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。这样,由于将传输块映射到至少两个时隙上进行传输,从而在传输块大小相同的情况下,相比于单时隙传输,可以降低传输的码率,提高传输的可靠性,从而可以提高传输的覆盖能力。另一方面,在采用相同码率传输的情况下,可以提高传输的吞吐率。因此,本申请实施例可以提高传输性能。
可选地,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
本申请实施例中,确定所述S和L的方式可以包括多种,以下通过不同的确定方式进行详细说明。
例如,在一些实施例中,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
可选地,上述M的取值可以为105或者128。最终,每一个SLIV 1值对应唯一确定的S和L。应理解,上述SLIV 1的计算也可以应用在N=1的情况。
上述SLIV 2可以理解为起始和长度指示,可基于L的取值范围与SLIV 2的计算方式的对应关系,利用SLIV 2=14*[L-1-14*(N-1)]+S和SLIV 2=14*[14*N-(L-1)]+(14-1-S)计算SLIV 2,基于SLIV 1=SLIV 2+(N-1)*M计算获得SLIV 1。可选地,本申请实施例中,上述时域资源分配指示可以包括SLIV 1值,也可以包括SLIV 1值对应的S和L的取值。
在一些实施例中,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于指示S和第一分配长度L1,所述L满足:L=L1+14*(N-1)。
本申请实施例中,可以使用
Figure PCTCN2021121660-appb-000002
个指示时域资源占用的slot数,此时上述第二指示信息可以理解为现有的时域资源分配指示,具体可以指示第 一分配长度L1和S,例如,第二指示信息可以包括按照按现有协议的SLIV计算方式确定的L1和S的取值,也可以包括按照上述按现有协议的SLIV计算方式确定的SLIV值。例如,SLIV的计算方式如下:
若(L1-1)≤7,则SLIV=14*(L1-1)+S;
否则,SLIV=14*(14-L1+1)+(14-1-S);
其中,0<L1≤14-S。
在一些实施例中,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
本申请实施例中,其中,每一个SLIV 3对应着唯一确定的S和L。可选地,上述时域资源分配指示可以包括一个SLIV 3值,也可以包括SLIV 3值对应的S和L的取值,在此不做进一步的限定。
应理解,在本申请实施例中,当N等于1的情况下,也可以基于SLIV 3确定时域资源分配指示。
在一些实施例中,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
本申请实施例中,S和L的取值关系具体可以表示为以下两种关系:
(14*(N-1)-S)<L≤14*(N-1);
14*(N-1)<L≤14*N-S。
针对不同的取值关系,SLIV 4的计算方式不同,可选地,所述SLIV 4满足以下至少一项:
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下,SLIV 4=14*(L-1-14*(N-1))+S;
在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
进一步地,在N大于1的情况下,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于指示所述S和L的取值关系;所述S和L的取值关系至少包含以下一项:
(14*(N-1)-S)<L≤14*(N-1);
14*(N-1)<L≤14*N-S。
本申请实施例中,上述第三指示信息还可以用于确定N的值。即可以首先确定N的取值,确定第一比特;再根据确定S和L的取值关系确定第二比特,然后将该第一比特和第二比特进行级联得到第三指示信息。其中,第一比特可以位于第二比特之前,也可以位于第二比特之后。在此不做进一步的限定。
可选地,第二比特可以采用第一值表示(14*(N-1)-S)<L≤14*(N-1),采用第二值表示14*(N-1)<L≤14*N-S。其中,第一值可以为0和1中的一者,第二值为另一者。
在一实施例中,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
Figure PCTCN2021121660-appb-000003
B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
本申请实施例中,当L小于或等于14的情况下,可以按照传统的传输块大小(TBS)计算方式计算传输块的大小。其中,传统TBS计算方式可以理解为按照时域实际占用的OFDM符号计算的传输块的大小。也就是说,上述中间传输块大小是按照传统TBS计算方式以占用最大14个OFDM符号来计算得到的,然后将计算得到的B按照β的大小进行缩放得到最终的传输块的大小。
可选地,在一实施例中,上述将传输块映射至所述目标时频资源的步骤,包括:
按照各个时隙内分配的第一符号数将传输块划分为N个子传输块;
各个子传输块进行预处理得到N个子传输块对应的调制符号;
将N个子传输块对应的调制符号,映射到所述目标时频资源上;
其中,所述第一符号数不包括解调参考信号(Demodulation Reference Signal,DMRS)占用的OFDM符号数。
本申请实施例中,子传输块对应的调制符号应被理解为子传输块在映射前的调制符号,即经过了层映射和预编码处理后得到的调制符号。例如,可以以每一个时隙内的子传输块为单位进行预处理,得到每一个子传输对应的映射前的调制符号,最后分别映射到目标时频资源对应的各个时隙的时频资源上进行传输。
可选地,每一子传输块的大小可以根据实际需要进行设置,例如,在一实施例中,所述N个子传输块的大小相同。
在另一实施例中,每一所述子传输块的大小与所述子传输块所在的时隙内分配的所述第一符号数成正比。
也就是说,在本申请实施例中,时隙内分配的所述第一符号数越多,对应的子传输块的大小越大,这样,可以保证各个时隙内传输的码率保持一致,保证传输的可靠性。
可选地,在另一实施例中,所述将传输块映射至所述目标时频资源的步骤,包括:
将所述传输块进行预处理,得到所述传输块对应的调制符号;
将所述传输块对应的调制符号依次映射到所述目标时频资源上。
本申请实施例中,可以将传输块看作一个整体,不进行拆分。从而进行预处理,得到映射前的调制符号,最终将映射前的调制符号依次映射到所述目标时频资源中各时隙的时频资源上进行传输。
应理解上述预处理可以包括循环冗余校验(Cyclic redundancy check,CRC)、信道编码、速率匹配、扰码、调制、层映射和预编码等操作,得到映射前的调制符号,然后进行资源映射。
可选地,所述根据时域资源分配指示,确定调度的目标时频资源的步骤之后,所述方法还包括:
将第一DMRS映射至所述目标时频资源;
其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置;
根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位 置。
上述目标时频资源的OFDM符号数可以理解为调度的总OFDM符号数,或者所述目标时频资源在所述N个时隙中分配的总符号数。上述第一DMRS可以理解为,本次调度传输在目标时频资源上需要传输的DMRS。
本申请实施例中,对于第一DMRS的时域位置的确定方式可以包括以下两种。
方式1,可以以时隙为单位,分别确定每一时隙对应的DMRS的时域位置。也就是说,可以以时隙为单位进行DMRS的映射。
方式2,在分配的总OFDM符号数大于14时,可以按照分配的总OFDM符号数确定DMRS的时域位置。
针对上述方式一,假设分配的总OFDM符号数为17,该17个OFDM符号数占用两个时隙,第一个时隙占用10个OFDM符号,第二个时隙占用7个OFDM符号。此时,第一时隙按照10个OFDM符号确定该时隙内DMRS符号的时域位置;第二时隙按照7个OFDM符号确定该时隙内DMRS符号的时域位置。
针对上述方式2,可以按照每14个符号为一组,确定每一组DMRS符号的位置,换句话说,上述在所述目标时频资源的OFDM符号数大于14的情况下,所述根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数划分至少两个符号组;
按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
假设分配的总OFDM符号数为17,进行分组可以得到两个OFDM符号分组,即前14个OFDM符号为第一组OFDM符号,后3个OFDM符号为第二组OFDM符号。此时,第一组OFDM符号按照14个OFDM符号数确定映射在该14个OFDM符号上的DMRS的时域位置。第一组OFDM符号按照3个OFDM符号数确定映射在该3个OFDM符号上的DMRS的时域位置。
可选地,所述DMRS的映射方式满足以下任一项:
默认使用映射类型B;
映射类型A的优先级大于映射类型B的优先级。
本实施例中,针对上述方式1,该DMRS的映射方式可以理解为每一个时隙内DMRS的映射方式,针对上述方式2,该DMRS的映射方式可以理解为每一个OFDM符号分组内DMRS的映射方式。
映射类型A的优先级大于映射类型B的优先级可以理解为,在满足映射类型A对应的条件的情况下,则按照映射类型A进行DMRS映射,否则按照映射类型B进行DMRS映射。例如,针对方式1,对于PUSCH传输,在某一时隙内分配的OFDM符号数大于或等于4,且起始符号索引为0,即S=0时,则按照映射类型A进行DMRS映射,否则按照映射类型B进行DMRS映射;针对方式2,对于PUSCH传输,在某一OFDM分组的OFDM符号数大于或等于4,且起始符号索引为0,即S=0时,则按照映射类型A进行DMRS映射,否则按照映射类型B进行DMRS映射。
进一步地,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,在所述第一时隙不映射DMRS或仅映射所述第一时隙对应的所述DMRS;
在所述第一时隙不映射DMRS可以理解为,在第一时隙仅映射数据,在该第一时隙不支持跳频。
应理解,在本申请实施例中,可以减少第二时隙传输的DMRS符号。
可选地,在一实施例中,上述预设条件包括以下至少一项:
所述第一时隙和所述第二时隙使用相同的天线端口;
所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等于第一预设值;
所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
所述第一时隙和所述第二时隙使用相同的预编码参数;
所述第一时隙和所述第二时隙使用相同的空间滤波参数。
需要说明的是,上述目标时频资源可以用于上行传输,也可以用于下行 传输,以下实施例中,以上行传输为例,对资源冲突的情况进行说明。例如,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠(overlapping)的情况下,所述将传输块映射至所述目标时频资源的步骤之后,包括:
根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
其中,所述目标信息包括以下至少一项:
PUCCH复用在第一PUSCH上可传输的调制符号数P;
N个时隙中各时隙内PUSCH分配的OFDM符号数;
N个时隙中各时隙内PUSCH传输可用的调制符号数。
所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
所述第一PUSCH实际分配的OFDM符号数。
可选地,上述传输方式包括以下至少一项:
在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
本申请实施例中,不在所述第三时隙发送PUSCH,可以理解为,仅在所述第三时隙不发送该第三时隙上的PUSCH,即打孔(puncture)这个第三时隙上的PUSCH,例如,调度在时隙1和时隙2发送第一PUSCH,假设在时隙1传输的PUSCH与上述PUCCH重叠,此时,仅发送时隙2上的PUSCH。也可以理解为,在第三时隙之后的一个时隙开始发送上述第一PUSCH。例如,调度在时隙1和时隙2发送第一PUSCH,假设在时隙1传输的PUSCH与上 述PUCCH重叠,此时,在时隙2和时隙3上发送第一PUSCH,其中时隙1、时隙2和时隙3为连续的三个时隙,且时隙1位于时隙2之前。
应理解,N个时隙可以包括一个或者多个第四时隙,本实施例中,可以将所述PUCCH与任一个第四时隙的PUSCH复用,具体的复用传输位置在此不做进一步的限定。
可选地,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式包括以下任一项:
优先将所述PUCCH复用在所述第一PUSCH;
优先将所述PUCCH复用在所述第二PUSCH,所述第二PUSCH被调度在一个时隙上传输。
本申请实施例中,上述第一PUSCH可以理解为多时隙的PUSCH,上述第二PUSCH可以理解为单时隙的PUSCH。
为了更好的理解本申请,以下通过具体实施方式对本申请的实现过程进行详细说明。
实施方式一,调度在2个时隙上传输,采用SLIV 1确定时域资源分配指示。
步骤1,计算SLIV 2该SLIV 2满足:
在(L-1)≤21的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
在(L-1)>21的情况下,SLIV 2=14*[28-(L-1)]+(14-1-S);
其中,14<L≤28-S。
步骤2,计算SLIV 1,SLIV 1=SLIV 2+M。在M等于128时,SLIV 1的取值、S和L的对应关系如表二所示。因此当SLIV 1=153时,则可以唯一确定S=11,L=16。
表二:
Figure PCTCN2021121660-appb-000004
Figure PCTCN2021121660-appb-000005
在M等于105时,SLIV 1的取值、S和L的对应关系如下表三所示。当SLIV=142时,则可以唯一确定S=9,L=17。
表三:
Figure PCTCN2021121660-appb-000006
实施方式二,首先使用
Figure PCTCN2021121660-appb-000007
指示时域资源占用的slot数,例如用‘00’表示N=1,‘01’表示N=2,‘10’表示N=3,‘11’表示N=4;再利用现有SLIV的方式指示slot的分配情况,默认L1>28。如上述表一所示,假设指示SLIV=26,表示S=12,L1=2,但是N=3,实际指示的L=L1+14*2=30,此时,N等于3时,SLIV的取值、S和L的对应关系如下表四所示。
表四:
Figure PCTCN2021121660-appb-000008
Figure PCTCN2021121660-appb-000009
实施方式三,采用SLIV 3确定时域资源分配指示,SLIV 3=14*(L-1)+S。当L的取值范围为1~42,S的取值为0~13时,SLIV 3的取值、S和L的对应关系如下表五所示。其中,填充的部分表示N=2时,SLIV 3与S和L的对应关系。例如,当SLIV 3=214时,则可以唯一确定S=4,L=16。
表五:
Figure PCTCN2021121660-appb-000010
Figure PCTCN2021121660-appb-000011
实施方式四,调度在2个时隙上传输,采用SLIV 4确定时域资源分配指示。
通过第三指示信息指示‘10’或‘11’确定N=2。利用最低位‘0’表示(14-S)<L<=14;最低位‘1’表示14<L<=(28-S)。
在(14-S)<L≤14的情况下,SLIV 4满足:
若(S+1)≤7,则SLIV 4=14*(S+1)+L-1;
若(S+1)>7,则SLIV 4=14*(14-S-1)+(14-L)。
在(14<L≤(28-S)的情况下,SLIV 4满足:
若(L-1)≤21,则SLIV 4=14*(L-1-14)+S;
若(L-1)>21,则SLIV 4=14*(28-L+1)+(14-1-S)。
本实施例中,SLIV 4的取值、S和L的对应关系如下表六所示。
表六:
Figure PCTCN2021121660-appb-000012
Figure PCTCN2021121660-appb-000013
在表六中,打点填充部分表示第三指示信息指示‘10’,对应(14-S)<L≤14时,该范围内所有SLIV 4的取值与S、L的映射关系;加粗部分表示第三指示信息指示‘11’,对应14<L≤(28-S)时,该范围内所有SLIV 4的取值与S、L的映射关系。例如,当第三指示信息指示‘11’,SLIV 4=89时,可以唯一确定S=5,L=21。
可选地,假设时域资源分配指示确定了S=2,L=16,如图3所示。在一实施例中,先按照时域占用14个符号来计算中间TBS,表示为TBS_temp,对中间TBS进行缩放,得到最终
Figure PCTCN2021121660-appb-000014
因子大小为β=16/14。
可选地,假设时域资源分配指示确定了S=3,L=15,如图4所示,TB占用2个时隙,时隙1和时隙2,其中时隙1上可用的调制符号为8个,时隙2上可用的调制符号为3个。此时,可以将得到的TB划分为TB1和TB2,TB1=TB*8/11,TB2=TB*3/11,经过后续处理(如CRC、信道编码、速率匹配、扰码、调制、层映射、预编码、资源映射等)后,分别在A部分和B部分上进行传输。
可选地,在另一实施例中,可以直接将TB经过后续处理(如CRC、信道 编码、速率匹配、扰码、调制、层映射、预编码等)后,得到映射前的调制符号,依次映射在A部分和B部分上进行传输。
实施方式五,如图5所示。PUCCH与A部分的PUSCH重叠。当P大于时隙1中PUSCH的A部分可用的调制符号数,除去开销,如DMRS占用2个OFDM符号、无相位跟踪参考信号(Phase tracking reference signal,PTRS)。
可选地,一实施例中,在时隙1的A区域上不发送对应的PUSCH传输部分,而在时隙2的B区域上继续发送对应的PUSCH传输部分。
可选地,一实施例中,在时隙1的A区域上不发送对应的PUSCH传输部分,而在时隙2的B区域上也不发送对应的PUSCH传输部分。
可选地,一实施例中,在时隙1的A区域上不发送PUSCH,而在时隙2的B区域开始发送该PUSCH。
实施方式六,如图6所示,PUCCH与A部分的PUSCH重叠。当PUSCH传输的时隙1和时隙2的A、B区域分别除去开销后可用的调制符号数均大于P,如DMRS占用2个OFDM符号、无PTRS等开销。此时,PUCCH可以在时隙1中与PUSCH复用后进行传输。
实施方式七,如图7所示,PUCCH与A部分的PUSCH重叠。当PUSCH传输的时隙2的B区域除去开销后可用的调制符号数大于P,如DMRS占用1个OFDM符号、无PTRS等开销。此时,PUCCH可以在时隙2中与PUSCH复用后进行传输。
实施方式八,如图8所示,PUCCH与A部分的PUSCH重叠。若PUSCH传输的时隙1的A区域和时隙2的B区域分别除去开销后可用的调制符号数均不大于P,如DMRS占用1个OFDM符号、无PTRS等开销。此时,不发送该PUSCH,A区域和B区域均不发送,优先发送PUCCH;或者,不发送该PUCCH,优先发送PUSCH。
实施方式九,如图9所示,若PUCCH与成员载波(Component Carrier,CC)1和CC2在时域时隙1上overlapping,且CC1上调度单时隙PUSCH传输,CC2上调度多时隙PUSCH传输。此时,那么PUCCH优先复用在CC1的PUSCH上传输;或PUCCH优先复用在CC2的PUSCH上传输。
实施方式十,如图10至图12所示,假设S=0,L=15,高层参数dmrs- AdditionalPosition配置为‘pos2’,dmrs-TypeA-Position配置为2,且指示单符号DMRS,跳频(frequency hopping)不使能。若使用mapping type A的优先级大于mapping type B的优先级的方式进行DMRS映射,则时隙1对应mapping type A,时隙对应mapping type B,传输的状态如图10至图12所示。在图10中,B部分不传输DMRS,在图11中,B部分传输DMRS,在图12中,时隙1中可以减少DMRS。
可选地,若时隙1和时隙2之间满足上述预设条件,则时隙2中传输数据时,可以利用时隙1中的信道估计结果;若时隙2中传输DMRS时,可以利用时隙1和时隙2中的DMRS进行联合信道估计。
实施方式十一,如图13至图15所示,假设S=13,L=15;高层参数dmrs-AdditionalPosition配置为‘pos2’,且指示单符号DMRS,frequency hopping不使能。若默认使用mapping type B进行DMRS映射,则时隙1对应mapping type B,时隙2对应mapping type B,传输状态如图13至图15所示。在图13中,B部分不传输DMRS,在图14中,B部分传输DMRS,在图15中,时隙1中可以减少DMRS。
可选地,若时隙1和时隙2之间满足上述预设条件,则时隙1中传输数据时,可以利用时隙2中的信道估计结果;若时隙1中传输DMRS时,可以利用时隙1和时隙2中的DMRS进行联合信道估计。
实施方式十二,假设S=3,L=21。可选地,一实施例中,高层参数指示单符号DMRS,frequency hopping不使能,若默认使用mapping type B进行DMRS映射,则传输状态可以如图16所示。
实施方式十三,假设S=0,L=22。可选地,一实施例中,高层参数dmrs-AdditionalPosition配置为‘pos2’,且指示单符号DMRS,frequency hopping不使能。若使用mapping type A的优先级大于mapping type B的优先级的方式进行DMRS映射,则传输状态可以如图17所示。
请参见图18,图18是本申请实施例提供的另一种传输处理方法的流程图,该方法接收端执行,如图18所示,包括以下步骤:
步骤1801,根据时域资源分配指示,确定调度的目标时频资源;
步骤1802,在所述目标时频资源上接收传输块;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
可选地,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
可选地,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
可选地,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于指示第一分配长度L1,所述L满足:L=L1+14*(N-1)。
可选地,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
可选地,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
可选地,所述SLIV 4满足以下至少一项:
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下,SLIV 4=14*(L-1-14*(N-1))+S;
在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
可选地,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于指示所述S和L的取值关系;所述S和L的取值关系至少包含以下一项:
(14*(N-1)-S)<L≤14*(N-1);
14*(N-1)<L≤14*N-S。
可选地,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
Figure PCTCN2021121660-appb-000015
B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
可选地,所述发送时域资源分配指示的步骤之后,所述方法还包括:
确定在所述目标时频资源上传输的第一DMRS的时域位置;
其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
根据每一所述时隙分配的正交频分复用OFDM符号数确定所述时隙对应的DMRS的时域位置;
根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置。
可选地,所述DMRS的映射方式满足以下任一项:
默认使用映射类型B;
映射类型A的优先级大于映射类型B的优先级。
可选地,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,不映射所述第一时隙对应的所述DMRS或仅映射所述第一时隙对应的所述DMRS;
其中,所述第一时隙和第二时隙均为所述N个时隙中的一个时隙,且所述第一时隙与所述第二时隙相邻。
可选地,所述预设条件包括以下至少一项:
所述第一时隙和所述第二时隙使用相同的天线端口;
所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等于第一预设值;
所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
所述第一时隙和所述第二时隙使用相同的预编码参数;
所述第一时隙和所述第二时隙使用相同的空间滤波参数。
可选地,在所述目标时频资源的OFDM符号数大于14的情况下,所述 根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数划分至少两个符号组;
按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
可选地,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠的情况下,所述将传输块映射至所述目标时频资源的步骤之后,包括:
根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
其中,所述目标信息包括以下至少一项:
PUCCH复用在第一PUSCH上可传输的调制符号数P;
N个时隙中各时隙内PUSCH分配的OFDM符号数;
N个时隙中各时隙内PUSCH传输可用的调制符号数。
可选地,所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
所述第一PUSCH实际分配的OFDM符号数。
可选地,所述传输方式包括以下至少一项:
在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
可选地,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式 包括以下任一项:
优先将所述PUCCH复用在所述第一PUSCH;
优先将所述PUCCH复用在所述第二PUSCH;
其中,所述第二PUSCH被调度在一个时隙上传输。
需要说明的是,本实施例作为图2所示的实施例对应的接收端的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的传输处理方法,执行主体可以为传输处理装置,或者,该传输处理装置中的用于执行传输处理方法的控制模块。本申请实施例中以传输处理装置执行传输处理方法为例,说明本申请实施例提供的传输处理装置。
请参见图19,图19是本申请实施例提供的一种传输处理装置的结构图,如图19所示,传输处理装置1900包括:
第一确定模块1901,用于根据时域资源分配指示,确定调度的目标时频资源;
映射模块1902,用于将传输块映射至所述目标时频资源;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
可选地,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
可选地,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
可选地,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于指示第一分配长度L1,所述L满足:L=L1+14*(N-1)。
可选地,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
可选地,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
可选地,所述SLIV 4满足以下至少一项:
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下,SLIV 4=14*(L-1-14*(N-1))+S;
在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
可选地,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于指示所述S和L的取值关系;所述S和L的取值关系至少包含以下一项:
(14*(N-1)-S)<L≤14*(N-1);
14*(N-1)<L≤14*N-S。
可选地,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
Figure PCTCN2021121660-appb-000016
B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
可选地,所述映射模块1902包括:
划分单元,用于按照各个时隙内分配的第一符号数将传输块划分为N个子传输块;
处理单元,用于各个子传输块进行预处理得到N个子传输块对应的调制符号;
映射单元,用于将N个子传输块对应的调制符号,映射到所述目标时频资源的各时隙的时频资源上;
其中,所述第一符号数不包括解调参考信号DMRS占用的正交频分复用OFDM符号数。
可选地,所述N个子传输块满足以下任一项:
所述N个子传输块的大小相同;
每一所述子传输块的大小与所述子传输块所在的时隙内分配的所述第一符号数成正比。
可选地,所述映射模块1902包括:
处理单元,用于将所述传输块进行预处理,得到所述传输块对应的调制符号;
映射单元,用于将所述传输块对应的调制符号依次映射到所述目标时频资源上。
可选地,所述映射模块1902还用于:将第一DMRS映射至所述目标时频资源;
其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置;
根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置。
可选地,所述DMRS的映射方式满足以下任一项:
默认使用映射类型B;
映射类型A的优先级大于映射类型B的优先级。
可选地,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,在所述第一时隙不映射DMRS或仅映射所述第一时隙对应的所述DMRS;
其中,所述第一时隙和第二时隙均为所述N个时隙中的一个时隙,且所述第一时隙与所述第二时隙相邻。
可选地,所述预设条件包括以下至少一项:
所述第一时隙和所述第二时隙使用相同的天线端口;
所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等 于第一预设值;
所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
所述第一时隙和所述第二时隙使用相同的预编码参数;
所述第一时隙和所述第二时隙使用相同的空间滤波参数。
可选地,在所述目标时频资源的OFDM符号数大于14的情况下,所述根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数划分至少两个符号组;
按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
可选地,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠的情况下,所述将传输块映射至所述目标时频资源的步骤之后,包括:
根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
其中,所述目标信息包括以下至少一项:
PUCCH复用在第一PUSCH上可传输的调制符号数P;
N个时隙中各时隙内PUSCH分配的OFDM符号数;
N个时隙中各时隙内PUSCH传输可用的调制符号数。
可选地,所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
所述第一PUSCH实际分配的OFDM符号数。
可选地,所述传输方式包括以下至少一项:
在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
可选地,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式包括以下任一项:
优先将所述PUCCH复用在所述第一PUSCH;
优先将所述PUCCH复用在所述第二PUSCH;
其中,所述第二PUSCH被调度在一个时隙上传输。
本申请实施例提供的传输处理装置1900能够实现图2的方法实施例中发送端实现的各个过程,为避免重复,这里不再赘述。
请参见图20,图20是本申请实施例提供的一种传输处理装置的结构图,如图20所示,传输处理装置2000包括:
第二确定模块2001,用于根据时域资源分配指示,确定调度的目标时频资源;
接收模块2002,用于在所述目标时频资源上接收传输块;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
可选地,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
可选地,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
可选地,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于指示第一分配长度L1,所述L满足:L=L1+14*(N-1)。
可选地,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
可选地,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
可选地,所述SLIV 4满足以下至少一项:
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下,SLIV 4=14*(L-1-14*(N-1))+S;
在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
可选地,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于所述指示S和L的取值关系;所述S和L的取值关系至少包含以下一项:
(14*(N-1)-S)<L≤14*(N-1);
14*(N-1)<L≤14*N-S。
可选地,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
Figure PCTCN2021121660-appb-000017
B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
可选地,所述发送时域资源分配指示的步骤之后,所述方法还包括:
确定在所述目标时频资源上传输的第一DMRS的时域位置;
其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
根据每一所述时隙分配的正交频分复用OFDM符号数确定所述时隙对应的DMRS的时域位置;
根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置。
可选地,所述DMRS的映射方式满足以下任一项:
默认使用映射类型B;
映射类型A的优先级大于映射类型B的优先级。
可选地,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,不映射所述第一时隙对应的所述DMRS或仅映射所述第一时隙对应的所述DMRS;
其中,所述第一时隙和第二时隙均为所述N个时隙中的一个时隙,且所述第一时隙与所述第二时隙相邻。
可选地,所述预设条件包括以下至少一项:
所述第一时隙和所述第二时隙使用相同的天线端口;
所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等于第一预设值;
所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
所述第一时隙和所述第二时隙使用相同的预编码参数;
所述第一时隙和所述第二时隙使用相同的空间滤波参数。
可选地,在所述目标时频资源的OFDM符号数大于14的情况下,所述根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数划分至少两个符号组;
按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
可选地,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠的情况下,所述第二确定模块2001还用于:
根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
其中,所述目标信息包括以下至少一项:
PUCCH复用在第一PUSCH上可传输的调制符号数P;
N个时隙中各时隙内PUSCH分配的OFDM符号数;
N个时隙中各时隙内PUSCH传输可用的调制符号数。
可选地,所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
所述第一PUSCH实际分配的OFDM符号数。
可选地,所述传输方式包括以下至少一项:
在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
可选地,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式包括以下任一项:
优先将所述PUCCH复用在所述第一PUSCH;
优先将所述PUCCH复用在所述第二PUSCH;
其中,所述第二PUSCH被调度在一个时隙上传输。
本申请实施例提供的传输处理装置2000能够实现图18的方法实施例中接收端实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的传输处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的传输处理装置可以为具有操作系统的装置。该操作系 统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置能够实现图1至图18的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图21所示,本申请实施例还提供一种通信设备2100,包括处理器2101,存储器2102,存储在存储器2102上并可在所述处理器2101上运行的程序或指令,该程序或指令被处理器2101执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图22为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端2200包括但不限于:射频单元2201、网络模块2202、音频输出单元2203、输入单元2204、传感器2205、显示单元2206、用户输入单元2207、接口单元2208、存储器2209以及处理器2210等部件。
本领域技术人员可以理解,终端2200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图22中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元2204可以包括图形处理器(Graphics Processing Unit,GPU)22041和麦克风22042,图形处理器22041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元2206可包括显示面板22061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板22061。用户输入单元2207包括触控面板22071以及其他输入设备22072。触控面板22071,也称为触摸屏。触控面板22071可包括触摸检测装置和触摸控制器两个部分。其他输入设备22072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元2201将来自网络侧设备的下行数据接收后,给处理器2210处理;另外,将上行的数据发送给网络设备。通常,射频单元2201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大 器、双工器等。
存储器2209可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器2209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器2210可包括一个或多个处理单元;可选的,处理器2210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器2210中。
其中,处理器2210用于:根据时域资源分配指示,确定调度的目标时频资源;将传输块映射至所述目标时频资源;其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
或者,处理器2210,用于根据时域资源分配指示,确定调度的目标时频资源;
射频单元2201,用于在所述目标时频资源上接收传输块;
其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
应理解,本实施例中,上述处理器2210和射频单元2201能够实现图2或者图18的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图23所示,该网络设备2300包括:天线2301、射频装置2302、基带装置2303。天线2301与射频装置2302连接。在上行方向上,射频装置2302通过天线2301接收信息,将接收的信息发送给基带装置2303进行处理。在下行方向上,基带装置2303对要发送的信息进行处理,并发送给射频装置2302,射频装置2302对收到的信息进行处理后经过天线2301发送出去。
上述频带处理装置可以位于基带装置2303中,以上实施例中网络侧设备执行的方法可以在基带装置2303中实现,该基带装置2303包括处理器2304和存储器2305。
基带装置2303例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图23所示,其中一个芯片例如为处理器2304,与存储器2305连接,以调用存储器2305中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置2303还可以包括网络接口2306,用于与射频装置2302交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器2305上并可在处理器2304上运行的指令或程序,处理器2304调用存储器2305中的指令或程序执行图19或图20所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括 为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (48)

  1. 一种传输处理方法,由发送端执行,包括:
    根据时域资源分配指示,确定调度的目标时频资源;
    将传输块映射至所述目标时频资源;
    其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
  2. 根据权利要求1所述的方法,其中,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
  3. 根据权利要求2所述的方法,其中,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
    在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
    在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
  4. 根据权利要求2所述的方法,其中,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于S和指示第一分配长度L1,所述L满足:L=L1+14*(N-1)。
  5. 根据权利要求2所述的方法,其中,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
  6. 根据权利要求2所述的方法,其中,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
  7. 根据权利要求6所述的方法,其中,所述SLIV 4满足以下至少一项:
    在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
    在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
    在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下,SLIV 4=14*(L-1-14*(N-1))+S;
    在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
  8. 根据权利要求6所述的方法,其中,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于指示所述S和L的取值关系;所述S和L的取值关系至少包含以下一项:
    (14*(N-1)-S)<L≤14*(N-1);
    14*(N-1)<L≤14*N-S。
  9. 根据权利要求1所述的方法,其中,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
    Figure PCTCN2021121660-appb-100001
    B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
  10. 根据权利要求1所述的方法,其中,所述将传输块映射至所述目标时频资源的步骤,包括:
    按照各个时隙内分配的第一符号数将传输块划分为N个子传输块;
    各个子传输块进行预处理得到N个子传输块对应的调制符号;
    将N个子传输块对应的调制符号,映射到所述目标时频资源的各时隙的时频资源上;
    其中,所述第一符号数不包括解调参考信号DMRS占用的正交频分复用OFDM符号数。
  11. 根据权利要求10所述的方法,其中,所述N个子传输块满足以下任一项:
    所述N个子传输块的大小相同;
    每一所述子传输块的大小与所述子传输块所在的时隙内分配的所述第一符号数成正比。
  12. 根据权利要求1所述的方法,其中,所述将传输块映射至所述目标时频资源的步骤,包括:
    将所述传输块进行预处理,得到所述传输块对应的调制符号;
    将所述传输块对应的调制符号依次映射到所述目标时频资源上。
  13. 根据权利要求1所述的方法,其中,所述根据时域资源分配指示,确定调度的目标时频资源的步骤之后,所述方法还包括:
    将第一DMRS映射至所述目标时频资源;
    其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
    根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置;
    根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置。
  14. 根据权利要求13所述的方法,其中,所述DMRS的映射方式满足以下任一项:
    默认使用映射类型B;
    映射类型A的优先级大于映射类型B的优先级。
  15. 根据权利要求14所述的方法,其中,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,在所述第一时隙不映射DMRS或仅映射所述第一时隙对应的所述DMRS;
    其中,所述第一时隙和第二时隙均为所述N个时隙中的一个时隙,且所述第一时隙与所述第二时隙相邻。
  16. 根据权利要求15所述的方法,其中,所述预设条件包括以下至少一项:
    所述第一时隙和所述第二时隙使用相同的天线端口;
    所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等于第一预设值;
    所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
    所述第一时隙和所述第二时隙使用相同的预编码参数;
    所述第一时隙和所述第二时隙使用相同的空间滤波参数。
  17. 根据权利要求13所述的方法,其中,在所述目标时频资源的OFDM符号数大于14的情况下,所述根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
    按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数 划分至少两个符号组;
    按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
  18. 根据权利要求1所述的方法,其中,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠的情况下,所述将传输块映射至所述目标时频资源的步骤之后,包括:
    根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
    其中,所述目标信息包括以下至少一项:
    PUCCH复用在第一PUSCH上可传输的调制符号数P;
    N个时隙中各时隙内PUSCH分配的OFDM符号数;
    N个时隙中各时隙内PUSCH传输可用的调制符号数。
  19. 根据权利要求18所述的方法,其中,所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
    预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
    所述第一PUSCH实际分配的OFDM符号数。
  20. 根据权利要求18所述的方法,其中,所述传输方式包括以下至少一项:
    在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
    在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
    在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
    其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
  21. 根据权利要求18所述的方法,其中,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式包括以下任一项:
    优先将所述PUCCH复用在所述第一PUSCH;
    优先将所述PUCCH复用在所述第二PUSCH;
    其中,所述第二PUSCH被调度在一个时隙上传输。
  22. 一种传输处理方法,由接收端执行,包括
    根据时域资源分配指示,确定调度的目标时频资源;
    在所述目标时频资源上接收传输块;
    其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
  23. 根据权利要求22所述的方法,其中,所述时域资源分配指示用于指示所述目标时频资源的起始符号的索引值S和所述目标时频资源的分配长度L。
  24. 根据权利要求23所述的方法,其中,所述S和L由第一起始和长度指示SLIV 1确定;其中,SLIV 1=SLIV 2+(N-1)*M,M为大于或等于105的整数,且14*(N-1)<L≤14*N-S,第二起始和长度指示SLIV 2满足以下至少一项:
    在(L-1)≤14*(N-1)+7的情况下,SLIV 2=14*[L-1-14*(N-1)]+S;
    在(L-1)>14*(N-1)+7的情况下,SLIV 2=14*[14*N-(L-1)]+(14-1-S)。
  25. 根据权利要求23所述的方法,其中,所述时域资源分配指示包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述N,所述第二指示信息用于指示S和第一分配长度L1,所述L满足:L=L1+14*(N-1)。
  26. 根据权利要求23所述的方法,其中,所述S和L由第三起始和长度指示SLIV 3确定;其中,SLIV 3=14*(L-1)+S。
  27. 根据权利要求23所述的方法,其中,所述时域资源分配指示包括第三指示信息和第四指示信息,所述第三指示信息用于确定所述S和L的取值关系;所述第四指示信息用于指示第四起始和长度指示SLIV 4,SLIV 4用于确定所述S和L。
  28. 根据权利要求27所述的方法,其中,所述SLIV 4满足以下至少一项:
    在(14*(N-1)-S)<L≤14*(N-1),且(S+1)≤14*(N-2)+7的情况下,SLIV 4=14*(S+1)+L-1-14*(N-2);
    在(14*(N-1)-S)<L≤14*(N-1),且(S+1)>14*(N-2)+7的情况下,SLIV 4=14*(14-S-1)+(14*(N-1)-L);
    在14*(N-1)<L≤14*N-S,且(L-1)≤14*(N-1)+7的情况下, SLIV 4=14*(L-1-14*(N-1))+S;
    在14*(N-1)<L≤14*N-S,且(L-1)>14*(N-1)+7的情况下,SLIV 4=14*(14*N-L+1)+(14-1-S)。
  29. 根据权利要求27所述的方法,其中,所述第三指示信息包括至少一个比特的指示信息,所述至少一个比特的最高位或最低位用于指示所述S和L的取值关系;所述S和L的取值关系至少包含以下一项:
    (14*(N-1)-S)<L≤14*(N-1);
    14*(N-1)<L≤14*N-S。
  30. 根据权利要求22所述的方法,其中,在目标时频资源的长度L大于14的情况下,所述传输块的大小A满足:
    Figure PCTCN2021121660-appb-100002
    B表示按照时域占用14个符号计算的中间传输块大小,β=L/14。
  31. 根据权利要求22所述的方法,其中,所述发送时域资源分配指示的步骤之后,所述方法还包括:
    确定在所述目标时频资源上传输的第一DMRS的时域位置;
    其中,所述第一DMRS的时域位置的确定方式包括以下任一项:
    根据每一所述时隙分配的正交频分复用OFDM符号数确定所述时隙对应的DMRS的时域位置;
    根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置。
  32. 根据权利要求31所述的方法,其中,所述DMRS的映射方式满足以下任一项:
    默认使用映射类型B;
    映射类型A的优先级大于映射类型B的优先级。
  33. 根据权利要求32所述的方法,其中,在根据每一所述时隙分配的OFDM符号数确定所述时隙对应的DMRS的时域位置的情况下,每一所述时隙对应的所述DMRS还满足:在第一时隙分配的OFDM符号数为1,且所述第一时隙与第二时隙满足预设条件的情况下,不映射所述第一时隙对应的所述DMRS或仅映射所述第一时隙对应的所述DMRS;
    其中,所述第一时隙和第二时隙均为所述N个时隙中的一个时隙,且所 述第一时隙与所述第二时隙相邻。
  34. 根据权利要求33所述的方法,其中,所述预设条件包括以下至少一项:
    所述第一时隙和所述第二时隙使用相同的天线端口;
    所述第一时隙和所述第二时隙使用的天线端口之间的功率偏差小于或等于第一预设值;
    所述第一时隙和所述第二时隙使用的天线端口之间的相位连续;
    所述第一时隙和所述第二时隙使用相同的预编码参数;
    所述第一时隙和所述第二时隙使用相同的空间滤波参数。
  35. 根据权利要求31所述的方法,其中,在所述目标时频资源的OFDM符号数大于14的情况下,所述根据所述目标时频资源的OFDM符号数确定所述第一DMRS的时域位置包括:
    按照每连续的14个符号为一组,将所述目标时频资源的OFDM符号数划分至少两个符号组;
    按照每一符号组内的OFDM符号数确定所述符号组对应的DMRS的时域位置。
  36. 根据权利要求22所述的方法,其中,所述传输块承载于第一物理上行共享信道PUSCH,在所述第一PUSCH与物理上行控制信道PUCCH时域上重叠的情况下,所述将传输块映射至所述目标时频资源的步骤之后,包括:
    根据目标信息确定所述第一PUSCH和PUCCH的传输方式;
    其中,所述目标信息包括以下至少一项:
    PUCCH复用在第一PUSCH上可传输的调制符号数P;
    N个时隙中各时隙内PUSCH分配的OFDM符号数;
    N个时隙中各时隙内PUSCH传输可用的调制符号数。
  37. 根据权利要求36所述的方法,其中,所述P由所述第一PUSCH与PUCCH复用时的第二符号数确定,所述第二符号数为以下最小的OFDM符号数:
    预设的OFDM符号数,或可配置的PUSCH在一个时隙内与PUCCH复用时的最大OFDM符号数;
    所述第一PUSCH实际分配的OFDM符号数。
  38. 根据权利要求36所述的方法,其中,所述传输方式包括以下至少一项:
    在P大于第三时隙上PUSCH传输可用的调制符号数的情况下,不在所述第三时隙发送PUSCH;
    在所述N个时隙中存在第四时隙的情况下,将所述PUCCH与所述第四时隙的PUSCH复用;
    在所述N个时隙中不存在第四时隙的情况下,不发送所述PUCCH和所述第一PUSCH其中至少一项;
    其中,所述第三时隙为所述第一PUSCH与所述PUCCH重叠的时隙,所述第四时隙为PUSCH传输可用的调制符号数大于P的一个时隙。
  39. 根据权利要求36所述的方法,其中,在所述PUCCH还与第二PUSCH重叠的情况下,所述传输方式包括以下任一项:
    优先将所述PUCCH复用在所述第一PUSCH;
    优先将所述PUCCH复用在所述第二PUSCH;
    其中,所述第二PUSCH被调度在一个时隙上传输。
  40. 一种传输处理装置,包括:
    第一确定模块,用于根据时域资源分配指示,确定调度的目标时频资源;
    映射模块,用于将传输块映射至所述目标时频资源;
    其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
  41. 一种传输处理装置,包括:
    第二确定模块,用于根据时域资源分配指示,确定调度的目标时频资源;
    接收模块,用于在所述目标时频资源上接收传输块;
    其中,所述目标时频资源时域上占用N个时隙,N为大于1的整数。
  42. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至39中任一项所述的传输处理方法中的步骤。
  43. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至39中任一项所述的传输处 理方法的步骤。
  44. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时如权利要求1至21中任一项所述的传输处理方法中的步骤。
  45. 一种网络设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时如权利要求22至39中任一项所述的传输处理方法中的步骤。
  46. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至39中任一项所述的传输处理方法的步骤。
  47. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至39中任一项所述的传输处理方法的步骤。
  48. 一种通信设备,其中,所述通信设备被配置为执行如权利要求1至39中任一项所述的传输处理方法的步骤。
PCT/CN2021/121660 2020-09-30 2021-09-29 传输处理方法、装置及相关设备 WO2022068869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011060974.0 2020-09-30
CN202011060974.0A CN114339998A (zh) 2020-09-30 2020-09-30 传输处理方法、装置及相关设备

Publications (1)

Publication Number Publication Date
WO2022068869A1 true WO2022068869A1 (zh) 2022-04-07

Family

ID=80949727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121660 WO2022068869A1 (zh) 2020-09-30 2021-09-29 传输处理方法、装置及相关设备

Country Status (2)

Country Link
CN (1) CN114339998A (zh)
WO (1) WO2022068869A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
WO2020146672A1 (en) * 2019-01-09 2020-07-16 Qualcomm Incorporated Scheduling across slot boundaries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
WO2020146672A1 (en) * 2019-01-09 2020-07-16 Qualcomm Incorporated Scheduling across slot boundaries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "PUSCH enhancement for eURLLC", 3GPP DRAFT; R1-1904442 PUSCH ENHANCEMENT FOR EURLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707219 *
SAMSUNG: "PUSCH enhancement for eURLLC", 3GPP DRAFT; R1-1906957 PUSCH ENHANCEMENT FOR EURLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728407 *

Also Published As

Publication number Publication date
CN114339998A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
WO2023011454A1 (zh) 旁链路资源确定方法、装置、终端及存储介质
WO2021031906A1 (zh) 配置时域资源的方法和装置
WO2022063072A1 (zh) 上行信道传输方法、装置及终端
WO2022105842A1 (zh) 上行控制信息传输方法及相关设备
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
WO2022078451A1 (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022017353A1 (zh) 物理上行控制信道资源重叠的处理方法及装置
WO2022002199A1 (zh) Pusch信号的映射方法、终端及网络侧设备
WO2021238896A1 (zh) 旁链路资源处理方法、资源确定方法及相关设备
US20230354404A1 (en) Method and apparatus for determining number of coded modulation symbols, and communications device
US20230189324A1 (en) Transmission method and apparatus
WO2022143491A1 (zh) Uci复用的方法、装置、设备及可读存储介质
WO2022194056A1 (zh) 跳频处理方法、装置及终端
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022068869A1 (zh) 传输处理方法、装置及相关设备
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
WO2022002248A1 (zh) 旁链路传输方法、传输装置和通信设备
WO2022152039A1 (zh) 上行数据发送方法、配置方法、终端及网络侧设备
WO2022007951A1 (zh) 资源传输方法、装置及通信设备
WO2022028604A1 (zh) 上行传输方法、装置及终端设备
WO2022017342A1 (zh) 上行传输方法、装置及设备
WO2022148368A1 (zh) 信息传输方法、装置、终端及网络设备
WO2022068798A1 (zh) 传输处理方法、装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874524

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPEO FORM 1205A DATED 27/11/2023 )