WO2022068257A1 - 组合式空调系统的控制方法 - Google Patents

组合式空调系统的控制方法 Download PDF

Info

Publication number
WO2022068257A1
WO2022068257A1 PCT/CN2021/099549 CN2021099549W WO2022068257A1 WO 2022068257 A1 WO2022068257 A1 WO 2022068257A1 CN 2021099549 W CN2021099549 W CN 2021099549W WO 2022068257 A1 WO2022068257 A1 WO 2022068257A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant circulation
temperature
preset
circulation loop
refrigerant
Prior art date
Application number
PCT/CN2021/099549
Other languages
English (en)
French (fr)
Inventor
张晓晨
孙辉
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2022068257A1 publication Critical patent/WO2022068257A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of air conditioning, and in particular relates to a control method of a combined air conditioning system.
  • air-conditioning units have become an indispensable heat exchange equipment in people's lives.
  • the compressor has always been an indispensable and important component of various types of air-conditioning units, and the operating state of the compressor will directly affect the entire air-conditioning unit. reliability.
  • the ambient temperature is not very high, the air-conditioning unit can operate normally, but when the ambient temperature is very high, especially when used in some high-temperature areas, the compressor of the air-conditioning unit is prone to abnormality due to high-load operation. .
  • the temperature of the water in the heat exchange tube of the air-conditioning unit will become very high, and the target temperature required by the user is usually very low; this kind of high-load operation requirement is easy.
  • the compressor will issue an early warning that the high pressure is too high, and it will even directly lead to the problem of failure and shutdown. This will not only affect the cooling effect of the air-conditioning unit, but also easily cause serious damage to the compressor due to frequent high-pressure start and stop.
  • the present invention provides a combined air-conditioning system.
  • the control method, the combined air-conditioning system includes a refrigerant circulation loop, a ground cooling branch and a refrigerant circulation loop, and the refrigerant in the refrigerant circulation loop can be exchanged with the refrigerant in the refrigerant circulation loop.
  • the control method includes: acquiring the outdoor temperature and the inlet liquid temperature of the refrigerant circulation loop; if the inlet liquid temperature of the refrigerant circulation loop is greater than the target inlet liquid temperature, making the combined air conditioning system operate at the carrier temperature.
  • the cooling operation is performed by means of heat exchange between the refrigerant circulating circuit and the refrigerant circulating circuit; if the outdoor temperature is greater than or equal to the preset outdoor temperature, the liquid inlet temperature of the refrigerant circulating circuit is further compared with the first preset temperature.
  • the refrigerant circulation loop is obtained.
  • the high pressure of the refrigerant circulation circuit selectively connect the refrigerant circulation circuit with the ground cooling branch according to the high pressure of the refrigerant circulation circuit; wherein, the first preset inlet temperature is greater than the target inlet temperature liquid temperature.
  • the step of "selectively connecting the refrigerant circulation circuit with the ground cooling branch according to the high pressure of the refrigerant circulation circuit” specifically includes: if the refrigerant When the high-pressure pressure of the circulation loop is greater than or equal to the preset high-pressure pressure, the refrigerant circulation loop is communicated with the ground cooling branch.
  • control method further comprises: determining the first preset liquid inlet temperature according to the condensation temperature corresponding to the high pressure of the refrigerant circulation loop and the outdoor temperature.
  • the step of "determining the first preset liquid inlet temperature according to the condensation temperature corresponding to the high pressure of the refrigerant circulation loop and the outdoor temperature" is specifically calculated by the following equation
  • T 1 (T cold - T outside )*k 1 +k 2
  • T1 is the first preset liquid inlet temperature
  • Tcool is the condensation temperature corresponding to the high pressure of the refrigerant circulation loop
  • Tout is the outdoor temperature
  • k1 is the first correction coefficient
  • k2 is the second correction factor.
  • the first correction coefficient k 1 is equal to 0.8, and/or the second correction coefficient k 2 is equal to 3.
  • the step of "selectively connecting the refrigerant circulation circuit with the ground cooling branch according to the high pressure of the refrigerant circulation circuit” further comprises: if the refrigerant When the high pressure of the circulation loop is lower than the preset high pressure, the refrigerant circulation loop is not communicated with the ground cooling branch.
  • the step of "refrigerating operation by means of circuit heat exchange” further includes: if the duration of the time that the inlet liquid temperature of the refrigerant circulation circuit is greater than the target inlet liquid temperature reaches a first preset time length, then make the combined air conditioning system The cooling operation is performed in a manner of exchanging heat between the refrigerant circulating circuit and the refrigerant circulating circuit.
  • control method further includes: determining the first preset time period according to a magnitude relationship between the outdoor temperature and the preset outdoor temperature.
  • the control method further includes: after a preset time has elapsed, obtaining the The inlet liquid temperature of the refrigerant circulation circuit; if the inlet liquid temperature obtained again is less than the second preset inlet liquid temperature, the communication relationship between the refrigerant circulation circuit and the ground cooling branch is cut off; wherein, all The second preset liquid inlet temperature is less than or equal to the first preset liquid inlet temperature.
  • the step of "if the re-acquired inlet liquid temperature is lower than the second preset inlet liquid temperature, cut off the communication relationship between the refrigerant circulation circuit and the ground cooling branch" It further includes: if the duration of the re-obtained liquid inlet temperature is less than the second preset liquid inlet temperature and reaches a second preset time length, cutting off the communication relationship between the refrigerant circulation circuit and the ground cooling branch .
  • the combined air-conditioning system of the present invention includes a refrigerant circulation loop, a ground cooling branch and a refrigerant circulation loop, and the refrigerant in the refrigerant circulation loop
  • the refrigerant can exchange heat with the refrigerant in the refrigerant circulation circuit, and the refrigerant circulation circuit can also selectively communicate with the ground cooling branch and thus make the refrigerant flow through the refrigerant during the circulation process.
  • the ground cooling branch is cooled by the underground cooling source, so as to reduce the load of the refrigerant circulation circuit;
  • the control method of the present invention comprises: obtaining the outdoor temperature and the inlet liquid temperature of the refrigerant circulation circuit; If the inlet liquid temperature of the refrigerant circulation circuit is greater than the target inlet liquid temperature, the combined air-conditioning system will be operated in a manner of exchanging heat between the refrigerant circulation circuit and the refrigerant circulation circuit; if the outdoor temperature is greater than or equal to The preset outdoor temperature is further compared with the liquid inlet temperature of the refrigerant circulation loop and the first preset liquid inlet temperature; if the inlet liquid temperature of the refrigerant circulation loop is greater than or equal to the first preset liquid temperature If the inlet liquid temperature is set, the high-pressure pressure of the refrigerant circulation loop is obtained during the refrigeration operation of the combined air-conditioning system; according to the high-pressure pressure of the refrigerant circulation loop, the refrigerant circulation loop is selectively communicated
  • the combined air conditioning system of the present invention uses the refrigerant circulation circuit and the ground cooling branch in combination, and when the outdoor temperature is greater than or equal to a preset outdoor temperature, the control method can be based on the high pressure of the refrigerant circulation circuit.
  • the refrigerant circulation circuit is selectively communicated with the ground cooling branch, so that the ground cooling branch can assist refrigeration and thus reduce the load of the refrigerant circulation circuit, so that the refrigerant circulation
  • the high-pressure pressure of the compressor on the circuit can be quickly restored to the normal pressure range, thereby effectively ensuring the continuous and reliable refrigeration operation of the combined air-conditioning system, so as to effectively meet the refrigeration needs of users.
  • FIG. 1 is a schematic diagram of the overall structure of the combined air conditioning system of the present invention.
  • Fig. 2 is the main step flow chart of the control method of the present invention.
  • Fig. 3 is the step flow chart of the preferred embodiment of the control method of the present invention.
  • liquid inlet three-way valve 101, liquid inlet three-way valve; 102, liquid outlet three-way valve; 103, liquid inlet temperature sensor.
  • the terms “upper”, “lower”, “inner”, “outer”, etc. indicate the direction or the positional relationship of the terms based on the directions shown in the drawings or The positional relationship is only for the convenience of description, rather than indicating or implying that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
  • the terms “first” and “second” are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection ; It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal connection of two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection ; It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal connection of two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • FIG. 1 is a schematic diagram of the overall structure of the combined air conditioning system of the present invention.
  • the combined air conditioning system of the present invention includes a refrigerant circulation circuit (the part located in the right frame), a ground cooling branch and a refrigerant circulation circuit, and the refrigerant in the refrigerant circulation circuit can be combined with the refrigerant.
  • the refrigerant in the circulation loop exchanges heat to reduce the temperature of the refrigerant in the refrigerant circulation circuit, and the refrigerant in the refrigerant circulation circuit exchanges heat with the indoor air and thus achieves refrigeration
  • the refrigerant circulation loop can also selectively communicate with the ground cooling branch, so that the refrigerant flows through the ground cooling branch during the circulation process to cool down through the underground cold source, so that the The ground cooling branch can assist the refrigerant circulating circuit to cool the refrigerant in the refrigerant circulating circuit. As shown in FIG.
  • the refrigerant circulation circuit includes a refrigerant pipeline and a compressor 11 , an evaporator 12 , a throttling member 13 , a condenser 14 , and a compressor 11 , an evaporator 12 , a throttling member 13 , a condenser 14 and four Through valve 15, wherein the evaporator 12 adopts a water-cooled evaporator, and the condenser 14 adopts an air-cooled condenser, and the refrigerant in the refrigerant pipeline circulates between the water-cooled evaporator 12 and the air-cooled condenser 14.
  • a heat exchange fan 16 is also provided near the condenser 14 to improve the heat exchange efficiency.
  • the present invention does not impose any restrictions on the specific structure of the refrigerant circulation loop, and technicians can set it according to the actual use requirements, as long as the refrigerant circulation loop can exchange heat with the refrigerant circulation loop;
  • the refrigerant circulation loop may only include a refrigerant pipeline and the compressor 11, the evaporator 12, the throttling member 13 and the condenser 14 which are connected in sequence through the refrigerant pipeline; and the technicians can use their own according to actual needs.
  • the ground cooling branch includes a ground cooling pipeline, a buried pipe 21 and a liquid pump 22 connected by the ground cooling pipeline, wherein the buried pipe 21 is buried underground, and the refrigerant passes through the ground
  • the underground cooling source can cool the coolant in the buried pipe 21, and the buried pipe 21 in this preferred embodiment is formed by using a plurality of U-shaped pipes in parallel, so as to effectively improve the heat exchange capacity.
  • the present invention does not limit the specific structure of the ground cooling branch, as long as the refrigerant can exchange heat with the underground cooling source when passing through the ground cooling branch; A part of the ground cooling pipeline is buried underground to realize heat exchange with the underground cooling source.
  • a part of the refrigerant circulation circuit is arranged in the water-cooled evaporator 12, so that the refrigerant flowing through the evaporator 12 can exchange heat with the refrigerant in the refrigerant circulation circuit to cool it down deal with.
  • the carrier refrigerant circulation circuit is also provided with a liquid inlet three-way valve 101 and a liquid outlet three-way valve 102, and the liquid inlet three-way valve 101 and the liquid outlet three-way valve 102 are respectively located on the upper and lower sides of the evaporator 12, wherein, Two of the valve ports of the liquid inlet three-way valve 101 are used to communicate with the refrigerant circulation circuit, and the other valve port is connected to the upper end of the ground cooling pipeline; and, one of the liquid outlet three-way valve 102 Two valve ports are connected with the refrigerant circulation circuit, and the other valve port is connected with the lower end of the ground cooling pipeline, so that the refrigerant circulation circuit and the ground cooling branch pass through the liquid inlet three.
  • the through valve 101 and the liquid outlet three-way valve 102 are coupled, so by controlling the communication state of the liquid inlet three-way valve 101 and the liquid outlet three-way valve 102, the connection between the refrigerant circulation circuit and the ground cooling branch can be controlled. Connectivity.
  • this method of controlling the communication relationship is not restrictive, and the technician can also set it according to the actual use requirements, for example, it can also be realized by the cooperation of multiple one-way valves; and the present invention also There is no restriction on the type of the refrigerant used in the refrigerant circulation circuit, and the technical personnel can set the refrigerant used in the refrigerant circulation circuit according to the actual use requirements;
  • the refrigerant used in the refrigerant circulation loop is water, which effectively saves costs.
  • the combined air conditioning system of the present invention further includes a liquid inlet temperature sensor 103 and a controller, wherein the liquid inlet temperature sensor 103 is arranged on the refrigerant circulation circuit to detect the liquid inlet of the refrigerant circulation circuit temperature, that is, the temperature before the refrigerant does not exchange heat with the evaporator 12 , and the controller can obtain the detection result of the liquid inlet temperature sensor 103 .
  • the present invention does not impose any restrictions on the specific setting position of the liquid inlet temperature sensor 103, and the technicians can set it according to the actual use requirements.
  • the controller can also control the operation state of the combined air-conditioning system, for example, control the heat exchange between the refrigerant circulation circuit and the refrigerant circulation circuit to achieve refrigeration, control the liquid inlet three-way valve 101 and the liquid outlet three-way valve.
  • the communication state of the through valve 102 and the like can be understood that the present invention does not impose any restrictions on the specific structure and model of the controller, and the controller may be the original controller of the combined air conditioning system, or it may be a controller for implementing the present invention.
  • the technical personnel can set the specific structure and model of the controller according to the actual use requirements.
  • FIG. 2 is a flow chart of the main steps of the control method of the present invention.
  • the control method of the present invention mainly includes the following steps:
  • S5 Selectively connect the refrigerant circulation circuit with the ground cooling branch according to the high pressure of the refrigerant circulation circuit.
  • step S1 the controller can acquire the outdoor temperature through the outdoor temperature sensor, and acquire the inlet liquid temperature of the refrigerant circulation loop through the inlet liquid temperature sensor 103 .
  • the present invention does not impose any restrictions on the specific manner in which the controller obtains the outdoor temperature, and technicians can set it according to the actual use requirements;
  • the external outdoor temperature sensor can be obtained, and the outdoor temperature can also be obtained through the network, which is not restrictive.
  • step S2 if the controller determines that the liquid inlet temperature of the refrigerant circulation loop obtained by the liquid inlet temperature sensor 103 is greater than the target liquid inlet temperature, it means that the liquid inlet temperature at this time is too high , in this case, the controller controls the combined air-conditioning system to perform cooling operation in a manner of exchanging heat between the refrigerant circulating circuit and the refrigerant circulating circuit, so as to convert the liquid into the refrigerant circulating circuit. The temperature is reduced to the target liquid inlet temperature, thereby effectively meeting the cooling demand of the user.
  • the target liquid inlet temperature may be either a temperature value set by the user, or a fixed value stored in the controller, and the source thereof is not limited.
  • step S3 if the controller determines that the obtained outdoor temperature is greater than or equal to the preset outdoor temperature, it indicates that the refrigerant circulation loop may have a problem of excessive load; at this time, the control The device can further compare the inlet liquid temperature of the refrigerant circulation loop obtained by the inlet liquid temperature sensor 103 with the first preset inlet liquid temperature, so as to further judge whether the refrigerant circulation loop has an excessive load The problem.
  • the present invention does not limit the specific values of the preset outdoor temperature and the first preset liquid inlet temperature, and technicians can set them according to the actual situation, as long as the first preset liquid inlet temperature is The temperature may be higher than the target liquid inlet temperature; preferably, the preset outdoor temperature is 43°C.
  • step S4 if the controller determines that the liquid inlet temperature of the refrigerant circulation circuit is greater than or equal to the first preset liquid inlet temperature, then in the cooling operation of the combined air-conditioning system.
  • the controller also needs to obtain the high-pressure pressure of the refrigerant circulation circuit, which can be obtained by setting a pressure sensor at the exhaust port of the compressor 11, so as to further accurately determine whether the compressor 11 has been in a high-pressure condition. Operating status.
  • step S5 the controller selectively communicates the refrigerant circulation circuit with the ground cooling branch according to the high pressure of the refrigerant circulation circuit, so as to selectively use the
  • the ground cooling branch assists in cooling, so that on the basis of ensuring the cooling effect, the use safety of the compressor 11 can also be effectively ensured, thereby effectively ensuring the continuous and reliable operation of the refrigerant circulation circuit.
  • FIG. 3 is a flow chart of the steps of a preferred embodiment of the control method of the present invention.
  • the preferred embodiment of the present invention specifically includes the following steps:
  • step S109 determine whether the high pressure is greater than or equal to the preset high pressure; if yes, go to step S110; if not, go to step S106;
  • step S101 the controller acquires the inlet liquid temperature of the refrigerant circulation loop through the inlet liquid temperature sensor 103 .
  • step S102 the controller judges whether the acquired inlet liquid temperature is greater than the target inlet liquid temperature, so as to selectively enable the combined air conditioning system to start the cooling mode.
  • step S103 is executed, that is, all The controller controls the communication state of the liquid inlet three-way valve 101 and the liquid outlet three-way valve 102, so that the combined air-conditioning system operates in a manner of exchanging heat between the refrigerant circulating circuit and the refrigerant circulating circuit. In order to reduce the inlet liquid temperature of the refrigerant circulation circuit to the target inlet liquid temperature, thereby effectively meeting the cooling demand of users.
  • the controller can further determine the duration for which the inlet liquid temperature of the refrigerant circulation loop is greater than the target inlet liquid temperature, and Step S103 is performed only when the liquid feed temperature of the agent circulation loop is greater than the target liquid feed temperature and the duration reaches the first preset time period, thereby effectively improving the accuracy of the judgment result. It should be noted that, the technical personnel can set the first preset duration by themselves according to actual usage requirements.
  • the first preset duration is determined by the magnitude relationship between the outdoor temperature and the preset outdoor temperature, that is, the first preset duration used when the outdoor temperature is greater than or equal to the preset outdoor temperature It is different from the first preset time period used when the outdoor temperature is lower than the preset outdoor temperature; specifically, the first preset time period used when the outdoor temperature is greater than or equal to the preset outdoor temperature is smaller than the preset time period.
  • the first preset time period used when the outdoor temperature is lower than the preset outdoor temperature so that the combined air conditioning system can respond to the cooling demand in time in a high temperature environment, which not only helps to quickly meet the cooling demand of users, but also It is also possible to appropriately reduce the refrigeration load of the combined air conditioning system, thereby better protecting the stability of the system.
  • step S104 the controller can acquire the outdoor temperature through the outdoor temperature sensor, so as to judge the external working environment of the combined air conditioning system.
  • the present invention does not impose any restrictions on the execution timing of step S104, and technicians can adjust it according to actual use requirements; for example, step S104 can be performed synchronously with step S101, or even performed before step S101. Neither is restrictive.
  • Step S105 Based on the judgment result of step S105, if the outdoor temperature is lower than the preset outdoor temperature, it means that the air-conditioning system is not operating in a high temperature environment, so there is no risk of high pressure being too high; in this case, execute Step S106, that is, do not connect the refrigerant circulation circuit with the ground cooling branch, and only make the air-conditioning system perform cooling operation by exchanging heat between the refrigerant circulation circuit and the refrigerant circulation circuit. Yes, in order to effectively ensure the stability of the refrigeration process. However, if the outdoor temperature is greater than or equal to the preset outdoor temperature, it means that the combined air conditioning system is operating in a high temperature environment, and may face the risk of excessive high pressure at this time. In order to form a more comprehensive and accurate analysis result by means of step-by-step judgment, so as to better protect the safe operation of the compressor 11, thereby effectively improving the reliability of the entire air conditioning system.
  • step S107 the controller can further compare the inlet liquid temperature of the refrigerant circulation loop obtained by the inlet liquid temperature sensor 103 with the first preset inlet liquid temperature, so as to further It is judged whether there is a problem of excessive load in the refrigerant circulation circuit, and then it is effectively judged that the refrigerant circulation circuit has a risk index of excessive high pressure. Based on the judgment result of step S107, if the inlet liquid temperature of the refrigerant circulation loop is lower than the first preset inlet liquid temperature, that is, the inlet liquid temperature of the refrigerant circulation loop is greater than the target inlet liquid temperature and If the temperature is lower than the first preset liquid inlet temperature, it means that the load of the refrigerant circulation circuit is not too high.
  • step S106 is executed, that is, the refrigerant circulation circuit and the ground cooling The branches are connected, and the air-conditioning system only needs to perform cooling operation in a manner of exchanging heat between the refrigerant circulating circuit and the refrigerant circulating circuit, so as to effectively ensure the stability of the refrigeration process.
  • the inlet liquid temperature of the refrigerant circulation loop is greater than or equal to the first preset inlet liquid temperature, it means that the load of the refrigerant circulation loop is indeed high, and the refrigerant circulation loop has high pressure and high pressure.
  • step S108 is performed, that is, during the refrigeration operation of the combined air-conditioning system, the controller directly obtains the high-pressure pressure of the refrigerant circulation circuit for judgment.
  • the present invention does not make any limitation on the specific value of the first preset liquid inlet temperature, and the technical personnel can set it according to the actual situation.
  • the first preset liquid inlet temperature is jointly determined by the condensation temperature corresponding to the high pressure of the refrigerant circulation loop and the outdoor temperature, so that To maximize the reliability of the judgment results.
  • the first preset liquid inlet temperature is calculated by the following equation:
  • T 1 (T cold - T outside )*k 1 +k 2
  • T1 is the first preset liquid inlet temperature, in °C
  • Tcool is the condensation temperature corresponding to the high pressure of the refrigerant circulation loop, in °C
  • Tout is the outdoor temperature, in °C °C
  • k 1 is the first correction coefficient
  • k 2 is the second correction coefficient.
  • the first correction coefficient k 1 is equal to 0.8
  • the second correction coefficient k 1 is equal to 0.8
  • the coefficient k 2 is equal to 3.
  • step S109 the controller can determine whether the high pressure of the refrigerant circulation circuit is greater than or equal to the preset high pressure; it should be noted that the present invention does not take a specific value of the preset high pressure For any restrictions, technicians can set them according to the actual situation of different compressors.
  • those skilled in the art can understand that although the preferred embodiment adopts the method of comparing the obtained high pressure with the preset high pressure to determine whether the high pressure of the refrigerant circulation circuit is too high
  • the judgment can also be made in other ways. For example, the ratio of the obtained high-pressure pressure to the preset high-pressure pressure is compared with the preset ratio. set up.
  • a judging factor of duration can also be added in step S109, for example, a judgment of whether the duration for which the high-pressure pressure of the refrigerant circulation circuit is greater than or equal to the preset high-pressure pressure reaches a preset duration conditions, and the technical personnel can set the preset duration according to the actual use requirements.
  • step S106 is executed. If the high pressure of the refrigerant circulation circuit is greater than or equal to the preset high pressure, step S110 is executed.
  • the controller controls three of the liquid inlet three-way valve 101 and the liquid outlet three-way valve 102
  • the valve ports are all connected, so that the refrigerant circulation circuit is communicated with the ground cooling branch, so that the ground cooling branch assists refrigeration and thus reduces the load of the refrigerant circulation circuit, so that the refrigerant circulates
  • the high-pressure pressure of the circuit quickly returns to the normal pressure range, thereby effectively ensuring the continuous and reliable refrigeration operation of the combined air-conditioning system, so as to effectively meet the refrigeration needs of users.
  • step S111 after the preset time has elapsed, the controller obtains the liquid inlet temperature of the refrigerant circulation circuit again; it should be noted that the present invention does not specifically take the preset time. There is no limit to the value, and the technician can set it according to the actual use needs.
  • step S112 the controller can determine whether the re-obtained liquid inlet temperature is lower than the second preset liquid inlet temperature, so as to analyze whether there is a risk of excessive high pressure in the refrigerant circulation loop.
  • the present invention does not impose any restrictions on the specific value of the second preset liquid inlet temperature, and technicians can set it according to actual use requirements, as long as the second preset liquid inlet temperature is less than or equal to the specified value.
  • the first preset liquid inlet temperature is sufficient.
  • step S112 Based on the judgment result of step S112, if the inlet liquid temperature obtained again is greater than or equal to the second preset inlet liquid temperature, continue to return to step S111, so as to continue to monitor the cut-off timing of the ground cooling branch;
  • the obtained liquid inlet temperature is lower than the second preset liquid inlet temperature, which means that the refrigerant circulation circuit can already meet the existing refrigeration demand.
  • the control The controller cuts off the communication relationship between the refrigerant circulation circuit and the ground cooling branch by controlling the communication state of the liquid inlet three-way valve 101 and the liquid outlet three-way valve 102 .
  • the controller can further determine the duration for which the re-acquired feed temperature is less than the second preset feed temperature, and in the re-acquired feed temperature Step S113 is performed only when the liquid temperature is lower than the second preset liquid inlet temperature and reaches the second preset time period, thereby effectively improving the accuracy of the judgment result; Set the value of the duration.

Abstract

一种组合式空调系统的控制方法,旨在解决现有空调机组应对压缩机高压过高的方式不佳,并且还容易对机组的制冷效果造成不良影响的问题。组合式空调系统能够选择性地配合使用冷媒循环回路和地冷支路共同与载冷剂循环回路换热,在室外温度大于或等于预设室外温度时,根据冷媒循环回路的高压压力选择性地使载冷剂循环回路与地冷支路连通并因此使载冷剂在循环过程中流经地冷支路以通过地下冷源进行降温,以使地冷支路辅助制冷并因此降低冷媒循环回路的负载,从而使得压缩机的高压压力能够快速恢复至正常压力范围内,进而有效保证组合式空调系统持续可靠地制冷运行,以便有效满足用户的制冷需求。

Description

组合式空调系统的控制方法 技术领域
本发明属于空调技术领域,具体涉及一种组合式空调系统的控制方法。
背景技术
随着人们生活水平的不断提高,空调机组已经成为人们生活中必不可少的一种换热设备。虽然现有空调机组的种类越来越多,整体结构也已不断更新,但压缩机始终都是各类空调机组必不可少的重要元件,并且压缩机的运行状态还会直接影响到整个空调机组的可靠性。通常地,当环境温度不是很高时,空调机组可以正常制冷运行,但当环境温度很高时,特别是在一些高温地区使用时,空调机组的压缩机就很容易因为高负荷运行而出现异常。尤其是在空调机组长时间停机后再启动时,空调机组的换热管中的水的温度都会变得很高,而用户需求的目标温度通常又很低;这种高负荷的运行要求很容易使压缩机发出高压过高的预警,甚至还会直接导致故障停机的问题。这不仅会影响到空调机组的制冷效果,而且还很容易因为频繁的高压启停而对压缩机造成严重损害。为了使空调机组更好地在高温环境下进行制冷,现有技术人员也提出了很多解决方法,但现有解决方法都是基于调节空调机组本身的各种运行参数来达到降低高压的目的,例如,调节电子膨胀阀的开度、压缩机的运行频率等方式。这些方式虽然也能在一定程度上达到降低高压的效果,但是,这些参数的调节都会影响到空调机组的制冷能力,进而导致制冷效果变差的问题,并且其调控过程也十分复杂,实际应用效果并不是十分理想。
相应地,本领域需要一种新的组合式空调系统的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调机组应对压缩机高压过高的方式不佳,并且还容易对制冷效果造成不良影响的问题,本发明提供了一种组合式空调系统的控制方法,所述组合式空调系统包括冷媒循环回路、地冷支路和载冷剂循环回路,所述载冷剂循环回路中的载冷剂能够与所述冷媒循环回路中的冷媒进行换热,并且所述载冷剂循环回路还能够选择性地与所述地冷支路连通并因此使载冷剂在循环过程中流经所述地冷支路以通过地下冷源进行降温;所述控制方法包括:获取室外温度和所述载冷剂循环回路的进液温度;如果所述载冷剂循环回路的进液温度大于目标进液温度,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行;如果所述室外温度大于或等于预设室外温度,则进一步将所述载冷剂循环回路的进液温度与第一预设进液温度进行比较;如果所述载冷剂循环回路的进液温度大于或等于所述第一预设进液温度,则在所述组合式空调系统制冷运行的过程中,获取所述冷媒循环回路的高压压力;根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通;其中,所述第一预设进液温度大于所述目标进液温度。
在上述控制方法的优选技术方案中,“根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通”的步骤具体包括:如果所述冷媒循环回路的高压压力大于或等于预设高压压力,则使所述载冷剂循环回路与所述地冷支路连通。
在上述控制方法的优选技术方案中,所述控制方法还包括:根据所述冷媒循环回路的高压压力所对应的冷凝温度和所述室外温度确定所述第一预设进液温度。
在上述控制方法的优选技术方案中,“根据所述冷媒循环回路的高压压力所对应的冷凝温度和所述室外温度确定所述第一预设进液温度”的步骤具体为通过下列等式计算所述第一预设进液温度:
T 1=(T -T )*k 1+k 2
其中,T 1为所述第一预设进液温度,T 为所述冷媒循环回路的高压压力所对应的冷凝温度,T 为所述室外温度,k 1为第一修正系数,k 2为第二修正系数。
在上述控制方法的优选技术方案中,第一修正系数k 1等于0.8,并且/或者第二修正系数k 2等于3。
在上述控制方法的优选技术方案中,“根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通”的步骤还包括:如果所述冷媒循环回路的高压压力小于所述预设高压压力,则不使所述载冷剂循环回路与所述地冷支路连通。
在上述控制方法的优选技术方案中,“如果所述载冷剂循环回路的进液温度大于目标进液温度,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行”的步骤进一步包括:如果所述载冷剂循环回路的进液温度大于所述目标进液温度的持续时间达到第一预设时长,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行。
在上述控制方法的优选技术方案中,所述控制方法还包括:根据所述室外温度与所述预设室外温度的大小关系确定所述第一预设时长。
在上述控制方法的优选技术方案中,在“使所述载冷剂循环回路与所述地冷支路连通”的步骤之后,所述控制方法还包括:经过预设时间后,再次获取所述载冷剂循环回路的进液温度;如果再次获取到的进液温度小于第二预设进液温度,则切断所述载冷剂循环回路与所述地冷支路的连通关系;其中,所述第二预设进液温度小于或等于所述第一预设进液温度。
在上述控制方法的优选技术方案中,“如果再次获取到的进液温度小于第二预设进液温度,则切断所述载冷剂循环回路与所述地冷支路的连通关系”的步骤进一步包括:如果再次获取到的进液温度小于所述第二预设进液温度的持续时间达到第二预设时长,则切断所述载冷剂循环回路与所述地冷支路的连通关系。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的组合式空调系统包括冷媒循环回路、地冷支路和载冷剂循环回路,所述载冷剂循环回路中的载冷剂能够与所述冷媒循环回路中的冷媒进行换热,并且所述载冷剂循环回路还能够选择性地与所述地冷支路连通并因此使载冷剂在循环过程中流经所述地冷支路以通过地下 冷源进行降温,以便降低所述冷媒循环回路的负荷;本发明的控制方法包括:获取室外温度和所述载冷剂循环回路的进液温度;如果所述载冷剂循环回路的进液温度大于目标进液温度,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行;如果所述室外温度大于或等于预设室外温度,则进一步将所述载冷剂循环回路的进液温度与第一预设进液温度进行比较;如果所述载冷剂循环回路的进液温度大于或等于所述第一预设进液温度,则在所述组合式空调系统制冷运行的过程中,获取所述冷媒循环回路的高压压力;根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通;其中,所述第一预设进液温度大于所述目标进液温度。本发明的组合式空调系统配合使用所述冷媒循环回路和所述地冷支路,在所述室外温度大于或等于预设室外温度时,所述控制方法能够根据所述冷媒循环回路的高压压力选择性地使所述载冷剂循环回路与所述地冷支路连通,以使所述地冷支路能够辅助制冷并因此降低所述冷媒循环回路的负载,从而使得设置在所述冷媒循环回路上的压缩机的高压压力能够快速恢复至正常压力范围内,进而有效保证组合式空调系统持续可靠地制冷运行,以便有效满足用户的制冷需求。
附图说明
图1是本发明的组合式空调系统的整体结构示意图;
图2是本发明的控制方法的主要步骤流程图;
图3是本发明的控制方法的优选实施例的步骤流程图;
附图标记:
11、压缩机;12、蒸发器;13、节流构件;14、冷凝器;15、四通阀;16、换热风机;
21、地埋管;22、液泵;
101、进液三通阀;102、出液三通阀;103、进液温度传感器。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。此外,在本发明的描述中,尽管本申请中按照特定顺序描述了本发明的控制方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
需要说明的是,在本发明的优选实施方式的描述中,术语“上”、“下”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1,该图是本发明的组合式空调系统的整体结构示意图。本发明的组合式空调系统包括冷媒循环回路(位于右侧方框中的部分)、地冷支路和载冷剂循环回路,所述载冷剂循环回路中的载冷剂能够与所述冷媒循环回路中的冷媒进行换热,以使所述载冷剂循环回路中的载冷剂的温度降低,所述载冷剂循环回路中的载冷剂再与室内空气进行热交换并因此实现制冷,并且所述载冷剂循环回路还能够选择性地与所述地冷支路连通并因此使载冷剂在循环过程中流经所述地冷支路以通过地下冷源进行降温,以使所述地冷支路能够辅助所述冷媒循环回路对所述载冷剂循环回路中的载冷剂进行降温。如图1所示,在本优选实施例中,所述冷媒循环回路包括冷媒管路以及通过所述冷媒管路依次相连的压缩机11、蒸发器12、节流构件13、冷凝器14和四通阀15,其中,蒸发器12采用水冷式蒸发器,冷凝器14采用风冷式冷凝器,所述冷媒管路中的冷媒在水冷式蒸发器12与风冷 式冷凝器14之间循环流动以不断进行换热,冷凝器14附近还设置有换热风机16以提升换热效率。需要说明的是,本发明不对冷媒循环回路的具体结构作任何限制,技术人员可以根据实际使用需求自行设定,只要所述冷媒循环回路能够与所述载冷剂循环回路进行换热即可;例如,所述冷媒循环回路还可以仅包括冷媒管路以及通过所述冷媒管路依次相连的压缩机11、蒸发器12、节流构件13和冷凝器14;并且技术人员可以根据实际使用需求自行设定压缩机11、蒸发器12、节流构件13、冷凝器14和四通阀15的具体类型。这种具体结构的改变均不偏离本发明的基本原理,属于本发明的保护范围。
继续参阅图1,所述地冷支路包括地冷管路以及通过所述地冷管路相连的地埋管21和液泵22,其中,地埋管21埋于地下,载冷剂通过地埋管21时,地下冷源能够对地埋管21中的载冷剂进行降温,并且本优选实施例中的地埋管21采用多个U形管并联形成,以便有效提升换热能力。需要说明的是,本发明不对所述地冷支路的具体结构作任何限制,只要载冷剂通过所述地冷支路时能够与地下冷源进行换热即可;例如,也可以直接将地冷管路的一部分埋于地下以实现与地下冷源换热。
进一步地,所述载冷剂循环回路的一部分设置于水冷式蒸发器12中,以便流经蒸发器12的冷媒能够与所述载冷剂循环回路中的载冷剂换热以对其进行降温处理。所述载冷剂循环回路上还设置有进液三通阀101和出液三通阀102,进液三通阀101和出液三通阀102分别位于蒸发器12的上下两侧,其中,进液三通阀101的其中两个阀口用于与所述载冷剂循环回路连通,另一个阀口则与所述地冷管路的上端相连;并且,出液三通阀102的其中两个阀口与所述载冷剂循环回路连通,另一个阀口则与所述地冷管路的下端相连,以使所述载冷剂循环回路与所述地冷支路通过进液三通阀101和出液三通阀102实现耦合,因而通过控制进液三通阀101和出液三通阀102的连通状态就可以控制所述载冷剂循环回路与所述地冷支路的连通关系。需要说明的是,这种控制连通关系的方式并不是限制性的,技术人员还可以根据实际使用需求自行设定,例如,还可以通过多个单向阀的配合来实现;并且,本发明也不对所述载冷剂循环回路中使用的载冷剂的种 类进行任何限制,技术人员可以根据实际使用需求自行设定所述载冷剂循环回路中使用的载冷剂;优选地,所述载冷剂循环回路中使用的载冷剂为水,从而有效节省成本。
此外,本发明的组合式空调系统还包括进液温度传感器103和控制器,其中,进液温度传感器103设置在所述载冷剂循环回路上用以检测所述载冷剂循环回路的进液温度,即载冷剂未与蒸发器12进行换热前的温度,并且所述控制器能够获取进液温度传感器103的检测结果。需要说明的是,本发明不对进液温度传感器103的具体设置位置作任何限制,技术人员可以根据实际使用需求自行设定。所述控制器还能够控制所述组合式空调系统的运行状态,例如,控制所述冷媒循环回路与所述载冷剂循环回路换热以实现制冷,控制进液三通阀101和出液三通阀102的连通状态等。此外,本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是组合式空调系统原有的控制器,也可以是为执行本发明的控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的具体结构和型号。
接着参阅图2,该图是本发明的控制方法的主要步骤流程图。如图2所示,基于上述优选实施例中所述的组合式空调系统,本发明的控制方法主要包括下列步骤:
S1:获取室外温度和载冷剂循环回路的进液温度;
S2:如果进液温度大于目标进液温度,则使组合式空调系统以载冷剂循环回路与冷媒循环回路换热的方式制冷运行;
S3:如果室外温度大于或等于预设室外温度,则进一步将进液温度与第一预设进液温度进行比较;
S4:如果进液温度大于或等于第一预设进液温度,则在组合式空调系统制冷运行的过程中,获取冷媒循环回路的高压压力;
S5:根据冷媒循环回路的高压压力,选择性地使载冷剂循环回路与地冷支路连通。
在步骤S1中,所述控制器能够通过室外温度传感器获取室外温度,并且通过进液温度传感器103获取所述载冷剂循环回路的进液温度。需要说明的是,本发明不对所述控制器获取室外温度的具 体方式作任何限制,技术人员可以根据实际使用需求自行设定;例如,可以通过空调系统自身设置的室外温度传感器获取,也可以借助外部的室外温度传感器获取,还可以通过联网的方式获取室外温度,这都不是限制性的。
在步骤S2中,如果所述控制器判断出通过进液温度传感器103获取到的所述载冷剂循环回路的进液温度大于所述目标进液温度,则说明此时的进液温度过高,在此情形下,所述控制器控制所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行,以便将所述载冷剂循环回路的进液温度降低至所述目标进液温度,进而有效满足用户的制冷需求。需要说明的是,所述目标进液温度既可以是用户自行设定的温度值,也可以是所述控制器内存储的固定值,其来源并不是限制性的。
接着,在步骤S3中,如果所述控制器判断出获取到的室外温度大于或等于所述预设室外温度,则说明所述冷媒循环回路可能存在负载过高的问题;此时,所述控制器能够进一步将通过进液温度传感器103获取到的所述载冷剂循环回路的进液温度与所述第一预设进液温度进行比较,以便进一步判断所述冷媒循环回路是否存在负载过高的问题。需要说明的是,本发明不对所述预设室外温度和所述第一预设进液温度的具体值作任何限定,技术人员可以根据实际情况自行设定,只要所述第一预设进液温度大于所述目标进液温度即可;优选地,所述预设室外温度选用43℃。
进一步地,在步骤S4中,如果所述控制器判断出所述载冷剂循环回路的进液温度大于或等于所述第一预设进液温度,则在所述组合式空调系统制冷运行的过程中,所述控制器还需要获取所述冷媒循环回路的高压压力,可以通过在压缩机11的排气口处设置压力传感器而获得,以便进一步准确判断压缩机11是否已经处于高压过高的运行状态。接着,在步骤S5中,所述控制器根据所述冷媒循环回路的高压压力选择性地使所述载冷剂循环回路与所述地冷支路连通,以便根据实际需求选择性地使用所述地冷支路辅助制冷,从而在保证制冷效果的基础上,还能够有效保证压缩机11的使用安全,进而有效保证所述冷媒循环回路能够持续可靠地运行。
下面参阅图3,该图是本发明的控制方法的优选实施例的步骤流程图。如图3所示,基于上述优选实施例中所述的组合式空调系统,本发明的优选实施例具体包括下列步骤:
S101:获取载冷剂循环回路的进液温度;
S102:判断进液温度是否大于目标进液温度;如果是,则执行步骤S103;如果否,则执行步骤S101;
S103:使组合式空调系统以载冷剂循环回路与冷媒循环回路换热的方式制冷运行;
S104:获取室外温度;
S105:判断室外温度是否大于或等于预设室外温度;如果是,则执行步骤S107;如果否,则执行步骤S106;
S106:不使载冷剂循环回路与地冷支路连通;
S107:判断进液温度是否大于或等于第一预设进液温度;如果是,则执行步骤S108;如果否,则执行步骤S106;
S108:在组合式空调系统制冷运行的过程中,获取冷媒循环回路的高压压力;
S109:判断高压压力是否大于或等于预设高压压力;如果是,则执行步骤S110;如果否,则执行步骤S106;
S110:使载冷剂循环回路与地冷支路连通;
S111:经过预设时间后,再次获取载冷剂循环回路的进液温度;
S112:判断进液温度是否小于第二预设进液温度;如果是,则执行步骤S113;如果否,则执行步骤S111;
S113:切断载冷剂循环回路与地冷支路的连通关系。
在步骤S101中,所述控制器通过进液温度传感器103获取所述载冷剂循环回路的进液温度。接着,在步骤S102中,所述控制器判断获取到的进液温度是否大于所述目标进液温度,以便选择性地使所述组合式空调系统开启制冷模式。
基于步骤S102的判断结果,如果所述载冷剂循环回路的进液温度大于所述目标进液温度,则说明此时的进液温度过高,在此情形下,执行步骤S103,即,所述控制器通过控制进液三通阀101和 出液三通阀102的连通状态,使得所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行,以便将所述载冷剂循环回路的进液温度降低至所述目标进液温度,进而有效满足用户的制冷需求。
作为一种优选实施例,在步骤S102中,所述控制器还能够进一步对所述载冷剂循环回路的进液温度大于所述目标进液温度的持续时间进行判断,并且在所述载冷剂循环回路的进液温度大于所述目标进液温度的持续时间达到第一预设时长时才执行步骤S103,从而有效提升判断结果的精准度。需要说明的是,技术人员可以根据实际使用需求自行设定所述第一预设时长。优选地,所述第一预设时长由所述室外温度与所述预设室外温度的大小关系确定,即所述室外温度大于或等于所述预设室外温度时所采用的第一预设时长和所述室外温度小于所述预设室外温度时所采用的第一预设时长不同;具体地,所述室外温度大于或等于所述预设室外温度时所采用的第一预设时长小于所述室外温度小于所述预设室外温度时所采用的第一预设时长,以便所述组合式空调系统能够在高温环境下及时响应制冷需求,这样不仅有助于快速满足用户的制冷需求,而且还能够适当减小所述组合式空调系统的制冷负荷,从而更好地保护系统的稳定性。
接着,在步骤S104中,所述控制器能够通过室外温度传感器获取室外温度,以便对所述组合式空调系统的外部工作环境进行判断。当然,需要说明的是,本发明不对步骤S104的执行时机作任何限制,技术人员可以根据实际使用需求自行调整;例如,步骤S104可以与步骤S101同步进行,甚至还可以在步骤S101之前执行,这都不是限制性的。
基于步骤S105的判断结果,如果所述室外温度小于所述预设室外温度,则说明所述空调系统没有在高温环境下运行,因而也不存在高压压力过高的风险;在此情形下,执行步骤S106,即,不使所述载冷剂循环回路与所述地冷支路连通,仅使所述空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行即可,以便有效保证制冷过程的稳定性。而如果所述室外温度大于或等于所述预设室外温度,则说明所述组合式空调系统正在高温环境下运行,此时 可能面临高压压力过高的风险,因而还需要对其运行情况进行进一步判断,以便通过分步判断的方式形成更全面准确的分析结果,从而更好地保护压缩机11安全运行,进而有效提升整个空调系统的可靠性。
进一步地,在步骤S107中,所述控制器能够进一步将通过进液温度传感器103获取到的所述载冷剂循环回路的进液温度与所述第一预设进液温度进行比较,以便进一步判断所述冷媒循环回路是否存在负载过高的问题,进而有效判断所述冷媒循环回路出现高压压力过高的风险指数。基于步骤S107的判断结果,如果所述载冷剂循环回路的进液温度小于所述第一预设进液温度,即所述载冷剂循环回路的进液温度大于所述目标进液温度且小于所述第一预设进液温度,则说明所述冷媒循环回路的负载并没有过高,在此情形下,执行步骤S106,即,不使所述载冷剂循环回路与所述地冷支路连通,仅使所述空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行即可,以便有效保证制冷过程的稳定性。而如果所述载冷剂循环回路的进液温度大于或等于所述第一预设进液温度,则说明所述冷媒循环回路的负载确实较高,所述冷媒循环回路出现高压压力过高的风险极大;在此情形下,执行步骤S108,即,在所述组合式空调系统制冷运行的过程中,所述控制器直接获取所述冷媒循环回路的高压压力以进行判断。需要说明的是,本发明不对所述第一预设进液温度的具体值作任何限定,技术人员可以根据实际情况自行设定。
作为所述第一预设进液温度的一种优选设定方式,所述第一预设进液温度由所述冷媒循环回路的高压压力所对应的冷凝温度和所述室外温度共同确定,以便最大程度地保证判断结果的可靠性。具体地,通过下列等式计算所述第一预设进液温度:
T 1=(T -T )*k 1+k 2
其中,T 1为所述第一预设进液温度,单位为℃;T 为所述冷媒循环回路的高压压力所对应的冷凝温度,单位为℃;T 为所述室外温度,单位为℃;k 1为第一修正系数,k 2为第二修正系数。
此外,还需要说明的是,技术人员可以根据实际情况自行设定第一修正系数k 1和第二修正系数k 2的具体取值;优选地,第一修正系数k 1等于0.8,第二修正系数k 2等于3。
接着,在步骤S109中,所述控制器能够判断所述冷媒循环回路的高压压力是否大于或等于所述预设高压压力;需要说明的是,本发明不对所述预设高压压力的具体取值作任何限制,技术人员可以根据不同压缩机的实际情况自行设定。此外,本领域技术人员能够理解的是,虽然本优选实施例中采用的是将获取到的高压压力与所述预设高压压力进行比较的方式来判断所述冷媒循环回路的高压压力是否过高,但是,显然还可以通过其他方式来进行判断,例如,将获取到的高压压力与所述预设高压压力的比值与预设比值进行比较的方式来进行判断,技术人员可以根据实际使用需求自行设定。作为一种优选实施方式,还可以在步骤S109中加入时长的判断因素,例如,采用判断所述冷媒循环回路的高压压力大于或等于所述预设高压压力的持续时间是否达到预设时长的判断条件,并且技术人员可以根据实际使用需求自行设定该预设时长。
基于步骤S109的判断结果,如果所述冷媒循环回路的高压压力小于所述预设高压压力,则执行步骤S106。如果所述冷媒循环回路的高压压力大于或等于所述预设高压压力,则执行步骤S110,在此情形下,所述控制器控制进液三通阀101和出液三通阀102的三个阀口均连通,以使所述载冷剂循环回路与所述地冷支路连通,进而使得所述地冷支路辅助制冷并因此降低所述冷媒循环回路的负载,从而使得所述冷媒循环回路的高压压力快速恢复至正常压力范围内,进而有效保证组合式空调系统持续可靠地制冷运行,以便有效满足用户的制冷需求。
进一步地,在步骤S111中,经过所述预设时间后,所述控制器再次获取所述载冷剂循环回路的进液温度;需要说明的是,本发明不对所述预设时间的具体取值作任何限制,技术人员可以根据实际使用需求自行设定。接着,在步骤S112中,所述控制器能够判断再次获取到的进液温度是否小于所述第二预设进液温度,以便分析所述冷媒循环回路是否还存在高压压力过高的风险。需要说明的是,本发明不对所述第二预设进液温度的具体取值作任何限制,技术人员可以根据实际使用需求自行设定,只要所述第二预设进液温度小于或等于所述第一预设进液温度即可。
基于步骤S112的判断结果,如果再次获取到的进液温度大于或等于所述第二预设进液温度,则继续返回步骤S111,以便继续监控所述地冷支路的切断时机;而如果再次获取到的进液温度小于所述第二预设进液温度,则说明所述冷媒循环回路已经可以满足现有的制冷需求,在此情形下,为了有效保证制冷过程的稳定性,所述控制器通过控制进液三通阀101和出液三通阀102的连通状态来切断所述载冷剂循环回路与所述地冷支路的连通关系。
作为一种优选实施例,在步骤S112中,所述控制器还能够进一步对再次获取到的进液温度小于所述第二预设进液温度的持续时间进行判断,并且在再次获取到的进液温度小于所述第二预设进液温度达到第二预设时长时才执行步骤S113,从而有效提升判断结果的精准度;当然,技术人员可以根据实际使用需求自行设定所述第二预设时长的取值。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种组合式空调系统的控制方法,其特征在于,所述组合式空调系统包括冷媒循环回路、地冷支路和载冷剂循环回路,所述载冷剂循环回路中的载冷剂能够与所述冷媒循环回路中的冷媒进行换热,并且所述载冷剂循环回路还能够选择性地与所述地冷支路连通并因此使载冷剂在循环过程中流经所述地冷支路以通过地下冷源进行降温;
    所述控制方法包括:
    获取室外温度和所述载冷剂循环回路的进液温度;
    如果所述载冷剂循环回路的进液温度大于目标进液温度,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行;
    如果所述室外温度大于或等于预设室外温度,则进一步将所述载冷剂循环回路的进液温度与第一预设进液温度进行比较;
    如果所述载冷剂循环回路的进液温度大于或等于所述第一预设进液温度,则在所述组合式空调系统制冷运行的过程中,获取所述冷媒循环回路的高压压力;
    根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通;
    其中,所述第一预设进液温度大于所述目标进液温度。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通”的步骤具体包括:
    如果所述冷媒循环回路的高压压力大于或等于预设高压压力,则使所述载冷剂循环回路与所述地冷支路连通。
  3. 根据权利要求2所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述冷媒循环回路的高压压力所对应的冷凝温度和所述室外温度确定所述第一预设进液温度。
  4. 根据权利要求3所述的控制方法,其特征在于,“根据所述冷媒循环回路的高压压力所对应的冷凝温度和所述室外温度确定所述第一预设进液温度”的步骤具体为通过下列等式计算所述第一预设进液温度:
    T 1=(T -T )*k 1+k 2
    其中,T 1为所述第一预设进液温度,T 为所述冷媒循环回路的高压压力所对应的冷凝温度,T 为所述室外温度,k 1为第一修正系数,k 2为第二修正系数。
  5. 根据权利要求4所述的控制方法,其特征在于,第一修正系数k 1等于0.8,并且/或者第二修正系数k 2等于3。
  6. 根据权利要求2所述的控制方法,其特征在于,“根据所述冷媒循环回路的高压压力,选择性地使所述载冷剂循环回路与所述地冷支路连通”的步骤还包括:
    如果所述冷媒循环回路的高压压力小于所述预设高压压力,则不使所述载冷剂循环回路与所述地冷支路连通。
  7. 根据权利要求1所述的控制方法,其特征在于,“如果所述载冷剂循环回路的进液温度大于目标进液温度,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行”的步骤进一步包括:
    如果所述载冷剂循环回路的进液温度大于所述目标进液温度的持续时间达到第一预设时长,则使所述组合式空调系统以所述载冷剂循环回路与所述冷媒循环回路换热的方式制冷运行。
  8. 根据权利要求7所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述室外温度与所述预设室外温度的大小关系确定所述第一预设时长。
  9. 根据权利要求1至8中任一项所述的控制方法,其特征在于,在“使所述载冷剂循环回路与所述地冷支路连通”的步骤之后,所述控制方法还包括:
    经过预设时间后,再次获取所述载冷剂循环回路的进液温度;
    如果再次获取到的进液温度小于第二预设进液温度,则切断所述载冷剂循环回路与所述地冷支路的连通关系;
    其中,所述第二预设进液温度小于或等于所述第一预设进液温度。
  10. 根据权利要求9所述的控制方法,其特征在于,“如果再次获取到的进液温度小于第二预设进液温度,则切断所述载冷剂循环回路与所述地冷支路的连通关系”的步骤进一步包括:
    如果再次获取到的进液温度小于所述第二预设进液温度的持续时间达到第二预设时长,则切断所述载冷剂循环回路与所述地冷支路的连通关系。
PCT/CN2021/099549 2020-10-30 2021-06-11 组合式空调系统的控制方法 WO2022068257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011196734.3 2020-10-30
CN202011196734.3A CN112303827B (zh) 2020-10-30 2020-10-30 组合式空调系统的控制方法

Publications (1)

Publication Number Publication Date
WO2022068257A1 true WO2022068257A1 (zh) 2022-04-07

Family

ID=74333895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099549 WO2022068257A1 (zh) 2020-10-30 2021-06-11 组合式空调系统的控制方法

Country Status (2)

Country Link
CN (1) CN112303827B (zh)
WO (1) WO2022068257A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303827B (zh) * 2020-10-30 2022-05-20 青岛海尔空调电子有限公司 组合式空调系统的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201368551Y (zh) * 2009-02-13 2009-12-23 上海华电源牌环境工程有限公司 地源热泵结合冰蓄冷的空调装置
CN101749804A (zh) * 2008-12-02 2010-06-23 三星电子株式会社 空调及其控制方法
JP2012137290A (ja) * 2012-04-08 2012-07-19 Masahiro Izutsu 生活排水の総合的活用システム
CN103900178A (zh) * 2014-03-24 2014-07-02 深圳达实智能股份有限公司 一种地源热泵蓄能中央空调系统
CN204063300U (zh) * 2014-08-14 2014-12-31 铁道第三勘察设计院集团有限公司 一种土壤复合型变制冷剂流量空调装置
CN204880484U (zh) * 2015-08-05 2015-12-16 黄国和 一种水汽能与污水源耦合空调系统
CN112303827A (zh) * 2020-10-30 2021-02-02 青岛海尔空调电子有限公司 组合式空调系统的控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404731B2 (ja) * 2004-09-17 2010-01-27 旭化成ホームズ株式会社 地中熱利用冷暖房システム
JP2010048527A (ja) * 2008-08-25 2010-03-04 Masahiro Izutsu ヒートポンプ式空気調和システム、ヒートポンプ式給湯システム及びヒートポンプ式空気調和・給湯統合システム
CN101418971B (zh) * 2008-11-28 2011-02-02 巢民强 一种复合多源地能中央空调机组
JP5395479B2 (ja) * 2009-03-19 2014-01-22 東芝キヤリア株式会社 空気調和システム
CN202648229U (zh) * 2012-05-25 2013-01-02 泰豪科技股份有限公司 节能型风冷冷水机组
CN102679484B (zh) * 2012-05-31 2014-07-09 东南大学 以地热能为单一辅助冷热源的水环热泵式空调系统
CN103090592A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种冷热外平衡机组
CN203824152U (zh) * 2014-03-28 2014-09-10 山东中瑞新能源科技有限公司 耦合被动式太空辐射制冷的地埋管地源热泵系统
CN106885348B (zh) * 2017-04-13 2020-08-25 青岛海尔空调器有限总公司 一种空调器及控制方法
CN111578467A (zh) * 2020-05-12 2020-08-25 广东美的制冷设备有限公司 空调系统的控制方法和空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749804A (zh) * 2008-12-02 2010-06-23 三星电子株式会社 空调及其控制方法
CN201368551Y (zh) * 2009-02-13 2009-12-23 上海华电源牌环境工程有限公司 地源热泵结合冰蓄冷的空调装置
JP2012137290A (ja) * 2012-04-08 2012-07-19 Masahiro Izutsu 生活排水の総合的活用システム
CN103900178A (zh) * 2014-03-24 2014-07-02 深圳达实智能股份有限公司 一种地源热泵蓄能中央空调系统
CN204063300U (zh) * 2014-08-14 2014-12-31 铁道第三勘察设计院集团有限公司 一种土壤复合型变制冷剂流量空调装置
CN204880484U (zh) * 2015-08-05 2015-12-16 黄国和 一种水汽能与污水源耦合空调系统
CN112303827A (zh) * 2020-10-30 2021-02-02 青岛海尔空调电子有限公司 组合式空调系统的控制方法

Also Published As

Publication number Publication date
CN112303827B (zh) 2022-05-20
CN112303827A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021000634A1 (zh) 空调器及其回油控制方法
CN100587368C (zh) 具有内部热交换器的制冷回路的控制
JP5761960B2 (ja) 熱源装置
US20100070082A1 (en) Methods and systems for controlling an air conditioning system operating in free cooling mode
WO2021233465A1 (zh) 空调机组的控制方法及空调机组
US20100036531A1 (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
WO2017005036A1 (zh) 多联机系统的冷媒分流控制方法和装置
CN112082291B (zh) 制冷系统
CN113137677B (zh) 热回收空调系统及其控制方法
WO2023147753A1 (zh) 热泵机组及其控制方法
WO2020103521A1 (zh) 一种补气增焓系统及其控制方法
WO2022068257A1 (zh) 组合式空调系统的控制方法
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
WO2021022766A1 (zh) 用于空调机组的压缩机冷却控制方法
US11892209B2 (en) Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
WO2016197726A1 (zh) 多联机系统的回气过热度测试方法和多联机系统
WO2021082240A1 (zh) 空调机组及其压缩机冷却控制方法
WO2018018764A1 (zh) 冷暖型空调器及控制方法
CN106969563A (zh) 具有中间补气的压缩装置、温度控制方法和空调器
CN106225131A (zh) 冷暖型空调器及控制方法
WO2022227567A1 (zh) 用于双压缩机空调器的控制方法
WO2023071227A1 (zh) 空调器及其控制方法
JP2003106610A (ja) 冷凍装置
KR20120124721A (ko) 냉각수를 이용한 냉방장치 및 그 제어방법
CN106403342A (zh) 单冷型空调器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873919

Country of ref document: EP

Kind code of ref document: A1