WO2021082240A1 - 空调机组及其压缩机冷却控制方法 - Google Patents

空调机组及其压缩机冷却控制方法 Download PDF

Info

Publication number
WO2021082240A1
WO2021082240A1 PCT/CN2019/127935 CN2019127935W WO2021082240A1 WO 2021082240 A1 WO2021082240 A1 WO 2021082240A1 CN 2019127935 W CN2019127935 W CN 2019127935W WO 2021082240 A1 WO2021082240 A1 WO 2021082240A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
compressor
branch
condenser
temperature
Prior art date
Application number
PCT/CN2019/127935
Other languages
English (en)
French (fr)
Inventor
武传志
隋杰磊
张捷
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021082240A1 publication Critical patent/WO2021082240A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically relates to an air conditioner unit and a compressor cooling control method thereof.
  • air conditioning units have become an indispensable device in people's lives.
  • the various designs of air-conditioning units have become more and more mature in recent years, there are still some problems with existing air-conditioning units; for example, as an indispensable component of each air-conditioning unit, the compressor can use its own compression function. To change the state of the refrigerant, so the compressor is prone to heat generation during the working process.
  • the inverter compressor is prone to overheating during the speed increase process, which leads to the problem of excessive compressor temperature; at the same time, if the temperature of the compressor cannot be lowered in time, it is easy to cause the compressor to be damaged. Burn out, which in turn caused the problem that the entire air-conditioning unit could not continue to work normally. It can be seen that the spray cooling operation of the compressor cannot be ignored.
  • the existing air-conditioning units usually achieve the effect of cooling the compressor by installing liquid spray pipes, that is, by directly cooling the refrigerant after the condenser has been cooled. Introduced into the compressor to achieve the cooling effect.
  • existing compressors are usually provided with cooling ports, and the liquid spray pipeline is connected to the cooling port, so that the refrigerant in the liquid spray pipeline can enter the compressor through the cooling port, and the liquid refrigerant entering the compressor can pass through
  • the evaporation effect realizes the heat absorption effect to reduce the temperature of the compressor
  • the cooling port is also provided with a solenoid valve to control the on and off of the liquid spray pipeline. Because the condenser is in a high-pressure environment, many existing air-conditioning units only rely on this high-pressure action to press the refrigerant into the compressor; however, for the situation when the air-conditioning unit is just turned on or the load of the air-conditioning unit increases suddenly, compression The engine usually needs to increase the speed significantly.
  • the compressor will generate a lot of heat.
  • this pressure difference is not enough to provide enough refrigerant to cool the compressor. Therefore, it is easy to cause the problem of insufficient cooling of the compressor, and in severe cases, it may even affect the normal use of the unit.
  • some existing air-conditioning units add refrigerant pumps to the liquid injection pipeline to ensure that the liquid injection pipeline can always supply the refrigerant normally; however, transporting the refrigerant through the refrigerant pump requires more power. It is not conducive to reducing the energy consumption of air conditioning units.
  • the art needs a new air conditioning unit and its compressor cooling control method to solve the above problems.
  • the present invention provides an air-conditioning unit.
  • the air-conditioning unit includes a cooling branch and a main circulation circuit,
  • the main circulation loop is provided with a compressor and a condenser
  • the compressor is provided with a cooling port
  • the cooling branch includes a first cooling branch and a second cooling branch, one end of the first cooling branch Connected to the condenser, the other end of the first cooling branch is connected to the cooling port, and the first cooling branch is configured to be able to use the pressure difference to guide the liquid refrigerant in the condenser into the compression
  • one end of the second cooling branch is also connected to the condenser
  • the other end of the second cooling branch is also connected to the cooling port
  • the second cooling branch is also connected to the cooling port.
  • a cooling pump is provided, and the second cooling branch is configured to be able to use the cooling pump
  • the first cooling branch and/or the second cooling branch are further provided with a one-way valve.
  • the air-conditioning unit further includes a connecting branch, and both the first cooling branch and the second cooling branch are connected to the condenser through the connecting branch, and An on-off valve is provided on the connecting branch.
  • the air conditioning unit further includes a pressure relief branch, one end of the pressure relief branch is connected to the downstream of the condenser, and the other end of the pressure relief branch is connected to the Downstream of the cooling pump, and a flow regulating valve is provided on the pressure relief branch.
  • the present invention also provides a compressor cooling control method for an air-conditioning unit.
  • the air-conditioning unit includes a cooling branch and a main circulation circuit.
  • the main circulation circuit is provided with a compressor and a condenser.
  • the machine is provided with a cooling port, the cooling branch includes a first cooling branch and a second cooling branch, one end of the first cooling branch is connected to the condenser, and the other end of the first cooling branch Connected to the cooling port, the first cooling branch is configured to be able to use the pressure difference to introduce the liquid refrigerant in the condenser into the compressor to achieve spray cooling, and one end of the second cooling branch Is also connected to the condenser, the other end of the second cooling branch is also connected to the cooling port, the second cooling branch is provided with a cooling pump, and the second cooling branch is configured to be able to use all
  • the cooling pump introduces the liquid refrigerant in the condenser into the compressor to achieve spray cooling
  • the compressor cooling control method includes:
  • the step of "selectively controlling the cooling pump to turn on according to the temperature and pressure ratio of the compressor” includes: The pressure ratio continues to be less than or equal to the first preset pressure ratio for the first preset time and the temperature of the compressor within the first preset time is continuously greater than or equal to the first preset temperature, then the control The cooling pump is turned on.
  • the step of "selectively controlling the cooling pump to turn on according to the temperature and pressure ratio of the compressor” further includes: if the compressor The time for which the pressure ratio continues to be greater than the first preset pressure ratio reaches the second preset time and the temperature of the compressor continues to be greater than or equal to the second preset temperature during the second preset time, then control all The cooling pump is turned on; wherein, the second preset temperature is greater than the first preset temperature.
  • the compressor cooling control method when the cooling pump has been turned on, the compressor cooling control method further includes: obtaining the temperature and pressure ratio of the compressor again ; According to the temperature and pressure ratio of the compressor, the cooling pump is selectively controlled to shut down.
  • the step of "selectively controlling the cooling pump to turn off according to the temperature and pressure ratio of the compressor” specifically includes: if the compressor The time for which the pressure ratio continues to be greater than the second preset pressure ratio reaches the third preset time and the temperature of the compressor continues to be less than or equal to the third preset temperature within the third preset time, then the cooling is controlled The pump is off; wherein the second preset pressure ratio is greater than the first preset pressure ratio, and the third preset temperature is less than the first preset temperature.
  • the air-conditioning unit further includes a pressure relief branch, one end of the pressure relief branch is connected to the downstream of the condenser, and the pressure relief branch The other end of the branch is connected to the downstream of the cooling pump, and the pressure relief branch is provided with a flow regulating valve, and a solenoid valve is provided at the cooling port of the compressor;
  • the compressor cooling control method further includes: When the cooling pump is in the open state, obtain the open and close state of the solenoid valve; if the solenoid valve is in the open state, control the flow regulating valve to close; if the solenoid valve is in the closed state, then Control the flow regulating valve to open.
  • the air conditioning unit of the present invention includes a cooling branch and a main circulation circuit.
  • the main circulation circuit is provided with a compressor and a condenser, and the compressor is provided with a cooling port.
  • the cooling branch includes a first cooling branch and a second cooling branch. One end of the first cooling branch is connected to the condenser, and the other end of the first cooling branch is connected to the cooling port.
  • the first cooling branch is set to be able to use The pressure difference leads the liquid refrigerant in the condenser into the compressor to achieve spray cooling.
  • One end of the second cooling branch is also connected to the condenser, and the other end of the second cooling branch is also connected to the cooling port.
  • a cooling pump is arranged on the road, and the second cooling branch is arranged to be able to use the cooling pump to introduce the liquid refrigerant in the condenser into the compressor to achieve spray cooling.
  • the present invention effectively guarantees a good cooling effect by arranging the first cooling branch and the second cooling branch at the same time.
  • the air conditioning unit passes The first cooling branch realizes spray cooling, in order to effectively reduce the loss of electric energy, and at the same time, it can also minimize the use of the cooling pump, thereby maximizing the service life of the cooling pump; and when the pressure between the condenser and the compressor
  • the air-conditioning unit realizes spray cooling through the second cooling branch, that is, the power provided by the cooling pump is used to effectively ensure the normal supply of refrigerant, so as to effectively ensure the cooling effect of the spray, so that The compressor can always get good cooling effect.
  • the invention can use different cooling branches to achieve cooling under different conditions, so that while ensuring a good cooling effect, the energy consumption of the air conditioning unit can be saved to the greatest extent and the service life of the cooling pump can be prolonged.
  • the first cooling branch and the second cooling branch of the present invention are both provided with one-way valves to effectively ensure that the refrigerant in the cooling branch will only flow in a specified direction, and then Effectively ensure its cooling effect, while effectively ensuring the reliability of the air conditioning unit.
  • the first cooling branch and the second cooling branch of the present invention are both connected to the condenser through a connecting branch, and an on-off valve is provided on the connecting branch.
  • the cooling branch and/or the second cooling branch fails, the maintenance personnel only need to close the on-off valve to directly repair the corresponding cooling branch, so that the maintenance process of the cooling branch can be simplified to the greatest extent.
  • the air conditioning unit of the present invention further ensures the cooling effect by setting a pressure relief branch. Since the cooling port is closed, the refrigerant delivered by the cooling pump has nowhere to go. Good cooling effect, the opening and closing state of the cooling port and the opening and closing state of the cooling pump are not strictly consistent; therefore, the present invention provides a pressure relief branch so that the refrigerant delivered by the cooling pump can also pass through the pressure relief branch.
  • the branch enters the downstream of the condenser, so as to effectively avoid the problem that the cooling pump needs to be repeatedly opened and closed in a short time under certain working conditions, thereby effectively extending the service life of the cooling pump; at the same time, it can effectively ensure that the cooling pump is used strictly It is required to change its opening and closing state, thereby effectively ensuring that the compressor can always get a good cooling effect.
  • the compressor cooling control method of the present invention can selectively control the opening of the cooling pump according to the temperature and pressure ratio of the compressor; specifically, the present invention can be based on the compressor
  • the temperature determines whether the compressor has cooling demand and its degree of demand, and can also determine whether a good cooling effect can be guaranteed without using a cooling pump according to the pressure ratio of the compressor, so that the air conditioning unit can be selectively turned on according to different working conditions
  • the cooling pump effectively ensures that the cooling branch can always supply sufficient refrigerant to cool the compressor.
  • the air conditioning unit controls the cooling pump to turn on, so as to effectively ensure that the second cooling branch can supply a sufficient amount of refrigerant to the compressor through the cooling pump to ensure a cooling effect.
  • the pressure ratio of the compressor continues to be greater than the first preset pressure ratio, the time reaches the second preset time and is within the second preset time
  • the temperature of the compressor is continuously greater than or equal to the second preset temperature, which means that although there is a sufficient pressure difference between the condenser and the compressor, the temperature of the compressor is already very high.
  • the air conditioning unit controls the cooling pump to turn on, so as to effectively ensure that the first cooling branch and the second cooling branch can flow to the
  • the compressor supplies liquid refrigerant, which effectively ensures that the cooling branch can provide sufficient refrigerant supply to achieve timely and rapid cooling.
  • the air conditioning unit controls the cooling pump to turn off in order to effectively save energy.
  • the air conditioning unit controls the The flow regulating valve is closed so that the cooling pump can send the refrigerant to the compressor to achieve spray cooling; and if the solenoid valve is closed, it means that the compressor does not need to be cooled at this time.
  • the air conditioning unit controls the flow regulating valve to open so that the refrigerant delivered by the cooling pump can enter the main circulation circuit through the pressure relief branch.
  • Figure 1 is a schematic diagram of the overall structure of a preferred embodiment of the air conditioning unit of the present invention
  • Fig. 2 is a step flow chart of a preferred embodiment of the compressor cooling control method of the present invention.
  • FIG. 1 is a schematic diagram of the overall structure of the air conditioning unit of the present invention.
  • the air-conditioning unit of the present invention includes a main circulation loop and a compressor 11, a condenser 12, a throttle valve 13, and an evaporator 14 which are sequentially arranged on the main circulation loop.
  • the refrigerant in the air-conditioning unit The heat exchange is realized by circulating the main circulation loop; it should be noted that the present invention does not impose any restrictions on the specific types of the compressor 11, condenser 12, throttle valve 13, and evaporator 14, and technicians can use it according to actual use. Need to choose by yourself.
  • FIG. 1 is a schematic diagram of the overall structure of the air conditioning unit of the present invention.
  • the air-conditioning unit of the present invention includes a main circulation loop and a compressor 11, a condenser 12, a throttle valve 13, and an evaporator 14 which are sequentially arranged on the main circulation loop.
  • the refrigerant in the air-conditioning unit The heat exchange is realized by
  • the technicians can set the specific structure of the air conditioning unit according to actual use requirements.
  • the present invention does not affect the main circulation loop of the air conditioning unit.
  • a second shut-off valve 20 and a filter 19 are also provided between the condenser 12 and the throttle valve 13, and a third shut-off valve 21 is also provided between the throttle valve 13 and the evaporator 14; of course, these structural settings are all It is not restrictive, and technicians can adjust it according to actual usage requirements.
  • the compressor 11 is provided with a cooling port 111, and a solenoid valve (not shown in the figure) is provided at the cooling port 111, and the solenoid valve can control the opening and closing state of the cooling port 111.
  • a solenoid valve (not shown in the figure) is provided at the cooling port 111, and the solenoid valve can control the opening and closing state of the cooling port 111.
  • the present invention does not impose any restrictions on the specific structure and location of the cooling port 111, and the technical personnel can set it according to actual needs, as long as the compressor 11 can achieve spraying through the cooling port 111.
  • the cooling function is sufficient; at the same time, a solenoid valve can be set at the cooling port 111 to realize the change of the open and close state, or it can be directly set to the normally open state.
  • the air conditioning unit of the present invention further includes a cooling branch and a connecting branch 17, the cooling branch includes a first cooling branch 15 and a second cooling branch 16; referring to the orientation in FIG. 1, the connecting branch 17
  • the upper left end of the first cooling branch 15 is connected to the condenser 12
  • the lower end of the first cooling branch 15 is connected to the right end of the connecting branch 17,
  • the upper end of the first cooling branch 15 is connected to the cooling port 111
  • the first cooling branch 15 is set to be able to use
  • the pressure difference leads the liquid refrigerant in the condenser 12 into the compressor 11 to achieve spray cooling
  • the lower end of the second cooling branch 16 is also connected to the right end of the connecting branch 17, and the upper end of the second cooling branch 16 is connected to the first
  • the upper end of the cooling branch 15 is merged and connected to the cooling port 111.
  • the second cooling branch 16 is provided with a cooling pump 162, and the second cooling branch 16 is configured to be able to use the cooling pump 162 to introduce the liquid
  • first cooling branch 15 and the second cooling branch 16 are both rigid pipes connected between the connecting branch 17 and the cooling port 111; of course, the first cooling branch
  • the path 15 and the second cooling branch 16 may also be other structures that can realize the circulation of the refrigerant, such as a rubber hose.
  • the cooling pump 162 provided on the second cooling branch 16 When the cooling pump 162 provided on the second cooling branch 16 is not turned on at this time, the refrigerant cannot pass through the second cooling branch 16; if the pressure difference between the compressor 11 and the condenser 12 is insufficient, the condenser It is difficult for the refrigerant in 12 to enter the compressor 11 through the first cooling branch 15 under the action of the pressure difference. At this time, the cooling pump 162 is turned on so that the refrigerant in the condenser 12 can enter the compressor with the assistance of the cooling pump 162. ⁇ 11 ⁇ .
  • first cooling branch 15 and the second cooling branch 16 described in this preferred embodiment are both connected to the condenser 12 through the connecting branch 17
  • first cooling branch 15 and the second cooling branch 16 are connected to the condenser 12 through the connecting branch 17.
  • first cooling branch 15 and the second cooling branch 16 can also be directly connected to the condenser 12; at the same time, this specific connection method is not restrictive, and the first cooling branch 15 and the second cooling branch 16 are also It can be connected to the pipe connected to the outlet of the condenser 12, as long as this connection method can introduce the liquid refrigerant in the condenser 12 into the connecting branch 17, for example, a through hole is opened on the condenser 12 to connect The branch 17 is connected to the through hole so as to introduce the refrigerant in the condenser 12 into the connecting branch 17.
  • the connecting branch 17 is provided with a first shut-off valve 171, and the air conditioning unit can control the on-off of the connecting branch 17 by controlling the opening and closing state of the first shut-off valve 171. status.
  • the connecting branch 17 described in this preferred embodiment is provided with a first stop valve 171
  • the connecting branch 17 may not be provided with a stop valve that is always in a connected state; at the same time, although the preferred implementation
  • the on-off valve mentioned in the example is a cut-off valve, but the technician can obviously also choose the type of the on-off valve according to actual needs, as long as the air-conditioning unit can control the on-off state of the connecting branch 17 by controlling the on-off valve. That's it.
  • a first check valve 151 is also provided on the first cooling branch 15, and the first check valve 151 can further prevent the refrigerant in the first cooling branch 15 from flowing back;
  • the compressor 11 needs to be cooled and the pressure difference between the compressor 11 and the condenser 12 is sufficient, the refrigerant in the condenser 12 can enter the compressor 11 through the first cooling branch 15 to achieve spray cooling.
  • a second one-way valve 161 is also provided on the second cooling branch 16, and the second one-way valve 161 is provided downstream of the cooling pump 162.
  • the second one-way valve 161 can also further prevent When the compressor 11 needs to be cooled and the pressure difference between the compressor 11 and the condenser 12 is insufficient, the cooling pump 162 is turned on, and the refrigerant in the condenser 12 can pass through the second cooling branch 16 in turn The cooling pump 162 and the second one-way valve 161 enter the compressor 11 to achieve spray cooling. It should be noted that the present invention does not impose any restrictions on the specific types of the one-way valve and the cooling pump, and the technician can set it according to actual use requirements.
  • the cooling pump is preferably a magnetic pump.
  • the air conditioning unit further includes a pressure relief branch 18, the left end of the pressure relief branch 18 is connected to the downstream of the condenser 12, and the right end of the pressure relief branch 18 is connected to the cooling pump 162 and the second check valve 161 In between, and the pressure relief branch 18 is provided with a flow regulating valve 181.
  • the solenoid valve disposed at the cooling port 111 is closed and the cooling pump 162 is opened, the refrigerant passing through the cooling pump 162 can flow back to the downstream of the condenser 12 through the pressure relief branch 18 to effectively ensure pressure balance.
  • the present invention does not limit the specific connection positions of the two ends of the pressure relief branch 18, as long as the refrigerant passing through the cooling pump 162 can flow back into the main circulation circuit through the pressure relief branch 18, for example,
  • the left end of the pressure branch 18 can also be directly connected to the condenser 12, and the right end of the pressure relief branch 18 can also be connected to the downstream of the second one-way valve 161.
  • the change of these specific connection positions does not deviate from the basic principle of the present invention. It belongs to the protection scope of the present invention.
  • the present invention does not impose any restriction on the specific type of the flow regulating valve 181, and the technician can select it according to actual use requirements.
  • the air conditioning unit further includes a temperature sensor and a controller
  • the temperature sensor can measure the temperature of the compressor 1
  • the controller can obtain the measurement data of the temperature sensor
  • the controller can also control the The operation of the air conditioning unit is described, for example, controlling the on-off state of the cooling pump 162 and the like. It should be noted that the present invention does not impose any restrictions on the specific structure and model of the controller, as long as the controller can achieve the above functions, and the controller can be the original control of the air conditioning unit.
  • the controller can also be a separate controller for implementing the compressor cooling control method of the present invention, and the technician can set the structure and model of the controller according to actual use requirements.
  • the technical personnel can set the application object of the compressor cooling control method according to actual use needs; because the inverter compressor is prone to excessive temperature, the compressor cooling control method of the present invention is preferred It is applied to the magnetic levitation frequency conversion centrifugal air-conditioning unit.
  • the change of this specific application object does not deviate from the basic principle of the present invention and should belong to the protection scope of the present invention.
  • FIG. 2 is a flowchart of the steps of the preferred embodiment of the compressor cooling control method of the present invention.
  • a preferred embodiment of the compressor cooling control method of the present invention specifically includes the following steps:
  • step S101 the controller obtains the temperature of the compressor 11 through the temperature sensor; as a preferred embodiment, when the compressor 11 is an inverter compressor, the temperature sensor is set in the compressor 11 Near the inverter in order to obtain the temperature of the inverter as the temperature of the compressor 11.
  • the present invention does not impose any limitation on the specific manner in which the controller obtains the temperature of the compressor 11, as long as the controller can obtain the temperature of the compressor 11.
  • the controller can also obtain the absolute pressure of the discharge port and the absolute pressure of the suction port of the compressor 11, and then calculate the ratio of the absolute pressure of the discharge port to the absolute pressure of the suction port, which is recorded as the pressure ratio of the compressor 11.
  • the present invention does not impose any restrictions on the manner in which the controller obtains the absolute pressure of the discharge port and the absolute pressure of the suction port of the compressor 11.
  • the technician can set it according to actual needs, as long as the control It is only necessary that the pressure ratio of the compressor 11 can be finally obtained by the compressor.
  • step S102 if the controller determines that the pressure ratio of the compressor 11 continues to be less than or equal to the first preset pressure ratio for a time that reaches the first preset time and the compressor is within the first preset time If the temperature of 11 is continuously greater than or equal to the first preset temperature, it indicates that the compressor 11 has overheated and the pressure difference between the condenser 12 and the compressor 11 is insufficient; in this case, the controller controls the cooling pump 162 It is turned on so that the second cooling branch 16 can supply a sufficient amount of refrigerant to the compressor 11 through the cooling pump 162 to ensure the cooling effect.
  • the present invention does not impose any restrictions on the specific values of the first preset pressure ratio, the first preset time, and the first preset temperature.
  • the first preset pressure ratio as long as it can be determined that the pressure difference between the compressor 11 and the condenser 12 is insufficient when the pressure ratio of the compressor 11 is less than or equal to the first preset pressure ratio, preferably,
  • the first preset pressure ratio is 1.5; technicians can also set the first preset temperature according to actual use requirements, as long as the temperature of the compressor 11 is greater than or equal to the first preset temperature. It is sufficient to determine that the compressor 11 needs to be cooled.
  • the first preset temperature is 47°C; and the technicians can also set the first preset time according to actual use requirements, as long as this time is long enough to eliminate accidental errors That is, preferably, the first preset time is 30 seconds.
  • step S103 if the controller determines that the pressure ratio of the compressor 11 continues to be greater than the first preset pressure ratio for a time that reaches a second preset time and compresses within the second preset time
  • the temperature of the compressor 11 is continuously greater than or equal to the second preset temperature, which means that although there is a sufficient pressure difference between the condenser 12 and the compressor 11, the temperature of the compressor 11 is already very high, in order to quickly cool down; in this case
  • the controller controls the cooling pump 162 to turn on, so as to effectively ensure that the first cooling branch 15 and the second cooling branch 16 can simultaneously supply liquid refrigerant to the compressor 11. It should be noted that the present invention does not impose any restrictions on the specific values of the second preset time and the second preset temperature.
  • the technician can set the second preset temperature by himself according to actual use requirements, as long as When the temperature of the compressor 11 is greater than or equal to the second preset temperature, it can be determined that the compressor 11 needs to be rapidly cooled.
  • the second preset temperature is 48°C;
  • the second preset time can be set by user requirements, as long as the duration is sufficient to eliminate accidental errors.
  • the second preset time is 3 seconds.
  • the present invention does not impose any restrictions on other situations except the above two situations, and the skilled person can set the opening and closing states of the cooling pump 162 corresponding to other situations; as a preferred embodiment , The cooling pump 162 is only turned on in the above two cases, and will not be turned on in the other cases, that is, it remains closed.
  • step S104 is executed, that is, the controller can obtain the temperature and pressure ratio of the compressor 11 again according to the above-mentioned obtaining method.
  • step S105 if the controller determines that the pressure ratio of the compressor 11 continues to be greater than the second preset pressure ratio for a third preset time, and the temperature of the compressor 11 is within the third preset time If the temperature is continuously lower than or equal to the third preset temperature, the controller controls the cooling pump 162 to turn off. It should be noted that the present invention does not impose any restrictions on the specific values of the second preset pressure ratio, the third preset time, and the third preset temperature.
  • the second preset pressure ratio as long as it can be determined that the pressure difference between the compressor 11 and the condenser 12 is sufficient when the pressure ratio of the compressor 11 is greater than the second preset pressure ratio, preferably, the The second preset pressure ratio is 1.6; technicians can also set the third preset temperature according to actual use requirements, as long as the temperature of the compressor 11 is less than or equal to the third preset temperature, the compression can be determined
  • the machine 11 does not need to be cooled in a short time.
  • the third preset temperature is 46°C; technicians can also set the third preset time according to actual use requirements, as long as this time is long enough to eliminate accidental errors That is, preferably, the third preset time is 10 seconds.
  • the compressor cooling control method of the present invention further includes: when the cooling pump 162 is already in the open state, acquiring the open and closed state of the solenoid valve provided at the cooling port 111, so that the controller can be based on the solenoid
  • the opening and closing state of the valve controls the opening and closing state of the flow regulating valve 181 provided on the pressure relief branch 18.
  • the controller controls the flow regulating valve 181 to close, so that the refrigerant delivered by the cooling pump 162 can all enter the compressor 11 through the second cooling branch 16 to achieve spray cooling
  • the controller controls the flow regulating valve 181 to open so that the refrigerant delivered by the cooling pump 162 can enter the main circulation circuit through the pressure relief branch 18 to ensure pressure balance.
  • the present invention does not impose any restrictions on the specific opening and closing methods of the flow regulating valve 181. For example, it can be gradually opened to the maximum opening degree, or it can be directly opened to the preset opening degree without changing it. It can be set according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调机组及其压缩机冷却控制方法,属于空调技术领域,旨在解决现有空调机组的压缩机冷却控制方式不佳的问题。该空调机组包括冷却支路和主循环回路,冷却支路包括第一冷却支路(15)和第二冷却支路(16),第一冷却支路(15)的一端与冷凝器(12)相连,第一冷却支路(15)的另一端与压缩机(11)的冷却口(111)相连,第一冷却支路(15)设置为能够利用压差将冷凝器(12)中的液态冷媒导入压缩机(11)中以实现喷淋冷却,第二冷却支路(16)的一端也与冷凝器(12)相连,第二冷却支路(16)的另一端也与冷却口(111)相连,第二冷却支路(16)上设置有冷却泵(162),第二冷却支路(16)设置为能够利用冷却泵(162)将冷凝器(12)中的液态冷媒导入压缩机(11)中以实现喷淋冷却,以便在保证节能效果的同时,还能够始终保证其冷却效果。

Description

空调机组及其压缩机冷却控制方法 技术领域
本发明属于空调技术领域,具体涉及一种空调机组及其压缩机冷却控制方法。
背景技术
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了维持舒适的环境温度,空调机组已经成为人们生活中必不可少的一种设备。虽然近年来空调机组的各项设计都已经越来越成熟,但是,现有空调机组依然存在一些问题;例如,压缩机作为每个空调机组必不可少的元件,压缩机能够通过自身的压缩作用来改变冷媒的状态,因而压缩机在工作过程中很容易出现发热现象。特别是对于变频压缩机而言,变频压缩机在提速过程中很容易产生过热现象,从而导致压缩机温度过高的问题;同时,如果压缩机的温度不能及时降低,则很容易导致压缩机被烧坏,进而导致整个空调机组都无法继续正常工作的问题。由此可见,对压缩机进行喷淋冷却的操作是不容忽视的,现有空调机组通常都是通过设置液喷管路来实现冷却压缩机的效果,即通过将经过冷凝器冷却后的冷媒直接引入压缩机中来实现冷却作用。
进一步地,现有压缩机上通常都设置有冷却口,液喷管路与冷却口相连,以使液喷管路中的冷媒能够通过冷却口进入压缩机中,进入压缩机中的液体冷媒能够通过蒸发作用实现吸热效果以降低压缩机的温度,并且冷却口处还设置有电磁阀来控制液喷管路的通断。由于冷凝器内属于高压环境,因此,现有很多空调机组仅依靠这种高压作用将冷媒压入压缩机中;但是,对于空调机组刚开机或者空调机组的负荷突然增大的情况而言,压缩机通常都需要大幅提高转速,此时,压缩机会产生大量热量,冷凝器与液喷管路之间虽然存在压差,但这个压差根本就不足以提供足够多的冷媒给压缩机进行冷却,因而很容易造成压缩机冷却不足的问题,严重时甚至会影响机组的正常使用。为了避免冷媒供应不稳定的问题,现有部分空调机组通过在液喷管路上增设冷媒泵以保证 液喷管路始终都能够正常供应冷媒;但是,通过冷媒泵输送冷媒需要消耗更多的电量,不利于降低空调机组的能耗。同时,由于冷媒很容易对冷媒泵的内部结构造成气蚀,因此,如果冷媒泵长时间工作,冷媒很快就会对冷媒泵的内部结构造成较大损坏,从而导致冷媒泵的可靠度和使用寿命大幅降低。由此可见,上述冷却方法都存在一定缺陷,很难保证良好的冷却效果。
相应地,本领域需要一种新的空调机组及其压缩机冷却控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调机组的压缩机冷却控制方式不佳的问题,本发明提供了一种空调机组,所述空调机组包括冷却支路和主循环回路,所述主循环回路上设置有压缩机和冷凝器,所述压缩机上设置有冷却口,所述冷却支路包括第一冷却支路和第二冷却支路,所述第一冷却支路的一端与所述冷凝器相连,所述第一冷却支路的另一端与所述冷却口相连,所述第一冷却支路设置为能够利用压差将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却,所述第二冷却支路的一端也与所述冷凝器相连,所述第二冷却支路的另一端也与所述冷却口相连,所述第二冷却支路上设置有冷却泵,所述第二冷却支路设置为能够利用所述冷却泵将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却。
在上述空调机组的优选技术方案中,所述第一冷却支路和/或所述第二冷却支路上还设置有单向阀。
在上述空调机组的优选技术方案中,所述空调机组还包括连接支路,所述第一冷却支路和所述第二冷却支路均通过所述连接支路与所述冷凝器相连,并且所述连接支路上设置有开关阀。
在上述空调机组的优选技术方案中,所述空调机组还包括泄压支路,所述泄压支路的一端连接至所述冷凝器的下游,所述泄压支路的另一端连接至所述冷却泵的下游,并且所述泄压支路上设置有流量调节阀。
此外,本发明还提供了一种用于空调机组的压缩机冷却控制方法,所述空调机组包括冷却支路和主循环回路,所述主循环回路上设置有压缩机和冷凝器,所述压缩机上设置有冷却口,所述冷却支路包括第一冷却支路和第二冷却支路,所述第一冷却支路的一端与所述冷凝器相连,所述第一冷却支路的另一端与所述冷却口相连,所述第一冷却支路设置为能够利用压差将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却,所述第二冷却支路的一端也与所述冷凝器相连,所述第二冷却支路的另一端也与所述冷却口相连,所述第二冷却支路上设置有冷却泵,所述第二冷却支路设置为能够利用所述冷却泵将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却;所述压缩机冷却控制方法包括:获取所述压缩机的温度和压比;根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启。
在上述用于空调机组的压缩机冷却控制方法的优选技术方案中,“根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启”的步骤包括:如果所述压缩机的压比持续小于或等于第一预设压比的时间达到第一预设时间且在所述第一预设时间内所述压缩机的温度持续大于或等于第一预设温度,则控制所述冷却泵开启。
在上述用于空调机组的压缩机冷却控制方法的优选技术方案中,“根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启”的步骤还包括:如果所述压缩机的压比持续大于所述第一预设压比的时间达到第二预设时间且在所述第二预设时间内所述压缩机的温度持续大于或等于第二预设温度,则控制所述冷却泵开启;其中,所述第二预设温度大于所述第一预设温度。
在上述用于空调机组的压缩机冷却控制方法的优选技术方案中,在所述冷却泵已经开启的情况下,所述压缩机冷却控制方法还包括:再次获取所述压缩机的温度和压比;根据所述压缩机的温度和压比,选择性地控制所述冷却泵关闭。
在上述用于空调机组的压缩机冷却控制方法的优选技术方案中,“根据所述压缩机的温度和压比,选择性地控制所述冷却泵关闭”的步骤具体包括:如果所述压缩机的压比持续大于第二预设压比的时间达到第三预设时间且在所述第三预设时间内所述压缩机的温度持续小于 或等于第三预设温度,则控制所述冷却泵关闭;其中,所述第二预设压比大于所述第一预设压比,所述第三预设温度小于所述第一预设温度。
在上述用于空调机组的压缩机冷却控制方法的优选技术方案中,所述空调机组还包括泄压支路,所述泄压支路的一端连接至所述冷凝器的下游,所述泄压支路的另一端连接至所述冷却泵的下游,并且所述泄压支路上设置有流量调节阀,所述压缩机的冷却口处设置有电磁阀;所述压缩机冷却控制方法还包括:在所述冷却泵处于开启状态的情况下,获取所述电磁阀的开闭状态;如果所述电磁阀处于开启状态,则控制所述流量调节阀关闭;如果所述电磁阀处于关闭状态,则控制所述流量调节阀开启。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的空调机组包括冷却支路和主循环回路,主循环回路上设置有压缩机和冷凝器,压缩机上设置有冷却口,冷却支路包括第一冷却支路和第二冷却支路,第一冷却支路的一端与冷凝器相连,第一冷却支路的另一端与冷却口相连,第一冷却支路设置为能够利用压差将冷凝器中的液态冷媒导入压缩机中以实现喷淋冷却,第二冷却支路的一端也与冷凝器相连,第二冷却支路的另一端也与冷却口相连,第二冷却支路上设置有冷却泵,第二冷却支路设置为能够利用冷却泵将所述冷凝器中的液态冷媒导入压缩机中以实现喷淋冷却。本发明通过同时设置第一冷却支路和第二冷却支路来有效保证良好的冷却效果,在冷凝器与压缩机之间的压差足以保证冷却支路中的冷媒供应时,该空调机组通过第一冷却支路实现喷淋冷却,以便有效减小电能的损耗,同时还能够尽量减少冷却泵的使用,进而最大程度地延长冷却泵的使用寿命;而当冷凝器与压缩机之间的压差过小而无法保证冷媒供应时,该空调机组则通过第二冷却支路实现喷淋冷却,即借助冷却泵提供的动力有效保证冷媒的正常供应,以便有效保证喷淋的冷却效果,以使压缩机始终都能够获得良好的冷却效果。本发明能够在不同情况下使用不同冷却支路实现冷却,以便在保证良好冷却效果的情况下,还能够最大程度地节省空调机组的能耗,延长冷却泵的使用寿命。
进一步地,在本发明的优选技术方案中,本发明的第一冷却支路和第二冷却支路上均设置有单向阀,以便有效保证冷却支路中的冷 媒只会按照指定方向流动,进而有效保证其冷却效果,同时有效保证空调机组的可靠性。
进一步地,在本发明的优选技术方案中,本发明的第一冷却支路和第二冷却支路均通过连接支路与冷凝器相连,并且所述连接支路上设置有开关阀,当第一冷却支路和/或第二冷却支路出现故障时,维修人员只需要关闭所述开关阀就可以直接对相应的冷却支路进行维修,以使冷却支路的维修过程得到最大程度的简化。
进一步地,在本发明的优选技术方案中,本发明的空调机组还通过设置泄压支路来进一步保证冷却效果,由于冷却口关闭时,所述冷却泵输送的冷媒就没有去处,而为了保证良好的冷却效果,冷却口的开闭状态和冷却泵的启闭状态并不是严格保持一致的;因此,本发明通过设置泄压支路使得所述冷却泵输送的冷媒还能够通过所述泄压支路进入所述冷凝器的下游,从而有效避免冷却泵在部分工况下需要在短时间内反复启闭的问题,进而有效延长冷却泵的使用寿命;同时还能够有效保证冷却泵严格按照使用需求改变其启闭状态,进而有效保证压缩机始终能够得到良好的冷却效果。
更进一步地,在本发明的优选技术方案中,本发明的压缩机冷却控制方法能够根据压缩机的温度和压比选择性地控制所述冷却泵开启;具体地,本发明能够根据压缩机的温度确定压缩机是否具有冷却需求以及其需求程度,还能够根据压缩机的压比确定在不使用冷却泵的情况下是否能够保证良好的冷却效果,以便空调机组能够根据不同工况选择性地开启冷却泵,进而有效保证冷却支路始终能够供应充足的冷媒以实现压缩机的冷却。
进一步地,在本发明的优选技术方案中,如果所述压缩机的压比持续小于或等于所述第一预设压比的时间达到所述第一预设时间且在所述第一预设时间内所述压缩机的温度持续大于或等于所述第一预设温度,则说明所述压缩机已经存在过热现象且所述冷凝器与所述压缩机之间的压力差不足;在此情形下,空调机组控制所述冷却泵开启,以便有效保证所述第二冷却支路能够通过所述冷却泵向所述压缩机中供应足量的冷媒以保证冷却效果。
进一步地,在本发明的优选技术方案中,如果所述压缩机的压比持续大于所述第一预设压比的时间达到所述第二预设时间且在所述第二预设时间内所述压缩机的温度持续大于或等于第二预设温度,则说明虽然所述冷凝器与所述压缩机之间具有足够的压力差,但是,所述压缩机的温度已经很高,为了有效保证压缩机的安全,需要及时快速地进行降温;在此情形下,空调机组控制所述冷却泵开启,以便有效保证所述第一冷却支路和所述第二冷却支路能够同时向所述压缩机中供应液体冷媒,进而有效保证冷却支路能够提供足够的冷媒供应量以实现及时而快速地冷却。
进一步地,在本发明的优选技术方案中,如果所述压缩机的压比持续大于所述第二预设压比的时间达到所述第三预设时间且在所述第三预设时间内所述压缩机的温度持续小于或等于第三预设温度,则说明压缩机很难在短时间内再次出现过热现象,此时,空调机组控制所述冷却泵关闭,以便有效节能。
进一步地,在本发明的优选技术方案中,在所述冷却泵处于开启状态的情况下,如果所述电磁阀处于开启状态,则说明所述压缩机需求冷却,此时,空调机组控制所述流量调节阀关闭,以便所述冷却泵能够将冷媒送入所述压缩机中以实现喷淋冷却;而如果所述电磁阀处于关闭状态,则说明所述压缩机此时并不需要冷却,在此情形下,空调机组控制所述流量调节阀开启,以便所述冷却泵输送的冷媒能够通过所述泄压支路进入所述主循环回路中。
附图说明
图1是本发明的空调机组的优选实施例的整体结构示意图;
图2是本发明的压缩机冷却控制方法的优选实施例的步骤流程图。
附图标记:11、压缩机;111、冷却口;12、冷凝器;13、节流阀;14、蒸发器;15、第一冷却支路;151、第一单向阀;16、第二冷却支路;161、第二单向阀;162、冷却泵;17、连接支路;171、第一截止阀;18、泄压支路;181、流量调节阀;19、过滤器;20、第二截止阀;21、第三截止阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
需要说明的是,在本发明的优选实施例的描述中,术语“左”、“右”、“上”、“内”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。还需要说明的是,在本发明的优选实施例的描述中,除非另有明确的规定和限定,术语“相连”、“连接”等应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1,该图是本发明的空调机组的整体结构示意图。如图1所示,本发明的空调机组包括主循环回路以及依次设置在所述主循环回路上的压缩机11、冷凝器12、节流阀13和蒸发器14,所述空调机组中的冷媒通过所述主循环回路进行循环而实现换热;需要说明的是,本发明不对压缩机11、冷凝器12、节流阀13和蒸发器14的具体类型作任何限制,技术人员可以根据实际使用需求自行选定。当然,为了方便说明,图1中仅示出了所述空调机组的主要元件,技术人员可以根据实际使用需求自行设定所述空调机组的具体结构,本发明不对所述空调机组的主循环回路的具体结构作任何限制,这种具体结构的改变并不偏离本发明的基本原理,属于本发明的保护范围。同时,冷凝器12与节流阀13之间还设置有第二截止阀20和过滤器19,节流阀13与蒸发器14之间还设置有第三截止阀21;当然,这些结构设置都不是限制性的,技术 人员可以根据实际使用需求自行调整。进一步地,压缩机11上设置冷却口111,冷却口111处设置有电磁阀(图中未示出),所述电磁阀能够控制冷却口111的开闭状态。此外,本领域技术人员能够理解的是,本发明不对冷却口111的具体结构和设置位置作任何限制,技术人员可以根据实际使用需求自行设定,只要压缩机11能够通过冷却口111实现喷淋冷却的功能即可;同时,冷却口111处可以设置电磁阀来实现开闭状态的改变,也可以直接设置为常开状态。
进一步地,本发明的空调机组还包括冷却支路和连接支路17,所述冷却支路包括第一冷却支路15和第二冷却支路16;参阅图1中的方位,连接支路17的左上端与冷凝器12相连,第一冷却支路15的下端与连接支路17的右端相连,第一冷却支路15的上端与冷却口111相连,第一冷却支路15设置为能够利用压差将冷凝器12中的液态冷媒导入压缩机11中以实现喷淋冷却;第二冷却支路16的下端也与连接支路17的右端相连,第二冷却支路16的上端与第一冷却支路15的上端汇合并与冷却口111相连,第二冷却支路16上设置有冷却泵162,第二冷却支路16设置为能够利用冷却泵162将冷凝器12中的液态冷媒导入压缩机11中以实现喷淋冷却。
需要说明的是,作为一种优选实施例,第一冷却支路15和第二冷却支路16均为连接在连接支路17与冷却口111之间的硬质管道;当然,第一冷却支路15和第二冷却支路16还可以是能够实现冷媒流通的其他结构,例如,橡胶软管等。当设置在冷却口111处的电磁阀开启时,如果压缩机11与冷凝器12之间的压差足够,冷凝器12中的冷媒就会在压差作用下通过第一冷却支路15进入压缩机11中,而此时由于第二冷却支路16上设置的冷却泵162未开启,冷媒无法通过第二冷却支路16;如果压缩机11与冷凝器12之间的压差不足,冷凝器12中的冷媒就难以在压差作用下通过第一冷却支路15进入压缩机11中,此时,开启冷却泵162,以使冷凝器12中的冷媒能够在冷却泵162的辅助下进入压缩机11中。
此外,本领域技术人员能够理解的是,虽然本优选实施例中所述的第一冷却支路15和第二冷却支路16都是通过连接支路17与冷凝器12相连的,但是,第一冷却支路15和第二冷却支路16显然还可以直 接与冷凝器12相连;同时,这种具体连接方式也并不是限制性的,第一冷却支路15和第二冷却支路16也可以和与冷凝器12的出口相连的管道相连,只要这种连接方式能够将冷凝器12中的液态冷媒引入连接支路17中即可,例如,在冷凝器12上开设一个通孔,将连接支路17与该通孔相连,以便将冷凝器12中的冷媒引入连接支路17中。
进一步地,在本优选实施例中,为了方便维修,连接支路17上设置有第一截止阀171,空调机组可以通过控制第一截止阀171的开闭状态来控制连接支路17的通断状态。需要说明的是,虽然本优选实施例中所述的连接支路17上设置有第一截止阀171,但是,连接支路17还可以不设置截止阀始终处于连通状态;同时,虽然本优选实施例中所述的开关阀为截止阀,但是,技术人员显然还可以根据实际使用需求自行选定所述开关阀的类型,只要空调机组通过控制该开关阀能够控制连接支路17的通断状态即可。
继续参阅图1,在本优选实施例中,第一冷却支路15上还设置有第一单向阀151,第一单向阀151能够进一步防止第一冷却支路15中的冷媒倒流;当压缩机11需要冷却且压缩机11与冷凝器12之间的压差足够时,冷凝器12中的冷媒能够通过第一冷却支路15进入压缩机11中以实现喷淋冷却。同时,第二冷却支路16上还设置有第二单向阀161,第二单向阀161设置在冷却泵162的下游,第二单向阀161也能够进一步防止第二冷却支路16中的冷媒倒流;当压缩机11需要冷却且压缩机11与冷凝器12之间的压差不足时,开启冷却泵162,冷凝器12中的冷媒就能够依次通过设置在第二冷却支路16上的冷却泵162和第二单向阀161进入压缩机11中以实现喷淋冷却。需要说明的是,本发明不对单向阀和冷却泵的具体类型作任何限制,技术人员可以根据实际使用需求自行设定,所述冷却泵优选为磁力泵。
更进一步地,所述空调机组还包括泄压支路18,泄压支路18的左端连接至冷凝器12的下游,泄压支路18的右端连接至冷却泵162与第二单向阀161之间,并且泄压支路18上设置有流量调节阀181。当设置在冷却口111处的电磁阀关闭而冷却泵162开启时,通过冷却泵162的冷媒可以通过泄压支路18回流至冷凝器12的下游,以便有效保证压力平衡。需要说明的是,本发明不对泄压支路18两端的具体连接位置作 任何限定,只要通过冷却泵162的冷媒可以通过泄压支路18回流至所述主循环回路中即可,例如,泄压支路18的左端还可以直接与冷凝器12相连,泄压支路18的右端还可以连接至第二单向阀161的下游,这些具体连接位置的改变并不偏离本发明的基本原理,属于本发明的保护范围。此外,本发明也不对流量调节阀181的具体类型作任何限制,技术人员可以根据实际使用需求自行选定。
进一步地,所述空调机组还包括温度传感器和控制器,所述温度传感器能够测量压缩机1的温度,所述控制器能够获取所述温度传感器的测量数据,并且所述控制器还能够控制所述空调机组的运行,例如,控制冷却泵162的开闭状态等。需要说明的是,本发明也不对所述控制器的具体结构和型号作任何限制,只要所述控制器能够实现上述功能即可,并且所述控制器既可以是所述空调机组原有的控制器,也可以是为执行本发明的压缩机冷却控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。此外,还需要说明的是,技术人员可以根据实际使用需求自行设定压缩机冷却控制方法的应用对象;由于变频压缩机极易出现温度过高的情况,因而本发明的压缩机冷却控制方法优选应用于磁悬浮变频离心式空调机组,当然,这种具体应用对象的改变并不偏离本发明的基本原理,应当属于本发明的保护范围。
下面参阅图2,该图是本发明的压缩机冷却控制方法的优选实施例的步骤流程图。如图2所示,基于上述实施例中所述的空调机组,本发明的压缩机冷却控制方法的优选实施例具体包括下列步骤:
S101:获取压缩机的温度和压比;
S102:如果压缩机的压比持续小于或等于第一预设压比的时间达到第一预设时间且在第一预设时间内压缩机的温度持续大于或等于第一预设温度,则控制冷却泵开启;
S103:如果压缩机的压比持续大于第一预设压比的时间达到第二预设时间且在第二预设时间内压缩机的温度持续大于或等于第二预设温度,则控制冷却泵开启;
S104:再次获取压缩机的温度和压比;
S105:如果压缩机的压比持续大于第二预设压比的时间达到第三预设时间且在第三预设时间内压缩机的温度持续小于或等于第三预设温度,则控制冷却泵关闭。
进一步地,在步骤S101中,所述控制器通过所述温度传感器获取压缩机11的温度;作为一种优选实施例,当压缩机11为变频压缩机时,所述温度传感器设置在压缩机11的变频器附近,以便获取所述变频器的温度作为压缩机11的温度。此外,还需要说明的是,本发明不对所述控制器获取压缩机11的温度的具体方式作任何限制,只要所述控制器能够获取到压缩机11的温度即可。同时,所述控制器还能够获取压缩机11的排气口绝对压力和吸气口绝对压力,然后计算出排气口绝对压力与吸气口绝对压力的比值,记作压缩机11的压比;需要说明的是,本发明不对所述控制器获取压缩机11的排气口绝对压力和吸气口绝对压力的方式作任何限制,技术人员可以根据实际使用需求自行设定,只要所述控制器最终能够获取到压缩机11的压比即可。
进一步地,在步骤S102中,如果所述控制器判断出压缩机11的压比持续小于或等于第一预设压比的时间达到第一预设时间且在该第一预设时间内压缩机11的温度持续大于或等于第一预设温度,则说明压缩机11已经存在过热现象且冷凝器12与压缩机11之间的压力差不足;在此情形下,所述控制器控制冷却泵162开启,以便第二冷却支路16能够通过冷却泵162向压缩机11中供应足量的冷媒以保证冷却效果。需要说明的是,本发明不对所述第一预设压比、所述第一预设时间和所述第一预设温度的具体数值作任何限制,技术人员可以根据实际使用需求自行设定所述第一预设压比,只要当压缩机11的压比小于或等于所述第一预设压比时就能够判断压缩机11与冷凝器12之间的压差不足即可,优选地,所述第一预设压比为1.5;技术人员还可以根据实际使用需求自行设定所述第一预设温度,只要当压缩机11的温度大于或等于所述第一预设温度时就能够判断压缩机11需要冷却即可,优选地,所述第一预设温度为47℃;并且技术人员还可以根据实际使用需求自行设定所述第一预设时间,只要这个时长足以排除偶然误差即可,优选地,所述第一预设时间为30秒。
进一步地,在步骤S103中,如果所述控制器判断出压缩机11的压比持续大于所述第一预设压比的时间达到第二预设时间且在所述第二预设时间内压缩机11的温度持续大于或等于第二预设温度,则说明虽然冷凝器12与压缩机11之间具有足够的压力差,但是,压缩机11的温度已经很高,为了快速降温;在此情形下,所述控制器控制冷却泵162开启,以便有效保证第一冷却支路15和第二冷却支路16能够同时向压缩机11中供应液体冷媒。需要说明的是,本发明不对所述第二预设时间和所述第二预设温度的具体数值作任何限制,技术人员可以根据实际使用需求自行设定所述第二预设温度,只要当压缩机11的温度大于或等于所述第二预设温度时就能够判断压缩机11需要得到快速冷却即可,优选地,所述第二预设温度为48℃;并且技术人员还可以根据实际使用需求自行设定所述第二预设时间,只要这个时长足以排除偶然误差即可,优选地,所述第二预设时间为3秒。
本领域技术人员能够理解的是,本发明不对除以上两种情况以外的其他情况作任何限制,技术人员可以自行设定其他情况所对应的冷却泵162的开闭状态;作为一种优选实施例,冷却泵162只在上述两种情况下开启,其余情况均不会开启,即保持关闭状态。
更进一步地,在冷却泵162已经开启的情况下,执行步骤S104,即,所述控制器能够按照上述获取方法再次获取压缩机11的温度和压比。接着,在步骤S105中,如果所述控制器判断出压缩机11的压比持续大于第二预设压比的时间达到第三预设时间且在该第三预设时间内压缩机11的温度持续小于或等于第三预设温度,则所述控制器控制冷却泵162关闭。需要说明的是,本发明不对所述第二预设压比、所述第三预设时间和所述第三预设温度的具体数值作任何限制,技术人员可以根据实际使用需求自行设定所述第二预设压比,只要当压缩机11的压比大于所述第二预设压比时就能够判断压缩机11与冷凝器12之间的压差足够即可,优选地,所述第二预设压比为1.6;技术人员还可以根据实际使用需求自行设定所述第三预设温度,只要当压缩机11的温度小于或等于所述第三预设温度时就能够判断压缩机11短时间内无需冷却即可,优选地,所述第三预设温度为46℃;技术人员还可以根据实际使用需求自 行设定所述第三预设时间,只要这个时长足以排除偶然误差即可,优选地,所述第三预设时间为10秒。
此外,本发明的压缩机冷却控制方法还包括:在冷却泵162已经处于开启状态的情况下,获取设置在冷却口111处的电磁阀的开闭状态,以便所述控制器能够根据所述电磁阀的开闭状态控制设置在泄压支路18上的流量调节阀181的开闭状态。具体地,如果所述电磁阀处于开启状态,则所述控制器控制流量调节阀181关闭,以便冷却泵162输送的冷媒能够通过第二冷却支路16全部进入压缩机11中以实现喷淋冷却;如果所述电磁阀处于关闭状态,则所述控制器控制流量调节阀181开启,以便冷却泵162输送的冷媒能够通过泄压支路18进入所述主循环回路中以保证压力平衡。还需要说明的是,本发明不对流量调节阀181的具体开启方式和关闭方式作任何限制,例如,可以逐渐开启至最大开度,也可以直接开启至预设开度就不再改变,技术人员可以根据实际使用需求自行设定。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调机组,其特征在于,所述空调机组包括冷却支路和主循环回路,所述主循环回路上设置有压缩机和冷凝器,所述压缩机上设置有冷却口,
    所述冷却支路包括第一冷却支路和第二冷却支路,
    所述第一冷却支路的一端与所述冷凝器相连,所述第一冷却支路的另一端与所述冷却口相连,所述第一冷却支路设置为能够利用压差将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却,
    所述第二冷却支路的一端也与所述冷凝器相连,所述第二冷却支路的另一端也与所述冷却口相连,所述第二冷却支路上设置有冷却泵,所述第二冷却支路设置为能够利用所述冷却泵将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却。
  2. 根据权利要求1所述的空调机组,其特征在于,所述第一冷却支路和/或所述第二冷却支路上还设置有单向阀。
  3. 根据权利要求2所述的空调机组,其特征在于,所述空调机组还包括连接支路,
    所述第一冷却支路和所述第二冷却支路均通过所述连接支路与所述冷凝器相连,并且所述连接支路上设置有开关阀。
  4. 根据权利要求2所述的空调机组,其特征在于,所述空调机组还包括泄压支路,
    所述泄压支路的一端连接至所述冷凝器的下游,所述泄压支路的另一端连接至所述冷却泵的下游,并且所述泄压支路上设置有流量调节阀。
  5. 一种用于空调机组的压缩机冷却控制方法,其特征在于,所述空调机组包括冷却支路和主循环回路,所述主循环回路上设置有压缩机和冷凝器,所述压缩机上设置有冷却口,所述冷却支路包括第一冷却支路和第二冷却支路,所述第一冷却支路的一端与所述冷凝器相连,所述第 一冷却支路的另一端与所述冷却口相连,所述第一冷却支路设置为能够利用压差将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却,所述第二冷却支路的一端也与所述冷凝器相连,所述第二冷却支路的另一端也与所述冷却口相连,所述第二冷却支路上设置有冷却泵,所述第二冷却支路设置为能够利用所述冷却泵将所述冷凝器中的液态冷媒导入所述压缩机中以实现喷淋冷却;
    所述压缩机冷却控制方法包括:
    获取所述压缩机的温度和压比;
    根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启。
  6. 根据权利要求5所述的压缩机冷却控制方法,其特征在于,“根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启”的步骤包括:
    如果所述压缩机的压比持续小于或等于第一预设压比的时间达到第一预设时间且在所述第一预设时间内所述压缩机的温度持续大于或等于第一预设温度,则控制所述冷却泵开启。
  7. 根据权利要求6所述的压缩机冷却控制方法,其特征在于,“根据所述压缩机的温度和压比,选择性地控制所述冷却泵开启”的步骤还包括:
    如果所述压缩机的压比持续大于所述第一预设压比的时间达到第二预设时间且在所述第二预设时间内所述压缩机的温度持续大于或等于第二预设温度,则控制所述冷却泵开启;
    其中,所述第二预设温度大于所述第一预设温度。
  8. 根据权利要求7所述的压缩机冷却控制方法,其特征在于,在所述冷却泵已经开启的情况下,所述压缩机冷却控制方法还包括:
    再次获取所述压缩机的温度和压比;
    根据所述压缩机的温度和压比,选择性地控制所述冷却泵关闭。
  9. 根据权利要求8所述的压缩机冷却控制方法,其特征在于,“根 据所述压缩机的温度和压比,选择性地控制所述冷却泵关闭”的步骤具体包括:
    如果所述压缩机的压比持续大于第二预设压比的时间达到第三预设时间且在所述第三预设时间内所述压缩机的温度持续小于或等于第三预设温度,则控制所述冷却泵关闭;
    其中,所述第二预设压比大于所述第一预设压比,所述第三预设温度小于所述第一预设温度。
  10. 根据权利要求5至9中任一项所述的压缩机冷却控制方法,其特征在于,所述空调机组还包括泄压支路,所述泄压支路的一端连接至所述冷凝器的下游,所述泄压支路的另一端连接至所述冷却泵的下游,并且所述泄压支路上设置有流量调节阀,所述压缩机的冷却口处设置有电磁阀;所述压缩机冷却控制方法还包括:
    在所述冷却泵处于开启状态的情况下,获取所述电磁阀的开闭状态;
    如果所述电磁阀处于开启状态,则控制所述流量调节阀关闭;
    如果所述电磁阀处于关闭状态,则控制所述流量调节阀开启。
PCT/CN2019/127935 2019-10-29 2019-12-24 空调机组及其压缩机冷却控制方法 WO2021082240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038355.9 2019-10-29
CN201911038355.9A CN112747391A (zh) 2019-10-29 2019-10-29 空调机组及其压缩机冷却控制方法

Publications (1)

Publication Number Publication Date
WO2021082240A1 true WO2021082240A1 (zh) 2021-05-06

Family

ID=75640811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127935 WO2021082240A1 (zh) 2019-10-29 2019-12-24 空调机组及其压缩机冷却控制方法

Country Status (2)

Country Link
CN (1) CN112747391A (zh)
WO (1) WO2021082240A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847247B (zh) * 2021-10-11 2024-04-12 广东肯富来泵业股份有限公司 喷淋冷却辅助的油田伴生气回收液环压缩机系统及方法
CN114508874B (zh) * 2022-01-26 2024-06-07 青岛海尔空调电子有限公司 压缩机冷却系统、冷却方法及空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324858B1 (en) * 1998-11-27 2001-12-04 Carrier Corporation Motor temperature control
CN201637191U (zh) * 2010-02-02 2010-11-17 泰冠能源科技股份有限公司 水冷式冰、热水节能机组结构
EP2532990A1 (en) * 2010-02-04 2012-12-12 Mayekawa Mfg. Co., Ltd. Heat pump and method for operating heat pump
CN103712382A (zh) * 2013-11-28 2014-04-09 中山市蓝水能源科技发展有限公司 具有泄压功能的空调系统
CN103782117A (zh) * 2011-09-16 2014-05-07 丹佛斯特波科尔压缩机有限公司 用于压缩机的马达冷却和子冷却回路
CN106642778A (zh) * 2016-11-14 2017-05-10 重庆美的通用制冷设备有限公司 无油冷水机组及空调系统
CN109556256A (zh) * 2018-10-17 2019-04-02 青岛海尔空调电子有限公司 空调器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360557B1 (en) * 2000-10-03 2002-03-26 Igor Reznik Counter flow air cycle air conditioner with negative air pressure after cooling
CN202648040U (zh) * 2012-07-05 2013-01-02 王丙林 多功能中低压微雾冷却降温节能系统
WO2014169212A1 (en) * 2013-04-12 2014-10-16 Emerson Climate Technologies, Inc. Compressor with flooded start control
CN103363710B (zh) * 2013-07-05 2016-03-02 广东长菱空调冷气机制造有限公司 一种空气源热泵热水器的热泵系统
CN203518304U (zh) * 2013-09-25 2014-04-02 珠海格力电器股份有限公司 电力电子器件冷却系统及分布式发电系统
KR101583507B1 (ko) * 2014-06-18 2016-01-08 임정빈 엔진과 유압시스템을 이용한 건물 냉난방 시스템
CN104075394B (zh) * 2014-06-26 2016-10-26 上海博雾环保科技有限公司 多用途高压微雾降温加湿节能装置
CN104132487B (zh) * 2014-07-24 2017-01-18 康特能源科技(苏州)有限公司 双压控制的空气源热泵系统
CN104566852B (zh) * 2014-12-15 2017-02-22 珠海格力电器股份有限公司 空调器及空调器的电机冷却方法
CN104883004B (zh) * 2015-06-11 2018-12-11 广东美的暖通设备有限公司 电机散热结构、空调器和电机散热方法
CN104883005B (zh) * 2015-06-11 2018-10-16 广东美的暖通设备有限公司 电机散热结构、空调器和电机散热方法
CN104896699B (zh) * 2015-06-11 2019-05-17 广东美的暖通设备有限公司 电机散热结构、空调器和电机散热方法
KR102435203B1 (ko) * 2015-10-20 2022-08-24 삼성전자주식회사 공기조화기 및 그 제어방법
CN107351629B (zh) * 2016-05-10 2019-11-22 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN106152608B (zh) * 2016-07-29 2018-11-02 珠海格力电器股份有限公司 一种结合空压系统与热泵系统的复合系统
CN110325804B (zh) * 2016-08-22 2021-08-20 江森自控科技公司 用于控制制冷系统的系统和方法
CN206146030U (zh) * 2016-09-18 2017-05-03 河北炫坤节能科技股份有限公司 一种喷淋降膜式风冷冷热水机组
JP2018063075A (ja) * 2016-10-13 2018-04-19 株式会社デンソー 冷凍サイクル装置
CN207145184U (zh) * 2017-09-15 2018-03-27 王涛 车载液压泡沫压缩机的冷却系统
CN107906812B (zh) * 2017-10-16 2020-11-20 青岛海尔空调电子有限公司 一种空调机组压缩机冷却控制方法及系统
CN108224838A (zh) * 2017-12-27 2018-06-29 青岛海尔空调电子有限公司 空调器系统
CN208644050U (zh) * 2018-07-13 2019-03-26 苏州鼎恒粉末冶金有限公司 一种冶金设备用散热装置
CN109412351B (zh) * 2018-12-17 2024-04-02 无锡职业技术学院 一种半封离心式压缩机的电机冷却系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324858B1 (en) * 1998-11-27 2001-12-04 Carrier Corporation Motor temperature control
CN201637191U (zh) * 2010-02-02 2010-11-17 泰冠能源科技股份有限公司 水冷式冰、热水节能机组结构
EP2532990A1 (en) * 2010-02-04 2012-12-12 Mayekawa Mfg. Co., Ltd. Heat pump and method for operating heat pump
CN103782117A (zh) * 2011-09-16 2014-05-07 丹佛斯特波科尔压缩机有限公司 用于压缩机的马达冷却和子冷却回路
CN103712382A (zh) * 2013-11-28 2014-04-09 中山市蓝水能源科技发展有限公司 具有泄压功能的空调系统
CN106642778A (zh) * 2016-11-14 2017-05-10 重庆美的通用制冷设备有限公司 无油冷水机组及空调系统
CN109556256A (zh) * 2018-10-17 2019-04-02 青岛海尔空调电子有限公司 空调器

Also Published As

Publication number Publication date
CN112747391A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2021000634A1 (zh) 空调器及其回油控制方法
WO2018094844A1 (zh) 一种空调系统及控制方法
WO2021082240A1 (zh) 空调机组及其压缩机冷却控制方法
WO2021022766A1 (zh) 用于空调机组的压缩机冷却控制方法
CN113137677B (zh) 热回收空调系统及其控制方法
CN206291547U (zh) 一种空调系统
CN107726569A (zh) 一种空调器的控制方法、控制系统及空调器
WO2023147753A1 (zh) 热泵机组及其控制方法
WO2020019849A1 (zh) 空调器及其室外机除霜控制方法
CN110595092A (zh) 一种喷气增焓空调系统及其控制方法
CN111780457B (zh) 一种热泵系统低水温启动的控制方法
CN102052733A (zh) 用于冷却系统的有效运行的方法
CN201476392U (zh) 一种自适应制冷量液冷源系统
JP7178482B2 (ja) 圧縮機システム、及び、その制御方法
CN111750483A (zh) 一种空调系统压力保护控制方法及空调器
WO2022068257A1 (zh) 组合式空调系统的控制方法
CN202869095U (zh) 一种能量调节制冷装置
WO2021213063A1 (zh) 螺杆压缩机的卸载控制方法
CN111076350B (zh) 一种压缩机启动的控制方法、装置及空调器
CN105444380A (zh) 一种冷水系统
CN203605379U (zh) 空调系统
CN203586595U (zh) 制冷空调机组
CN114216210A (zh) 一种判断制冷系统堵情况的方法及空调器
CN104101133A (zh) 压缩机排气系统及其排气方法
CN208901678U (zh) 一种热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950704

Country of ref document: EP

Kind code of ref document: A1