WO2018018764A1 - 冷暖型空调器及控制方法 - Google Patents

冷暖型空调器及控制方法 Download PDF

Info

Publication number
WO2018018764A1
WO2018018764A1 PCT/CN2016/102885 CN2016102885W WO2018018764A1 WO 2018018764 A1 WO2018018764 A1 WO 2018018764A1 CN 2016102885 W CN2016102885 W CN 2016102885W WO 2018018764 A1 WO2018018764 A1 WO 2018018764A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
valve port
outdoor
exchange portion
cylinder
Prior art date
Application number
PCT/CN2016/102885
Other languages
English (en)
French (fr)
Inventor
刘燕飞
李金波
戚文端
张建华
陈明瑜
操瑞兵
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621100141.1U external-priority patent/CN206160546U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018018764A1 publication Critical patent/WO2018018764A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a cold and warm air conditioner and a control method capable of improving the energy efficiency of an air conditioner.
  • the refrigerant after throttling by the throttling element directly enters the indoor heat exchanger for heat exchange, and a part of the gaseous refrigerant is mixed in the refrigerant after the throttling, and enters the room for replacement.
  • the gaseous refrigerant in the heat exchanger not only affects the heat exchange effect of the indoor heat exchanger, but also causes the compression power consumption of the compressor to increase, and the energy efficiency ratio of the compressor is lowered, thereby affecting the energy efficiency level of the air conditioner.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a cold and warm type air conditioner, which not only can improve the heat exchange effect of the indoor heat exchanger component, but also can improve the energy efficiency ratio of the two-cylinder compressor, reduce the power consumption of the two-cylinder compressor, and optimize the air-conditioning type air conditioner.
  • the energy efficiency level of the device is good.
  • the invention also proposes a control method for a cold and warm air conditioner.
  • a cooling and heating type air conditioner includes: a two-cylinder compressor including a casing, a first cylinder, and a second cylinder, wherein the casing is provided with an exhaust port, and the first suction a first air cylinder and a second air intake port, wherein the first cylinder and the second cylinder are respectively disposed in the casing, and an air intake passage of the first cylinder communicates with the first air inlet, the first The air intake passage of the two cylinders is in communication with the second air intake port, and the volume ratio of the first cylinder and the second cylinder ranges from 1 to 20; the reversing component, the reversing component includes a row a gas valve port, a first outdoor connection valve port, a second outdoor connection valve port, a first indoor connection valve port, a second indoor connection valve port, a first intake valve port and a second intake valve port, the exhaust valve a valve port is connected to the exhaust port, the first intake valve port is connected to the first intake port, the second intake valve
  • a cooling and heating type air conditioner by providing a first cylinder and a second cylinder on the one hand, and connecting the first cylinder and the second cylinder to the first suction port and the second suction port, respectively, and
  • the ratio of the volume ratio of one cylinder to the second cylinder ranges from 1 to 20, which is beneficial to improve the energy efficiency ratio of the two-cylinder compressor and reduce the power consumption of the two-cylinder compressor.
  • the outdoor heat exchanger assembly includes a first outdoor heat exchange portion and a second outdoor heat exchange portion, and the first indoor heat exchange portion is disposed corresponding to one of the throttling elements and the first outdoor heat exchange portion, so that The two indoor heat exchange portions are disposed corresponding to the other throttling element and the second outdoor heat exchange portion to facilitate respectively between the first indoor heat exchange portion and the first outdoor heat exchange portion and the second indoor heat exchange portion and
  • the refrigerant between the outdoor heat exchange parts is throttled and depressurized, thereby reducing the amount of gaseous refrigerant in the refrigerant after throttling, and then improving the heat exchange effect of the indoor heat exchanger component and the outdoor heat exchanger component, and optimizing
  • the energy efficiency level of the cold and warm air conditioner is good.
  • the reversing assembly includes two four-way valves, each of the four-way valves is provided with one of the exhaust valve ports, and one of the four-way valves is provided with the first indoor connection a valve port, the first outdoor connection valve port and the first intake valve port, and the other of the four-way valve is provided with the second indoor connection valve port, the second outdoor connection valve port, and the a second suction valve port; or the reversing assembly is a seven-way valve.
  • the two four-way valves are linked when the refrigerating and heating type air conditioner is cooled or heated.
  • the two-cylinder compressor further includes a first accumulator, the first accumulator is disposed outside the housing, and the first accumulator is respectively associated with the first suction
  • the gas port is connected to the first suction valve port.
  • the two-cylinder compressor further includes a second accumulator, the second accumulator being disposed outside the housing, the second accumulator being respectively associated with the second intake port and the The second suction valve port is connected.
  • the volume of the second reservoir is smaller than the volume of the first reservoir.
  • the throttling element is an electronic expansion valve, a capillary or a throttle.
  • the first outdoor heat exchange portion and the second outdoor heat exchange portion are two independent heat exchangers, or the first outdoor heat exchange portion and the second outdoor heat exchanger
  • the hot part is the two parts of the same heat exchanger.
  • the first indoor heat exchange portion and the second indoor heat exchange portion are two independent heat exchangers, or the first indoor heat exchange portion and the second indoor heat exchange The hot part is the two parts of the same heat exchanger.
  • the volume ratio of the first cylinder and the second cylinder ranges from 1 to 10.
  • the flow rate of the at least one throttle element is adjustable, and the flow rate of the throttle element with adjustable flow rate is adjusted to a predetermined flow rate according to the detection result of the detection object, wherein
  • the detection object includes at least one of an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust temperature of the exhaust port, and an exhaust pressure of the exhaust port.
  • control method of the air-conditioning type air conditioner according to the embodiment of the present invention is advantageous for improving the energy efficiency of the air conditioner.
  • the flow rates of the two throttle elements are fixed, and the operating frequency of the two-cylinder compressor is adjusted according to the detected compressor operating parameters and/or the outdoor ambient temperature to satisfy a condition, wherein the compressor operating parameter comprises at least one of an operating current, an exhaust pressure, and an exhaust temperature.
  • control method of the air-conditioning type air conditioner according to the embodiment of the present invention is advantageous for improving the energy efficiency of the air conditioner.
  • FIG. 1 is a schematic view of a cold and warm air conditioner according to some embodiments of the present invention.
  • FIG. 2 is a schematic view of a cold and warm type air conditioner according to other embodiments of the present invention.
  • Air conditioner 100
  • a two-cylinder compressor 1 a two-cylinder compressor 1; a first cylinder 11; a second cylinder 12; an exhaust port 13; a first intake port 14; a second intake port 15;
  • Outdoor heat exchanger assembly 2 first outdoor heat exchange portion 21; second outdoor heat exchange portion 22;
  • Indoor heat exchanger assembly 3 first indoor heat exchange portion 31; second indoor heat exchange portion 32;
  • Reversing assembly 5 exhaust valve port 51; first outdoor connecting valve port 52; second outdoor connecting valve port 53; first indoor connecting valve port 54; second indoor connecting valve port 55; first inspirating valve port 56 a second suction valve port 57;
  • First sensor A second sensor B;
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a cooling and heating type air conditioner 100 which can be used for cooling or heating an indoor environment, will be described below with reference to Figs.
  • the cold and warm air conditioner 100 may include a two-cylinder compressor 1, a reversing assembly 5, an outdoor heat exchanger assembly 2, and an indoor heat exchanger assembly 3.
  • the indoor heat exchanger assembly 3 is located within the casing of an indoor unit.
  • the two-cylinder compressor 1 includes a housing, a first cylinder 11 and a second cylinder 12.
  • First cylinder 11 and second The cylinders 12 are each disposed within the housing.
  • the first cylinder 11 and the second cylinder 12 are respectively disposed in the casing, and the first cylinder 11 and the second cylinder 12 are spaced apart from each other in the up and down direction of the twin cylinder compressor 1.
  • the second cylinder 12 and the first cylinder 11 are respectively disposed in the housing, and the second cylinder 12 and the first cylinder 11 are spaced apart in the up and down direction of the twin cylinder compressor 1.
  • the housing is provided with an exhaust port 13, a first intake port 14 and a second intake port 15, and the intake passage of the first cylinder 11 communicates with the first intake port 14,
  • the intake passage of the second cylinder 12 communicates with the second intake port 15, whereby the heat exchanged refrigerant can be returned from the first intake port 14 and the second intake port 15 to the twin-cylinder compressor 1, respectively.
  • the refrigerant returning from the first intake port 14 can flow to the first cylinder 11, and the refrigerant returning from the second intake port 15 can flow to the second cylinder 12, and the refrigerant is in the first cylinder 11 and the second cylinder 12.
  • the compressors are independently compressed, and the compressed refrigerant can flow from the first cylinder 11 and the second cylinder 12 to the exhaust port 13 and simultaneously discharge the twin-cylinder compressor 1 from the exhaust port 13.
  • the volume ratio of the first cylinder 11 and the second cylinder 12 ranges from 1 to 20, that is, the ratio of the volume of the second cylinder 12 to the volume of the first cylinder 11 ranges from (1/20) to 1.
  • the inventors have found in actual research that when the volume ratio of the first cylinder 11 and the second cylinder 12 ranges from 1 to 20, the energy efficiency of the twin-cylinder compressor 1 is significantly improved compared with the prior art, thereby The energy efficiency ratio of the twin-cylinder compressor 1 is increased, the power consumption of the twin-cylinder compressor 1 is reduced, and the energy efficiency level of the air-conditioning type air conditioner 100 is optimized.
  • the reversing assembly 5 includes an exhaust valve port 51, a first outdoor connection valve port 52, a second outdoor connection valve port 53, a first indoor connection valve port 54, and a second indoor connection valve port. 55.
  • one of the first outdoor connection valve port 52 and the first indoor connection valve port 54 may be reversibly communicated with the exhaust valve port 51, and the other of the first outdoor connection valve port 52 and the first indoor connection valve port 54 One can be in reverse communication with the first intake valve port 56; one of the second outdoor connection valve port 53 and the second indoor connection valve port 55 can be reversibly communicated with the exhaust valve port 51, and the second outdoor connection valve port 53 The other of the second indoor connection valve ports 55 is reversibly communicated with the second intake valve port 57.
  • the exhaust valve port 51 communicates with the first outdoor connection valve port 52 and the second outdoor connection valve port 53, respectively, and the first intake valve port 56 and the first indoor connection valve port 54 Connected, the second inhalation valve port 57 communicates with the second indoor connection valve port 55;
  • the exhaust valve port 51 is connected to the first indoor connection valve port 54 and the second indoor connection valve port, respectively 55 is communicated, the first intake valve port 56 is in communication with the first outdoor connection valve port 52, and the second intake valve port 57 is in communication with the second outdoor connection valve port 53.
  • one of the first outdoor connection valve port 52 and the second indoor connection valve port 55 is in reverse communication with the exhaust valve port 51, and the other of the first outdoor connection valve port 52 and the second indoor connection valve port 55
  • An intake valve port 56 is reversingly connected, and one of the second outdoor connection valve port 53 and the first indoor connection valve port 54 is in reverse communication with the exhaust valve port 51, and the second outdoor connection valve port 53 is connected to the first chamber.
  • the other of the valve ports 54 is in commutative communication with the second intake valve port 57.
  • the exhaust valve port 51 is connected to the exhaust port 13
  • the first intake valve port 56 is connected to the first intake port 14
  • the first The two suction valve ports 57 are connected to the second suction port 15, whereby the structure is simple and reliable.
  • the outdoor heat exchanger assembly 2 includes a first outdoor heat exchange portion 21 and a second outdoor heat exchange portion 22, and the first outdoor heat exchange portion 21 and the first outdoor connection valve port 52 Connected, the second outdoor heat exchange portion 22 is connected to the second outdoor connection valve port 53, the indoor heat exchanger assembly 3 includes a first indoor heat exchange portion 31 and a second indoor heat exchange portion 32, and the first indoor heat exchange portion 31 The two ends are respectively connected to the first indoor connection valve port 54 and the first outdoor heat exchange portion 21, and the two ends of the second indoor heat exchange portion 32 are respectively connected to the second indoor connection valve port 55 and the second outdoor heat exchange portion 22, Thereby forming a complete refrigerant flow path to facilitate the circulation of the refrigerant.
  • a throttle element 4a, 4b is connected in series between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21, the second indoor heat exchange portion 32, and the second outdoor heat exchange portion 22. That is, a throttle element 4a is connected in series between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21, and is connected in series between the second indoor heat exchange portion 32 and the second outdoor heat exchange portion 22. a throttling element 4b, which facilitates respectively performing refrigerant between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21 and between the second indoor heat exchange portion 32 and the second outdoor heat exchange portion 22 The throttling depressurization can reduce the amount of gaseous refrigerant in the refrigerant after throttling.
  • the two channels of refrigerant after throttling can flow to the first indoor heat exchange portion 31 and the second indoor heat exchange portion. 32 and independently exchange heat with the indoor environment in the first indoor heat exchange portion 31 and the second indoor heat exchange portion 32.
  • the two channels of refrigerant after throttling can flow correspondingly to the first The outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22 independently exchange heat with the outdoor environment, thereby facilitating the heat exchange effect of the indoor heat exchanger assembly 3 and the outdoor heat exchanger assembly 2, and optimizing the air-conditioning type air conditioner.
  • the energy efficiency level of the device 100 is cooled.
  • the flow degrees of the two throttle elements 4a, 4b are adjustable or the flow degrees of the two throttle elements 4a, 4b are not adjustable, or one of the two throttle elements 4a, 4b, 4a,
  • the flow rate of 4b is adjustable and the flow rate of the other throttle element 4a, 4b is fixed.
  • a throttle element 4a having an adjustable flow rate is connected in series between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21, and the second indoor heat exchange portion 32 and the second outdoor heat exchange portion 22 are connected in series.
  • a throttle element 4b with a fixed flow rate in series is connected in series.
  • a flow-regulating throttle element 4a is connected in series between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21, in the second indoor heat exchange portion 32 and the second outdoor A throttle element 4b having an adjustable flow rate is connected in series between the heat exchange portions 22.
  • the throttle elements 4a, 4b with adjustable flow rates are electronic expansion valves, and the throttle elements 4a, 4b of fixed flow rate are capillary or throttle valves.
  • the structure simple, but also responsive.
  • the exhaust valve port 51 communicates with the first outdoor connection valve port 52 and the second outdoor connection valve port 53, respectively.
  • the intake valve port 56 communicates with the first indoor connection valve port 54
  • the second intake valve port 57 communicates with the second indoor connection valve port 55
  • the refrigerant discharged from the exhaust port 13 of the twin-cylinder compressor 1 can be exhausted.
  • the valve port 51 flows to the first outdoor connection valve port 52 and the second outdoor connection valve port 53, and then the two refrigerants flow from the first outdoor connection valve port 52 and the second outdoor connection valve port 53 respectively to the corresponding first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22, the two refrigerants respectively exchange heat with the outdoor environment in the corresponding first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22, and then the two refrigerants exchange heat from the first outdoor After the portion 21 and the second outdoor heat exchange portion 22 flow out, respectively pass through the corresponding throttling elements 4a, 4b, and are throttled and depressurized by the corresponding throttling elements 4a, 4b, respectively, flowing to the first indoor heat exchange portion 31 and a second indoor heat exchange portion 32, The two refrigerants exchange heat with the indoor environment in the corresponding first indoor heat exchange portion 31 and the second indoor heat exchange portion 32 to cool the indoor environment, and the two refrigerants after heat exchange respectively exchange heat from the corresponding first chamber
  • the exhaust valve port 51 communicates with the first indoor connection valve port 54 and the second indoor connection valve port 55, respectively, the first intake valve The port 56 communicates with the first outdoor connection valve port 52, the second intake valve port 57 communicates with the second outdoor connection valve port 53, and the refrigerant discharged from the exhaust port 13 of the twin-cylinder compressor 1 can pass through the exhaust valve port 51.
  • the two refrigerants flow from the first indoor connection valve port 54 and the second indoor connection valve port 55 to the corresponding first indoor heat exchange portion 31 and the first
  • the high-temperature high-pressure refrigerant is respectively formed, and the compressed two-way refrigerant can flow from the first cylinder 11 and the second cylinder 12 to the exhaust port 13 respectively, and simultaneously discharge the two-cylinder compressor 1 from the exhaust port 13, thereby forming a cold-warmed air conditioner.
  • the heating cycle of the device 100 is respectively formed, and the compressed two-way refrigerant can flow from the first cylinder 11 and the second cylinder 12 to the exhaust port 13 respectively, and simultaneously discharge the two-cylinder compressor 1 from the exhaust port 13, thereby forming a cold-warmed air conditioner.
  • the air-conditioning type air conditioner 100 on the one hand, by providing the first cylinder 11 and the second cylinder 12, and the first cylinder 11 and the second cylinder 12, respectively, with the first intake port 14 and the second intake port The port 15 is connected, and the volume ratio of the first cylinder 11 and the second cylinder 12 is in the range of 1 to 20, thereby facilitating the improvement of the energy efficiency ratio of the twin-cylinder compressor 1 and reducing the power consumption of the twin-cylinder compressor 1;
  • the indoor heat exchanger assembly 3 include the first indoor heat exchange portion 31 and the second indoor heat exchange portion 32, respectively, the outdoor heat exchanger assembly 2 includes the first outdoor heat exchange portion 21 and the second outdoor heat exchange, respectively.
  • the hot portion 22, and the first indoor heat exchange portion 31 is disposed corresponding to one of the throttling elements 4a and the first outdoor heat exchange portion 21, so that the second indoor heat exchange portion 32 and the other throttling element 4b and the second outdoor
  • the heat exchange portion 22 is disposed correspondingly to facilitate the refrigerant between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21 and between the second indoor heat exchange portion 32 and the second outdoor heat exchange portion 22, respectively.
  • Throttle depressurization which is beneficial to reduce the amount of refrigerant in the throttling State refrigerant amount, in turn, help improve the heat transfer effect of the indoor heat exchanger 3 and the outdoor heat exchanger assembly assembly 2, to optimize energy efficiency of heating and cooling type air conditioner 100, energy-saving effect.
  • the reversing assembly 5 includes two four-way valves, each of which is provided with an exhaust valve port 51, and one of the four-way valves is provided with a first indoor connection.
  • the valve port 54, the first outdoor connection valve port 52 and the first intake valve port 56, and the other four-way valve is provided with a second indoor connection valve port 55, a second outdoor connection valve port 53 and a second intake valve port 57. .
  • the refrigerant discharged from the exhaust port 13 can flow to the two exhaust valve ports 51, respectively, and the structure is simple and reliable.
  • the present invention is not limited thereto.
  • the reversing assembly 5 is a seven-way valve, the structure is simple and reliable, and the arrangement of the seven-way valve is advantageous for reducing the cost.
  • the two four-way valves are interlocked when the refrigerating and heating type air conditioner 100 is cooled or heated, thereby facilitating the simultaneous reversing function of the two four-way valves, so as to facilitate
  • the cold-air type air conditioner 100 is cooled
  • one of the four-way valve exhaust valve ports 51 communicates with the first outdoor connection valve port 52 and the first intake valve port 56 communicates with the first indoor connection valve port 54
  • the other four-way The exhaust valve port 51 of the valve is in communication with the second outdoor connection valve port 53 and the second intake valve port 57 is in communication with the second indoor connection valve port 55.
  • the two four-way valves may also be non-coupling, for example, when one of the first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22 works. While the other is performing defrosting, the two four-way valves can be reversed without being linked.
  • the two-cylinder compressor 1 further includes a first accumulator 16 disposed outside the housing, the first accumulator 16 being respectively associated with the first intake port 14 and the first An intake valve port 56 is connected, thereby facilitating gas-liquid separation of the refrigerant flowing out of the first intake valve port 56, so that the gaseous refrigerant flows to the first cylinder 11 through the first intake port 14 and the liquid refrigerant is stored.
  • first reservoir 16 liquid flooding of the first cylinder 11 by the liquid refrigerant is thereby avoided.
  • the two-cylinder compressor 1 further includes a second accumulator 17, the second accumulator 17 is disposed outside the casing, and the second accumulator 17 is respectively connected to the second suction port 15 and the second suction port 57. Connected, thereby facilitating gas-liquid separation of the refrigerant flowing out of the second intake valve port 57, so that the gaseous refrigerant flows to the second cylinder 12 through the second intake port 15 and the liquid refrigerant is stored in the second accumulator 17, thereby avoiding the liquid blow of the liquid refrigerant to the second cylinder 12, which in turn is advantageous for improving the reliability of the operation of the twin-cylinder compressor 1.
  • the volume of the second reservoir 17 may be greater than, equal to, or less than the volume of the first reservoir 16.
  • the volume of the second reservoir 17 is smaller than the volume of the first reservoir 16.
  • the second cylinder 12 is smaller than the volume of the first cylinder 11, by making the volume of the second accumulator 17 smaller than the volume of the first accumulator 16, it is guaranteed not only to flow back to the first cylinder 11 and the first
  • the amount of refrigerant in the two cylinders 12 is also advantageous in reducing costs.
  • the first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22 are two independent heat exchangers, thereby facilitating the heat exchange effect of the outdoor heat exchanger assembly 2.
  • the present invention is not limited thereto.
  • the first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22 are two parts of the same heat exchanger, thereby being simple and reliable, and being advantageous in reducing cost.
  • the first indoor heat exchange portion 31 and the second indoor heat exchange portion 32 are two independent heat exchangers, thereby facilitating the heat exchange effect of the indoor heat exchanger assembly 3.
  • the present invention is not limited thereto.
  • the first indoor heat exchange portion 31 and the second indoor heat exchange portion 32 are two portions of the same heat exchanger, thereby being simple and reliable, and being advantageous in reducing cost.
  • the volume ratio of the first cylinder 11 and the second cylinder 12 be in the range of 1 to 10.
  • the air-conditioning type air conditioner 100 further includes a first sensor A located at the exhaust port 13 for detecting the temperature or pressure of the refrigerant at the exhaust port 13.
  • the first sensor A is a pressure sensor or a temperature sensor.
  • the air-conditioning type air conditioner 100 further includes a second sensor B located on the first indoor heat exchange portion 31 or on the second indoor heat exchange portion 32 for detecting the temperature or pressure of the corresponding refrigerant.
  • the second sensor B is a pressure sensor or a temperature sensor.
  • the air-conditioning type air conditioner 100 of the present embodiment includes a two-cylinder compressor 1, a reversing unit 5, an outdoor heat exchanger unit 2, and an indoor heat exchanger unit 3.
  • the reversing assembly 5 is a seven-way valve.
  • the two-cylinder compressor 1 includes a housing, a first cylinder 11 and a second cylinder 12.
  • the first cylinder 11 and the second cylinder 12 are respectively disposed in the casing.
  • the housing is provided with an exhaust port 13, a first intake port 14 and a second intake port 15, and the intake passage of the first cylinder 11 communicates with the first intake port 14, the second cylinder
  • the intake passage of 12 is in communication with the second intake port 15, whereby the heat exchanged refrigerant can be returned from the first intake port 14 and the second intake port 15 to the twin-cylinder compressor 1, respectively.
  • the reversing assembly 5 includes an exhaust valve port 51, a first outdoor connecting valve port 52, a second outdoor connecting valve port 53, a first indoor connecting valve port 54, a second indoor connecting valve port 55, and a An intake valve port 56 and a second intake valve port 57.
  • the exhaust valve port 51 is connected to the exhaust port 13
  • the first intake valve port 56 is connected to the first intake port 14
  • the second intake valve port 57 is connected to the second intake port 15, thereby simplifying the structure. .
  • the outdoor heat exchanger assembly 2 includes a first outdoor heat exchange portion 21 and a second outdoor heat exchange portion 22, and the first outdoor heat exchange portion 21 is connected to the first outdoor connection valve port 52,
  • the second outdoor heat exchange portion 22 is connected to the second outdoor connection valve port 53.
  • the indoor heat exchanger assembly 3 includes a first indoor heat exchange portion 31 and a second indoor heat exchange portion 32, and the two ends of the first indoor heat exchange portion 31 are respectively Connected to the first indoor connection valve port 54 and the first outdoor heat exchange portion 21, the two ends of the second indoor heat exchange portion 32 are respectively connected to the second indoor connection valve port 55 and the second outdoor heat exchange portion 22, thereby forming a complete The refrigerant flow path to facilitate the circulation of refrigerant.
  • a throttle element 4a, 4b is connected in series between the first indoor heat exchange portion 31 and the first outdoor heat exchange portion 21, the second indoor heat exchange portion 32 and the second outdoor heat exchange portion 22, wherein one of the throttle members 4a
  • the flow rate of 4b is adjustable, and the flow rate of the other throttle elements 4a, 4b is fixed.
  • the throttle elements 4a and 4b whose flow rates are adjustable are electronic expansion valves, and the throttle elements 4a and 4b whose flow rates are fixed are capillary tubes.
  • the first outdoor heat exchange portion 21 and the second outdoor heat exchange portion 22 are two independent heat exchangers, and the first indoor heat exchange portion 31 and the second indoor heat exchange portion 32 are two independent heat exchangers.
  • Two outdoor heat exchange sections are located in the same room In the casing of the outer machine, the two indoor heat exchange parts are located in the casing of the same indoor unit.
  • the inventors conducted a plurality of experiments using an air conditioner to verify the relationship between the volume ratio of the first cylinder 11 and the second cylinder 12 and the energy efficiency increase ratio of the twin cylinder compressor 1.
  • the energy efficiency of the whole machine is significantly improved compared with the prior art.
  • the volume ratio of the first cylinder 11 and the second cylinder 12 ranges from 1 to 10.
  • the flow rate of the two throttling elements of the air-conditioning type air conditioner is adjustable, and the flow rate of the throttling element may not be adjustable.
  • the flow rate of one of the two throttling elements is adjustable and the flow rate of the other throttling element is fixed. It can be understood here that the fixed flow rate means that the flow rate of the throttle element is not adjustable.
  • the flow rate of the throttling element with adjustable flow rate is adjusted to a predetermined flow rate according to the detection result of the detection object, wherein the detection object includes the outdoor ambient temperature, the twin-cylinder compressor At least one of a running frequency, an exhaust temperature of the exhaust port, and an exhaust pressure of the exhaust port.
  • the air-conditioning type air conditioner includes a controller, and the controller can adjust the flow rate of the throttle element with adjustable flow rate to the set flow rate according to the detection result of the detection object.
  • the flow rate of one of the two throttling elements is adjustable, the flow rate of the throttling element whose flow rate is adjustable is adjusted according to the detection result of the detection object to the set flow rate;
  • the detection objects corresponding to the two throttling elements may be the same or different.
  • the flow rate of the two throttling elements can be adjusted to the set flow rate according to the detection results of the first detection object and the second detection object.
  • the first detection object and the second detection object each include at least one of an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust temperature of the exhaust port, and an exhaust pressure of the exhaust port.
  • the same as the first detection object and the second detection object means that the parameters required for adjusting the two throttling elements are the same, and the first detection object and the second detection object are not used to adjust two. The parameters required for the throttling elements are different.
  • the detection object of the throttling element may be the same or different when cooling and heating, for example, the detection object during cooling is outdoor.
  • the ambient temperature and the object of detection during heating are the exhaust gas temperature.
  • the detection objects of each throttling element may be the same or different under two different operating conditions of cooling and heating. For example, when cooling, one of the throttling elements detects the outdoor ambient temperature, and the other throttling element detects the operating frequency of the compressor. When heating, the one of the throttling elements is exhausted. Pressure, the other throttle element
  • the object to be tested is the outdoor ambient temperature.
  • the parameters required for the throttling element with adjustable flow rate are collected, and then the flow rate of the throttle element with adjustable flow rate is adjusted according to the obtained parameters until the flow rate is set.
  • the steps of collecting and processing the parameters required to control the two throttling elements can be performed simultaneously or sequentially.
  • the detection objects corresponding to the two throttling elements are both outdoor ambient temperature T4; or
  • the corresponding detection object of the throttling element is the outdoor ambient temperature.
  • the outdoor ambient temperature is preset to a plurality of outdoor temperature intervals, and each outdoor temperature interval corresponds to a flow rate of different throttling elements, corresponding to an outdoor temperature interval in which the actually detected outdoor environmental temperature value is located.
  • the flow rate value of the throttling element adjusts the flow rate of the throttling element whose flow rate is adjustable.
  • the flow rate of the two throttling elements is adjusted according to the flow rate value of the throttling element corresponding to the outdoor temperature range in which the actually detected outdoor ambient temperature value is present;
  • the flow rate of the one throttling element in the throttling element is adjustable, the flow rate of the throttling element is adjusted according to the flow rate value of the throttling element corresponding to the outdoor temperature range in which the actually detected outdoor environmental temperature value is located degree
  • T4 Flow rate 10 ⁇ T4 ⁇ 20 100 20 ⁇ T4 ⁇ 30 110 30 ⁇ T4 ⁇ 40 120 40 ⁇ T4 ⁇ 50 150 50 ⁇ T4 ⁇ 60 180
  • T4 Flow rate 10 ⁇ T4 ⁇ 20 160 5 ⁇ T4 ⁇ 10 180 -5 ⁇ T4 ⁇ 5 200 -10 ⁇ T4 ⁇ -5 250 -15 ⁇ T4 ⁇ -10 300
  • the detection objects of the two throttling elements when the flow degrees of the two throttling elements are both adjustable, the detection objects of the two throttling elements, that is, the first detection object and the second detection object are the outdoor ambient temperature T4 and the operating frequency F;
  • the corresponding detection object of the throttling element is the outdoor ambient temperature T4 and the operating frequency F.
  • the set flow of the throttling element is first calculated based on the outdoor ambient temperature and the operating frequency. Measure, then adjust the flow rate of the throttling element according to the set flow rate. That is to say, when the flow degrees of the two throttling elements are both adjustable, the set flow rate of the throttling element is first calculated according to the outdoor ambient temperature and the operating frequency, and then the two throttling elements are adjusted according to the set flow rate. Flow rate; when the flow rate of one of the two throttling elements is adjustable, the set flow rate of the throttling element is first calculated according to the outdoor ambient temperature and the operating frequency, and then the adjusted flow rate is adjusted according to the set flow rate. The flow rate of a throttling element.
  • the flow rate of the throttle element with adjustable flow rate is increased to calculate the flow rate; Wherein 0 ⁇ a 1 ⁇ 20,0 ⁇ b 1 ⁇ 20, -50 ⁇ c 1 ⁇ 100.
  • the control coefficients a, b, and c can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the flow rate of the throttle element.
  • the outdoor ambient temperature is detected to be 35 ° C
  • the compressor operating frequency is 58 Hz
  • the cooling and heating type air conditioner calculates that the flow rate of the throttling element should be 120, and adjusts the flow rate of the throttling element whose flow rate is adjustable to 120.
  • the compressor operating frequency is 72 Hz
  • the flow rates of the two throttling elements are adjustable, and the detection objects corresponding to the two throttling elements, that is, the first detection object and the second detection object are both the outdoor ambient temperature T4 and the operation.
  • Frequency F and exhaust pressure; or the first detection object and the second detection object are outdoor ambient temperature T4, operating frequency F, and exhaust temperature, and when cooling or heating operation, first calculated according to outdoor ambient temperature T4 and operating frequency F Set the exhaust pressure or set the exhaust temperature, and then adjust the flow rate of the two throttle elements according to the actually detected exhaust pressure or exhaust temperature so that the detected exhaust pressure or exhaust temperature reaches the set row Air pressure or set the exhaust temperature.
  • the flow rate of one of the two throttling elements is adjustable, and the object of the throttling element with adjustable flow rate is an outdoor ambient temperature T4, an operating frequency F, and an exhaust gas. Pressure or outdoor ambient temperature T4, operating frequency F and exhaust temperature.
  • one of the two throttling elements has an adjustable flow rate, refrigeration
  • the object to be detected by the throttling element is the outdoor ambient temperature T4, and the object to be detected by the throttling element during heating is the outdoor ambient temperature T4, the operating frequency F, and the exhaust pressure.
  • the outdoor ambient temperature is preset with a plurality of outdoor temperature intervals, each outdoor temperature interval corresponding to the flow rate of different throttling elements, and the throttling corresponding to the outdoor temperature range in which the actually detected outdoor environmental temperature value is located
  • the flow rate value of the component adjusts the flow rate of the throttle element.
  • the set exhaust pressure is first calculated according to the outdoor ambient temperature T4 and the operating frequency F, and then the flow rate of the throttle element is adjusted according to the actually detected exhaust pressure so that the detected exhaust pressure reaches the set Set the exhaust pressure.
  • the flow rate of the throttle element is adjusted according to the actually detected exhaust pressure so that the detected exhaust pressure reaches the set Set the exhaust pressure.
  • the flow degrees of the two throttling elements are adjustable, and the first detection object corresponding to one of the throttling elements is the outdoor ambient temperature T4, and the outdoor ambient temperature during cooling and heating operations.
  • the first detection object corresponding to one of the throttling elements is the outdoor ambient temperature T4, and the outdoor ambient temperature during cooling and heating operations.
  • the corresponding second detection object is an outdoor ambient temperature and an operating frequency.
  • the set flow rate of the other throttling element may be first calculated according to the outdoor ambient temperature T4 and the operating frequency F, and then according to The flow rate is set to adjust the flow rate of the other throttle element.
  • T4 Flow rate 10 ⁇ T4 ⁇ 20 100 20 ⁇ T4 ⁇ 30 110 30 ⁇ T4 ⁇ 40 120 40 ⁇ T4 ⁇ 50 150 50 ⁇ T4 ⁇ 60 180
  • LA_cool_1 a 1 ⁇ F+b 1 T 4 +c 1
  • LA_cool_1 a 1 ⁇ F+b 1 T 4 +c 1
  • the control coefficients a, b, and c can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the flow rate of the throttle element.
  • T4 Flow rate 10 ⁇ T4 ⁇ 20 160 5 ⁇ T4 ⁇ 10 180 -5 ⁇ T4 ⁇ 5 200 -10 ⁇ T4 ⁇ -5 250 -15 ⁇ T4 ⁇ -10 300
  • LA_heat_1 x 1 ⁇ F+y 1 T 4 +z 1
  • the control coefficients x, y, and z may each be 0.
  • the detection object may be re-detected after n seconds of operation, and then the flow rate of the throttle element is adjusted according to the detection result, and thus repeated.
  • the repetition condition is not limited thereto.
  • the detection object may be re-detected, and then the flow rate of the throttle element is adjusted according to the detection result.
  • the operating frequency of the two-cylinder compressor is adjusted according to the detected compressor operating parameters and/or the outdoor ambient temperature to meet the condition, wherein the compressor operating parameters include the operating current and the exhaust pressure. At least one of the exhaust temperatures; in other words, the operating frequency of the two-cylinder compressor is adjusted according to the detection result of the detection object, wherein the detection object includes the outdoor ambient temperature, the exhaust temperature of the exhaust port, and the exhaust pressure of the exhaust port. At least one of the operating currents of the two-cylinder compressor.
  • the compressor operating parameters and/or the outdoor ambient temperature may be re-detected after n seconds of operation, and then the operating frequency of the compressor is adjusted according to the re-detected detection result, thus repeating .
  • the repetition condition is not limited thereto.
  • the compressor operation parameter and/or the outdoor environment temperature may be re-detected, and then the operating frequency of the compressor may be adjusted according to the re-detected detection result.
  • the compressor operating parameters and/or the outdoor ambient temperature may be re-detected after n seconds of operation or after receiving the user's operating signal, and then according to the detection. As a result, the operating frequency is adjusted and repeated.
  • the compressor stops operating.
  • the system by adjusting the operating frequency of the compressor according to the detection result during the operation, the system can be operated within a suitable parameter range, and the reliability of the operation of the air conditioner can be improved.
  • a plurality of different exhaust gas temperature intervals are first preset, and the plurality of exhaust gas temperature ranges have different adjustment commands corresponding to the operating frequency, and then the exhaust gas temperature is detected and according to the detected exhaust gas temperature.
  • the adjustment command corresponding to the exhaust temperature range adjusts the operating frequency.
  • the adjustment command may include instructions of down-converting, up-converting, maintaining frequency, shutting down, and releasing the frequency limit. Therefore, by detecting the exhaust gas temperature and adjusting the operating frequency of the compressor, the operating state of the system can be directly reacted to ensure that the system operates within a suitable parameter range, thereby further improving the reliability of the operation of the air conditioner.
  • the release of the frequency limit means that the operating frequency of the compressor is not limited, and it is not necessary to adjust the operating frequency of the compressor.
  • the air conditioner is turned on and off, and the exhaust temperature TP is detected during operation.
  • the following adjustment commands are set: 115 °C ⁇ TP, shutdown; 110 ° C ⁇ TP ⁇ 115 ° C, down frequency to TP ⁇ 110 ° C; 105 ° C ⁇ TP ⁇ 110°C, frequency hold; TP ⁇ 105°C, release frequency limit.
  • a corresponding adjustment command is executed, and after the adjustment is completed, the TP is detected again. If the adjustment is satisfied, the determination is ended.
  • the exhaust gas temperature TP is detected again, and the determination is repeated. While running for n seconds, if the user shutdown command is detected or the set temperature is reached, the operation ends.
  • a plurality of outdoor temperature ranges, heating shutdown protection currents, and cooling shutdowns are preset.
  • the current is protected, and multiple outdoor temperature ranges correspond to different frequency limiting protection currents.
  • the outdoor ambient temperature is detected, and then the corresponding frequency-limiting protection current is obtained according to the detected outdoor temperature range of the outdoor ambient temperature, and the operating frequency is adjusted so that the actually detected operating current reaches a corresponding frequency-limiting protection current, wherein when cooling
  • the running current detected during heating is greater than the heating shutdown protection current, it will stop directly.
  • the correspondence between the plurality of outdoor temperature intervals and the corresponding frequency limiting protection current during cooling can be as follows: when T4>50.5° C., the frequency limiting protection current is CL5; when 49.5° C ⁇ T4>45.5° C., the limit is The frequency protection current is CL4; when 44.5°C ⁇ T4>41°C, the frequency limiting protection current is CL3; when 40°C ⁇ T4>33°C, the frequency limiting protection current is CL2; when 32 ⁇ T4°C, the frequency limiting protection current is CL1.
  • the specific values of the CL5, CL4, CL3, CL2, and CL1 and the cooling shutdown protection current may be specifically limited according to actual conditions, and are not limited herein.
  • the outdoor ambient temperature T4 detected during the cooling operation is within the outdoor temperature range of 40 ° C ⁇ T4 > 33 ° C, it means that the operating current is not allowed to exceed the frequency limiting protection current CL2. If it is exceeded, the frequency will be reduced to lower than the operating current.
  • the frequency limiting protection current is CL2.
  • the corresponding relationship between multiple outdoor temperature intervals and the corresponding frequency limiting protection current during heating can be as follows: when T4>15°C, the frequency limiting protection current is HL5; when 14°C>T4 ⁇ 10°C, the frequency limiting protection The current is HL4; when 9°C>T4 ⁇ 6°C, the current limiting protection current is HL3; when 5°C>T4 ⁇ -19°C, the frequency limiting protection current is HL2; when -20°C>T4, the frequency limiting protection current is HL1.
  • the specific values of HL5, HL4, HL3, HL2, HL1 and the heating shutdown protection current can be specifically limited according to the actual situation, and are not limited herein.
  • the outdoor ambient temperature T4 detected during heating operation is located in the outdoor temperature range of 9 °C>T4 ⁇ 6 °C, it means that the operating current is not allowed to exceed the frequency limiting protection current HL3. If it exceeds, the frequency will be reduced to lower than the running current. Frequency limiting protection current HL3.
  • a plurality of outdoor temperature intervals may be preset, and the plurality of outdoor temperature intervals correspond to different set operating frequencies, and the set operating frequency corresponding to the outdoor temperature range in which the actually detected outdoor ambient temperature is located Adjust the operating frequency of the compressor.
  • a plurality of different exhaust pressure intervals are first preset, and the adjustment commands of the operating frequencies corresponding to the plurality of exhaust pressure intervals are different, and then the exhaust pressure is detected and according to the detected exhaust pressure.
  • the adjustment command corresponding to the exhaust pressure range adjusts the operating frequency.
  • the adjustment command may include instructions of down-converting, up-converting, maintaining frequency, shutting down, and releasing the frequency limit. Therefore, by detecting the exhaust pressure to adjust the operating frequency of the compressor, the operating state of the system can be directly reacted to ensure that the system operates within a suitable parameter range, thereby further improving the reliability of the operation of the air conditioner.
  • control method of the air-conditioning type air conditioner according to the embodiment of the present invention is advantageous for improving the energy efficiency of the air-conditioning type air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

提供一种冷暖型空调器(100)及控制方法。冷暖型空调器(100)包括:双缸压缩机(1);换向组件(5)包括第一室外连接阀口(52)、第二室外连接阀口(53)、第一室内连接阀口(54)、第二室内连接阀口(55);室外换热器组件(2)包括第一室外换热部分(21)和第二室外换热部分(22);室内换热器组件(3)包括第一室内换热部分(31)和第二室内换热部分(32),第一室内换热部分(31)和第一室外换热部分(21)、第二室内换热部分(32)和第二室外换热部分(22)之间均串联有一个节流元件(4a、4b)。

Description

冷暖型空调器及控制方法 技术领域
本发明涉及空调技术领域,尤其是涉及一种能提升空调能效的冷暖型空调器及控制方法。
背景技术
一般地,空调器在制冷时,经节流元件节流后的制冷剂直接进入到室内换热器中进行换热,由于节流后的制冷剂中混有一部分气态制冷剂,进入到室内换热器中的气态制冷剂不但影响室内换热器的换热效果,同时导致压缩机的压缩功耗增大,压缩机的能效比降低,从而影响到空调器的能效水平。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种冷暖型空调器,不但可提高室内换热器组件的换热效果,而且可提高双缸压缩机的能效比,降低双缸压缩机的功耗,优化冷暖型空调器的能效水平,节能效果好。
本发明还提出一种冷暖型空调器的控制方法。
根据本发明实施例的冷暖型空调器,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸和第二气缸,所述壳体上设有排气口、第一吸气口和第二吸气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一气缸的吸气通道与所述第一吸气口连通,所述第二气缸的吸气通道与所述第二吸气口连通,所述第一气缸和所述第二气缸的容积比值的取值范围为1~20;换向组件,所述换向组件包括排气阀口、第一室外连接阀口、第二室外连接阀口、第一室内连接阀口、第二室内连接阀口、第一吸气阀口和第二吸气阀口,所述排气阀口与所述排气口相连,所述第一吸气阀口与所述第一吸气口相连,所述第二吸气阀口与所述第二吸气口相连;室外换热器组件,所述室外换热器组件包括第一室外换热部分和第二室外换热部分,所述第一室外换热部分与所述第一室外连接阀口相连,所述第二室外换热部分与所述第二室外连接阀口相连;室内换热器组件,所述室内换热器组件包括第一室内换热部分和第二室内换热部分,所述第一室内换热部分的两端分别与所述第一室内连接阀口和第一室外换热部分相连,所述第二室内换热部分的两端分别与所述第二室内连接阀口和第二室外换热部分相连,所述第一室内换热部分和所述第一室外换热部分、所述第二室内换热部分和所述第二室外换热部分之间均串联有一个节流元件。
根据本发明实施例的冷暖型空调器,一方面通过设置第一气缸和第二气缸,并使第一气缸和第二气缸分别与第一吸气口和第二吸气口连通,且使第一气缸和第二气缸的容积比值的取值范围为1~20,从而有利于提高双缸压缩机的能效比,降低双缸压缩机的功耗;另一方面通过使室内换热器组件分别包括第一室内换热部分和第二室内换热部 分,使室外换热器组件分别包括第一室外换热部分和第二室外换热部分,并使第一室内换热部分与其中一个节流元件和第一室外换热部分对应设置,使第二室内换热部分与另一个节流元件和第二室外换热部分对应设置,以便于分别对第一室内换热部分和第一室外换热部分之间以及对第二室内换热部分和第二室外换热部分之间的冷媒进行节流降压,从而可减少节流后的冷媒中的气态冷媒量,继而有利于提高室内换热器组件和室外换热器组件的换热效果,优化冷暖型空调器的能效水平,节能效果好。
根据本发明的一些实施例,所述换向组件包括两个四通阀,每个所述四通阀设有一个所述排气阀口,其中一个四通阀设有所述第一室内连接阀口、所述第一室外连接阀口和所述第一吸气阀口,另一个所述四通阀设有所述第二室内连接阀口、所述第二室外连接阀口和所述第二吸气阀口;或者所述换向组件为一个七通阀。
具体地,所述换向组件包括两个四通阀时,所述两个四通阀在所述冷暖型空调器制冷或制热时联动。
根据本发明的一些实施例,所述双缸压缩机还包括第一储液器,所述第一储液器设在所述壳体外,所述第一储液器分别与所述第一吸气口和所述第一吸气阀口相连。
具体地,所述双缸压缩机还包括第二储液器,所述第二储液器设在所述壳体外,所述第二储液器分别与所述第二吸气口和所述第二吸气阀口相连。
具体地,所述第二储液器的容积小于所述第一储液器的容积。
根据本发明的一些实施例,所述节流元件为电子膨胀阀、毛细管或者节流阀。
根据本发明的一些实施例,所述第一室外换热部分和所述第二室外换热部分为两个独立的换热器,或者所述第一室外换热部分和所述第二室外换热部分为同一个换热器的两部分。
根据本发明的一些实施例,所述第一室内换热部分和所述第二室内换热部分为两个独立的换热器,或者所述第一室内换热部分和所述第二室内换热部分为同一个换热器的两部分。
根据本发明的一些实施例,所述第一气缸和所述第二气缸的容积比值的取值范围为1~10。
根据本发明实施例的冷暖型空调器的控制方法,至少一个节流元件的流量度可调,根据对检测对象的检测结果调整流量度可调的节流元件的流量度至预定流量度,其中检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度和排气口的排气压力中的至少一个。
根据本发明实施例的冷暖型空调器的控制方法,有利于提高空调器的能效。
根据本发明实施例的冷暖型空调器的控制方法,两个节流元件的流量度固定,根据检测到的压缩机运行参数和/或室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个。
根据本发明实施例的冷暖型空调器的控制方法,有利于提高空调器的能效。
附图说明
图1是根据本发明一些实施例的冷暖型空调器的示意图;
图2是根据本发明另一些实施例的冷暖型空调器的示意图。
附图标记:
空调器100;
双缸压缩机1;第一气缸11;第二气缸12;排气口13;第一吸气口14;第二吸气口15;
室外换热器组件2;第一室外换热部分21;第二室外换热部分22;
室内换热器组件3;第一室内换热部分31;第二室内换热部分32;
节流元件4a、4b;
换向组件5;排气阀口51;第一室外连接阀口52;第二室外连接阀口53;第一室内连接阀口54;第二室内连接阀口55;第一吸气阀口56;第二吸气阀口57;
第一传感器A;第二传感器B;
第一储液器16;第二储液器17。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图2描述根据本发明实施例的冷暖型空调器100,冷暖型空调器100可用于给室内环境制冷或制热。
如图1-图2所示,根据本发明实施例的冷暖型空调器100可以包括双缸压缩机1、换向组件5、室外换热器组件2和室内换热器组件3。具体地,室内换热器组件3位于一个室内机的机壳内。
具体地,双缸压缩机1包括壳体、第一气缸11和第二气缸12。第一气缸11和第二 气缸12分别设在壳体内。例如,第一气缸11和第二气缸12分别设在壳体内,且第一气缸11和第二气缸12在双缸压缩机1的上下方向上间隔设置。或者,在另一些实施例中,第二气缸12和第一气缸11分别设在壳体内,且第二气缸12和第一气缸11在双缸压缩机1的上下方向上间隔设置。
如图1-图2所示,壳体上设有排气口13、第一吸气口14和第二吸气口15,第一气缸11的吸气通道与第一吸气口14连通,第二气缸12的吸气通道与第二吸气口15连通,由此,换热后的冷媒可分别从第一吸气口14和第二吸气口15返回到双缸压缩机1。具体而言,从第一吸气口14返回的冷媒可流向第一气缸11,从第二吸气口15返回的冷媒可流向第二气缸12,冷媒在第一气缸11和第二气缸12内分别独立压缩,压缩后的冷媒可分别从第一气缸11和第二气缸12流向排气口13,并同时从排气口13排出双缸压缩机1。
第一气缸11和第二气缸12的容积比值的取值范围为1~20,即第二气缸12的容积与第一气缸11的容积的比值的取值范围为(1/20)~1。发明人在实际研究中发现,当第一气缸11和第二气缸12的容积比值的取值范围为1~20时,双缸压缩机1的能效与现有技术相比具有显著的提升,从而提高双缸压缩机1的能效比,降低双缸压缩机1的功耗,优化冷暖型空调器100的能效水平。
参照图1-图2所示,换向组件5包括排气阀口51、第一室外连接阀口52、第二室外连接阀口53、第一室内连接阀口54、第二室内连接阀口55、第一吸气阀口56和第二吸气阀口57。具体地,第一室外连接阀口52和第一室内连接阀口54中的一个可与排气阀口51换向连通,第一室外连接阀口52和第一室内连接阀口54中的另一个可与第一吸气阀口56换向连通;第二室外连接阀口53和第二室内连接阀口55中的一个可与排气阀口51换向连通,第二室外连接阀口53和第二室内连接阀口55中的另一个可与第二吸气阀口57换向连通。例如,当冷暖型空调器100制冷时,排气阀口51分别与第一室外连接阀口52和第二室外连接阀口53连通,第一吸气阀口56与第一室内连接阀口54连通,第二吸气阀口57与第二室内连接阀口55连通;当冷暖型空调器100制热时,排气阀口51分别与第一室内连接阀口54和第二室内连接阀口55连通,第一吸气阀口56与第一室外连接阀口52连通,第二吸气阀口57与第二室外连接阀口53连通。此处可以理解的是,上述关于排气阀口51、第一室外连接阀口52、第一室内连接阀口54、第一吸气阀口56、第二室外连接阀口53、第二室内连接阀口55、第二吸气阀口57的连通方式仅是根据附图的示意性说明,对此不能作为对本申请的一种限制,在其它实施例中,还可以具有其它的连通方式,例如第一室外连接阀口52和第二室内连接阀口55中的一个与排气阀口51换向连通,第一室外连接阀口52和第二室内连接阀口55中的另一个与第一吸气阀口56换向连通,第二室外连接阀口53和第一室内连接阀口54中的一个与排气阀口51换向连通,第二室外连接阀口53和第一室内连接阀口54中的另一个与第二吸气阀口57换向连通。
另外,排气阀口51与排气口13相连,第一吸气阀口56与第一吸气口14相连,第 二吸气阀口57与第二吸气口15相连,由此,结构简单可靠。
具体地,如图1-图2所示,室外换热器组件2包括第一室外换热部分21和第二室外换热部分22,第一室外换热部分21与第一室外连接阀口52相连,第二室外换热部分22与第二室外连接阀口53相连,室内换热器组件3包括第一室内换热部分31和第二室内换热部分32,第一室内换热部分31的两端分别与第一室内连接阀口54和第一室外换热部分21相连,第二室内换热部分32的两端分别与第二室内连接阀口55和第二室外换热部分22相连,从而形成完整的冷媒流路,以便于冷媒的流通。
第一室内换热部分31和第一室外换热部分21、第二室内换热部分32和第二室外换热部分22之间均串联有一个节流元件4a、4b。也就是说,在第一室内换热部分31和第一室外换热部分21之间串联有一个节流元件4a,在第二室内换热部分32和第二室外换热部分22之间串联有一个节流元件4b,这可便于分别对第一室内换热部分31和第一室外换热部分21之间以及对第二室内换热部分32和第二室外换热部分22之间的冷媒进行节流降压,可减少节流后的冷媒中的气态冷媒量,当冷暖型空调器制冷时,节流后的两路冷媒可对应流向第一室内换热部分31和第二室内换热部分32并在第一室内换热部分31和第二室内换热部分32内各自独立地与室内环境进行换热,当冷暖型空调器制热时,节流后的两路冷媒可对应流向第一室外换热部分21和第二室外换热部分22并各自独立地与室外环境进行换热,从而有利于提高室内换热器组件3和室外换热器组件2的换热效果,优化冷暖型空调器100的能效水平。
可选地,两个节流元件4a、4b的流量度可调或两个节流元件4a、4b的流量度均不可调,或者两个节流元件4a、4b中其中一个节流元件4a、4b的流量度可调且另一个节流元件4a、4b的流量度固定。例如,在第一室内换热部分31和第一室外换热部分21之间串联有一个流量度可调的节流元件4a,在第二室内换热部分32和第二室外换热部分22之间串联有一个流量度固定的节流元件4b。或者,在其它实施例中,在第一室内换热部分31和第一室外换热部分21之间串联有一个流量度固定的节流元件4a,在第二室内换热部分32和第二室外换热部分22之间串联有一个流量度可调的节流元件4b。
可选地,流量度可调的节流元件4a、4b为电子膨胀阀,固定流量度的节流元件4a、4b为毛细管或节流阀。由此,不但结构简单,而且反应灵敏。
具体而言,例如,如图1-图2所示,当冷暖型空调器100制冷时,排气阀口51分别与第一室外连接阀口52和第二室外连接阀口53连通,第一吸气阀口56与第一室内连接阀口54连通,第二吸气阀口57与第二室内连接阀口55连通,从双缸压缩机1的排气口13排出的冷媒可经过排气阀口51流向第一室外连接阀口52和第二室外连接阀口53,随后两路冷媒分别从第一室外连接阀口52和第二室外连接阀口53流向对应的第一室外换热部分21和第二室外换热部分22,两路冷媒分别在对应的第一室外换热部分21和第二室外换热部分22内与室外环境进行换热,随后两路冷媒从第一室外换热部分21和第二室外换热部分22流出后,分别经过对应的节流元件4a、4b,且经对应的节流元件4a、4b节流降压后,分别流向第一室内换热部分31和第二室内换热部分32, 两路冷媒在对应的第一室内换热部分31和第二室内换热部分32内与室内环境进行换热以给室内环境制冷,换热后的两路冷媒分别从对应的第一室内换热部分31和第二室内换热部分32流出;从第一室内换热部分31流出的冷媒经过第一室内连接阀口54和第一吸气阀口56,并经过第一吸气口14流向第一气缸11,从第二室内换热部分32流出的冷媒经过第二室内连接阀口55和第二吸气阀口57,并经过第二吸气口15流向第二气缸12;两路冷媒分别在对应的第一气缸11和第二气缸12内独立压缩以分别形成高温高压的冷媒,压缩后的两路冷媒可分别从第一气缸11和第二气缸12流向排气口13,并同时从排气口13排出双缸压缩机1,从而形成冷暖型空调器100的制冷循环。
当冷暖型空调器100制热时,例如,如图1-图2所示,排气阀口51分别与第一室内连接阀口54和第二室内连接阀口55连通,第一吸气阀口56与第一室外连接阀口52连通,第二吸气阀口57与第二室外连接阀口53连通,从双缸压缩机1的排气口13排出的冷媒可经过排气阀口51流向第一室内连接阀口54和第二室内连接阀口55,随后两路冷媒分别从第一室内连接阀口54和第二室内连接阀口55流向对应的第一室内换热部分31和第二室内换热部分32,两路冷媒分别在对应的第一室内换热部分31和第二室内换热部分32内与室内环境进行换热以给室内制热,随后两路冷媒从第一室内换热部分31和第二室内换热部分32流出后,分别经过对应的节流元件4a、4b,且经对应的节流元件4a、4b节流降压后,分别流向第一室外换热部分21和第二室外换热部分22,两路冷媒分别在对应的第一室外换热部分21和第二室外换热部分22内与室外环境进行换热,换热后的两路冷媒分别从对应的第一室外换热部分21和第二室外换热部分22内流出;从第一室外换热部分21流出的冷媒经过第一室外连接阀口52和第一吸气阀口56,并经过第一吸气口14流向第一气缸11,从第二室外换热部分22流出的冷媒经过第二室外连接阀口53和第二吸气阀口57,并经过第二吸气口15流向第二气缸12;两路冷媒分别在对应的第一气缸11和第二气缸12内独立压缩以分别形成高温高压的冷媒,压缩后的两路冷媒可分别从第一气缸11和第二气缸12流向排气口13,并同时从排气口13排出双缸压缩机1,从而形成冷暖型空调器100的制热循环。
根据本发明实施例的冷暖型空调器100,一方面通过设置第一气缸11和第二气缸12,并使第一气缸11和第二气缸12分别与第一吸气口14和第二吸气口15连通,且使第一气缸11和第二气缸12的容积比值的取值范围为1~20,从而有利于提高双缸压缩机1的能效比,降低双缸压缩机1的功耗;另一方面通过使室内换热器组件3分别包括第一室内换热部分31和第二室内换热部分32,使室外换热器组件2分别包括第一室外换热部分21和第二室外换热部分22,并使第一室内换热部分31与其中一个节流元件4a和第一室外换热部分21对应设置,使第二室内换热部分32与另一个节流元件4b和第二室外换热部分22对应设置,以便于分别对第一室内换热部分31和第一室外换热部分21之间以及对第二室内换热部分32和第二室外换热部分22之间的冷媒进行节流降压,从而有利于减少节流后的冷媒中的气态冷媒量,继而有利于提高室内换热器组件3和室外换热器组件2的换热效果,优化冷暖型空调器100的能效水平,节能效果好。
根据本发明的一些实施例,参照图1所示,换向组件5包括两个四通阀,每个四通阀设有一个排气阀口51,其中一个四通阀设有第一室内连接阀口54、第一室外连接阀口52和第一吸气阀口56,另一个四通阀设有第二室内连接阀口55、第二室外连接阀口53和第二吸气阀口57。由此,从排气口13排出的冷媒可分别流向两个排气阀口51,结构简单,可靠。
当然,本发明不限于此,在其它实施例中,如图2所示,换向组件5为一个七通阀,结构简单可靠,而且七通阀的设置有利于降低成本。
进一步地,换向组件5包括两个四通阀时,两个四通阀在冷暖型空调器100制冷或制热时联动,从而便于实现两个四通阀的同时换向功能,以便于当冷暖型空调器100制冷时,其中一个四通阀的排气阀口51与第一室外连接阀口52连通且第一吸气阀口56与第一室内连接阀口54连通,另一个四通阀的排气阀口51与第二室外连接阀口53连通且第二吸气阀口57与第二室内连接阀口55连通,当冷暖型空调器100制热时,其中一个四通阀的排气阀口51与第一室内连接阀口54连通且第一吸气阀口56与第一室外连接阀口52连通,另一个四通阀的排气阀口51与第二室内连接阀口55连通,且第二吸气阀口57与第二室外连接阀口53连通。可以理解的是,在实现冷暖型空调器100的其它功能时,两个四通阀还可以是不联动的,例如当第一室外换热部分21和第二室外换热部分22中的一个工作,而另一个进行化霜时,两个四通阀可以不联动即不同时换向。
在本发明的一些实施例中,双缸压缩机1还包括第一储液器16,第一储液器16设在壳体外,第一储液器16分别与第一吸气口14和第一吸气阀口56相连,由此,可便于对从第一吸气阀口56流出的冷媒进行气液分离,以便于气态冷媒经过第一吸气口14流向第一气缸11而液态冷媒存储在第一储液器16中,从而避免了液态冷媒对第一气缸11的液击。
进一步地,双缸压缩机1还包括第二储液器17,第二储液器17设在壳体外,第二储液器17分别与第二吸气口15和第二吸气阀口57相连,由此,可便于对从第二吸气阀口57流出的冷媒进行气液分离,以便于气态冷媒经过第二吸气口15流向第二气缸12而液态冷媒存储在第二储液器17中,从而避免了液态冷媒对第二气缸12的液击,继而有利于提高双缸压缩机1运行的可靠性。
可选地,第二储液器17的容积可大于、等于或小于第一储液器16的容积。
优选地,第二储液器17的容积小于第一储液器16的容积。具体而言,由于第二气缸12比第一气缸11的容积小,通过使得第二储液器17的容积小于第一储液器16的容积,不但可保证分别流回第一气缸11和第二气缸12的冷媒量,而且有利于降低成本。
在本发明的一些实施例中,第一室外换热部分21和第二室外换热部分22为两个独立的换热器,由此,有利于提高室外换热器组件2的换热效果。当然,本发明不限于此,在其它实施例中,第一室外换热部分21和第二室外换热部分22为同一个换热器的两部分,由此简单可靠,而且有利于降低成本。
在本发明的一些实施例中,第一室内换热部分31和第二室内换热部分32为两个独立的换热器,由此,有利于提高室内换热器组件3的换热效果。当然,本发明不限于此,在其它实施例中,第一室内换热部分31和第二室内换热部分32为同一个换热器的两部分,由此简单可靠,而且有利于降低成本。
考虑到第二气缸12和第一气缸11的加工和制造等方面,优选地,第一气缸11和第二气缸12的容积比值的取值范围为1~10。
具体地,如图1-图2所示,冷暖型空调器100还进一步包括第一传感器A,第一传感器A位于排气口13处以用于检测排气口13处的冷媒的温度或压力。可选地,第一传感器A为压力传感器或温度传感器。
具体地,冷暖型空调器100还进一步包括第二传感器B,第二传感器B位于第一室内换热部分31或位于第二室内换热部分32上以用于检测对应的冷媒的温度或压力。可选地,第二传感器B为压力传感器或温度传感器。
下面参考图2对本发明一个具体实施例的空调器100的结构进行详细说明。
如图2所示,本实施例的冷暖型空调器100包括双缸压缩机1、换向组件5、室外换热器组件2和室内换热器组件3。换向组件5为七通阀。
双缸压缩机1包括壳体、第一气缸11和第二气缸12。第一气缸11和第二气缸12分别设在壳体内。
如图2所示,壳体上设有排气口13、第一吸气口14和第二吸气口15,第一气缸11的吸气通道与第一吸气口14连通,第二气缸12的吸气通道与第二吸气口15连通,由此,换热后的冷媒可分别从第一吸气口14和第二吸气口15返回到双缸压缩机1。
如图2所示,换向组件5包括排气阀口51、第一室外连接阀口52、第二室外连接阀口53、第一室内连接阀口54、第二室内连接阀口55、第一吸气阀口56和第二吸气阀口57。排气阀口51与排气口13相连,第一吸气阀口56与第一吸气口14相连,第二吸气阀口57与第二吸气口15相连,由此,结构简单可靠。
具体地,如图2所示,室外换热器组件2包括第一室外换热部分21和第二室外换热部分22,第一室外换热部分21与第一室外连接阀口52相连,第二室外换热部分22与第二室外连接阀口53相连,室内换热器组件3包括第一室内换热部分31和第二室内换热部分32,第一室内换热部分31的两端分别与第一室内连接阀口54和第一室外换热部分21相连,第二室内换热部分32的两端分别与第二室内连接阀口55和第二室外换热部分22相连,从而形成完整的冷媒流路,以便于冷媒的流通。
第一室内换热部分31和第一室外换热部分21、第二室内换热部分32和第二室外换热部分22之间均串联有一个节流元件4a、4b,其中一个节流元件4a、4b的流量度可调,另一个节流元件4a、4b的流量度固定。流量度可调的节流元件4a、4b为电子膨胀阀,流量度固定的节流元件4a、4b为毛细管。
第一室外换热部分21和第二室外换热部分22为两个独立的换热器,第一室内换热部分31和第二室内换热部分32为两个独立的换热器。两个室外换热部分位于同一个室 外机的机壳内,两个室内换热部分位于同一个室内机的机壳内。
发明人在实际研究中,采用空调器做了多组实验以验证第一气缸11和第二气缸12的容积比值与双缸压缩机1的能效提升比之间的关系。
第一气缸与第二气缸容积比 能效提升(%)
2 10%
20 7%
当第一气缸11和第二气缸12的容积比值的取值范围为1~20时,整机的能效与现有技术相比具有显著的提升。
优选地,第一气缸11和第二气缸12的容积比值的取值范围为1~10。
下面详细描述根据本发明实施例的冷暖型空调器的控制方法。
冷暖型空调器的两个节流元件的流量度均可调,当然节流元件的流量度还可以是均不可调的。或者,在另一些实施例中,两个节流元件中的一个节流元件的流量度可调,另一个节流元件的流量度固定。此处可以理解的是,流量度固定是指节流元件的流量度不可调。
当至少一个节流元件的流量度可调时,根据对检测对象的检测结果调整流量度可调的节流元件的流量度至预定流量度,其中检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度和排气口的排气压力中的至少一个。例如,冷暖型空调器包括控制器,控制器可根据检测对象的检测结果调整流量度可调的节流元件的流量度至设定流量度。
具体而言,当两个节流元件中有一个节流元件的流量度可调时,根据对检测对象的检测结果调整流量度可调的节流元件的流量度至设定流量度;当两个节流元件的流量度均可调时,对应于两个节流元件的检测对象可以是相同的还可以是不相同的。例如可根据对第一检测对象和第二检测对象的检测结果分别调整两个节流元件的流量度至设定流量度。其中,第一检测对象和第二检测对象均包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度和排气口的排气压力中的至少一个。可以理解的是,第一检测对象和第二检测对象相同是指用于调节两个节流元件所需的参数是相同的,第一检测对象和第二检测对象不同时是指用于调节两个节流元件所需的参数不同。
可以理解的是,当只有一个节流元件的流量度可调时,在制冷和制热时,该节流元件的检测对象可以是相同的还可以是不同的例如,制冷时的检测对象是室外环境温度,制热时的检测对象是排气温度。当两个节流元件的流量度均可调时,在制冷和制热的两个不同工况下,每个节流元件的检测对象可以是相同的还可以是不同的。例如,制冷时,其中一个节流元件的检测对象是室外环境温度,另一个节流元件的检测对象是压缩机的运行频率,制热时,所述其中一个节流元件的检测对象是排气压力,所述另一个节流元 件的检测对象是室外环境温度。
无论制冷或者制热,在空调器运行时,均采集处理流量度可调的节流元件所需的参数,然后根据得到的参数调节流量度可调的节流元件的流量度直至设定流量度。当然可以理解的是,当两个节流元件的流量度均可调时,采集处理控制两个节流元件所需的参数的步骤可以同时进行也可以先后进行。
在本发明的一些实施例中,当两个节流元件的流量度均可调时,两个节流元件对应的检测对象即第一检测对象和第二检测对象均为室外环境温度T4;或者当两个节流元件中有一个节流元件的流量度可调时,该节流元件对应的检测对象为室外环境温度。
在制冷和制热运行时,室外环境温度分别预设多个室外温度区间,每个室外温度区间对应不同的节流元件的流量度,根据实际检测到的室外环境温度值所在的室外温度区间对应的节流元件的流量度值调整流量度可调的节流元件的流量度。即当两个节流元件的流量度均可调时,根据实际检测到的室外环境温度值所在的室外温度区间对应的节流元件的流量度值调整两个节流元件的流量度;当两个节流元件中的上述一个节流元件的流量度可调时,根据实际检测到的室外环境温度值所在的室外温度区间对应的节流元件的流量度值调整所述一个节流元件的流量度
具体地,制冷时,不同的室外温度区间对应的节流元件的流量度的具体情况如下表:
T4 流量度
10≤T4<20 100
20≤T4<30 110
30≤T4<40 120
40≤T4<50 150
50≤T4<60 180
制热时,不同的室外温度区间对应的节流元件的流量度的具体情况如下表:
T4 流量度
10≤T4<20 160
5≤T4<10 180
-5≤T4<5 200
-10≤T4<-5 250
-15≤T4<-10 300
在另一些实施例中,当两个节流元件的流量度均可调时,两个节流元件的检测对象即第一检测对象和第二检测对象为室外环境温度T4和运行频率F;当两个节流元件中有一个节流元件的流量度可调时,该节流元件对应的检测对象为室外环境温度T4和运行频率F。
制冷和制热运行时,首先根据室外环境温度和运行频率计算得到节流元件的设定流 量度,然后根据设定流量度调整节流元件的流量度。也就是说,当两个节流元件的流量度均可调时,首先根据室外环境温度和运行频率计算得到节流元件的设定流量度,然后根据设定流量度调整两个节流元件的流量度;当两个节流元件中有一个节流元件的流量度可调时,首先根据室外环境温度和运行频率计算得到节流元件的设定流量度,然后根据设定流量度调整所述一个节流元件的流量度。
具体地,制冷时,节流元件的流量度LA_cool_1与室外环境温度T4和运行频率F之间的关系式为:LA_cool_1=a1·F+b1T4+c1,当计算的流量度LA_cool_1大于采集的节流元件的实际流量度时,将流量度可调的节流元件的流量度增大到计算流量度;反之关小。其中0≤a1≤20,0≤b1≤20,-50≤c1≤100。控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件的流量度无影响。例如在制冷时,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a1=1,b1=1.6,c1=6。首先冷暖型空调器根据采集到的频率和T4值,计算出节流元件的流量度应该为120,调整流量度可调的节流元件的流量度到120。
制热时,节流元件的流量度LA_heat_1与室外环境温度T4和运行频率F之间的关系式为:LA_heat_1=x1·F+y1T4+z1,当计算的流量度LA_heat_1大于采集的节流元件的实际流量度时,将流量度可调的节流元件的流量度增大至计算流量度;反之关小。其中,0≤x1≤15,0≤y1≤15,-50≤z1≤100;控制系数x、y、z均可为0。例如,在制热时,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x1=2.0,y1=3.0,z1=22.0;首先系统根据采集到的频率和T4值,计算出节流元件的流量度应该为187,调整流量度可调的节流元件的流量度到187。维持节流元件的流量度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对节流元件进行重新调整。
在本发明的另一些具体示例中,两个节流元件的流量度均可调,且两个节流元件对应的检测对象即第一检测对象和第二检测对象均为室外环境温度T4、运行频率F和排气压力;或者第一检测对象和第二检测对象为室外环境温度T4、运行频率F和排气温度,制冷或制热运行时,首先根据室外环境温度T4和运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到的排气压力或者排气温度调整两个节流元件的流量度以使得检测到的排气压力或者排气温度达到设定排气压力或者设定排气温度。由此,简单可靠。
在本发明的一些具体示例中,两个节流元件中有一个节流元件的流量度可调,该流量度可调的节流元件的检测对象为室外环境温度T4、运行频率F和排气压力或者室外环境温度T4、运行频率F和排气温度,在制冷和制热运行时,首先根据室外环境温度T4和运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到的排气压力或者排气温度调整节流元件的流量度以使得检测到的排气压力或者排气温度达到设定排气压力或者设定排气温度。由此,简单可靠。
在本发明的另一些实施例中,两个节流元件中有一个节流元件的流量度可调,制冷 时,该节流元件的检测对象为室外环境温度T4,制热时节流元件的检测对象为室外环境温度T4、运行频率F和排气压力。在制冷运行时,室外环境温度分别预设多个室外温度区间,每个室外温度区间对应不同的节流元件的流量度,根据实际检测到的室外环境温度值所在的室外温度区间对应的节流元件的流量度值调整节流元件的流量度。在制热运行时,首先根据室外环境温度T4和运行频率F计算得到设定排气压力,然后根据实际检测到的排气压力调整节流元件的流量度以使得检测到的排气压力达到设定排气压力。由此,简单可靠。
在本发明的一些实施例中,两个节流元件的流量度均可调,且其中一个节流元件对应的第一检测对象为室外环境温度T4,在制冷和制热运行时,室外环境温度分别预设多个室外温度区间,每个室外温度区间对应不同的节流元件的流量度,可根据实际检测到的室外环境温度调整所述其中一个节流元件的流量度;另一个节流元件对应的第二检测对象为室外环境温度和运行频率,在制冷和制热运行时,可首先根据室外环境温度T4和运行频率F计算得到所述另一个节流元件的设定流量度,然后根据设定流量度调整所述另一个节流元件的流量度。
具体地,制冷时,不同的室外温度区间对应的节流元件的流量度的具体情况如下表:
T4 流量度
10≤T4<20 100
20≤T4<30 110
30≤T4<40 120
40≤T4<50 150
50≤T4<60 180
节流元件的流量度LA_cool_1与室外环境温度T4和运行频率F之间的关系式为:LA_cool_1=a1·F+b1T4+c1,当计算的流量度LA_cool_1大于采集的节流元件的实际流量度时,将节流元件的流量度增大到计算流量度;反之关小。其中0≤a1≤20,0≤b1≤20,-50≤c1≤100。控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件的流量度无影响。
制热时,不同的室外温度区间对应的节流元件的流量度的具体情况如下表:
T4 流量度
10≤T4<20 160
5≤T4<10 180
-5≤T4<5 200
-10≤T4<-5 250
-15≤T4<-10 300
节流元件的流量度LA_heat_1与室外环境温度T4和运行频率F之间的关系式为: LA_heat_1=x1·F+y1T4+z1,当计算的流量度LA_heat_1大于采集的节流元件的实际流量度时,将节流元件的流量度增大至计算流量度;反之关小。其中,0≤x1≤15,0≤y1≤15,-50≤z1≤100;控制系数x、y、z均可为0。
进一步地,在节流元件的流量度满足条件后,可以在运行n秒后,重新检测检测对象,然后根据检测结果调整节流元件的流量度,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测检测对象,然后根据检测结果调整节流元件的流量度。
当两个节流元件的流量度固定时,根据检测到的压缩机运行参数和/或室外环境温度调整双缸压缩机的运行频率至满足条件,其中压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个;换言之,根据对检测对象的检测结果调整双缸压缩机的运行频率,其中检测对象包括室外环境温度、排气口的排气温度、排气口的排气压力、双缸压缩机的运行电流中的至少一个。
当双缸压缩机的运行频率调整至满足条件后,可以在运行n秒后重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率。换言之,在制冷或制热时,在压缩机的运行频率满足条件后,可以在运行n秒或者在接收到用户的操作信号后,重新检测压缩机运行参数和/或室外环境温度,然后根据检测结果调整运行频率,如此重复。
在本发明的具体示例中,在冷暖型空调器运行的过程中,如果检测到用户关机指令或者室内环境温度达到设定温度,压缩机停止运行。
根据本发明实施例的空调器的控制方法,通过在运行过程中根据检测结果调整压缩机的运行频率,从而可以让系统运行在合适的参数范围内,提高空调器运行的可靠性。
在本发明的一些实施例中,首先预设多个不同的排气温度区间,多个排气温度区间对应的运行频率的调节指令不同,然后检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气温度调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。需要进行说明的是,解除频率限制指的是压缩机的运行频率不受限制,无需调整压缩机的运行频率。例如空调器开机制冷运行,运行过程中检测排气温度TP,设定以下几个调节指令:115℃≤TP,停机;110℃≤TP<115℃,降频至TP<110℃;105℃≤TP<110℃,频率保持;TP<105℃,解除频率限制。然后根据实际检测到的排气温度TP执行相应的调节指令,在调节完成后再次检测TP,如果满足调节就结束判定,运行n秒后,对排气温度TP再次检测,重复判断。运行n秒的同时,如果检测到用户关机命令或者设定温度达到,结束运行。
在本发明的一些实施例中,预设多个室外温度区间、制热停机保护电流和制冷停机 保护电流,多个室外温度区间对应不同的限频保护电流。首先检测室外环境温度,然后根据检测到的室外环境温度所在的室外温度区间得到对应的限频保护电流,调整运行频率以使实际检测到的运行电流达到相应的限频保护电流,其中当制冷时检测到的运行电流大于制冷停机保护电流时则直接停机,当制热时检测到的运行电流大于制热停机保护电流时则直接停机。
具体地,制冷时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>50.5℃时,限频保护电流为CL5;当49.5℃≥T4>45.5℃时,限频保护电流为CL4;当44.5℃≥T4>41℃时,限频保护电流为CL3;当40℃≥T4>33℃,限频保护电流为CL2;当32≥T4℃,限频保护电流为CL1。其中CL5、CL4、CL3、CL2、CL1和制冷停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制冷运行时检测到的室外环境温度T4位于室外温度区间40℃≥T4>33℃内时,则表示运行电流不允许超过限频保护电流CL2,如果超过,将降频至运行电流低于限频保护电流CL2。
制热时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>15℃时,限频保护电流为HL5;当14℃>T4≥10℃时,限频保护电流为HL4;当9℃>T4≥6℃时,限频保护电流为HL3;当5℃>T4≥-19℃,限频保护电流为HL2;当-20℃>T4,限频保护电流为HL1。其中HL5、HL4、HL3、HL2、HL1和制热停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制热运行时检测到的室外环境温度T4位于室外温度区间9℃>T4≥6℃时,则表示运行电流不允许超过限频保护电流HL3,如果超过,将降频至运行电流低于限频保护电流HL3。
在本发明的一些实施例中,可以预设多个室外温度区间,多个室外温度区间对应不同的设定运行频率,根据实际检测到的室外环境温度所在的室外温度区间对应的设定运行频率调整压缩机的运行频率。
在本发明的一些实施例中,首先预设多个不同的排气压力区间,多个排气压力区间对应的运行频率的调节指令不同,然后检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气压力调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。
根据本发明实施例的冷暖型空调器的控制方法,有利于提高冷暖型空调器的能效。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互 矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种冷暖型空调器,其特征在于,包括:
    双缸压缩机,所述双缸压缩机包括壳体、第一气缸和第二气缸,所述壳体上设有排气口、第一吸气口和第二吸气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一气缸的吸气通道与所述第一吸气口连通,所述第二气缸的吸气通道与所述第二吸气口连通,所述第一气缸和所述第二气缸的容积比值的取值范围为1~20;
    换向组件,所述换向组件包括排气阀口、第一室外连接阀口、第二室外连接阀口、第一室内连接阀口、第二室内连接阀口、第一吸气阀口和第二吸气阀口,所述排气阀口与所述排气口相连,所述第一吸气阀口与所述第一吸气口相连,所述第二吸气阀口与所述第二吸气口相连;
    室外换热器组件,所述室外换热器组件包括第一室外换热部分和第二室外换热部分,所述第一室外换热部分与所述第一室外连接阀口相连,所述第二室外换热部分与所述第二室外连接阀口相连;
    室内换热器组件,所述室内换热器组件包括第一室内换热部分和第二室内换热部分,所述第一室内换热部分的两端分别与所述第一室内连接阀口和第一室外换热部分相连,所述第二室内换热部分的两端分别与所述第二室内连接阀口和第二室外换热部分相连,所述第一室内换热部分和所述第一室外换热部分、所述第二室内换热部分和所述第二室外换热部分之间均串联有一个节流元件。
  2. 根据权利要求1所述的冷暖型空调器,其特征在于,所述换向组件包括两个四通阀,每个所述四通阀设有一个所述排气阀口,其中一个四通阀设有所述第一室内连接阀口、所述第一室外连接阀口和所述第一吸气阀口,另一个所述四通阀设有所述第二室内连接阀口、所述第二室外连接阀口和所述第二吸气阀口;
    或者所述换向组件为一个七通阀。
  3. 根据权利要求2所述的冷暖型空调器,其特征在于,所述换向组件包括两个四通阀时,所述两个四通阀在所述冷暖型空调器制冷或制热时联动。
  4. 根据权利要求1-3中任一项所述的冷暖型空调器,其特征在于,所述双缸压缩机还包括第一储液器,所述第一储液器设在所述壳体外,所述第一储液器分别与所述第一吸气口和所述第一吸气阀口相连。
  5. 根据权利要求4所述的冷暖型空调器,其特征在于,所述双缸压缩机还包括第二储液器,所述第二储液器设在所述壳体外,所述第二储液器分别与所述第二吸气口和所述第二吸气阀口相连。
  6. 根据权利要求5所述的冷暖型空调器,其特征在于,所述第二储液器的容积小于所述第一储液器的容积。
  7. 根据权利要求1-6中任一项所述的冷暖型空调器,其特征在于,所述节流元件为电子膨胀阀、毛细管或者节流阀。
  8. 根据权利要求1-7中任一项所述的冷暖型空调器,其特征在于,所述第一室外换热部分和所述第二室外换热部分为两个独立的换热器,或者所述第一室外换热部分和所述第二室外换热部分为同一个换热器的两部分。
  9. 根据权利要求1-8中任一项所述的冷暖型空调器,其特征在于,所述第一室内换热部分和所述第二室内换热部分为两个独立的换热器,或者所述第一室内换热部分和所述第二室内换热部分为同一个换热器的两部分。
  10. 根据权利要求1-9中任一项所述的冷暖型空调器,其特征在于,所述第一气缸和所述第二气缸的容积比值的取值范围为1~10。
  11. 一种根据权利要求1-10中任一项所述的冷暖型空调器的控制方法,其特征在于,至少一个节流元件的流量度可调,根据对检测对象的检测结果调整流量度可调的节流元件的流量度至预定流量度,其中检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度和排气口的排气压力中的至少一个。
  12. 一种根据权利要求1-10中任一项所述的冷暖型空调器的控制方法,其特征在于,两个节流元件的流量度固定,根据检测到的压缩机运行参数和/或室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个。
PCT/CN2016/102885 2016-07-29 2016-10-21 冷暖型空调器及控制方法 WO2018018764A1 (zh)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN201610617056.0 2016-07-29
CN201620829873.8 2016-07-29
CN201620819399 2016-07-29
CN201610625609 2016-07-29
CN201610617056 2016-07-29
CN201610616996 2016-07-29
CN201610616996.8 2016-07-29
CN201610616729.0 2016-07-29
CN201620819399.0 2016-07-29
CN201620819995.9 2016-07-29
CN201610616729 2016-07-29
CN201620819995 2016-07-29
CN201620819374.0 2016-07-29
CN201620829873 2016-07-29
CN201620819374 2016-07-29
CN201610625609.7 2016-07-29
CN201621100141.1U CN206160546U (zh) 2016-07-29 2016-09-29 冷暖型空调器
CN201610873144.7A CN106225131A (zh) 2016-07-29 2016-09-29 冷暖型空调器及控制方法
CN201621100141.1 2016-09-29
CN201610873144.7 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018018764A1 true WO2018018764A1 (zh) 2018-02-01

Family

ID=61015670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102885 WO2018018764A1 (zh) 2016-07-29 2016-10-21 冷暖型空调器及控制方法

Country Status (1)

Country Link
WO (1) WO2018018764A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594442A (zh) * 2020-05-12 2020-08-28 珠海凌达压缩机有限公司 一种压缩机组件、空调系统及其控制方法
CN114508786A (zh) * 2022-02-17 2022-05-17 珠海格力电器股份有限公司 空调系统、空调系统的控制方法及控制装置
CN116007050A (zh) * 2023-02-14 2023-04-25 宁波奥克斯电气股份有限公司 一种不换向化霜的多联机空调及控制方法、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680496B1 (ko) * 2005-10-31 2007-02-08 엘지전자 주식회사 멀티형 공기조화기에서 냉매 분배기의 제어장치 및 방법
CN103134108A (zh) * 2011-11-24 2013-06-05 王静宇 新型变容量风管系统
CN105004114A (zh) * 2015-07-02 2015-10-28 Tcl空调器(中山)有限公司 空调器及其除霜方法
CN105115181A (zh) * 2015-07-21 2015-12-02 上海日立电器有限公司 一种空调系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680496B1 (ko) * 2005-10-31 2007-02-08 엘지전자 주식회사 멀티형 공기조화기에서 냉매 분배기의 제어장치 및 방법
CN103134108A (zh) * 2011-11-24 2013-06-05 王静宇 新型变容量风管系统
CN105004114A (zh) * 2015-07-02 2015-10-28 Tcl空调器(中山)有限公司 空调器及其除霜方法
CN105115181A (zh) * 2015-07-21 2015-12-02 上海日立电器有限公司 一种空调系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594442A (zh) * 2020-05-12 2020-08-28 珠海凌达压缩机有限公司 一种压缩机组件、空调系统及其控制方法
CN111594442B (zh) * 2020-05-12 2024-05-14 珠海凌达压缩机有限公司 一种压缩机组件、空调系统及其控制方法
CN114508786A (zh) * 2022-02-17 2022-05-17 珠海格力电器股份有限公司 空调系统、空调系统的控制方法及控制装置
CN116007050A (zh) * 2023-02-14 2023-04-25 宁波奥克斯电气股份有限公司 一种不换向化霜的多联机空调及控制方法、存储介质

Similar Documents

Publication Publication Date Title
US9528732B2 (en) Heat pump apparatus
CN110715466A (zh) 一种多联式空调系统及其控制方法
CN105737423B (zh) 冷暖型空调器及其控制方法
US20150276280A1 (en) Refrigerating apparatus
WO2016188295A1 (zh) 热回收多联机的室外机及热回收多联机
CN111609593B (zh) 一种双温空调系统、控制方法和空调器
CN112050299B (zh) 空调器
CN206160545U (zh) 冷暖型空调器
WO2018018764A1 (zh) 冷暖型空调器及控制方法
CN106500390A (zh) 冷暖型空调器及其控制方法
WO2018018767A1 (zh) 冷暖型空调器及控制方法
CN206160546U (zh) 冷暖型空调器
CN206160544U (zh) 冷暖型空调器
CN105783324B (zh) 冷暖型空调器及其控制方法
CN105783310B (zh) 冷暖型空调器及其控制方法
WO2018018766A1 (zh) 冷暖型空调器及控制方法
CN207350996U (zh) 具有除湿蒸发器的空调装置
WO2018018765A1 (zh) 冷暖型空调器及控制方法
CN206160543U (zh) 冷暖型空调器
WO2017185517A1 (zh) 冷暖型空调器、单冷型空调器及空调器的控制方法
WO2017185514A1 (zh) 冷暖型空调器、单冷型空调器及空调器的控制方法
CN106403342A (zh) 单冷型空调器及控制方法
CN105783323B (zh) 冷暖型空调器及其控制方法
CN205641639U (zh) 冷暖型空调器
CN111609587B (zh) 一种双温空调系统、控制方法和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910343

Country of ref document: EP

Kind code of ref document: A1