WO2022068217A1 - 一种mems加速度传感器芯片批量测试方法及系统 - Google Patents

一种mems加速度传感器芯片批量测试方法及系统 Download PDF

Info

Publication number
WO2022068217A1
WO2022068217A1 PCT/CN2021/094561 CN2021094561W WO2022068217A1 WO 2022068217 A1 WO2022068217 A1 WO 2022068217A1 CN 2021094561 W CN2021094561 W CN 2021094561W WO 2022068217 A1 WO2022068217 A1 WO 2022068217A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
mems acceleration
tested
plate
clock signal
Prior art date
Application number
PCT/CN2021/094561
Other languages
English (en)
French (fr)
Inventor
刘婧
冯方方
李宗伟
杨长春
周永健
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to AU2021206813A priority Critical patent/AU2021206813A1/en
Publication of WO2022068217A1 publication Critical patent/WO2022068217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2856Internal circuit aspects, e.g. built-in test features; Test chips; Measuring material aspects, e.g. electro migration [EM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2879Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to electrical aspects, e.g. to voltage or current supply or stimuli or to electrical loads

Definitions

  • the present application relates to the technical field of sensor testing, and in particular, to a method and system for batch testing of MEMS acceleration sensor chips.
  • Micro Electro Mechanical Systems utilizes micro-nano processing technology to realize micro-mechanical structures on silicon wafers, which greatly reduces the size of devices, reduces energy consumption and improves reliability.
  • MEMS are widely used in consumer electronics, automotive electronics, biomedical and other fields because of their advantages of miniaturization, integration, low cost, and low power consumption.
  • MEMS acceleration sensor is one of them.
  • the MEMS acceleration sensor chip is prepared by the integrated circuit process, which can realize mass production. After the MEMS acceleration sensor chip is processed, it is necessary to perform a preliminary test on the performance of the MEMS acceleration sensor chip, exclude the chips that cannot work normally, and screen out the MEMS acceleration sensor chips with good performance for packaging.
  • Embodiments of the present application provide a method and system for batch testing of MEMS acceleration sensor chips, which are used to solve the technical problem that a large amount of manpower is required to test a large number of MEMS acceleration sensor chips, resulting in a large amount of testing workload.
  • an embodiment of the present application provides a batch testing system for MEMS acceleration sensor chips
  • the MEMS acceleration sensor chip includes a first electrode plate, a second electrode plate, and a third electrode plate
  • the system includes:
  • a channel switching device which is respectively connected to the plurality of MEMS acceleration sensor chips to be tested, is used for controlling the switches of the corresponding channels of the MEMS acceleration sensor chips to be tested to be closed based on the received first clock signal, and according to the first clock signal
  • the clock signal generates a second clock signal, and based on the second clock signal, the first plate or the third plate of the MEMS acceleration sensor chip to be tested is respectively communicated with the capacitance testing device;
  • Capacitance testing device connected with the channel switching device, used to test the current connection between the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip to be tested, and between the second electrode plate and the third electrode plate Capacitance value;
  • a controller connected to the channel switching device and the capacitance testing device, for determining a corresponding voltage and capacitance characteristic curve according to the measured capacitance value, and sending the first clock signal,
  • the second clock signal is used to control the channel switching device to perform corresponding channel switching.
  • the channel switching device includes a gating signal generating module; the gating signal generating module is configured to generate and match the plurality of MEMS acceleration sensors to be tested according to the first clock signal
  • the respective strobe signals corresponding to the chips are used to respectively control the closing of the switches of the corresponding MEMS acceleration sensor chips to be tested; wherein, at the same time, the switches corresponding to at most one MEMS acceleration sensor chip to be tested are closed.
  • the channel switching device includes a channel switching module, a TOP port, a CTR port, and a BOT port;
  • the channel switching module includes the first plates of the plurality of MEMS acceleration sensor chips to be tested , the switches corresponding to the second pole plate and the third pole plate respectively; when the MEMS acceleration sensor chip to be tested is connected, the first pole plate is connected to the TOP port through the corresponding switch, and the second pole plate is connected to the TOP port through the corresponding switch.
  • the CTR port is connected, and the third electrode plate is connected to the BOT port through a corresponding switch, so that the MEMS acceleration sensor chip to be tested is connected to the capacitance testing device through the TOP port, the CTR port, and the BOT port.
  • the channel switching device includes a first test port and a second test port; the first test port is connected to the second test port of the MEMS acceleration sensor chip to be tested currently in communication through the CTR port
  • the electrode plate is connected, so that the second electrode plate is connected to the capacitance testing device; the second test port is connected with the first electrode plate of the currently connected MEMS acceleration sensor chip to be tested through the TOP port, or through the
  • the BOT port is connected to the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested, so that the first electrode plate or the third electrode plate is connected to the capacitance testing device to test the corresponding capacitance values respectively.
  • the channel switching device generates a second clock signal having a second frequency several times the first frequency according to the first frequency of the first clock signal, and passes the second clock signal through the The second clock signal is used to invert the first clock signal to switch the first electrode plate or the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested to communicate with the capacitance testing device.
  • the test fixture includes probes, leads, and interfaces; a plurality of the probes and the first plate, the second plate, the third plate and the third plate of the plurality of MEMS acceleration sensor chips
  • the electrode plates are connected in a one-to-one correspondence, and the corresponding electrode plate signals are connected to the corresponding interface through the lead wire, so that the plurality of MEMS acceleration sensor chips to be tested are connected to the channel switching device through the interface.
  • the test fixture includes a casing and a casing cover;
  • the casing includes a plurality of first grooves for placing the MEMS acceleration sensor chip to be tested, and the first grooves are arranged in the first grooves.
  • Second grooves on opposite sides of the groove, the second grooves are used to assist in picking and placing the MEMS acceleration sensor chip to be measured;
  • the casing includes a fixing member, and the casing is connected with the fixing member through the fixing member.
  • the shell cover is riveted;
  • the probe includes a fixed sleeve and an elastic probe head, the elastic probe head is stretched and retracted in the fixed sleeve based on pressure to adjust the length of the probe.
  • an embodiment of the present application also provides a batch testing method for MEMS acceleration sensor chips, which is applied to the batch testing system for MEMS acceleration sensor chips described in any of the above, and the method includes:
  • connection of switches in the channels corresponding to the plurality of MEMS acceleration sensor chips to be tested is sequentially controlled by the first clock signal, so as to realize the switching of the channels;
  • the second electrode plate of the currently connected MEMS acceleration sensor chip to be tested is connected with the capacitance testing device, and the first electrode plate or the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested is controlled through the second clock signal to be connected to the device.
  • the capacitance testing device is connected;
  • the voltage and capacitance characteristic curve corresponding to the MEMS acceleration sensor chip to be tested is determined.
  • the method before switching the communication channel through the first clock signal and sequentially controlling the switches corresponding to the plurality of MEMS acceleration sensor chips to be tested to be connected, the method further includes: according to the MEMS to be tested The test time of the capacitance values between the first and second plates and between the second and third plates of the acceleration sensor chip determines the clock period of the first clock signal, so that the The test time is less than the clock period.
  • controlling the connection of the switch corresponding to the first plate or the third plate of the currently connected MEMS acceleration sensor chip to be measured by the second clock signal specifically includes: according to the first For the first frequency of a clock signal, determine that the second frequency of the second clock signal is several times the first frequency; determine two corresponding second clock signals in one cycle of the first clock signal, wherein the first A second clock signal controls the first plate of the currently connected MEMS acceleration sensor chip to be tested to communicate with the capacitance testing device, and the rising edge of the second second clock signal inverts the first clock signal to control the The third electrode plate of the currently connected MEMS acceleration sensor chip to be tested is communicated with the capacitance testing device.
  • Corresponding channels are respectively set for a plurality of MEMS acceleration sensor chips, and during testing, the first clock signal is used to automatically switch the gating of each channel, so that a plurality of MEMS acceleration sensor chips can perform capacitance tests in sequence.
  • the second clock signal is used to switch the connection between the first electrode plate and the third electrode plate and the capacitance testing device, respectively, so as to perform two capacitance tests respectively.
  • automated batch testing of MEMS acceleration sensor chips can be realized, labor costs are reduced, testing workload is saved, testing time is reduced, and testing efficiency is improved.
  • the system performs channel gating through mechanical switches, which can avoid additional capacitive interference and improve the accuracy and stability of the test.
  • FIG. 1 is a schematic diagram of a simple structure of a MEMS acceleration sensor chip provided by an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a batch testing system for MEMS acceleration sensor chips provided by an embodiment of the present application
  • FIG. 3 is a schematic view of the shell structure of the test fixture provided by the embodiment of the present application.
  • FIG. 4 is a top cross-sectional view of a housing cover provided with a probe in a test fixture provided by an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a probe provided in an embodiment of the present application.
  • FIG. 6 is a side cross-sectional view of a housing cover provided with a probe in a test fixture provided by an embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a channel switching device provided by an embodiment of the present application.
  • FIG. 8(a) is a timing diagram of a second clock signal provided by an embodiment of the present application.
  • FIG. 8(b) is a timing diagram of a first clock signal provided by an embodiment of the present application.
  • FIG. 8(c) is a timing diagram of a gate signal of a channel provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a batch testing method for MEMS acceleration sensor chips provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a simple structure of a MEMS acceleration sensor chip provided by an embodiment of the present application.
  • the MEMS acceleration sensor chip is composed of three polar plates: a first electrode plate, a second electrode plate, and a third electrode plate.
  • the first pole plate and the third pole plate are fixed pole plates, and will not move under the action of external force.
  • the second pole plate is located in the middle of the first pole plate and the third pole plate, and the second pole plate is movable.
  • the first surface of the second electrode plate and the first surface of the first electrode plate form a plate capacitor with the same area of the upper and lower electrode plates, and the second surface of the second electrode plate and the first surface of the third electrode plate also form a Plate capacitors with equal upper and lower plate areas.
  • the first surface of the second electrode plate is arranged opposite to the first surface of the first electrode plate, so that the second electrode plate and the first electrode plate form a first capacitor; the second surface of the second electrode plate is opposite to the first electrode plate The first surfaces of the triode plates are arranged opposite to each other, so that the second electrode plate and the third electrode plate form a second capacitor.
  • a method and system for batch testing of MEMS acceleration sensor chips provided by the embodiments of the present application, in the case of placing multiple chips, by setting corresponding channels for the multiple MEMS acceleration sensor chips respectively, and using a first clock when performing the test.
  • the signal automatically switches the connectivity of each chip, so that multiple MEMS acceleration sensor chips can perform capacitance tests in sequence.
  • the second clock signal is used to switch the connection between the first electrode plate and the third electrode plate and the capacitance testing device, respectively, so as to perform two capacitance tests respectively.
  • the system will automatically switch to the next chip for testing, without manual monitoring and placement, which reduces labor costs, test workload, and testing.
  • the system performs channel gating through mechanical switches, which can avoid additional capacitive interference and improve the accuracy and stability of the test.
  • the performance of the MEMS acceleration sensor chip can be judged, so as to screen out the chip that can work normally, and carry out the subsequent packaging test, which can greatly save the packaging cost.
  • FIG. 2 is a schematic structural diagram of a batch testing system for MEMS acceleration sensor chips provided by an embodiment of the present application.
  • the system includes a test fixture 1 , a channel switching device 2 , a capacitance testing device 3 , and a controller 4 .
  • the test fixture 1 , the channel switching device 2 , and the capacitance testing device 3 are connected in sequence, and the controller 4 is respectively connected to the channel switching device 2 and the capacitance testing device 3 .
  • the test fixture 1 is used to place multiple MEMS acceleration sensor chips to be tested at the same time for batch testing, and the channel switching device 2 is connected to the multiple MEMS acceleration sensor chips to be tested through corresponding A clock signal, which switches the switches of the corresponding channels of the MEMS acceleration sensor chips to be tested closed, so that the corresponding channels are connected, and generates a second clock signal based on the received first clock signal, and connects the current connection based on the second clock signal.
  • the first plate or the third plate of the MEMS acceleration sensor chip to be tested is switched to communicate with the capacitance testing device.
  • the capacitance testing device 3 is used to test the capacitance value between the first electrode plate and the second electrode plate and between the second electrode plate and the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested.
  • the controller 4 is configured to send a first clock signal to the channel switching device to control the channel switching device to perform corresponding switching, and determine the voltage and capacitance characteristic curve corresponding to the MEMS acceleration sensor chip to be measured according to the measured capacitance value.
  • the system automatically switches between channels corresponding to multiple MEMS acceleration sensor chips to be tested by setting a channel switching device, and performs automatic switching between the first electrode plate and the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested. Automatically switch to test multiple MEMS acceleration sensor chips to be tested in turn, and obtain the corresponding capacitance value and voltage and capacitance characteristic curve of the MEMS acceleration sensor chip to be tested, so as to realize batch testing and detection of MEMS acceleration sensor chips. Save a lot of test workload and improve test efficiency. At the same time, the subsequent process of preliminary testing of chip performance can also eliminate problematic chips, and screen out MEMS chips with good performance for packaging, which can save packaging costs and control chip quality.
  • FIG. 3 is a schematic view of the shell structure of the test fixture provided by the embodiment of the present application.
  • the test fixture includes a casing and a casing cover.
  • the casing is used for placing the MEMS acceleration sensor chip to be measured, and the casing cover is covered on the casing for protecting and isolating the MEMS acceleration sensor chip to be measured.
  • the test fixture includes a first groove 11 , a second groove 12 , and a fixing member 13 .
  • a plurality of first grooves 11 can be provided for placing the MEMS acceleration sensor chip to be tested, and the size of the first grooves is set according to the size of the bare chip of the MEMS acceleration sensor to be tested.
  • the second grooves 12 are disposed on opposite sides of the first groove 11 , and are used to assist a tester to pick and place the MEMS acceleration sensor chip to be tested from the first groove 11 .
  • the fixing parts 13 are arranged at both ends of the test fixture to fix the casing and the cover, increase the stability of the test fixture, and prevent relative movement between the casing and the cover during the test, which will affect the test results.
  • the fixing member may be a protruding cylinder through which the housing is riveted to the housing cover.
  • the test fixture includes a plurality of probes corresponding to the first groove, and one groove corresponds to three probes, which are respectively used for the first plate, the second plate and the third plate of the MEMS acceleration sensor chip to be tested.
  • the probe can be set on the casing or the casing cover. If the probe is set on the casing, the electrode of the MEMS acceleration sensor chip to be tested is placed facing the casing, so that the electrode is in contact with the probe on the casing. , if the probe is arranged on the case cover, the electrode of the MEMS acceleration sensor chip to be tested is placed facing the case cover, so that the electrode is in contact with the probe on the case cover.
  • FIG. 4 is a top cross-sectional view of a housing cover provided with probes in a test fixture provided in an embodiment of the present application.
  • the casing cover of the test fixture is respectively provided with first probes 14 for connecting to the first plate of the MEMS acceleration sensor chip to be tested , a second probe 15 for connecting to the second plate of the MEMS acceleration sensor chip to be measured and a third probe 16 for connecting to the third plate of the MEMS acceleration sensor chip to be measured.
  • the corresponding electrodes of the MEMS acceleration sensor chip to be measured placed in the casing are respectively in contact with the corresponding probes on the casing cover.
  • the probe is retractable, as shown in FIG. 5 , the probe includes a fixed sleeve 124 and an elastic probe head 142 .
  • the elastic probe head 142 can move within the fixed sleeve 124 under the action of a spring to adjust the length of the probe.
  • the probes can be set to a relatively long length.
  • the elastic probe head can be retracted into the fixed sleeve when receiving pressure, so as to prevent damage to the chip. This enhances the flexibility of the probe while reducing the need for machining finesse.
  • the test fixture includes lead wires 17 and interfaces 18 .
  • Each probe is connected to the interface 18 through the lead 17, so as to lead out the plate signal of the corresponding MEMS acceleration sensor chip to be tested to the interface 18 for testing.
  • the leads drawn from each probe should be as short as possible. For example, according to the straight line distance between the probe and the interface, determine the lead length with the straight line distance not greater than the preset difference, which can reduce the miscellaneous caused by the lead. Scatter capacitance to improve the accuracy of subsequent chip performance detection.
  • the lengths of different leads should be as equal as possible to avoid different influences of stray capacitance on different channels, resulting in inconsistent test conditions for each MEMS acceleration sensor chip to be tested, increasing measurement errors.
  • FIG. 7 is a schematic structural diagram of a channel switching apparatus provided by an embodiment of the present application.
  • the channel switching device includes a channel switching module 21 , a TOP port, a CTR port, a BOT port, a chip interface module 22 , a capacitance measurement interface module 23 and a gating signal generating module 24 .
  • the chip interface module 22 is connected to the interface in the test fixture, and switches the first plate 1-N, the second plate 1-N, and the third plate 1-N of the MEMS acceleration sensor chips 1-N to be tested with the channel respectively
  • the corresponding switches in the module 21 are connected, the capacitance measurement interface module 23 includes a first test port and a second test port, and the capacitance measurement interface module 23 is connected with the corresponding test port in the capacitance test device.
  • the strobe signal generating module 24 receives the first clock signal sent by the controller, and generates a plurality of strobe signals SEL1-N, respectively corresponding to a plurality of (ie, N) MEMS acceleration sensor chips to be tested, and each strobe signal controls the corresponding The connection of the switch corresponding to the MEMS acceleration sensor chip to be tested.
  • SEL1 controls the switches corresponding to the first plate 1, the second plate 1, and the third plate 1 to be connected
  • SEL2 controls the switches corresponding to the first plate 2, the second plate 2, and the third plate 2.
  • the connection of the switch, and so on, the SEL N controls the connection of the switches corresponding to the first plate N, the second plate N, and the third plate N.
  • the first electrode plate is connected to the TOP port through the corresponding switch
  • the second electrode plate is connected to the CTR port through the corresponding switch
  • the third electrode plate is connected to the BOT port through the corresponding switch.
  • ⁇ 1 represents the first clock signal
  • the controller switches the strobe signal by outputting the first clock signal.
  • the gating signal generating module generates a corresponding gating signal.
  • the gate signal 1 is at a high level
  • the gate signals 2 to N are at a low level, corresponding to the first plate 1 and the second plate of the MEMS acceleration sensor chip to be tested.
  • the pole plate 2 and the third pole plate 3 are sequentially connected to the TOP port, the CTR port, and the BOT port.
  • the strobe signal 2 is at a high level, the other strobe signals are at a low level, and so on.
  • the switches corresponding to at most one MEMS acceleration sensor chip to be tested are in a connected state, that is, the system will test each MEMS acceleration sensor chip to be tested in turn.
  • the capacitance value between the first electrode plate and the second electrode plate and the capacitance between the second electrode plate and the third electrode plate need to be measured value to test. Therefore, the TOP port (corresponding to the first plate) or the BOT port (corresponding to the third plate) in the channel switching device is controlled by the second clock signal to be connected to the second test port, that is, to the capacitance test device respectively.
  • the first test port is connected to the second plate of the currently connected MEMS acceleration sensor chip under test through the CTR port, and the second test port is represented as a selection switch, which can be connected to the currently connected under test through the TOP port
  • the first electrode plate of the MEMS acceleration sensor chip is connected, or connected to the third electrode plate of the MEMS acceleration sensor chip to be tested currently connected through the BOT port.
  • the capacitance test device can respectively test the capacitance value between the first electrode plate and the second electrode plate in the MEMS acceleration sensor chip to be tested, as well as the first electrode plate and the second electrode plate. The capacitance value between the second plate and the third plate.
  • ⁇ 1 represents the second clock signal.
  • the channel switching device can determine, according to the first frequency of the first clock signal, that the second frequency corresponding to the second clock signal is several times, such as twice, the first frequency, then two clocks can be generated within one clock cycle of the first clock signal.
  • a second clock signal, the rising edge of the second second clock signal can invert the first clock signal, changing the first clock signal from high level to low level, to switch the currently connected MEMS acceleration sensor to be tested
  • the first electrode plate or the third electrode plate of the chip is connected.
  • the capacitance testing device needs to test each MEMS acceleration sensor chip to be tested twice.
  • the TOP port is connected to the second test port, and the capacitance testing device tests the capacitance value between the first plate and the second plate.
  • the BOT port Connected to the second test port, the capacitance testing device tests the capacitance value between the second electrode plate and the third electrode plate.
  • the second clock signal can also flip the first clock signal through the rising edge, so that the first clock signal changes from a low level to a high level to Carry out the test of the next MEMS acceleration sensor chip to be tested.
  • the controller may further include a capacitance and voltage characteristic testing module and a data storage and display module.
  • the capacitance and voltage characteristic test module is used to determine the voltage and capacitance characteristic curve corresponding to the MEMS acceleration sensor chip to be measured according to the measured capacitance value.
  • the data storage and display module is used to store and display the capacitance and voltage characteristic curve and basic capacitance of the MEMS acceleration sensor chip to be tested of each channel obtained by testing.
  • the controller can judge the performance of the corresponding MEMS acceleration sensor chip through the measured capacitance and voltage curve and basic capacitance, and screen out the MEMS acceleration sensor chip with good performance for the next packaging test.
  • an embodiment of the present application also provides a batch testing method for MEMS acceleration sensor chips, the flowchart of which is shown in FIG. 9 .
  • FIG. 9 is a flowchart of a batch testing method for MEMS acceleration sensor chips provided by an embodiment of the present application, and the specific steps include:
  • S901 Determine that multiple MEMS acceleration sensor chips to be tested are respectively connected to corresponding channels.
  • a plurality of MEMS acceleration sensor chips to be tested are placed in the test fixture, so that each MEMS acceleration sensor chip to be tested is connected to the corresponding channel in the channel switching device, and then the batch of MEMS acceleration sensor chips to be tested can be started. Test of accelerometer chip.
  • S902 Control the closing of the switches in the channels corresponding to the plurality of MEMS acceleration sensor chips to be tested in sequence through the first clock signal, so as to realize the switching of the connection of the corresponding channels.
  • the controller outputs the first clock signal to the channel switching device, so that the gating signal generating modules in the channel switching device respectively generate a plurality of corresponding gating signals.
  • the channel switching module in the channel switching device includes switches corresponding to each MEMS acceleration sensor chip to be tested.
  • the channel switching device connects the corresponding switch according to the switch corresponding to the gating signal, and keeps the other switches disconnected, so that the switch corresponds to the corresponding switch.
  • the MEMS acceleration sensor chip to be tested is communicated with the capacitance testing device.
  • each gating signal respectively controls a switch corresponding to a MEMS acceleration sensor chip to be tested, and when the switch corresponding to one channel is connected, the other switches are kept disconnected.
  • the controller can determine the first electrode according to the test time of the capacitance value between the first electrode plate and the second electrode plate and between the second electrode plate and the third electrode plate of the MEMS acceleration sensor chip to be tested by the capacitance testing device.
  • the clock period of the clock signal When the test time is less than the clock period of the first clock signal, the channel switching can be automatically performed according to the output of the next first clock signal after the test is completed.
  • S903 Determine that the second electrode plate of the currently connected MEMS acceleration sensor chip to be tested is connected to the capacitance testing device, and control the first electrode plate or the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested through the second clock signal Connect with the capacitance test device.
  • the capacitance testing device needs to separately test the capacitance value between the first electrode plate and the second electrode plate and the capacitance value between the second electrode plate and the third electrode plate of the MEMS acceleration sensor chip to be measured. test. Therefore, when the channel corresponding to the MEMS acceleration sensor chip to be tested is connected, the second plate of the MEMS acceleration sensor chip to be tested can be kept in communication with the capacitance testing device through the CTR port of the channel switching device, while the second plate of the MEMS acceleration sensor chip to be tested can always be connected to the capacitance testing device through the CTR port of the channel switching device. The first plate and the third plate need to be switched under the action of the second clock signal, and are sequentially connected to the capacitance testing device.
  • the channel switching device may determine, according to the first frequency of the first clock signal, that the second frequency of the second clock signal is several times, such as twice, the first frequency.
  • the first second clock signal controls the first plate of the currently connected MEMS acceleration sensor chip to be tested to be connected with the capacitance testing device, and the rising edge of the second second clock signal turns the first clock signal over to control the current
  • the third electrode plate of the connected MEMS acceleration sensor chip to be tested is communicated with the capacitance testing device.
  • S904 Test the capacitance values between the first electrode plate and the second electrode plate and between the second electrode plate and the third electrode plate of the currently connected MEMS acceleration sensor chip to be tested, respectively.
  • the capacitance testing device can perform two capacitance tests on the MEMS acceleration sensor chip to be tested. After the capacitance test of a MEMS acceleration sensor chip to be tested is completed, the controller outputs the first clock signal of the next clock cycle, and generates the gating signal of the next channel, and the channel switching device switches based on the gating signal to perform The next test of the MEMS accelerometer chip to be tested.
  • the voltage and capacitance characteristic curve corresponding to the MEMS acceleration sensor chip to be tested can be determined according to the measured capacitance value, so as to determine the performance of the MEMS acceleration sensor chip to be tested.
  • the switches used for the gating connection of the channels in this application are all mechanical switches, and the mechanical switches can avoid additional capacitive interference and improve the accuracy and stability of the test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS加速度传感器芯片批量测试方法及系统,以解决测试MEMS加速度传感器芯片时耗费大量人力,测试工作量大的问题。系统包括:测试夹具(1),用于放置多个待测MEMS加速度传感器芯片;通道切换装置(2),与待测MEMS加速度传感器芯片连接,基于第一时钟信号切换各通道的连通,自动切换多个芯片的测试,并基于第二时钟信号,将待测MEMS加速度传感器芯片的第一极板或者第三极板分别与电容测试装置(3)连通;电容测试装置(3),对待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值进行测试;控制器(4),根据测得的电容值,确定芯片对应的电压与电容特性曲线,并控制通道切换装置(2)进行相应的通道切换。

Description

一种MEMS加速度传感器芯片批量测试方法及系统 技术领域
本申请涉及传感器测试技术领域,尤其涉及一种MEMS加速度传感器芯片批量测试方法及系统。
背景技术
微机电系统(Micro Electro Mechanical Systems,MEMS)利用微纳米加工技术,在硅片上实现微型机械结构,大幅缩减了器件体积、降低了能耗并提高了可靠性。MEMS因其微型化、可集成、成本低、功耗低等优点广泛应用在消费电子、汽车电子、生物医疗等领域,MEMS加速度传感器便是其中一种。
MEMS加速度传感器芯片通过集成电路工艺制备,可实现批量化生产。在MEMS加速度传感器芯片加工完成后,需要对MEMS加速度传感器芯片性能进行初步测试,排除不能正常工作的芯片,筛选出性能良好的MEMS加速度传感器芯片进行封装。
但是,对批量化生产的MEMS加速度传感器芯片进行测试时,需要耗费大量的人力,测试工作量大。
发明内容
本申请实施例提供了一种MEMS加速度传感器芯片批量测试方法及系统,用以解决对大量MEMS加速度传感器芯片进行测试时,需要耗费大量的人力,产生大量的测试工作量的技术问题。
一方面,本申请实施例提供了一种MEMS加速度传感器芯片批量测试系统,所述MEMS加速度传感器芯片包括第一极板、第二极板、第三极板,系统包括:
测试夹具,用于放置多个待测MEMS加速度传感器芯片;
通道切换装置,与所述多个待测MEMS加速度传感器芯片分别连接,用于基于接收到的第一时钟信号,控制所述待测MEMS加速度传感器芯片对应通道的开关闭合,以及根据所述第一时钟信号产生第二时钟信号,基于所述第二时钟信号,将所述待测MEMS加速度传感器芯片的第一极板或者第三极板分别与电容测试装置连通;
电容测试装置,与所述通道切换装置连接,用于测试当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值;
控制器,与所述通道切换装置、电容测试装置连接,用于根据测得的所述电容值,确定相应的电压与电容特性曲线,以及向所述通道切换装置发送所述第一时钟信号、第二时钟信号,以控制所述通道切换装置进行相应的通道切换。
在本申请的一种实现方式中,所述通道切换装置包括选通信号产生模块;所述选通信号产生模块用于根据所述第一时钟信号,产生与所述多个待测MEMS加速度传感器芯片分别对应的选通信号,以分别控制相应待测MEMS加速度传感器芯片的开关的闭合;其中,在同一时刻,至多一个待测MEMS加速度传感器芯片对应的开关为闭合状态。
在本申请的一种实现方式中,所述通道切换装置包括通道切换模块、TOP端口、CTR端口、BOT端口;所述通道切换模块包括所述多个待测MEMS加速度传感器芯片的第一极板、第二极板、第三极板分别对应的开关;所述待测MEMS加速度传感器芯片连通时,所述第一极板通过对应的开关连接TOP端口,所述第二极板通过对应的开关连接CTR端口,所述第三极板通过对应的开关连接BOT端口,以使所述待测MEMS加速度传感器芯片通过所述TOP端口、CTR端口、BOT端口连接所述电容测试装置。
在本申请的一种实现方式中,所述通道切换装置包括第一测试端口、第二测试端口;所述第一测试端口通过所述CTR端口与当前连通的待测MEMS加速度传感器芯片的第二极板连接,以使所述第二极板连接所述电容测试装置;所述第二测试端口通过所述TOP端口与当前连通的待测MEMS加速度传感器芯片的第一极板连接,或者通过所述BOT端口与当前连通的待测MEMS加速度传感器芯片的第三极板连接,以使所述第一极板或第三极板连接所述电容测试装置,分别测试对应的电容值。
在本申请的一种实现方式中,所述通道切换装置根据所述第一时钟信号的第一频率,产生具有所述第一频率若干倍的第二频率的第二时钟信号,并通过所述第二时钟信号,对所述第一时钟信号进行翻转,以切换当前连通的待测MEMS加速度传感器芯片的第一极板或者第三极板与电容测试装置连通。
在本申请的一种实现方式中,所述测试夹具包括探针、引线、接口;多个所述探针与所述多个MEMS加速度传感器芯片的第一极板、第二极板、第三极板一一对应连接,并通过所述引线将对应的极板信号连接至相应的接口,使所述多个待测MEMS加速度传感器芯片通过所述接口与所述通道切换装置连接。
在本申请的一种实现方式中,所述测试夹具包括壳体、壳盖;所述壳体包括多个用于放置待测MEMS加速度传感器芯片的第一凹槽,以及设置于所述第一凹槽的相对两侧的第二凹槽,所述第二凹槽用于辅助取放所述待测MEMS加速度传感器芯片;所述壳体包括固定件,所述壳体通过所述固定件与所述壳盖铆合;所述探针包括固定套管和弹性探针头,所述弹性探针头基于压力在所述固定套管内伸缩,以调节所述探针的长度。
另一方面,本申请实施例还提供了一种MEMS加速度传感器芯片批量测试方法,应用于上述任一项所述的MEMS加速度传感器芯片批量测试系统,方法包括:
确定多个待测MEMS加速度传感器芯片分别与相应通道连接;
通过第一时钟信号依次控制所述多个待测MEMS加速度传感器芯片对应的通道中的开关的连通,以实现对所述通道的切换;
确定当前连通的待测MEMS加速度传感器芯片的第二极板与电容测试装置连通,并通过第二时钟信号,控制当前连通的待测MEMS加速度传感器芯片的第一极板或第三极板与所述电容测试装置连通;
对当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值分别进行测试;
根据所述电容值,确定所述待测MEMS加速度传感器芯片对应的电压与电容特性曲线。
在本申请的一种实现方式中,在通过第一时钟信号切换连通通道,依次控制所述多个待测MEMS加速度传感器芯片对应的开关连通之前,所述方法还包括:根据所述待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值的测试时间,确定所述第一时钟信号的时钟周期,以使所述测试时间小于所述时钟周期。
在本申请的一种实现方式中,所述通过第二时钟信号,控制当前连通的待测MEMS加速度传感器芯片的第一极板或第三极板对应的开关连通,具体包括:根 据所述第一时钟信号的第一频率,确定第二时钟信号的第二频率为所述第一频率的若干倍;确定所述第一时钟信号的一个周期内对应的两个第二时钟信号,其中,第一个第二时钟信号控制当前连通的待测MEMS加速度传感器芯片的第一极板与所述电容测试装置连通,第二个第二时钟信号的上升沿使所述第一时钟信号翻转,以控制当前连通的待测MEMS加速度传感器芯片的第三极板与所述电容测试装置连通。
本申请实施例提供的一种MEMS加速度传感器芯片批量测试方法及系统,至少包括以下有益效果:
通过为多个MEMS加速度传感器芯片分别设置相应的通道,在进行测试时,采用第一时钟信号自动切换各通道的选通,使得多个MEMS加速度传感器芯片能依次进行电容测试。并且,在进行电容测试时,采用第二时钟信号切换第一极板和第三极板分别与电容测试装置的连接,以分别进行两次电容测试。这样能实现MEMS加速度传感器芯片的自动化批量测试,降低了人力成本,节省了测试工作量,减少了测试时间,有利于提高测试效率。此外,本系统通过机械开关进行通道的选通,能够避免带来额外的电容干扰,提高测试的准确性和稳定性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种MEMS加速度传感器芯片简易结构示意图;
图2为本申请实施例提供的一种MEMS加速度传感器芯片批量测试系统结构示意图;
图3为本申请实施例提供的测试夹具的壳体结构示意图;
图4为本申请实施例提供的测试夹具中设置有探针的壳盖俯视截面图;
图5为本申请实施例提供的探针结构示意图;
图6为本申请实施例提供的测试夹具中设置有探针的壳盖侧视截面图;
图7为本申请实施例提供的通道切换装置结构示意图;
图8(a)为本申请实施例提供的第二时钟信号时序图;
图8(b)为本申请实施例提供的第一时钟信号时序图;
图8(c)为本申请实施例提供的通道的选通信号时序图;
图9为本申请实施例提供的一种MEMS加速度传感器芯片批量测试方法流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的一种MEMS加速度传感器芯片简易结构示意图,MEMS加速度传感器芯片由第一极板、第二极板、第三极板三个极板构成。其中,第一极板与第三极板是固定极板,在外力作用下不会产生运动。第二极板位于第一极板与第三极板的中间位置,第二极板是可动的。第二极板的第一表面与第一极板的第一表面形成了一个上下极板面积相等的平板电容器,第二极板的第二表面与第三极板的第一表面同样形成了一个上下极板面积相等的平板电容器。其中,第二极板的第一表面与第一极板的第一表面相对设置,以使所述第二极板与第一极板形成第一电容;第二极板的第二表面与第三极板的第一表面相对设置,以使所述第二极板与第三极板形成第二电容。
本申请实施例提供的一种MEMS加速度传感器芯片批量测试方法及系统,在放置多个芯片的情况下,通过为多个MEMS加速度传感器芯片分别设置相应的通道,在进行测试时,采用第一时钟信号自动切换各芯片的连通,使得多个MEMS加速度传感器芯片能依次进行电容测试。并且,在进行电容测试时,采用第二时钟信号切换第一极板和第三极板分别与电容测试装置的连接,以分别进行两次电容测试。这样能实现MEMS加速度传感器芯片的自动化批量测试,在一个芯片完成测试后,系统会自动切换到下一个芯片进行测试,无需人工监测和放置,降低了人力成本,节省了测试工作量,减少了测试时间,有利于提高测试效率。此外,本系统通过机械开关进行通道的选通,能够避免带来额外的电容干扰,提高测试的准确性和稳定性。并且,后续在确定芯片的电容与电压特性曲线后,可以判断 MEMS加速度传感器芯片的性能,从而筛选出可以正常工作的芯片,进行后续的封装测试,可大幅节省封装成本。
下面继续详细说明。
图2为本申请实施例提供的一种MEMS加速度传感器芯片批量测试系统结构示意图。
如图2所示,本系统包括测试夹具1、通道切换装置2、电容测试装置3、控制器4。其中,测试夹具1、通道切换装置2、电容测试装置3依次连接,控制器4分别与通道切换装置2、电容测试装置3连接。
具体地,测试夹具1用于同时放置多个待测MEMS加速度传感器芯片,以进行批量测试,通道切换装置2与多个待测MEMS加速度传感器芯片分别通过相应通道连接,用于基于接收到的第一时钟信号,切换多个待测MEMS加速度传感器芯片对应通道的开关闭合,以使对应的通道连通,以及基于接收到的第一时钟信号产生第二时钟信号,并基于第二时钟信号将当前连通的待测MEMS加速度传感器芯片的第一极板或者第三极板切换至与电容测试装置连通。电容测试装置3用于测试当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值。控制器4用于向通道切换装置发送第一时钟信号,以控制通道切换装置进行相应切换,以及根据测得的电容值,确定待测MEMS加速度传感器芯片对应的电压与电容特性曲线。
本系统通过设置通道切换装置,在多个待测MEMS加速度传感器芯片对应的通道之间进行自动切换,并在当前连通的待测MEMS加速度传感器芯片的第一极板和第三极板之间进行自动切换,以分别对多个待测MEMS加速度传感器芯片依次进行测试,得到待测MEMS加速度传感器芯片对应的电容值以及电压与电容特性曲线,实现对MEMS加速度传感器芯片的批量测试和检测,这样能够节省大量测试工作量,提高测试效率。同时后续对芯片性能进行初步检测的过程,还能排除存在问题的芯片,筛选出性能良好的MEMS芯片进行封装,可以节约封装成本,并把控芯片质量。
图3为本申请实施例提供的测试夹具的壳体结构示意图。测试夹具包括壳体、壳盖,壳体用于放置待测MEMS加速度传感器芯片,壳盖覆盖于壳体上,用于对待测MEMS加速度传感器芯片进行保护隔离。
如图3所示,测试夹具包括第一凹槽11、第二凹槽12、固定件13。第一凹槽11根据壳体的大小可设置多个,用于放置待测MEMS加速度传感器芯片,第一凹槽的大小根据待测MEMS加速度传感器裸芯片的大小设置。第二凹槽12设置于第一凹槽11的相对两侧,用于辅助测试人员从第一凹槽11中取放待测MEMS加速度传感器芯片。固定件13设置于测试夹具的两端,用于固定壳体和壳盖,增加测试夹具的稳定性,防止在测试过程中壳体与壳盖之间出现相对移动,影响测试结果。固定件可以是突出的柱体,壳体通过该柱体与壳盖铆合。
测试夹具包括与第一凹槽相对应的多个探针,一个凹槽对应三个探针,分别用于与待测MEMS加速度传感器芯片的第一极板、第二极板、第三极板一一对应连接。其中,探针可设置在壳体上或壳盖上,若探针设置在壳体上,则将待测MEMS加速度传感器芯片的电极面向壳体放置,以使电极与壳体上的探针接触,若探针设置在壳盖上,则将待测MEMS加速度传感器芯片的电极面向壳盖放置,以使电极与壳盖上的探针接触。
图4为本申请实施例提供的测试夹具中设置有探针的壳盖俯视截面图。如图4所示,对应于壳体内设置的多个第一凹槽的相应位置,测试夹具的壳盖上分别设置有用于连接待测MEMS加速度传感器芯片的第一极板的第一探针14、用于连接待测MEMS加速度传感器芯片的第二极板的第二探针15和用于连接待测MEMS加速度传感器芯片的第三极板的第三探针16。壳体与壳盖闭合后,壳体内放置的待测MEMS加速度传感器芯片的相应电极分别与壳盖上对应的探针接触。
在一个实施例中,探针具有可伸缩性,如图5所示,探针包括固定套管124和弹性探针头142。弹性探针头142在弹簧的作用下可在固定套管124内运动,以调节探针的长度。为了避免因加工或装配误差导致探针接触不到芯片电极,可将探针设置为相对较长的长度。同时,为了保护芯片,使弹性探针头在接受到压力时,可向固定套管内回缩,以防止对芯片造成损害。这样增强了探针的灵活性,同时减小了对机械加工精细度的要求。
图6为本申请实施例提供的测试夹具中设置有探针的壳盖侧视截面图。如图6所示,测试夹具包括引线17、接口18。各探针分别通过引线17与接口18连接,以将对应的待测MEMS加速度传感器芯片的极板信号引出到接口18,进行测试。其中,各探针引出的引线应尽量短,比如根据探针和接口之间的直线距离,确定与所述直线距离不大于预设差值的引线长度,这样能够减小由引线带来的杂 散电容,提高后续对芯片性能检测的准确性。并且,不同引线的长度应尽量相等,以避免杂散电容对不同通道之间的影响不同,导致各待测MEMS加速度传感器芯片的测试条件不一致,增大了测量误差。
图7为本申请实施例提供的通道切换装置结构示意图。如图7所示,通道切换装置包括通道切换模块21、TOP端口、CTR端口、BOT端口、芯片接口模块22、电容测量接口模块23和选通信号产生模块24。芯片接口模块22与测试夹具中的接口连接,将待测MEMS加速度传感器芯片1~N的第一极板1~N、第二极板1~N、第三极板1~N分别与通道切换模块21中的对应开关连接,电容测量接口模块23包括第一测试端口、第二测试端口,电容测量接口模块23与电容测试装置中的相应测试端口连接。
选通信号产生模块24接收控制器发送的第一时钟信号,产生多个选通信号SEL1~N,分别与多个(即N个)待测MEMS加速度传感器芯片对应,各选通信号分别控制相应待测MEMS加速度传感器芯片对应的开关的连通。在图7中,SEL1控制第一极板1、第二极板1、第三极板1对应的开关连通,SEL2控制第一极板2、第二极板2、第三极板2对应的开关的连通,以此类推,SEL N控制第一极板N、第二极板N、第三极板N对应的开关的连通。在待测MEMS加速度传感器芯片连通时,第一极板通过对应的开关连接TOP端口,第二极板通过对应的开关连接CTR端口,第三极板通过对应的开关连接BOT端口。
具体地,如图8(b)~图8(c)所示,Φ1表示第一时钟信号,控制器通过输出第一时钟信号,对选通信号进行切换。控制器每输出一个第一时钟信号,选通信号产生模块则产生对应的选通信号。在第一时钟信号的第一个时钟周期内,选通信号1为高电平,选通信号2~N为低电平,对应的待测MEMS加速度传感器芯片的第一极板1、第二极板2、第三极板3依次连接到TOP端口、CTR端口、BOT端口。在第一时钟信号的第二个时钟周期内,选通信号2为高电平,其余选通信号为低电平,以此类推。则在测试过程中的同一时刻,至多一个待测MEMS加速度传感器芯片对应的开关为连通状态,即本系统会依次对各待测MEMS加速度传感器芯片进行测试。
在本申请的一个实施例中,对待测MEMS加速度传感器芯片进行测试时,需要对第一极板和第二极板之间的电容值、以及第二极板和第三极板之间的电容值进行测试。因此,通过第二时钟信号控制通道切换装置中的TOP端口(对应第一 极板)或BOT端口(对应第三极板)分别与第二测试端口连接,也就是分别与电容测试装置连接。
如图7所示,第一测试端口通过CTR端口与当前连通的待测MEMS加速度传感器芯片的第二极板连接,第二测试端口表示为选择开关,其可通过TOP端口与当前连通的待测MEMS加速度传感器芯片的第一极板连接,或者通过BOT端口与当前连通的待测MEMS加速度传感器芯片的第三极板连接。通过第一测试端口和第二测试端口与通道切换装置中相应端口的连接,电容测试装置可分别测试待测MEMS加速度传感器芯片中第一极板和第二极板之间的电容值、以及第二极板和第三极板之间的电容值。
进一步地,如图8(a)所示,Φ1表示第二时钟信号。通道切换装置可根据第一时钟信号的第一频率,确定第二时钟信号对应的第二频率为第一频率的若干倍,比如两倍,则在第一时钟信号的一个时钟周期内可产生两个第二时钟信号,第二个第二时钟信号的上升沿可对第一时钟信号进行翻转,将第一时钟信号由高电平变为低电平,以切换当前连通的待测MEMS加速度传感器芯片的第一极板或者第三极板连通。
具体地,电容测试装置需要对每个待测MEMS加速度传感器芯片进行两次测试。第一时钟信号为高电平时,TOP端口连接到第二测试端口,电容测试装置对第一极板和第二极板之间的电容值进行测试,第一时钟信号为低电平时,BOT端口连接到第二测试端口,电容测试装置对第二极板和第三极板之间的电容值进行测试。
进一步地,在当前连通的待测MEMS加速度传感器芯片测试完毕后,第二时钟信号同样可通过上升沿对第一时钟信号进行翻转,使第一时钟信号由低电平变为高电平,以进行下一个待测MEMS加速度传感器芯片的测试。
另外,控制器还可包括电容与电压特性测试模块和数据存储及显示模块。电容与电压特性测试模块用于根据测得的电容值,确定待测MEMS加速度传感器芯片对应的电压与电容特性曲线。数据存储及显示模块用于存储并显示测试得到的各通道的待测MEMS加速度传感器芯片的电容与电压特性曲线及基础电容。控制器可通过测得的电容与电压曲线及基础电容,判断对应的MEMS加速度传感器芯片的性能,并筛选出性能良好的MEMS加速度传感器芯片,进行下一步的封装测试。
需要说明的是,本申请通过切换待测MEMS加速度传感器芯片的通道进行自动化批量测试的方案,除了可应用于本申请提及的电压与电容特性的检测,还可以基于同样的原理,应用于MEMS加速度传感器芯片的其他相关电学特性的检测中,比如传递函数、噪声等。
基于同样的发明构思,本申请实施例还提供了一种MEMS加速度传感器芯片批量测试方法,其流程图如图9所示。
图9为本申请实施例提供的一种MEMS加速度传感器芯片批量测试方法流程图,具体步骤包括:
S901:确定多个待测MEMS加速度传感器芯片分别与相应通道连接。
在本申请实施例中,将多个待测MEMS加速度传感器芯片放置于测试夹具中,使各待测MEMS加速度传感器芯片分别与通道切换装置中的相应通道实现连接,即可开始该批待测MEMS加速度传感器芯片的测试。
S902:通过第一时钟信号依次控制所述多个待测MEMS加速度传感器芯片对应的通道中的开关的闭合,以实现对相应通道的连通的切换。
控制器输出第一时钟信号至通道切换装置,使通道切换装置中的选通信号产生模块分别产生对应的多个选通信号。通道切换装置中的通道切换模块包括各待测MEMS加速度传感器芯片分别对应的开关,通道切换装置根据选通信号对应的开关,使该对应的开关连通,其他开关保持断开,可使该开关对应的待测MEMS加速度传感器芯片与电容测试装置连通。
其中,每个选通信号分别控制一个待测MEMS加速度传感器芯片对应的开关,在一个通道对应的开关连通时,其他开关保持断开。
在本申请的一个实施例中,由于通道切换装置需要在一个待测MEMS加速度传感器芯片测试完毕后,继续切换至下一个待测MEMS加速度传感器芯片进行测试。因此,控制器可根据电容测试装置对待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值的测试时间,确定第一时钟信号的时钟周期。测试时间小于第一时钟信号的时钟周期,即可在测试结束后,根据下一个第一时钟信号的输出,自动进行通道切换。
S903:确定当前连通的待测MEMS加速度传感器芯片的第二极板与电容测试装置连通,并通过第二时钟信号,控制当前连通的待测MEMS加速度传感器芯片的第一极板或第三极板与电容测试装置连通。
在本申请实施例中,电容测试装置需要分别对待测MEMS加速度传感器芯片的第一极板和第二极板之间的电容值、以及第二极板和第三极板之间的电容值进行测试。因此,待测MEMS加速度传感器芯片对应的通道连通时,待测MEMS加速度传感器芯片的第二极板通过通道切换装置的CTR端口可与电容测试装置一直保持连通,而待测MEMS加速度传感器芯片的第一极板和第三极板需要在第二时钟信号的作用下,进行切换,依次连通至电容测试装置。
具体地,通道切换装置可根据第一时钟信号的第一频率,确定第二时钟信号的第二频率为第一频率的若干倍,比如两倍。在当前连通的待测MEMS加速度传感器芯片对应的第一时钟信号的一个周期内,对应存在两个第二时钟信号。其中,第一个第二时钟信号控制当前连通的待测MEMS加速度传感器芯片的第一极板与电容测试装置连通,第二个第二时钟信号的上升沿使第一时钟信号翻转,以控制当前连通的待测MEMS加速度传感器芯片的第三极板与电容测试装置连通。
S904:对当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值分别进行测试。
在本申请实施例中,电容测试装置可对待测MEMS加速度传感器芯片进行两次电容测试。在对一个待测MEMS加速度传感器芯片的电容测试完毕后,控制器输出下一个时钟周期的第一时钟信号,并产生下一个通道的选通信号,则通道切换装置基于选通信号进行切换,进行下一个待测MEMS加速度传感器芯片的测试。
S905:根据电容值,确定待测MEMS加速度传感器芯片对应的电压与电容特性曲线。
在本申请实施例中,可根据测得的电容值,确定待测MEMS加速度传感器芯片对应的电压与电容特性曲线,以确定待测MEMS加速度传感器芯片的性能。
需要说明的是,本申请中用于通道的选通连接的开关均为机械开关,机械开关能够避免带来额外的电容干扰,提高测试的准确性和稳定性。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于系统实施例,所以描述的比较简单,相关之处参见系统实施例的部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那 些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种MEMS加速度传感器芯片批量测试系统,所述MEMS加速度传感器芯片包括第一极板、第二极板、第三极板,其特征在于,所述系统包括:
    测试夹具,用于放置多个待测MEMS加速度传感器芯片;
    通道切换装置,与所述多个待测MEMS加速度传感器芯片分别连接,用于基于接收到的第一时钟信号,控制所述待测MEMS加速度传感器芯片对应通道的开关闭合,以及根据所述第一时钟信号产生第二时钟信号,基于所述第二时钟信号,将所述待测MEMS加速度传感器芯片的第一极板或者第三极板分别与电容测试装置连通;
    电容测试装置,与所述通道切换装置连接,用于测试当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值;
    控制器,与所述通道切换装置、电容测试装置连接,用于根据测得的所述电容值,确定相应的电压与电容特性曲线,以及向所述通道切换装置发送所述第一时钟信号,以控制所述通道切换装置进行相应的通道切换。
  2. 根据权利要求1所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述通道切换装置包括选通信号产生模块;
    所述选通信号产生模块用于根据所述第一时钟信号,产生与所述多个待测MEMS加速度传感器芯片分别对应的选通信号,以分别控制相应待测MEMS加速度传感器芯片的开关的闭合;
    其中,在同一时刻,至多一个待测MEMS加速度传感器芯片对应的开关为闭合状态。
  3. 根据权利要求1所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述通道切换装置包括通道切换模块、TOP端口、CTR端口、BOT端口;
    所述通道切换模块包括所述多个待测MEMS加速度传感器芯片的第一极板、第二极板、第三极板分别对应的开关;
    所述待测MEMS加速度传感器芯片连通时,所述第一极板通过对应的开关连接TOP端口,所述第二极板通过对应的开关连接CTR端口,所述第三极板通过对应的开关连接BOT端口,以使所述待测MEMS加速度传感器芯片通过所述TOP端口、CTR端口、BOT端口连接所述电容测试装置。
  4. 根据权利要求3所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述通道切换装置包括第一测试端口、第二测试端口;
    所述第一测试端口通过所述CTR端口与当前连通的待测MEMS加速度传感器芯片的第二极板连接,以使所述第二极板连接所述电容测试装置;
    所述第二测试端口通过所述TOP端口与当前连通的待测MEMS加速度传感器芯片的第一极板连接,或者通过所述BOT端口与当前连通的待测MEMS加速度传感器芯片的第三极板连接,以使所述第一极板或第三极板连接所述电容测试装置,分别测试对应的电容值。
  5. 根据权利要求1所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述通道切换装置根据所述第一时钟信号的第一频率,产生具有所述第一频率若干倍的第二频率的第二时钟信号,并通过所述第二时钟信号,对所述第一时钟信号进行翻转,以切换当前连通的待测MEMS加速度传感器芯片的第一极板或者第三极板与电容测试装置连通。
  6. 根据权利要求1所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述测试夹具包括探针、引线、接口;
    多个所述探针与所述多个MEMS加速度传感器芯片的第一极板、第二极板、第三极板一一对应连接,并通过所述引线将对应的极板信号连接至相应的接口,使所述多个待测MEMS加速度传感器芯片通过所述接口与所述通道切换装置连接。
  7. 根据权利要求6所述的一种MEMS加速度传感器芯片批量测试系统,其特征在于,所述测试夹具包括壳体、壳盖;
    所述壳体包括多个用于放置待测MEMS加速度传感器芯片的第一凹槽,以及设置于所述第一凹槽的相对两侧的第二凹槽,所述第二凹槽用于辅助取放所述待测MEMS加速度传感器芯片;
    所述壳体包括固定件,所述壳体通过所述固定件与所述壳盖铆合;
    所述探针包括固定套管和弹性探针头,所述弹性探针头基于压力在所述固定套管内伸缩,以调节所述探针的长度。
  8. 一种MEMS加速度传感器芯片批量测试方法,其特征在于,应用于权利要求1~7任一项所述的MEMS加速度传感器芯片批量测试系统,所述方法包括:
    确定多个待测MEMS加速度传感器芯片分别与相应通道连接;
    通过第一时钟信号依次控制所述多个待测MEMS加速度传感器芯片对应的通道中的开关的闭合,以实现对相应通道的连通的切换;
    确定当前连通的待测MEMS加速度传感器芯片的第二极板与电容测试装置连通,并通过第二时钟信号,控制当前连通的待测MEMS加速度传感器芯片的第一极板或第三极板与所述电容测试装置连通;
    对当前连通的待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值分别进行测试;
    根据所述电容值,确定所述待测MEMS加速度传感器芯片对应的电压与电容特性曲线。
  9. 根据权利要求8所述的一种MEMS加速度传感器芯片批量测试方法,其特征在于,在通过第一时钟信号切换连通通道,依次控制所述多个待测MEMS加速度传感器芯片对应的开关连通之前,所述方法还包括:
    根据所述待测MEMS加速度传感器芯片的第一极板和第二极板之间、以及第二极板和第三极板之间的电容值的测试时间,确定所述第一时钟信号的时钟周期,以使所述测试时间小于所述时钟周期。
  10. 根据权利要求9所述的一种MEMS加速度传感器芯片批量测试方法,其特征在于,所述通过第二时钟信号,控制当前连通的待测MEMS加速度传感器芯片的第一极板或第三极板对应的开关连通,具体包括:
    根据所述第一时钟信号的第一频率,确定第二时钟信号的第二频率为所述第一频率的若干倍;
    确定所述第一时钟信号的一个周期内对应的两个第二时钟信号,其中,第一个第二时钟信号控制当前连通的待测MEMS加速度传感器芯片的第一极板与所述电容测试装置连通,第二个第二时钟信号的上升沿使所述第一时钟信号翻转,以控制当前连通的待测MEMS加速度传感器芯片的第三极板与所述电容测试装置连通。
PCT/CN2021/094561 2021-05-12 2021-05-19 一种mems加速度传感器芯片批量测试方法及系统 WO2022068217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021206813A AU2021206813A1 (en) 2021-05-12 2021-05-19 Method and system for testing mems acceleration sensor chips in batches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110518285.8 2021-05-12
CN202110518285.8A CN113253095A (zh) 2021-05-12 2021-05-12 一种mems加速度传感器芯片批量测试方法及系统

Publications (1)

Publication Number Publication Date
WO2022068217A1 true WO2022068217A1 (zh) 2022-04-07

Family

ID=77223145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094561 WO2022068217A1 (zh) 2021-05-12 2021-05-19 一种mems加速度传感器芯片批量测试方法及系统

Country Status (2)

Country Link
CN (1) CN113253095A (zh)
WO (1) WO2022068217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812615A (zh) * 2022-06-24 2022-07-29 河北美泰电子科技有限公司 一种imu批量标定装置、标定方法及标定系统
CN115061032A (zh) * 2022-06-14 2022-09-16 无锡华大国奇科技有限公司 一种多时钟域芯片的功能测试方法及测试装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933684A (zh) * 2021-09-26 2022-01-14 武汉光谷信息光电子创新中心有限公司 一种芯片特性的测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492020A (en) * 1991-03-30 1996-02-20 Okada; Kazuhiro Detector for a physical quantity having a self-testing function
CN105259372A (zh) * 2015-10-14 2016-01-20 华东光电集成器件研究所 晶圆级电容式加速度计自动测试系统
CN111103440A (zh) * 2018-10-26 2020-05-05 航天科工惯性技术有限公司 一种加速度计表芯的测试装置、系统及方法
CN111337709A (zh) * 2020-04-07 2020-06-26 嘉兴恩湃电子技术有限公司 一种mems加速度计自动批量标定方法
CN211785616U (zh) * 2020-03-23 2020-10-27 嘉兴恩湃电子技术有限公司 一种mems电容式加速度计批量自动化测试工装

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388247B1 (en) * 2003-05-28 2008-06-17 The United States Of America As Represented By The Secretary Of The Navy High precision microelectromechanical capacitor with programmable voltage source
CN201689154U (zh) * 2010-05-14 2010-12-29 华南理工大学 多功能半导体器件测试盒
CN203275549U (zh) * 2013-05-24 2013-11-06 北京汇冠新技术股份有限公司 一种测试工装设备
CN103439584B (zh) * 2013-08-22 2016-05-11 沈阳工业大学 基于阻抗分析仪的多极板电容在线测量系统
CN103837706B (zh) * 2014-03-26 2015-05-06 中国科学院地质与地球物理研究所 检测微电子机械系统加速度传感器芯片的特性的方法、装置和系统
CN105823907B (zh) * 2016-03-21 2019-04-16 江苏物联网研究发展中心 平行板电容型mems加速度计内建自测试电路及自测试方法
CN106814295B (zh) * 2017-03-17 2023-04-07 常州瑞神安医疗器械有限公司 一种多通道电路测试装置及脑深部电极测试方法
CN109633207B (zh) * 2018-12-19 2021-02-09 哈尔滨工业大学 一种数字闭环加速度计片上在线自检测系统及方法
CN210036750U (zh) * 2019-06-28 2020-02-07 成都华托微纳智能传感科技有限公司 一种可控压力的mems惯性传感器测试夹具
CN111562482A (zh) * 2020-06-19 2020-08-21 青岛歌尔微电子研究院有限公司 晶圆性能测试装置及方法
CN112158792A (zh) * 2020-09-22 2021-01-01 浙江大学 一种适用于mems加速度传感器芯片的低应力封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492020A (en) * 1991-03-30 1996-02-20 Okada; Kazuhiro Detector for a physical quantity having a self-testing function
CN105259372A (zh) * 2015-10-14 2016-01-20 华东光电集成器件研究所 晶圆级电容式加速度计自动测试系统
CN111103440A (zh) * 2018-10-26 2020-05-05 航天科工惯性技术有限公司 一种加速度计表芯的测试装置、系统及方法
CN211785616U (zh) * 2020-03-23 2020-10-27 嘉兴恩湃电子技术有限公司 一种mems电容式加速度计批量自动化测试工装
CN111337709A (zh) * 2020-04-07 2020-06-26 嘉兴恩湃电子技术有限公司 一种mems加速度计自动批量标定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061032A (zh) * 2022-06-14 2022-09-16 无锡华大国奇科技有限公司 一种多时钟域芯片的功能测试方法及测试装置
CN114812615A (zh) * 2022-06-24 2022-07-29 河北美泰电子科技有限公司 一种imu批量标定装置、标定方法及标定系统
CN114812615B (zh) * 2022-06-24 2022-10-14 河北美泰电子科技有限公司 一种imu批量标定装置、标定方法及标定系统

Also Published As

Publication number Publication date
AU2021206813B1 (en) 2022-07-14
CN113253095A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022068217A1 (zh) 一种mems加速度传感器芯片批量测试方法及系统
US7325457B2 (en) Sensor and sensor module
US5939633A (en) Apparatus and method for multi-axis capacitive sensing
JP5588347B2 (ja) プローブ装置および試験装置
KR102402669B1 (ko) 접속 구조체 및 접속 구조체 모듈, 및 이를 이용하는 프로브 카드 어셈블리 및 웨이퍼 테스트 장치
CN109883602A (zh) 一种基于soi的自补偿硅微谐振式压力敏感芯片
TWI756772B (zh) 用於應變測量之電氣電路
CN109444650B (zh) 超大尺寸电容屏单膜的开短路测试方法及装置
JPH039425B2 (zh)
CN109084916B (zh) 一种多维力传感器中应变片的固定装置、方法及传感器
CN110967402A (zh) 一种直列式声发射和加速度一体化压电传感器
CN216310082U (zh) 一种用于待测元器件的测试治具
CN108682632A (zh) 半导体检测设备及其操作方法
CN216593886U (zh) 微机电谐振式压力敏感结构
CN204576088U (zh) 一种多功能数字电子钟
CN110542722B (zh) 超声探头的故障检测方法及装置
CN209387744U (zh) 一种检测石英摆片正反电容对称性的装置
CN109297397B (zh) 静电换能器可动电极的厚度测量方法、装置以及系统
US20070062294A1 (en) Pressure sensor and method for manufacturing pressure sensor
CN105758501A (zh) 一种巨压阻双谐振质量传感器及其制作方法
TW202138818A (zh) 具3d電路的微機電探針測試頭及探針卡
US8969102B2 (en) Testing an electrical connection of a device cap
JP2001272414A (ja) 内燃機関のノッキングを検出するためのセンサ
SU1629877A1 (ru) Измеритель электрической емкости
JP2000310651A (ja) 液体接触式プローブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873879

Country of ref document: EP

Kind code of ref document: A1