CN112158792A - 一种适用于mems加速度传感器芯片的低应力封装结构 - Google Patents

一种适用于mems加速度传感器芯片的低应力封装结构 Download PDF

Info

Publication number
CN112158792A
CN112158792A CN202011001239.2A CN202011001239A CN112158792A CN 112158792 A CN112158792 A CN 112158792A CN 202011001239 A CN202011001239 A CN 202011001239A CN 112158792 A CN112158792 A CN 112158792A
Authority
CN
China
Prior art keywords
metal layer
sensor chip
acceleration sensor
layer region
mems acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011001239.2A
Other languages
English (en)
Other versions
CN112158792B (zh
Inventor
车录锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011001239.2A priority Critical patent/CN112158792B/zh
Publication of CN112158792A publication Critical patent/CN112158792A/zh
Priority to US17/295,598 priority patent/US11780727B2/en
Priority to PCT/CN2021/071306 priority patent/WO2022062279A1/zh
Application granted granted Critical
Publication of CN112158792B publication Critical patent/CN112158792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • B81B7/0048Packages or encapsulation for reducing stress inside of the package structure between the MEMS die and the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00325Processes for packaging MEMS devices for reducing stress inside of the package structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本发明涉及传感器芯片封装领域,尤其涉及一种适用于MEMS加速度传感器芯片的低应力封装结构,包括MEMS传感器芯片和管壳,传感器芯片底部两端设有金属层区域,管壳腔体底部两端也设有对应的金属层区域;传感器芯片底部一端金属层与管壳腔体底部一端金属层粘接,芯片底部另一端金属层与管壳腔体底部另一端金属层仅接触但不粘接;为阻止粘接材料高温封装时溢向另一侧金属层区域,在传感器芯片底部两侧金属层之间,靠近其中一侧设有凹槽;MEMS传感器芯片仅底部一端与管壳封装为一体,另一端呈自由状态,且芯片与管壳侧壁留有一定的间隙,保证了高温封装时,芯片材料有一定裕度的膨胀空间,从而将传感器的封装应力降低到最小。

Description

一种适用于MEMS加速度传感器芯片的低应力封装结构
技术领域
本发明涉及一种传感器芯片低应力封装结构,尤其涉及一种适用于微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)加速度传感器芯片低应力封装结构,属于传感器芯片封装领域。
背景技术
MEMS加速度传感器作为具有代表性的微传感器,具有体积小、重量轻、易集成、功耗和成本低、可批量生产等优点,被广泛地应用于消费电子、油气勘探、航空航天、国防工业等领域。而芯片的封装是加速度传感器制作过程中的关键环节之一,其不仅占据着总成本的30%-40%,还在传感器芯片与外部处理电路之间扮演着至关重要的桥梁角色。加速度传感器芯片通过管壳封装可建立与外界的电学连接,获得机械支撑,防止外部力、热、化学等有害因素的损害或干扰。
传统的封装首先是通过胶粘或焊料粘接的方式将加速度传感器芯片底面与管壳腔体底面进行简单的粘合,再对芯片与管壳进行引线键合,最后封盖实现腔体密封。由于粘接材料、管壳材料与芯片材料之间的热膨胀系数各不相同,当外部温度变化时,三者之间便呈现出不同的形变量,从而产生热应力。该应力通过芯片底板传递到加速度传感器芯片内部,导致传感器弹性梁变形和可动结构偏移,最终会影响传感器的灵敏度、零点偏移和温度系数等性能。因此,如何减小封装过程引入的热应力,对高性能MEMS加速度传感器的研制极其重要。
为了降低封装热应力,通常从以下几个角度采取办法:1、封装材料。结合传感器芯片的结构特点,选择低应力的粘片胶,对外界输入的应力起有效的缓冲作用。2、芯片结构。其一是适当增加MEMS芯片底板的厚度,降低外部应力对芯片内可动结构变形的影响。其二是引入应力隔离结构,该法虽能有效的降低封装应力,但通常需要制作额外的结构层,增加了工艺的复杂性且不利于实现微型化。3、芯片的粘接位置与粘接面积。封装时要选择外部应力对传感器结构变形影响较小的位置进行粘接,在不影响抗冲击特性的情况下尽量减小粘接面积。
发明内容
为解决现有封装技术中存在的问题,本发明的目的在于提供一种适用于MEMS加速度传感器芯片的低应力封装结构,能够将传感器的封装应力降低到最小,且工艺简单,可靠性高,易于操作,成品率高。
为实现上述目的,本发明所采用的技术方案是:一种适用于MEMS加速度传感器芯片的低应力封装结构,包括管壳和MEMS传感器芯片,其特征在于:管壳腔体底部设有金属层区域,MEMS加速度传感器芯片底部同样设有金属层区域和凹槽,其中,
所述管壳腔体底部金属层区域位于腔体底部两端,其一端由相邻的两块金属区域组成;
所述MEMS传感器芯片底部金属层区域位于芯片底部两端,与管壳腔体底部两端的金属层区域相对应。
进一步地,所述MEMS传感器芯片底部一端的金属层与所述管壳腔体底部一端的金属层粘接,芯片底部另一端的金属层仅与管壳腔体底部另一端的金属层接触,但不粘接。
进一步地,为阻止粘接材料高温封装时溢向另一侧金属层区域,在MEMS传感器芯片底部两侧金属层之间,靠近其中一侧设有凹槽。
进一步地,所述金属层区域为Ti/Au(钛/金)、Ni/Au(镍/金)或其它金属材料。
进一步地,所述MEMS加速度传感器芯片的金属层区域与管壳的金属层区域通过金锡焊料或其它材料粘接在一起。
进一步地,所述MEMS加速度传感器芯片与管壳腔体侧壁留有一定裕度的活动间隙。
优选地,所述凹槽宽度不小于100μm,深度不小于10μm。
优选地,所述活动间隙的宽度不小于0.1mm。
本发明至少具有以下有益效果:
MEMS传感器芯片仅底部一端与管壳粘接为一体,另一端呈自由状态,封装应力可依靠自由端的活动进行充分释放,从而有效的降低了封装过程引入的热应力。
管壳腔体底部和MEMS加速度传感器芯片底部仅接触而未粘接的金属层区域,可为芯片提供机械支撑,提高封装结构的抗冲击能力和可靠性。
MEMS加速度传感器芯片与管壳腔体侧壁留有一定的活动间隙,保证了高温封装时,芯片材料有一定裕度的膨胀空间,从而将传感器的封装应力降低到最小。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的实施例并配合附图详细说明如后。
附图说明
图1是作为本发明实施例的MEMS加速度传感器芯片的结构示意图。
图2是本发明所涉及的MEMS加速度传感器芯片封装管壳的俯视图。
图3是本发明所涉及的MEMS加速度传感器芯片封装结构沿图2中AA’视角的剖面图。
图4是本发明所涉及的MEMS加速度传感器芯片封装结构沿图2中BB’视角的剖面图。
图5是本发明所涉及的MEMS加速度传感器芯片封装在管壳中的三维示意图。
图6是本发明所涉及的MEMS加速度传感器芯片完成低应力封装后,上盖板和中间质量块构成电容的CV曲线(电容电压关系曲线)图。
图7是本发明所涉及的MEMS加速度传感器芯片完成低应力封装后,下盖板和中间质量块构成电容的CV曲线(电容电压关系曲线)图。
附图中:
1—MEMS加速度传感器芯片 2—管壳
3—金锡焊料 4—管壳侧壁
5—活动间隙 6、7—焊盘
8—金属引线 9—金属盖板
103—凹槽 101、102、201、201a、201b、202—金属层区域
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
作为本发明实施例的MEMS加速度传感器芯片1的结构如图1所示;MEMS加速度传感器1采用电容检测原理,由上盖板、弹性梁、中间质量块、下盖板组成一对差分电容;当外界输入加速度信号时,弹性梁发生形变,中间质量块位置发生变化引起差分电容值变化,通过检测电路将差分电容变化量转换为电压信号,来表征外界输入的加速度信号;当有封装热应力通过下盖板引入传感器时,会导致弹性梁等MEMS敏感结构发生形变,从而造成极板间隙变化以及中间质量块的扭转,最终影响加速度传感器的性能。
本发明涉及的一种适用于MEMS加速度传感器芯片的低应力封装结构,包括MEMS加速度传感器芯片1和管壳2。
MEMS加速度传感器芯片1底部两端设有金属层区域101,金属层区域102和凹槽103,其中凹槽103设置于金属层区域101和金属层区域102之间并靠近金属层区域101设置;MEMS加速度传感器芯片1的封装管壳2如图2所示,管壳2腔体底部两端同样设有金属层区域201,金属层区域202;其中,金属层区域201由相邻的金属层区域201a和金属层区域201b组成。
所述金属层区域101,金属层区域102采用Ti/Au(钛/金)制成,金属层区域201、金属层区域202采用Ni/Au(镍/金)制成。
本发明所涉及的MEMS加速度传感器芯片低应力封装结构剖面图可参见图3和图4;本发明所涉及的MEMS加速度传感器芯片封装在管壳中的三维示意图可参见图5。
所述MEMS加速度传感器芯片1的金属层区域101与管壳2的金属层区域201通过金锡焊料3粘接在一起,金属层区域102与金属层区域202仅接触而不粘接;由于MEMS传感器芯片1仅底部一端与管壳2封装为一体,另一端呈自由状态,封装应力可依靠自由端的活动进行充分释放,从而有效的降低了芯片1上的封装应力。
MEMS加速度传感器芯片1底部和管壳2腔体底部仅接触而未粘接的金属层区域102和金属层区域202,可为芯片1提供机械支撑,相较于现有技术中孤立的凸台结构,所述低应力封装结构具有较高的抗机械冲击能力和可靠性。
为阻止金锡焊料3高温封装时溢向MEMS传感器芯片1底部另一侧,造成金属层区域102与金属层区域202的粘接,MEMS传感器芯片1底部金属层区域101一侧设有凹槽103。
所述凹槽103宽度不小于100μm,深度不小于10μm。
MEMS加速度传感器芯片1与管壳侧壁4之间留有一定的活动间隙5,保证了高温封装时,MEMS加速度传感器芯片1材料有一定裕度的膨胀空间,从而MEMS加速度传感器芯片1的封装应力能够降低到最小。
为留有足够裕度的活动空间,所述活动间隙5的宽度不小于0.1mm。
MEMS加速度传感器芯片1上的焊盘6与管壳2腔体内的焊盘7通过金属引线8相互连接,实现电信号在管壳2内外的相互传输;最后采用金属盖板9真空密封管壳2腔体,完成MEMS加速度传感器芯片1的低应力封装。
本发明所涉及的MEMS加速度传感器芯片1完成低应力封装后,上盖板和中间质量块构成电容的CV曲线(电容电压关系曲线)可参见图6,下盖板和中间质量块构成电容的CV曲线可参见图7。对曲线进行计算分析得到中间质量块偏转角度为3.783E-4度,偏移为0.032微米,可见由封装应力造成的中间质量块偏转角度和偏移大大减小。显然,上述说明并非是本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (7)

1.一种适用于MEMS加速度传感器芯片的低应力封装结构,包括MEMS加速度传感器芯片(1)和管壳(2),其特征在于:MEMS加速度传感器芯片(1)底部两端分别设有金属层区域(101)和金属层区域(102),所述金属层区域(101)与金属层区域(102)之间设有凹槽(103);管壳(2)腔体底部两端对应设有金属层区域(201)和金属层区域(202),MEMS加速度传感器芯片(1)与管壳侧壁(4)留有一定的活动间隙(5)。
2.根据权利要求1所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述金属层区域(201)由相邻的金属层区域(201a)和金属层区域(201b)组成。
3.根据权利要求1所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述金属层区域(101),金属层区域(102)为Ti/Au(钛/金),金属层区域(201)、金属层区域(202)为Ni/Au(镍/金)。
4.根据权利要求1所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述MEMS加速度传感器芯片(1)的金属层区域(101)与管壳(2)的金属层区域(201)粘接在一起,金属层区域(102)与金属层区域(202)接触配合。
5.根据权利要求4所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述MEMS加速度传感器芯片(1)的金属层区域(101)与管壳(2)的金属层区域(201)通过金锡焊料(3)粘接在一起。
6.根据权利要求1所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述凹槽(103)宽度不小于100μm,深度不小于10μm。
7.根据权利要求1所述的适用于MEMS加速度传感器芯片的低应力封装结构,其特征在于:所述活动间隙(5)的宽度不小于0.1mm。
CN202011001239.2A 2020-09-22 2020-09-22 一种适用于mems加速度传感器芯片的低应力封装结构 Active CN112158792B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011001239.2A CN112158792B (zh) 2020-09-22 2020-09-22 一种适用于mems加速度传感器芯片的低应力封装结构
US17/295,598 US11780727B2 (en) 2020-09-22 2021-01-12 Low-stress packaging structure for MEMS acceleration sensor chip
PCT/CN2021/071306 WO2022062279A1 (zh) 2020-09-22 2021-01-12 一种mems加速度传感器芯片低应力封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011001239.2A CN112158792B (zh) 2020-09-22 2020-09-22 一种适用于mems加速度传感器芯片的低应力封装结构

Publications (2)

Publication Number Publication Date
CN112158792A true CN112158792A (zh) 2021-01-01
CN112158792B CN112158792B (zh) 2024-07-02

Family

ID=73863249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011001239.2A Active CN112158792B (zh) 2020-09-22 2020-09-22 一种适用于mems加速度传感器芯片的低应力封装结构

Country Status (3)

Country Link
US (1) US11780727B2 (zh)
CN (1) CN112158792B (zh)
WO (1) WO2022062279A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253095A (zh) * 2021-05-12 2021-08-13 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片批量测试方法及系统
WO2022062279A1 (zh) * 2020-09-22 2022-03-31 浙江大学 一种mems加速度传感器芯片低应力封装结构
CN115078767A (zh) * 2022-05-19 2022-09-20 北京航天控制仪器研究所 一种具有应力释放的mems加速度计传感器敏感结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044557A1 (en) * 2005-08-30 2007-03-01 Takemasa Kengo Package structure for an acceleration sensor
US20090241668A1 (en) * 2008-03-25 2009-10-01 Oki Semiconductor Co., Ltd. Acceleration sensor package
JP2011180146A (ja) * 2011-04-04 2011-09-15 Oki Semiconductor Co Ltd 半導体装置
CN205709848U (zh) * 2016-05-24 2016-11-23 清华大学 Mems传感器结构
CN211238214U (zh) * 2020-03-20 2020-08-11 武汉锐晶激光芯片技术有限公司 一种控制焊料溢出芯片

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946742B2 (en) * 2002-12-19 2005-09-20 Analog Devices, Inc. Packaged microchip with isolator having selected modulus of elasticity
KR100855819B1 (ko) * 2004-10-08 2008-09-01 삼성전기주식회사 금속 밀봉부재가 형성된 mems 패키지
JP4969822B2 (ja) * 2004-12-06 2012-07-04 株式会社デンソー センサ装置
US7491567B2 (en) * 2005-11-22 2009-02-17 Honeywell International Inc. MEMS device packaging methods
US20070158826A1 (en) * 2005-12-27 2007-07-12 Yamaha Corporation Semiconductor device
JP5070778B2 (ja) * 2006-09-20 2012-11-14 株式会社デンソー 力学量センサ
US8742557B2 (en) * 2007-06-19 2014-06-03 Honeywell International Inc. Die mounting stress isolator
DE102009007837A1 (de) * 2009-02-06 2010-08-19 Epcos Ag Sensormodul und Verfahren zum Herstellen von Sensormodulen
WO2012037536A2 (en) * 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9231119B2 (en) * 2011-03-11 2016-01-05 Panasonic Intellectual Property Management Co., Ltd. Sensor
CN203238029U (zh) * 2013-04-22 2013-10-16 安徽北方芯动联科微系统技术有限公司 具有降低封装应力结构的mems元件
US20170057810A1 (en) * 2015-09-01 2017-03-02 Apple Inc. Strain Reduction and Sensing on Package Substrates
ITUB20154017A1 (it) * 2015-09-30 2017-03-30 St Microelectronics Srl Dispositivo incapsulato di materiale semiconduttore a ridotta sensibilita' nei confronti di stress termo-meccanici
CN205472637U (zh) * 2016-04-07 2016-08-17 中国电子科技集团公司第十三研究所 微机电系统封装基板
CN106744644A (zh) 2016-10-11 2017-05-31 中国科学院地质与地球物理研究所 一种mems传感器低应力封装管壳及封装系统
US11161733B2 (en) * 2017-05-08 2021-11-02 Safran Colibrys Sa Decoupling structure for accelerometer
CN112158792B (zh) * 2020-09-22 2024-07-02 浙江大学 一种适用于mems加速度传感器芯片的低应力封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044557A1 (en) * 2005-08-30 2007-03-01 Takemasa Kengo Package structure for an acceleration sensor
US20090241668A1 (en) * 2008-03-25 2009-10-01 Oki Semiconductor Co., Ltd. Acceleration sensor package
JP2011180146A (ja) * 2011-04-04 2011-09-15 Oki Semiconductor Co Ltd 半導体装置
CN205709848U (zh) * 2016-05-24 2016-11-23 清华大学 Mems传感器结构
CN211238214U (zh) * 2020-03-20 2020-08-11 武汉锐晶激光芯片技术有限公司 一种控制焊料溢出芯片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062279A1 (zh) * 2020-09-22 2022-03-31 浙江大学 一种mems加速度传感器芯片低应力封装结构
US11780727B2 (en) 2020-09-22 2023-10-10 Zhejiang University Low-stress packaging structure for MEMS acceleration sensor chip
CN113253095A (zh) * 2021-05-12 2021-08-13 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片批量测试方法及系统
CN115078767A (zh) * 2022-05-19 2022-09-20 北京航天控制仪器研究所 一种具有应力释放的mems加速度计传感器敏感结构

Also Published As

Publication number Publication date
CN112158792B (zh) 2024-07-02
WO2022062279A1 (zh) 2022-03-31
US20220306458A1 (en) 2022-09-29
US11780727B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
CN112158792B (zh) 一种适用于mems加速度传感器芯片的低应力封装结构
CN103257007B (zh) 压力传感器介质隔离封装结构及其封装方法
CN102183335B (zh) Mems压力传感器及其制作方法
CN102768290B (zh) 一种mems加速度计及制造方法
CN102778586B (zh) 一种差分电容微加速度传感器及其制作方法
CN102759636B (zh) 一种电容式mems加速度计及制造方法
CN105182005B (zh) 一种加速度计
CN2938053Y (zh) 新型硅压力传感器
CN202442825U (zh) 压力传感器介质隔离封装结构
US11898918B2 (en) Temperature coefficient of offset compensation for force sensor and strain gauge
CN111638002A (zh) 一种mems压力传感器充油芯体及其封装方法
CN108358160B (zh) 吊装式可释放应力的mems器件封装结构
CN107445137A (zh) 一种倒置装配的mems芯片封装结构制作方法
CN114739571B (zh) 一种mems压力传感器的封装装置
CN111337185A (zh) 一种基于十字梁结构的石墨烯高压压力传感器
CN217520622U (zh) 竖置极板电容式敏感芯片结构
CN201605163U (zh) 一种带有梳形阻尼孔的大电容微惯性传感器
CN208200366U (zh) 吊装式可释放应力的mems器件封装结构
CN207763855U (zh) 压力检测芯片和压力传感器
JP5771921B2 (ja) 封止型デバイス及びその製造方法
JP5843302B1 (ja) 複合センサデバイスの製造方法
CN216846640U (zh) 一种平衡式结构体的硅压传感器芯片
CN216246925U (zh) 一种降低输出漂移的mems压力传感器芯片
CN204555991U (zh) 一种mems惯性传感器
CN217878099U (zh) 一种多模态柔性压力传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant