CN105259372A - 晶圆级电容式加速度计自动测试系统 - Google Patents

晶圆级电容式加速度计自动测试系统 Download PDF

Info

Publication number
CN105259372A
CN105259372A CN201510664521.1A CN201510664521A CN105259372A CN 105259372 A CN105259372 A CN 105259372A CN 201510664521 A CN201510664521 A CN 201510664521A CN 105259372 A CN105259372 A CN 105259372A
Authority
CN
China
Prior art keywords
capacitive
microprocessor
digital
relay
analog converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510664521.1A
Other languages
English (en)
Other versions
CN105259372B (zh
Inventor
田波
方岚
焦贵忠
谢斌
郑宇�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 214 Institute of China North Industries Group Corp
Original Assignee
No 214 Institute of China North Industries Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 214 Institute of China North Industries Group Corp filed Critical No 214 Institute of China North Industries Group Corp
Priority to CN201510664521.1A priority Critical patent/CN105259372B/zh
Publication of CN105259372A publication Critical patent/CN105259372A/zh
Application granted granted Critical
Publication of CN105259372B publication Critical patent/CN105259372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开晶圆级电容式加速度计自动测试系统,包括微处理器以及与微处理器相连的上位机,四个电容数字转换器、第一数模转换器、第二数模转换器、第一继电器与第二继电器;微处理器控制数模转换器与继电器,向电容式加速度计的其中两个固定电极上在不同时刻分别施加直流电压,产生静电力,模拟外界加速度,所述四个电容数字转换器由微处理器控制,并向微处理器发送所采集不同时刻的电容式加速度计的电容值,再由微处理器计算得出电容变化量,实现参数测试的目的,并判断出电容式加速度计的品质。

Description

晶圆级电容式加速度计自动测试系统
技术领域
本发明涉及微电子测试领域,具体是一种晶圆级电容式加速度计自动测试系统。
背景技术
公知的,电容式加速度计为差分电容结构,其内部有一个可动极板及多个固定电极,可动极板与质量块相连,多个固定电极与之相对,在可动极板与固定电极间形成差分电容对,当向电容式加速度计施加外部加速度时,其内部质量块发生位移,并引起加速度计内部的差分电容对发生变化,从而使得差分电容的差动电容值发生变化。利用这一特性,对封装好的加速度计成品电路施加机械冲击或振动,提供一个加速度信号,由接口检测电路将电容变化量转换为电压、电流、频率等易于测量的电信号,再由数据采集卡等设备与接口检测电路进行通信,对接口检测电路的输出信号进行采集,就可以测量出电容式加速度计的各项参数。
但是在电容式加速度计的晶圆阶段,由于芯片放置在探针台上,处于平放状态,无法对电容加计芯片施加机械冲击、振动等外部加速度信号,因此,对于晶圆阶段的电容式加速度计,无法沿用其成品测试方法。
发明内容
本发明的目的在于提供一种晶圆级电容式加速度计自动测试系统,该系统能够对处于晶圆阶段的电容式加速度计进行参数测试,判断电容式加速度计的品质。
本发明解决其技术问题所采用的技术方案是:
晶圆级电容式加速度计自动测试系统,包括微处理器以及与微处理器相连的上位机,所述系统还包括四个电容数字转换器、第一数模转换器、第二数模转换器、第一继电器与第二继电器;所述第一继电器与第二继电器分别由微处理器控制通断,微处理器的输出接口分别连接第一数模转换器与第二数模转换器的输入接口,第一数模转换器的输出接口连接第一继电器常开触点的一端,第二数模转换器的输出接口连接第二继电器常开触点的一端,第一继电器常开触点与第二继电器常开触点的另一端分别与电容式加速度计的其中两个固定电极相连,电容式加速度计的可动极板接地;所述四个电容数字转换器由微处理器控制,并向微处理器发送所采集电容式加速度计的电容值。
本发明的有益效果是,通过微处理器控制数模转换器与继电器,向电容式加速度计的其中两个固定电极上在不同时刻分别施加直流电压,产生静电力,模拟外界加速度,电容加速度计的质量块在静电力作用下会发生轻微的摆动,每个固定电极与质量块之间的电容值将发生变化,利用电容数字转换器采集不同时刻的电容值,再由微处理器计算得出电容变化量,实现参数测试的目的,并判断出电容式加速度计的品质。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明实施例一的电气原理示意图;
图2是本发明实施例二的电气原理示意图。
具体实施方式
实施例一
如图1所示,本发明提供晶圆级电容式加速度计自动测试系统,包括微处理器U7以及通过通讯接口模块U8与微处理器U7相连的上位机U9,微处理器U7、通讯接口模块U8与上位机U9构成了控制采集单元U12;所述系统还包括四个电容数字转换器,即第一电容数字转换器U1、第二电容数字转换器U2、第三电容数字转换器U3与第四电容数字转换器U4,所述系统还包括第一数模转换器U5、第二数模转换器U6、第一继电器K1与第二继电器K2;所述第一继电器K1与第二继电器K2分别由微处理器U7控制通断,即微处理器U7输出接口分别连接第一继电器K1与第二继电器K2的线圈(图中未画出);微处理器U7的输出接口分别连接第一数模转换器U5与第二数模转换器U6的输入接口,第一数模转换器U5的输出接口连接第一继电器K1常开触点的一端,第二数模转换器U6的输出接口连接第二继电器K2常开触点的一端;对于包含一对差分电容CCS1和CCS2的待测电容式加速度计U10,第一继电器K1常开触点的另一端与电容式加速度计U10的第一固定电极CS1相连,第二继电器K2常开触点的另一端与电容式加速度计U10的第二固定电极CS2相连;第一电容数字转换器U1的输入端连接电容式加速度计U10的第一固定电极CS1,第四电容数字转换器U4的输入端连接电容式加速度计U10的第二固定电极CS2,第二电容数字转换器U2与第三电容数字转换器U3的输入端悬空;第一电容数字转换器U1、第二电容数字转换器U2、第三电容数字转换器U3与第四电容数字转换器U4分别与微处理器U7之间电连接,由微处理器U7控制工作并向微处理器U7反馈电容信号,电容式加速度计U10的可动极板CSUM端接地;为了测试方便,可以将第一电容数字转换器U1、第二电容数字转换器U2、第三电容数字转换器U3、第四电容数字转换器U4、第一数模转换器U5、第二数模转换器U6、第一继电器K1与第二继电器K2集成在测试探卡U11上。
测试时,微处理器U7控制第一电容数字转换器U1与第四电容数字转换器U4工作,测量电容式加速度计U10的第一固定电极CS1与第二固定电极CS2相对于可动极板CSUM端的电容绝对值,分别记为CCS1A与CCS2A,电容数字转换器会将测量到的电容值转换为数字信号传输到微处理器U7中;然后,微处理器U7控制第一继电器K1常开触点闭合,并输出一个固定的直流电压经由第一数模转换器U5施加到电容式加速度计U10的第一固定电极CS1,从而产生一个静电力,模拟外界的重力加速度,使得电容式加速度计U10的质量块发生偏转,这时电容式加速度计U10左侧的电容CCS1增加,右侧的电容CCS2减小,通过微处理器U7控制第四电容数字转换器U4测量第二固定电极CS2相对于可动极板CSUM端的电容绝对值,记为CCS2B,并传输到微处理器U7中,此时微处理器U7计算电容式加速度计U10的第二固定电极CS2相对于可动极板CSUM端的电容变化量:△CS2=CCS2A-CCS2B;
电容式加速度计U10的第一固定电极CS1由于施加了一个直流电压,此直流电压叠加在第一电容数字转换器U1的输入端,因此无法控制第一电容数字转换器U1测量左侧电容CCS1变化后的电容量。所以,通过微处理器U7控制第一继电器K1常开触点断开,控制第二继电器K2常开触点闭合,相似的,微处理器U7输出一个固定的直流电压经由第二数模转换器U6施加到电容式加速度计U10的第二固定电极CS2,产生一个静电力,模拟外界的重力加速度,使得电容式加速度计U10的质量块发生偏转,这时电容式加速度计U10左侧的电容CCS1减小,右侧电容CCS2增加,通过微处理器U7控制第一电容数字转换器U1测量第一固定电极CS1相对于可动质量块CSUM端的电容绝对值,记为CCS1B,并传输到微处理器U7中,此时微处理器U7计算电容式加速度计U10的第一固定电极CS1相对于可动极板CSUM端电容变化量:△CS1=CCS1A-CCS1B。
之后,由微处理器U7将两个固定极板分别相对于可动极板的电容变化量△CS1与△CS2通过通讯接口模块U8传输给上位机U9,上位机U9再对测试参数处理、判断、记录,标记出电容变化量不达标的芯片,剔除不合格的产品。
实施例二
如图2所示,本实施例中晶圆级电容式加速度计自动测试系统的结构与实施例一基本相同,也包括微处理器U7、第一电容数字转换器U1~第四电容数字转换器U4、第一数模转换器U5、第二数模转换器U6、第一继电器K1与第二继电器K2;所述第一继电器K1与第二继电器K2分别由微处理器U7控制通断,即微处理器U7输出接口分别连接第一继电器K1与第二继电器K2的线圈(图中未画出);微处理器U7的输出接口分别连接第一数模转换器U5与第二数模转换器U6的输入接口,第一数模转换器U5的输出接口连接第一继电器K1常开触点的一端,第二数模转换器U6的输出接口连接第二继电器K2常开触点的一端;对于包含两对差分电容的待测电容式加速度计U10,即CCS1和CCS2形成一对差分电容,CCF1和CCF2形成另一对差分电容,第一继电器K1常开触点的另一端与电容式加速度计U10的第一固定电极CS1相连,第二继电器K2常开触点的另一端与电容式加速度计U10的第二固定电极CS2相连;第一电容数字转换器U1的输入端连接电容式加速度计U10的第一固定电极CS1,第四电容数字转换器U4的输入端连接电容式加速度计U10的第二固定电极CS2,第二电容数字转换器U2的输入端连接电容式加速度计U10的第三固定电极CF1,第三电容数字转换器U3的输入端连接电容式加速度计U10的第四固定电极CF2;第一电容数字转换器U1、第二电容数字转换器U2、第三电容数字转换器U3与第四电容数字转换器U4分别与微处理器U7之间电连接,由微处理器U7控制工作并向微处理器U7反馈电容信号,电容式加速度计U10的可动极板CSUM端接地。
测试时,微处理器U7控制第一电容数字转换器U1~第四电容数字转换器U4工作,测量电容式加速度计U10的第一固定电极CS1、第二固定电极CS2、第三固定电极CF1与第四固定电极CF2相对于可动极板CSUM端的电容绝对值,分别记为CCS1A、CCS2A、CCF1A与CCF2A,电容数字转换器会将测量到的电容值转换为数字信号传输到微处理器U7中;然后,微处理器U7控制第一继电器K1常开触点闭合,并输出一个固定的直流电压经由第一数模转换器U5施加到电容式加速度计U10的第一固定电极CS1,从而产生一个静电力,模拟外界的重力加速度,使得电容式加速度计U10的质量块发生偏转,这时电容式加速度计U10左侧的电容CCS1与CCF1增加,右侧的电容CCF2与CCS2减小,通过微处理器U7依次控制第二电容数字转换器U2、第三电容数字转换器U3与第四电容数字转换器U4,分别测量第三固定电极CCF1、第四固定电极CCF2和第二固定电极CCS2相对于可动质量块CSUM端的电容绝对值,分别记为CCF1B、CCF2B与CCS2B,并传输给微处理器U7,此时微处理器U7计算电容式加速度计U10第三固定电极CCF1、第四固定电极CCF2和第二固定电极CCS2相对于可动极板CSUM端的电容变化量:
△CF1=CCF1B-CCF1A;
△CF2=CCF2A-CCF2B;
△CS2=CCS2A-CCS2B;
电容式加速度计U10的第一固定电极CS1由于施加了一个直流电压,此直流电压叠加在第一电容数字转换器U1的输入端,因此无法控制第一电容数字转换器U1测量电容CCS1变化后的电容量。所以,通过微处理器U7控制第一继电器K1常开触点断开,控制第二继电器K2常开触点闭合,相似的,微处理器U7输出一个固定的直流电压经由第二数模转换器U6施加到电容式加速度计U10的第二固定电极CS2,产生一个静电力,模拟外界的重力加速度,使得电容式加速度计U10的质量块发生偏转,这时电容式加速度计U10左侧的电容CCS1与CCF1减小,右侧的电容CCF2与CCS2增加,通过微处理器U7控制第一电容数字转换器U1测量第一固定电极CS1相对于可动质量块CSUM端的电容绝对值,记为CCS1B,并传输到微处理器U7中,此时微处理器U7计算电容式加速度计U10的第一固定电极CS1相对于可动极板CSUM端电容变化量:△CS1=CCS1A-CCS1B。
之后,由微处理器U7将四个固定极板分别相对于可动极板的电容变化量△CS1、△CS2、△CF1与△CF2通过通讯接口模块U8传输给上位机U9,上位机U9再对测试参数处理、判断、记录,标记出电容变化量不达标的芯片,剔除不合格的产品。
本发明通过微处理器控制数模转换器与继电器,向电容式加速度计的其中两个固定电极上在不同时刻分别施加直流电压,产生静电力,模拟外界加速度,电容加速度计的质量块在静电力作用下会发生轻微的摆动,每个固定电极与质量块之间的电容值将发生变化,利用电容数字转换器采集不同时刻的电容值,再由微处理器计算得出电容变化量,实现参数测试的目的,并判断出电容式加速度计的品质。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (1)

1.晶圆级电容式加速度计自动测试系统,包括微处理器以及与微处理器相连的上位机,其特征在于,所述系统还包括四个电容数字转换器、第一数模转换器、第二数模转换器、第一继电器与第二继电器;所述第一继电器与第二继电器分别由微处理器控制通断,微处理器的输出接口分别连接第一数模转换器与第二数模转换器的输入接口,第一数模转换器的输出接口连接第一继电器常开触点的一端,第二数模转换器的输出接口连接第二继电器常开触点的一端,第一继电器常开触点与第二继电器常开触点的另一端分别与电容式加速度计的两个固定电极相连,电容式加速度计的可动极板接地;所述四个电容数字转换器由微处理器控制,并向微处理器发送所采集电容式加速度计的电容值。
CN201510664521.1A 2015-10-14 2015-10-14 晶圆级电容式加速度计自动测试系统 Active CN105259372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510664521.1A CN105259372B (zh) 2015-10-14 2015-10-14 晶圆级电容式加速度计自动测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510664521.1A CN105259372B (zh) 2015-10-14 2015-10-14 晶圆级电容式加速度计自动测试系统

Publications (2)

Publication Number Publication Date
CN105259372A true CN105259372A (zh) 2016-01-20
CN105259372B CN105259372B (zh) 2018-07-10

Family

ID=55099138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510664521.1A Active CN105259372B (zh) 2015-10-14 2015-10-14 晶圆级电容式加速度计自动测试系统

Country Status (1)

Country Link
CN (1) CN105259372B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203939A (zh) * 2021-04-26 2021-08-03 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片的检测方法及装置
WO2022068217A1 (zh) * 2021-05-12 2022-04-07 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片批量测试方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435774A (zh) * 2011-12-07 2012-05-02 浙江大学 一种电容式微机械加速度计温度补偿系统及其方法
CN102539834A (zh) * 2011-12-31 2012-07-04 航天科工惯性技术有限公司 一种检测摆组件摆动对称性的装置及方法
CN102830251A (zh) * 2012-09-04 2012-12-19 中国兵器工业集团第二一四研究所苏州研发中心 晶圆级单支点电容式加速度计性能参数在线评估方法
CN103217554A (zh) * 2013-03-21 2013-07-24 天津大学 多加速度计智能参数辨识、匹配与硬件生成系统及方法
US20130285172A1 (en) * 2010-12-06 2013-10-31 Hitachi Automotive Systems, Ltd Combined Sensor
CN103529372A (zh) * 2013-10-24 2014-01-22 华东光电集成器件研究所 一种memes压阻式加速度传感器晶圆自动检验系统
CN103890593A (zh) * 2011-09-16 2014-06-25 罗伯特·博世有限公司 借助使用片上中和电容器和线性致动的自动校准的电容换能器的线性度增强
CN104833823A (zh) * 2015-05-22 2015-08-12 电子科技大学 电容式微机械加速度计动态性能改善系统和方法
JP2016070815A (ja) * 2014-09-30 2016-05-09 株式会社日立製作所 加速度センサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130285172A1 (en) * 2010-12-06 2013-10-31 Hitachi Automotive Systems, Ltd Combined Sensor
CN103890593A (zh) * 2011-09-16 2014-06-25 罗伯特·博世有限公司 借助使用片上中和电容器和线性致动的自动校准的电容换能器的线性度增强
CN102435774A (zh) * 2011-12-07 2012-05-02 浙江大学 一种电容式微机械加速度计温度补偿系统及其方法
CN102539834A (zh) * 2011-12-31 2012-07-04 航天科工惯性技术有限公司 一种检测摆组件摆动对称性的装置及方法
CN102830251A (zh) * 2012-09-04 2012-12-19 中国兵器工业集团第二一四研究所苏州研发中心 晶圆级单支点电容式加速度计性能参数在线评估方法
CN103217554A (zh) * 2013-03-21 2013-07-24 天津大学 多加速度计智能参数辨识、匹配与硬件生成系统及方法
CN103529372A (zh) * 2013-10-24 2014-01-22 华东光电集成器件研究所 一种memes压阻式加速度传感器晶圆自动检验系统
JP2016070815A (ja) * 2014-09-30 2016-05-09 株式会社日立製作所 加速度センサ
CN104833823A (zh) * 2015-05-22 2015-08-12 电子科技大学 电容式微机械加速度计动态性能改善系统和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203939A (zh) * 2021-04-26 2021-08-03 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片的检测方法及装置
CN113203939B (zh) * 2021-04-26 2022-03-18 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片的检测方法及装置
WO2022068218A1 (zh) * 2021-04-26 2022-04-07 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片的检测方法及装置
JP2022554028A (ja) * 2021-04-26 2022-12-27 中国科学院地▲質▼▲与▼地球物理研究所 Mems加速度センサチップの検出方法及び装置
JP7221453B2 (ja) 2021-04-26 2023-02-13 中国科学院地▲質▼▲与▼地球物理研究所 Mems加速度センサチップの検出方法及び装置
WO2022068217A1 (zh) * 2021-05-12 2022-04-07 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片批量测试方法及系统

Also Published As

Publication number Publication date
CN105259372B (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN102788921B (zh) 配电自动化终端装置功能和性能的检测方法
CN104527451B (zh) 用于中低速磁浮列车的悬浮控制器检测装置
CN103698695A (zh) 多功能高压断路器电气特性测试装置及其测试方法
CN205940820U (zh) 一种受电弓受流状态弓网接触力检测装置及测量车
CN103528493B (zh) 一种印制电路板应力应变测试系统
CN103640713B (zh) 飞机结构疲劳部件的监测系统
CN204142417U (zh) 一种汽车压力传感器寿命测试装置
CN106771505B (zh) 基于串联电容的单相架空输电线路相电压自校准方法
CN105043699A (zh) 一种服务器机箱内外参数的振动与冲击测试方法及装置
CN106959210A (zh) 一种用于敞开式隔离开关的分合状态检测方法及装置
CN202304756U (zh) 测厚系统
CN105259372A (zh) 晶圆级电容式加速度计自动测试系统
CN105277111A (zh) 星箭锁紧装置应变监测系统
CN103823598B (zh) 触控感应电路及方法
CN107209216B (zh) 带电平板监测仪及其应用方法
CN202975311U (zh) 一种电池管理系统综合性能测试平台
CN203502555U (zh) 多功能高压断路器电气特性测试装置
CN203274900U (zh) 一种动态称重在线状态监测系统
CN106970268A (zh) 基于并联电容的单相架空输电线路相电压自校准方法
CN106603338A (zh) 智能终端响应时间测试方法、装置和系统
CN110888011B (zh) 一种基于测试性建模的原位测试方法及测试装置
CN104444224A (zh) 一种胶带输送机纵向撕裂检测装置及其方法
CN107656235A (zh) 一种计量芯片基准电压的测量装置及方法
CN107766625A (zh) 一种输电线路非接触式电压传感器波形解耦方法
CN102043407A (zh) 一种汽车引擎控制器功能检测设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant