WO2022067579A1 - 光模块测试结构及装置 - Google Patents

光模块测试结构及装置 Download PDF

Info

Publication number
WO2022067579A1
WO2022067579A1 PCT/CN2020/119072 CN2020119072W WO2022067579A1 WO 2022067579 A1 WO2022067579 A1 WO 2022067579A1 CN 2020119072 W CN2020119072 W CN 2020119072W WO 2022067579 A1 WO2022067579 A1 WO 2022067579A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
push
rod
heat sink
support rod
Prior art date
Application number
PCT/CN2020/119072
Other languages
English (en)
French (fr)
Inventor
邵修
李雄
唐兴龙
徐梁
徐鹏
黄彧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080104051.2A priority Critical patent/CN116113816A/zh
Priority to PCT/CN2020/119072 priority patent/WO2022067579A1/zh
Publication of WO2022067579A1 publication Critical patent/WO2022067579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to an optical module testing structure and device.
  • the optical module is an optoelectronic device that performs photoelectric and electro-optical conversion.
  • the transmitting end of the optical module converts the electrical signal into an optical signal, and the receiving end converts the optical signal into an electrical signal. Before the optical module is sold, the optical module will be tested to ensure that it has good performance.
  • the existing optical module test structure is mainly composed of a radiator, an optical module cage and a clip.
  • the radiator is fixed on the optical module cage through the clip, and its structure is shown in Figure 1. Insert the optical module into the optical module cage. During the process of inserting the optical module into the optical module cage, the radiator is lifted up to realize the contact between the optical module and the radiator during the test, so that the radiator can dissipate the heat of the optical module during the test. . After the test is complete, pull the optical module out of the optical module cage.
  • test structure of the prior art has at least the following problems: a thermal pad cannot be added on the contact surface of the heat sink and the optical module, which affects the heat dissipation performance; during the process of plugging and unplugging the optical module, the optical module and the heat sink will be in contact with each other. Relative sliding is formed between them, and the contact surface between the optical module and the heat sink will be scratched, thus affecting the quality of the optical module.
  • Embodiments of the present application provide an optical module testing structure and device, which can solve the problem that the optical module is easily scratched by the heat sink during testing, thereby improving the yield rate of the optical module after testing.
  • an optical module testing structure in a first aspect, includes: a heat sink and an optical module cage fixed on the base plate, and the heat sink is connected to the optical module cage. It also includes a floating support mechanism.
  • the floating support mechanism includes a first push mechanism and a second push mechanism. One end of the first push mechanism is connected to the base plate, the other end is connected to one end of the second push mechanism, and the other end of the second push mechanism is connected to the heat sink. The movement of the first push mechanism can drive the second push mechanism to reciprocate along the first direction, and the second push mechanism can drive the radiator to reciprocate along the first direction.
  • the floating support mechanism includes a first push mechanism and a second push mechanism.
  • One end of the first push mechanism is connected to the base plate, and the other end is movably connected to the heat sink.
  • the second push mechanism connected to the push mechanism reciprocates along the first direction, and the second push mechanism drives the radiator connected to the second push mechanism to reciprocate along the first direction.
  • the first direction in this embodiment may be the vertical direction when the optical module is tested.
  • the heat sink is raised in the vertical direction relative to the optical module cage.
  • the optical module is inserted into the optical module cage. Since the radiator is driven up by the second pushing mechanism, there is a certain gap between the radiator and the optical module. When the optical module is inserted into the optical module cage, it will not contact the radiator to avoid The heat sink scratches the optical module.
  • the first pushing mechanism and the second pushing mechanism are pushed so that the heat sink is vertically lowered relative to the optical module cage, so that the bottom of the heat sink is in contact with the optical module. the optical module to dissipate heat.
  • the first pushing mechanism and the second pushing mechanism are pushed again to make the heat sink rise vertically relative to the optical module cage, so as to keep the light module with the heat sink during the process of pulling out the optical module.
  • the test structure when testing different optical modules, the test structure only needs to adjust the floating support mechanism to maintain a gap between the heat sink and each optical module when the optical module is inserted into and pulled out of the optical module cage. , there is no need to assemble a corresponding radiator according to each optical module, and mass testing of optical modules is realized.
  • the movement stroke of the reciprocating motion of the radiator in the first direction is 1mm-2mm.
  • the heat sink is generally connected to the optical module cage through a fixed structure, the reciprocating motion of the heat sink is limited.
  • the main purpose of pushing the heat sink in the first direction by the second pushing mechanism is to maintain a gap with the optical module during the insertion and extraction of the optical module. Therefore, the reciprocating motion of the heat sink is set to 1mm to 2mm, neither It will affect the connection between the radiator and the optical module cage, and also keep the gap between the radiator and the optical module in the process of plugging and unplugging, so as to avoid scratches on the optical module by the radiator.
  • the first push mechanism includes guide rods arranged on both sides of the optical module cage, and the guide rods are slidably connected to the base plate;
  • the second push mechanism includes a cam bearing follower and a The ramp-shaped boss, the cam bearing follower is fixed on the guide rod, the ramp-shaped boss is arranged corresponding to the cam bearing follower, and the cam bearing follower is in contact with the ramp-shaped boss.
  • the guide rod is slidably connected to the base plate, and the guide rod is pushed to realize the movement of the first pushing mechanism along the plane of the base plate.
  • the cam bearing follower and the ramp boss By setting the cam bearing follower and the ramp boss, the cam bearing follower and the The slope-shaped bosses are in contact with each other.
  • the cam bearing follower slides back and forth on the slope-shaped boss, if the cam bearing follower is fixed, the slope-shaped boss will reciprocate in a certain direction.
  • the boss decomposes its movement to make it reciprocate along the first direction.
  • the ramp-shaped boss is a single-sided ramp-shaped boss
  • the guide rod is provided with a limit boss for limiting the sliding distance of the guide rod, and the sliding distance is less than or equal to the slope of the single-sided ramp-shaped boss. horizontal length.
  • the single-sided slope-shaped boss is equivalent to a one-way lock, that is, the cam bearing follower can no longer slide to the lowest point of the single-sided slope-shaped boss after sliding over the highest point of the single-sided slope-shaped boss.
  • the second pushing mechanism cannot perform reciprocating motion. Therefore, by setting the limit boss, the limit boss limits the sliding distance of the guide rod to be less than or equal to the total horizontal length of the single-sided slope-shaped boss, so that the cam bearing follower on the guide rod is always in the single-sided slope-shaped boss.
  • the reciprocating motion of the unilateral slope-shaped boss is driven by the back-and-forth sliding of the guide rod, thereby realizing the reciprocating motion of the radiator.
  • the ramp-shaped boss is a bilateral ramp-shaped boss
  • the guide rod is provided with a limit boss for limiting the sliding distance of the guide rod.
  • the double-sided ramp-shaped boss will not restrict the sliding of the cam bearing follower on the double-sided ramp-shaped boss, so there is no need to limit the specific sliding distance of the guide rod , but due to the size limitation of the test structure, the guide rod cannot slide infinitely, so a limit boss is set to limit the sliding distance of the guide rod.
  • the limit boss limits the sliding distance of the guide rod according to the specific size of the test structure. The settings are not limited here.
  • the guide rod is an integrally formed "U"-shaped guide rod, and the guide rod is located outside the optical module cage.
  • the guide rod is beneficial to uniformly control the movement of the guide rods on both sides of the radiator, and the guide rods on both sides can move at the same time and have the same moving distance. , so that the overall reciprocating motion of the heat sink is realized, so that the gap between the bottom of the heat sink and the optical module is consistent.
  • the length of one side of the guide rod is longer than the length of the other side, and the end of the longer side of the guide rod is provided with a handle.
  • the longer side is convenient to push and pull the guide rod, and the end of the longer side is provided with a handle, which is more convenient to control the movement of the guide rod.
  • the second push mechanism includes first support rods disposed on both sides of the optical module cage, one end of the first support rod is hinged on the base plate, and the other end is slidably connected to the bottom of the heat sink;
  • a push mechanism includes a first push rod corresponding to the first support rod, and the first push rod is hinged at the middle of the first support rod.
  • the first push rod as the first push mechanism
  • setting the first support rod as the second push mechanism by pushing and pulling the first push rod, the first support rod is driven to rotate, and through the rotation of the first support rod, The radiator is driven to reciprocate along the first direction
  • the overall structure is simple, and the operation is easy.
  • the bottom of the radiator is provided with a chute corresponding to the first support rod, and the other end of the first support rod on the same side is located in the chute.
  • a chute at the bottom of the radiator and placing one end of the first strut in the chute, it is beneficial to realize the stability of the sliding connection between the first strut and the radiator.
  • the first push mechanism includes a second support rod arranged on both sides of the optical module cage and a second push rod corresponding to the second support rod, and one end of the second support rod is fixedly connected to the On the base plate, the other end of the second support rod is hinged with the middle of the second push rod;
  • the second push mechanism includes a second push rod and a third support rod, one end of the third support rod and the end of the second push rod close to the radiator Fixed connection, the other end of the third pole is in contact with the bottom of the radiator.
  • the middle of the second push rod is hinged to the top end of the second support rod, so that the second push rod forms a lever, and the second push rod
  • a first push mechanism is formed with the second support rod
  • a second push mechanism is formed with the second push rod and the third support rod.
  • the third support rod is arranged at one end of the second support rod close to the radiator, and the third support rod is in contact with the bottom of the radiator. By rotating the other end of the second push rod, the third support rod is driven to reciprocate.
  • the support rod drives the radiator to reciprocate along the first direction to adjust the gap between the radiator and the optical module.
  • a thermal pad is provided on the bottom of the heat sink in the optical module cage.
  • a thermal pad is provided on the bottom of the heat sink inside the optical module cage, when the optical module is inserted into the optical module cage, the optical module contacts the heat sink, and the contact between the optical module and the heat sink is realized.
  • a thermal pad is added between the surfaces, which is beneficial to increase the heat dissipation capacity of the radiator and improve the heat dissipation performance.
  • the bottom in this embodiment refers to the surface where the heat sink is in contact with the optical module.
  • an optical module testing device in a second aspect, includes a printed circuit board as a substrate and the optical module testing structure according to any one of claims 1-11; the optical module testing structure is connected on the printed circuit board .
  • the above-mentioned optical module testing apparatus has the same technical effect as the optical module testing structure provided in the foregoing embodiments, and details are not described herein again.
  • FIG. 1 is a schematic diagram of a test structure of an optical module provided by the prior art
  • FIG. 2 is an application scenario diagram of an optical module test structure provided by an embodiment of the present application
  • FIG. 3 is one of the schematic structural diagrams of a heat sink in an optical module test structure provided by an embodiment of the application;
  • FIG. 4 is the second structural schematic diagram of a heat sink in an optical module test structure provided by an embodiment of the application.
  • FIG 5 is one of the schematic diagrams of an optical module testing structure provided by an embodiment of the present application.
  • FIG. 6 is the second schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • FIG. 7 is a third schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • FIG. 8 is a fourth schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • FIG. 9 is a fifth schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • FIG. 10 is a sixth schematic diagram of an optical module testing structure provided by an embodiment of the application.
  • FIG. 11 is one of the schematic structural diagrams of the first pushing mechanism in an optical module testing structure provided by an embodiment of the application;
  • FIG. 12 is a second schematic structural diagram of a first pushing mechanism in an optical module testing structure provided by an embodiment of the application.
  • FIG. 13 is an exploded view of a first pushing mechanism in an optical module test structure provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a thermal pad in an optical module testing structure provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the meaning of the term “at least one” in this application means one or more, and the meaning of the term “plurality” in this application means two or more.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • references throughout the specification to "one embodiment,” “an embodiment,” and “one possible implementation” mean that a particular feature, structure, or characteristic related to the embodiment or implementation is included in the present application at least one embodiment of .
  • appearances of "in one embodiment” or “in an embodiment” or “one possible implementation” in various places throughout this specification are not necessarily necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the first direction in this embodiment refers to the direction perpendicular to the contact surface of the optical module and the heat sink 1; the second direction includes the same direction as the direction in which the optical module is inserted into the optical module cage 2, and the direction perpendicular to the optical module and the heat sink 1 1 is the orientation of the contact surface.
  • FIG. 2 is an application scenario diagram of an optical module test structure provided by an embodiment of the present application.
  • the optical module test structure is set on the substrate, and one optical module test structure can be set on the substrate, and multiple optical module test structures can also be set.
  • multiple optical module test structures are used as an example for description. .
  • the base plate includes a bottom plate 11 and a side plate 12, and a total of four optical module test structures are arranged.
  • the four optical module test structures are arranged side by side.
  • the optical module test structure is fixed on the bottom plate 11 and the side plate 12.
  • the optical module cage in the optical module test structure The inlet and outlet of 2 are arranged close to the side plate 12 , and the side plate 12 is provided with openings corresponding to the inlet and outlet of the optical module cage 2 , so that the optical module can be inserted into the optical module cage 2 .
  • the first pushing mechanism in the optical module testing structure can pass through the side plate 12 to facilitate fixing the first pushing mechanism and facilitate operation.
  • FIG. 5 is one of schematic diagrams of an optical module testing structure provided by an embodiment of the present application.
  • the test structure includes: a heat sink 1 and an optical module cage 2 fixed on a substrate, and the heat sink 1 is connected to the optical module cage 2 .
  • the test structure further includes a floating support mechanism, the floating support mechanism includes a first push mechanism and a second push mechanism, one end of the first push mechanism is connected to the base plate, the other end is connected to one end of the second push mechanism, and the other end of the second push mechanism One end is movably connected with the radiator 1, the movement of the first push mechanism drives the second push mechanism to reciprocate along the first direction, and the second push mechanism drives the radiator 1 to reciprocate along the first direction.
  • the radiator 1 can be shown in FIG. 3 and FIG. 4 , the radiator 1 is used to dissipate heat for the optical module during the test, and the optical module cage 2 is used to fix the optical module.
  • the optical module cage 2 is provided with a top opening 21 and a side opening 22 .
  • the top opening 21 is used for placing the heat sink 1
  • the side opening 22 is used for inserting the optical module into the optical module cage 2 or inserting the optical module into the optical module cage 2 .
  • the bottom of the heat sink 1 is provided with a positioning boss 10 , and the size of the positioning boss 10 matches the size of the top opening 21 of the optical module cage 2 .
  • the above-mentioned fixing structure is in the prior art.
  • a buckle can be used.
  • This embodiment does not limit the specific form of the fixing structure.
  • the displacement margin is 1-3mm, rather than a theoretical absolute fixed.
  • the second pushing mechanism no longer pushes up the radiator 1, and the radiator 1 returns to the initial position (the state shown in FIG. 5 ), keeping the distance between the radiator 1 and the optical module. contact, so that the heat sink 1 can dissipate heat to the optical module during the test.
  • the first pushing mechanism is pushed along the second direction (horizontal leftward direction in FIG. 5), and the first pushing mechanism drives the second pushing mechanism along the first direction (the vertical upward direction in FIG. 5 ), the second pushing mechanism pushes up the heat sink 1 , and at this time, the optical module is taken out from the optical module cage 2 .
  • another optical module can be inserted into the optical module cage 2, and the above steps are repeated to realize the test of the next optical module.
  • the initial position in this embodiment refers to: placing the positioning boss 10 of the heat sink 1 in the optical module cage 2, and inserting the optical module into the optical module cage 2 at this time, the positioning of the optical module and the heat sink 1 can be achieved.
  • the movable connection in this embodiment includes connection modes such as sliding connection and hinged connection, and the purpose is to realize relative movement or relative rotation between the two connected ones.
  • the floating mechanism includes a first push mechanism and a second push mechanism.
  • One end of the first push mechanism is connected to the base plate, and the other end is movably connected to the radiator 1.
  • the second push mechanism connected to the first push mechanism reciprocates along the first direction, and the second push mechanism drives the radiator 1 connected thereto to reciprocate along the first direction.
  • the reciprocating motion of the radiator 1 in the first direction can realize that when the optical module is inserted into or pulled out of the optical module cage 2, the radiator 1 and the optical module can maintain a certain gap, so as to prevent the radiator 1 from scratching the optical module.
  • the optical module cage 2 and the heat sink 1 may be arranged horizontally, so the first direction may be the vertical direction.
  • the states of the first pushing mechanism and the second pushing mechanism are as shown in FIG.
  • the optical module is inserted into the optical module cage 2. Since the heat sink 1 is driven up by the second pushing mechanism, there is a certain gap between the heat sink 1 and the optical module, and the optical module will not be inserted into the optical module cage 2. Contact with the radiator 1 to prevent the radiator 1 from scratching the optical module.
  • the first push mechanism and the second push mechanism are pushed, so that the state of the first push mechanism and the second push mechanism is shown in FIG. 5 .
  • the heat sink 1 is opposite to the optical module.
  • the cage 2 is lowered in the vertical direction, so that the bottom of the heat sink 1 is in contact with the optical module, so as to realize heat dissipation of the optical module during the test.
  • the optical module needs to be pulled out from the optical module cage 2, push the first pushing mechanism and the second pushing mechanism again to make the heat sink 1 rise vertically relative to the optical module cage 2, so that the state of the second pushing mechanism is as shown in the figure
  • a certain gap is maintained with the radiator 1 during the process of pulling out the optical module, so as to prevent the radiator 1 from scratching the optical module during the process of pulling out.
  • the test structure when testing different optical modules, the test structure only needs to adjust the floating support mechanism to maintain a gap between the heat sink 1 and each optical module when the optical module is inserted into and pulled out of the optical module cage 2 That is, it is not necessary to assemble the corresponding heat sink 1 according to each optical module, so that mass testing of the optical modules is realized.
  • the movement stroke of the reciprocating motion of the radiator 1 in the first direction is 1 mm-2 mm. Since the heat sink 1 is generally connected to the optical module cage 2 through a fixed structure, the movement stroke of the heat sink 1 for reciprocating motion is limited.
  • the main purpose of pushing the heat sink 1 along the first direction by the second pushing mechanism is to maintain a gap with the optical module during the insertion and extraction of the optical module. Therefore, the reciprocating motion of the heat sink 1 is set to 1mm to 2mm. It will not affect the connection between the radiator 1 and the optical module cage 2, and at the same time, the radiator 1 and the optical module in the process of plugging and unplugging can maintain a gap, which prevents the radiator 1 from scratching the optical module.
  • the movement stroke may be 2mm.
  • the floating heat dissipation mechanism in the embodiment of the present application includes a first push mechanism and a second push mechanism.
  • the functions of the first push mechanism and the second push mechanism are to make the gap between the heat sink 1 and the optical module when the optical module is inserted or pulled out. Keep the gap. Therefore, the form of the first pushing mechanism can be various, it can be formed by the cooperation of two independent mechanisms, or it can be different parts of a whole mechanism. The specific forms of the first pushing mechanism and the second pushing mechanism are illustrated below with examples.
  • FIG. 5 is one of the schematic structural diagrams of the first pushing mechanism in an optical module testing structure provided by an embodiment of the application
  • FIG. 6 is an optical module provided by an embodiment of the application.
  • the second schematic diagram of the first push mechanism in the test structure As shown in FIG. 5 and FIG. 6
  • the first push mechanism includes guide rods 3 arranged on both sides of the optical module cage 2, and the guide rods 3 are slidably connected to the base plate;
  • the second push mechanism includes a cam bearing follower 4 and a The ramp-shaped boss at the bottom of the radiator 1, the cam bearing follower 4 is fixed on the guide rod 3, the ramp-shaped boss is set corresponding to the cam bearing follower 4, and the cam bearing follower 4 is in contact with the ramp-shaped boss .
  • the guide rod 3 can be slidably connected to the base plate in various ways, such as the connection of pulleys, or the sliding of the guide rod 3 on the base plate by arranging a chute on the base plate.
  • the guide rod 3 is slidably connected to the substrate through the slide rail 6 and the slide block 7, and the slide rail 6 and the slide block 7 are the connection structures in the prior art. Referring to FIG. 13, FIG. 13 provides the embodiment of the application.
  • the slider 7 is slidably connected in the slide rail 6, for example, the slider 7 can be slidably connected in the slide rail 6 by a roller ( (not shown in the figure), then fix the slide rail 6 on the base plate, and fix the guide rod 3 on the slider 7.
  • the fixing method can be fixed by bolt connection or by welding. The embodiment does not limit the specific fixing manner.
  • the connection structure of the sliding rail 6 and the sliding block 7 is adopted, the connection is simple, and the sliding block 7 and the sliding rail 6 cooperate stably, which facilitates the sliding of the first pushing mechanism relative to the base plate.
  • the slope-shaped boss in the embodiment of the present application refers to a boss with a certain slope, which can be used for the cam bearing follower 4 to slide on the boss with a slope; Standard Parts.
  • the cam bearing follower 4 includes a bolt as a shaft, in order to facilitate the connection between the cam bearing follower 4 and the guide rod 3, the guide rod 3 is provided with a bolt on the cam bearing follower 4
  • Corresponding screw holes, the screw holes on the guide rod 3 are shown in FIG. 13 , and are arranged on the side of the guide rod 3 .
  • the cam bearing follower 4 and the guide rod 3 can be directly connected with the screw holes on the guide rod 3 through the bolts on the cam bearing follower 4, which is very convenient.
  • the ramp-shaped boss is arranged at the bottom of the radiator 1, and the ramp-shaped boss can be fixed on the bottom of the radiator 1, such as by welding or bolting.
  • the radiator 1 is integrally formed.
  • the guide rod 3 is slidably connected to the base plate through the connection structure of the slide rail 6 and the slider 7, and the guide rod 3 is pushed to realize the movement of the first pushing mechanism along the plane where the base plate is located.
  • the cam bearing follower 4 is in contact with the ramp-shaped boss. Since the cam bearing follower 4 is fixed on the guide rod 3, the cam bearing follower 4 is 4 can move along the plane of the base plate along with the guide rod 3, but is restricted from moving in other directions.
  • the slope-shaped boss will reciprocate in a certain direction.
  • the motion of the ramp-shaped boss can then be decomposed to reciprocate along the first direction by limiting the ramp-shaped boss. Or by setting the position and angle of the ramp-shaped boss, the ramp-shaped boss can reciprocate along the first direction, thereby driving the radiator 1 to reciprocate in the first direction.
  • the ramp-shaped boss is a single-sided ramp-shaped boss 51
  • the single-sided ramp-shaped boss 51 means that the boss has a ramp shape on only one side, or a ramp shape with only one side is suitable for a cam bearing Follower 4 slides on it.
  • the slope of one side with a sloped shape is less than or equal to 30° is defined as suitable for the sliding of the cam bearing follower 4
  • the slope of one side of the single-sided sloped boss 51 is less than or equal to 30°
  • the other side has a slope of less than or equal to 30°.
  • the slope of the slope is greater than 30°.
  • the cam bearing follower 4 on the single-sided ramp-shaped boss 51 can only be controlled by a relatively small slope. The small side slides to the other side, but not from the other side to the less sloped side. Therefore, in order to enable the reciprocating motion of the single-sided slope-shaped boss 51, the cam bearing follower 4 is located on the side with the smaller slope.
  • the guide rod 3 is provided with a limiting boss 8 for limiting the sliding distance of the guide rod 3 , and the sliding distance of the guide rod 3 is less than or equal to the horizontal length of the sloped portion of the single-sided slope-shaped boss 51 . , so that the cam bearing follower 4 on the guide rod 3 is always on the slope of the single-sided slope-shaped boss 51, so as to realize the reciprocating motion of the single-sided slope-shaped boss 51 through the back and forth sliding of the guide rod 3, so as to realize Reciprocating motion of the radiator 1.
  • the horizontal length of the sloped portion of the single-sided slope-shaped boss 51 refers to the length of the longer right-angled side of the right-angled triangle.
  • the horizontal length of the slope-shaped part of the single-sided slope-shaped boss 51 may refer to the projected length of the hypotenuse waist of the trapezoid on the bottom edge;
  • the horizontal length of the sloped portion of the sloping boss 51 can also refer to the lower bottom edge of the trapezoid.
  • the “slope portion” of the single-sided sloped boss 51 can be understood. It is a generalized slope-shaped part, that is, the horizontal part of the single-sided slope-shaped boss 51 can be counted into the “slope-shaped part”, in this example, that is, the “slope-shaped part” includes the hypotenuse waist and the upper base of the right-angled trapezoid .
  • FIG. 7 is the third schematic diagram of an optical module test structure provided by an embodiment of the present application
  • FIG. 8 is an optical module test structure provided by an embodiment of the present application Schematic four.
  • the slope-shaped boss is a double-sided slope-shaped boss 52
  • the guide rod 3 is provided with a limit boss 8 for limiting the sliding distance of the guide rod 3 .
  • the double-sided slope-shaped boss 52 means that both sides of the boss have slopes, that is, the cam bearing follower 4 can slide from one side of the double-sided slope-shaped boss 52 to the other side, or from the double-sided slope-shaped boss 52. The other side of the 52 slides to the side.
  • the guide rod 3 is provided with a limiting boss 8 for limiting the sliding distance of the guide rod 3 .
  • the limitation of the sliding distance of the guide rod 3 by the limiting boss 8 can be set according to the size of the double-sided slope-shaped boss 52 in the actual situation. total horizontal distance.
  • the first and second pushing mechanisms can be pushed so that the states of the first and second pushing mechanisms are as shown in FIG. 8 .
  • the optical module When the optical module is inserted into the preset position, push the first push mechanism and the second push mechanism, so that the state of the first push mechanism and the second push mechanism is shown in FIG.
  • the cam bearing follower 4 moves to the other side of the double-sided ramp-shaped boss 52 shown in FIG. 7 .
  • the optical module needs to be pulled out from the optical module cage 2
  • push the first pushing mechanism and the second pushing mechanism again to make the heat sink 1 rise vertically relative to the optical module cage 2 so that the state of the second pushing mechanism is as shown in the figure
  • a certain gap is maintained with the radiator 1 during the pull-out process of the optical module, so as to prevent the radiator 1 from scratching the optical module during the pull-out process.
  • the specific shape of the double-sided slope-shaped boss 52 does not affect the realization of the purpose of the present invention, and can be set according to the actual situation, and the specific shape of the double-sided slope-shaped boss 52 is not limited in this embodiment.
  • the double-sided ramp boss 52 may be an obtuse triangle or a trapezoid, and the slope of the ramp portion is less than or equal to 45°.
  • the limit of the sliding distance of the guide rod 3 by the limiting boss 8 can be set according to the base of the triangle or the lower base of the trapezoid.
  • FIG. 11 is one of the schematic structural diagrams of the first pushing mechanism in an optical module test structure provided by an embodiment of the present application
  • FIG. 12 is provided by an embodiment of the present application.
  • the guide rod 3 is an integrally formed “U”-shaped guide rod 3
  • the guide rod 3 is located outside the optical module cage 2 .
  • the guide rod 3 as an integrally formed "U"-shaped guide rod 3, it is beneficial to uniformly control the movement of the guide rod 3 on both sides of the radiator 1, that is, to control the movement of the guide rod 3 on one side
  • the guide rods 3 on the other side can be driven to move together, and the guide rods 3 on both sides can move at the same time and have the same moving distance, so as to realize the reciprocating motion of the heat sink 1 as a whole, so that the bottom of the heat sink 1 and the optical module are connected.
  • the gap is the same.
  • the length of one side of the guide rod 3 is longer than the length of the other side, and the end of the longer side of the guide rod 3 is provided with a handle 9 .
  • the longer side is convenient for pushing and pulling the guide rod 3 .
  • the guide rod 3 on the longer side can pass through the fixed plate or the box, which is convenient for outside the box. Or control the sliding of the U-shaped guide rod 3 on the other side of the fixed plate.
  • a handle 9 is provided at the end of the longer side, which is more convenient to control the movement of the guide rod 3 .
  • the specific shape of the handle 9 in this embodiment can be set according to the actual situation, and the specific shape of the handle 9 does not affect the realization of the purpose of the present application, so the specific shape of the handle 9 is not limited.
  • FIG. 13 is an exploded view of a first pushing mechanism in an optical module testing structure provided by an embodiment of the present application.
  • the shape of the handle 9 can be shown in Figures 12 and 11.
  • the handle 9 is provided with a connecting groove and a connecting hole, which is convenient for connecting with the guide rod 3.
  • the handle 9 and the guide rod 3 can be connected by screw connection.
  • FIG. 9 is a fifth schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • the second push mechanism includes first support rods 13 arranged on both sides of the optical module cage 2 , one end of the first support rod 13 is hinged on the base plate, and the other end is slidably connected to the bottom of the heat sink 1 ;
  • the first push mechanism includes a first push rod 14 corresponding to the first support rod 13 , and the first push rod 14 is hinged at the middle of the first support rod 13 .
  • the first support rod 13 in the second pushing mechanism is mainly used to drive the first support rod 13 to reciprocate.
  • the first push rod 14 is connected to the first support rod 13 at the other end of the first push rod 14 Applying a pushing force or a pulling force can drive the first support rod 13 to move. Since the first support rod 13 moves in a circular arc, in order to realize the flexibility of the first push rod 14, one end of the first push rod 14 can be hinged on the first support rod 13, so that the first push rod can be realized. The movement arc of the other end of 14 is small, which is convenient for the overall arrangement.
  • the first push rod 14 is set as the first push mechanism
  • the first support rod 13 is set as the second push mechanism.
  • the first support rod 13 is driven to rotate.
  • the rotation of the rod 13 can drive the radiator 1 to reciprocate along the first direction, and the overall structure is simple and easy to operate.
  • the bottom of the radiator 1 is provided with a chute corresponding to the first support rod 13 , and the other end of the first support rod 13 on the same side is located in the chute.
  • a sliding groove is provided at the bottom of the radiator 1 to realize the cooperation with the first support rod 13. By setting the sliding groove, the sliding path of the first support rod 13 on the radiator 1 can be limited, and at the same time, the first support rod 13 can be prevented from interacting with the radiator 1. Heatsink 1 falls off. Since the first support rods 13 are provided on both sides of the radiator 1 , the left and right sides of the bottom of the radiator 1 corresponding to the first support rods 13 are provided with sliding grooves, and the other end of the first support rod 13 is placed on the in its corresponding chute. In practical applications, those skilled in the art can set a pulley at the other end of the first support rod 13 according to the situation, so as to increase the sliding property between the first support rod 13 and the radiator 1 .
  • FIG. 10 is a sixth schematic diagram of an optical module testing structure provided by an embodiment of the present application.
  • the first push mechanism includes second support rods 15 disposed on both sides of the optical module cage 2 and a second push rod 16 corresponding to the second support rod 15 , and one end of the second support rod 15 is fixed Connected to the base plate, the other end of the second support rod 15 is hinged with the middle of the second push rod 16;
  • the second push mechanism includes a second push rod 16 and a third support rod 17, one end of the third support rod 17 is connected to the second push rod 17
  • One end of the push rod 16 close to the radiator 1 is fixedly connected, and the other end of the third support rod 17 is in contact with the bottom of the radiator 1 .
  • the second push rod 16 is not only a component of the first push mechanism, but also a component of the second push mechanism.
  • the middle of the second push rod 16 is hinged to the top end of the second support rod 15, so that the second push rod 16 forms a lever, and the top end of the second support rod 15 is a lever
  • the fulcrum, the second push rod 16 and the second support rod 15 form a first push mechanism.
  • a third support rod 17 at one end of the second push rod 16 close to the radiator 1 the second push rod 16 and the third support rod 17 form a second push mechanism.
  • the third support rod 17 is arranged at one end of the second support rod 15 close to the radiator 1, and the third support rod 17 is in contact with the bottom of the radiator 1.
  • the third support rod is driven 17 reciprocates, and the third support rod 17 drives the radiator 1 to reciprocate along the first direction to adjust the gap between the radiator 1 and the optical module.
  • the first direction is a non-vertical direction
  • the component force of the gravity of the heat sink 1 in the first direction may be small, and the heat sink 1 cannot rely on its own gravity to restore it to the position where it is in contact with the optical module.
  • the third support rod 17 can be connected with the bottom of the radiator 1 on the basis of contacting, so as to drive the radiator 1 to return to the position where it is in contact with the optical module.
  • FIG. 14 is a schematic structural diagram of a thermal pad 18 in an optical module testing structure provided by an embodiment of the present application.
  • FIG. 14 on this basis, by arranging a thermal pad 18 on the bottom of the heat sink 1 located in the optical module cage 2 , after the optical module is inserted into the optical module cage 2 , the optical module is in contact with the heat sink 1 .
  • the thermal pad 18 is added between the contact surface of the optical module and the heat sink 1 , and the thermal pad 18 is beneficial to increase the heat dissipation capability of the heat sink 1 and improve the heat dissipation performance.
  • the bottom in this embodiment refers to the surface of the heat sink 1 in contact with the optical module.
  • the thickness of the thermal pad 18 cannot affect the insertion and removal of the optical module from the optical module cage 2 .
  • the thickness of the thermal pad 18 can be set to 1 mm or 1.5 mm.
  • the heat sink 1 moves to the maximum stroke, and when the optical module is inserted into the optical module cage 2, there is still a 1mm gap between the optical module and the thermal pad 18; if the thickness of the thermal pad 18 is set to 1.5mm, a gap of at most 0.5mm can be maintained between the optical module and the thermal pad 18 , and the optical module and the thermal pad 18 will not be scratched.
  • an embodiment of the present application provides an optical module testing device.
  • the testing device includes a printed circuit board as a substrate and the optical module testing structure provided by any of the above embodiments.
  • the optical module testing structure is connected to the printed circuit board. circuit board.
  • the printed circuit board is in the prior art, and the specific model structure of the printed circuit board is not limited in this embodiment, and an appropriate printed circuit board can be flexibly used according to the actual situation.
  • the above-mentioned optical module testing apparatus has the same technical effect as the optical module testing structure provided in the foregoing embodiments, and details are not described herein again.

Abstract

一种光模块测试结构及测试装置,光模块测试结构包括固定在基板上的光模块笼子(2)、连接在光模块笼子(2)上的散热器(1)以及浮动支撑机构,浮动支撑机构包括第一推动机构和第二推动机构,第一推动机构一端连接在基板上,另一端与第二推动机构的一端连接,第二推动机构的另一端与散热器(1)活动连接,第一推动机构运动可带动第二推动机构沿第一方向作往复运动,第二推动机构可带动散热器(1)沿第一方向作往复运动。通过调节浮动支撑机构使散热器(1)与光模块之间保持间隙,可防止刮伤光模块,提高光模块测试后的良品率,光模块测试结构可用于光模块的批量测试,提高测试效率。

Description

光模块测试结构及装置 技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块测试结构及装置。
背景技术
光模块是进行光电和电光转换的光电子器件,光模块的发送端把电信号转换为光信号,接收端把光信号转换为电信号。在光模块销售前,会对光模块进行测试,确保其具有良好的性能。
现有的光模块测试结构主要由散热器、光模块笼子和卡扣组成,将散热器通过卡扣固定在光模块笼子上,其结构如图1所示。将光模块插入到光模块笼子中,光模块在插入光模块笼子的过程中,将散热器顶起,实现在测试时光模块与散热器的接触,使得散热器对测试过程中的光模块进行散热。在测试完成后,将光模块从光模块笼子中拔出。
发明人发现,现有技术的测试结构至少存在以下问题:无法在散热器与光模块的接触面上增加导热垫,影响散热性能;在光模块插拔的过程中,光模块会与散热器之间形成相对滑动,光模块与散热器的接触面会被刮伤,从而影响光模块的质量。
发明内容
本申请实施例提供一种光模块测试结构及装置,能够解决光模块在测试时易被散热器刮伤的问题,从而提高光模块测试后的良品率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种光模块测试结构。该测试结构包括:散热器和固定在基板上的光模块笼子,散热器连接在光模块笼子上。还包括浮动支撑机构,浮动支撑机构包括第一推动机构和第二推动机构,第一推动机构一端连接在基板上,另一端与第二推动机构的一端连接,第二推动机构的另一端与散热器活动连接,第一推动机构运动可带动第二推动机构沿第一方向作往复运动,第二推动机构可带动散热器沿第一方向作往复运动。
在此基础上,浮动支撑机构包括第一推动机构和第二推动机构,第一推动机构的一端连接在基板上,另一端与散热器活动连接,通过推动第一推动机构运动,带动与第一推动机构相连的第二推动机构沿第一方向作往复运动,第二推动机构带动与其相连的散热器沿第一方向作往复运动。
本实施例中的第一方向在对光模块进行测试时可以是竖直方向,通过推动第一推动机构和第二推动机构,使得散热器相对光模块笼子在竖直方向上上升,此时将光模块插入到光模块笼子中,由于散热器被第二推动机构带动着上升,因此散热器与光模块之间存在一定的间隙,光模块插入光模块笼子时不会与散热器相接触,避免了散热器刮伤光模块。在光模块插入到预设位置时,推动第一推动机构和第二推动机构使得散热器相对光模块笼子在竖直方向上下降,使得散热器的底部与光模块相接触,实现 对测试过程中的光模块进行散热。在需要将光模块从光模块笼子拔出时,再次推动第一推动机构和第二推动机构使得散热器相对光模块笼子在竖直方向上上升,实现在光模块拔出过程中与散热器保持一定间隙,防止拔出过程中散热器刮伤光模块。
通过设置浮动支撑机构,可以使得该测试结构在测试不同光模块时,在光模块插入和拔出光模块笼子时,只需调节浮动支撑机构使散热器与每个光模块之间保持间隙即可,无需根据每一个光模块组装相应的散热器,实现了对光模块的大批量测试。
可选地,散热器沿第一方向作往复运动的运动行程为1mm-2mm。在此基础上,由于散热器一般是通过固定结构连接在光模块笼子上的,因此散热器作往复运动的运动行程受限。通过第二推动机构将散热器沿第一方向推动主要是为了在光模块的插入和拔出过程中与光模块保持间隙,因此将散热器作往复运动的运动行程设置为1mm至2mm,既不会影响散热器与光模块笼子之间的连接,同时也使得散热器与插拔过程中的光模块保持了间隙,避免了散热器对光模块的刮伤。
一种可能的设计方案中,第一推动机构包括设置于光模块笼子两侧的导杆,导杆滑动连接在基板上;第二推动机构包括凸轮轴承随动器和设置于散热器的底部的坡形凸台,凸轮轴承随动器固定在导杆上,坡形凸台对应凸轮轴承随动器设置,凸轮轴承随动器与坡形凸台相接触。
在此基础上,通过将导杆滑动连接在基板上,推动导杆实现了第一推动机构沿基板所在平面进行运动,通过设置凸轮轴承随动器和坡形凸台,凸轮轴承随动器与坡形凸台相接触,当凸轮轴承随动器在坡形凸台上来回滑动时,若凸轮轴承随动器固定,则坡形凸台会沿某一方向作往复运动,可以通过限制坡形凸台,对其运动进行分解,使其沿着第一方向作往复运动。通过将凸轮轴承随动器固定在导杆上,将坡形凸台固定在散热器上,推动导杆来回运动,即可通过凸轮轴承随动器和坡形凸台带动散热器在第一方向上作往复运动。
可选地,坡形凸台为单边坡形凸台,导杆上设置有用于限制导杆的滑动距离的限位凸台,滑动距离小于或等于单边坡形凸台的坡形部分的水平长度。
在此基础上,由于单边坡形凸台相当于单向锁,即凸轮轴承随动器滑过单边坡形凸台最高点后无法再滑到单边坡形凸台的最低点,从而导致第二推动机构无法作往复运动。因此,通过设置限位凸台,限位凸台限制导杆的滑动距离小于或者等于单边坡形凸台的总水平长度,使得导杆上的凸轮轴承随动器一直处于单边坡形凸台的坡面上,以实现通过导杆的来回滑动带动单边坡形凸台作往复运动,从而实现散热器的往复运动。
可选地,坡形凸台为双边坡形凸台,导杆上设置有用于限制导杆的滑动距离的限位凸台。在此基础上,通过将坡形凸台设置为双边坡形凸台,双边坡形凸台不会限制凸轮轴承随动器在双边坡形凸台上滑动,因此无需限制导杆的具体滑动距离,但是由于测试结构的尺寸限制,导杆不能无限滑动,因此设置有限位凸台以限制导杆的滑动距离,本实施例中限位凸台限制导杆的滑动距离可以根据测试结构的具体尺寸进行设置,本处不作限定。
可选地,导杆为一体成型的“U”型导杆,导杆位于光模块笼子的外侧。在此基础上,通过将导杆设置为一体成型的“U”型导杆,有利于对散热器两侧的导杆的运动进行统一 控制,可以实现两侧的导杆同时运动且运动距离相同,从而实现散热器整体的往复运动,使得散热器的底部与光模块之间的间隙一致。
可选地,导杆的一侧的长度长于另一侧的长度,导杆的较长一侧的端部设置有手柄。通过将导杆的一侧的长度设置为长于另一侧的长度,较长的一侧方便推拉导杆,在较长的一侧的端部设置手柄,更方便控制导杆的移动。
另一种可能的设计方案中,第二推动机构包括设置于光模块笼子的两侧的第一支杆,第一支杆的一端铰接在基板上,另一端滑动连接在散热器的底部;第一推动机构包括对应第一支杆设置的第一推杆,第一推杆铰接在第一支杆的中部。
在此基础上,通过设置第一推杆作为第一推动机构,设置第一支杆作为第二推动机构,通过推拉第一推杆,带动第一支杆转动,通过第一支杆的转动,实现带动散热器沿第一方向作往复运动,整体结构简单,易于操作。
可选地,散热器的底部对应第一支杆设置有滑槽,同侧的第一支杆的另一端位于滑槽内。在此基础上,通过在散热器底部设置滑槽,将第一支杆的一端置于滑槽中,有利于实现第一支杆与散热器之间滑动连接的稳定性。
又一种可能的设计方案中,第一推动机构包括设置于光模块笼子的两侧的第二支杆和与第二支杆对应设置的第二推杆,第二支杆的一端固定连接在基板上,第二支杆的另一端与第二推杆的中部铰接;第二推动机构包括第二推杆和第三支杆,第三支杆的一端与第二推杆靠近散热器的一端固定连接,第三支杆的另一端与散热器的底部接触。
在此基础上,通过设置第二支杆、第三支杆和第二推杆,第二推杆的中部铰接在第二支杆的顶端,使得第二推杆形成一个杠杆,第二推杆与第二支杆组成第一推动机构,第二推杆与第三支杆组成第二推动机构。将第三支杆设置在第二支杆靠近散热器的一端,并使第三支杆与散热器底部接触,通过转动第二推杆的另一端,带动第三支杆作往复运动,第三支杆带动散热器沿第一方向作往复运动,以调节散热器与光模块之间的间隙。
再一种可能的设计方案中,散热器位于光模块笼子内的底部上设置有导热垫。在此基础上,通过在散热器位于光模块笼子内的底部上设置导热垫,当光模块插入到光模块笼子后,光模块与散热器相接触,便实现了在光模块与散热器的接触面间增加了导热垫,导热垫有利于增加散热器的散热能力,提升散热性能。本实施例中的底部指的是散热器与光模块相接触的面。通过设置第一推动机构和第二推动机构,在光模块插入和拔出光模块笼子的时候,使得散热器与光模块之间保持一定的间隙,也可以防止光模块在插入和拔出过程中刮掉导热垫上的导热介质,有利于实现导热垫的导热能力,提升散热性能。
第二方面,提供一种光模块测试装置,该测试装置包括作为基板的印制电路板以及如权利要求1-11任一项的光模块测试结构;光模块测试结构连接在印制电路板上。上述光模块测试装置具有与前述实施例提供的光模块测试结构相同的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种光模块测试结构的示意图;
图2为本申请实施例提供的一种光模块测试结构的应用场景图;
图3为本申请实施例提供的一种光模块测试结构中散热器的结构示意图之一;
图4为本申请实施例提供的一种光模块测试结构中散热器的结构示意图之二;
图5为本申请实施例提供的一种光模块测试结构的示意图之一;
图6为本申请实施例提供的一种光模块测试结构的示意图之二;
图7为本申请实施例提供的一种光模块测试结构的示意图之三;
图8为本申请实施例提供的一种光模块测试结构的示意图之四;
图9为本申请实施例提供的一种光模块测试结构的示意图之五;
图10为本申请实施例提供的一种光模块测试结构的示意图之六;
图11为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之一;
图12为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之二;
图13为本申请实施例提供的一种光模块测试结构中第一推动机构的爆炸图;
图14为本申请实施例提供的一种光模块测试结构中导热垫的结构示意图。
图中:1-散热器;2-光模块笼子;21-顶部开口;22-侧部开口;3-导杆;4-凸轮轴承随动器;51-单边坡形凸台;52-双边坡形凸台;6-滑轨;7-滑块;8-限位凸台;9-手柄;10-定位凸台;11-底板;12-侧板;13-第一支杆;14-第一推杆;15-第二支杆;16-第二推杆;17-第三支杆;18-导热垫。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。本申请中术语“至少一个”的含义是指一个或多个,本申请中术语“多个”的含义是指两个或两个以上。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
还应理解,本文中所使用的术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象 是一种“或”的关系。
应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本实施例中的第一方向是指垂直于光模块与散热器1的接触面的方向;第二方向包括与光模块插入光模块笼子2的方向相同的方向,以及垂直于光模块与散热器1的接触面的方向。
参考图2,图2为本申请实施例提供的一种光模块测试结构的应用场景图。如图2所示,光模块测试结构设置在基板上,基板上可以设置一个光模块测试结构,也可以设置多个光模块测试结构,本实施例中以多个光模块测试结构为例进行说明。
该基板包括底板11和侧板12,共设置有四个光模块测试结构,四个光模块测试结构并排设置,光模块测试结构固定在底板11和侧板12,光模块测试结构中光模块笼子2的进出口靠近侧板12设置,侧板12上开设有与光模块笼子2的进出口相对应的开孔,以便于将光模块插入到光模块笼子2中。光模块测试结构中的第一推动机构可以穿过侧板12,以便于固定第一推动机构,并且方便操作。
参考图5,图5为本申请实施例提供的一种光模块测试结构的示意图之一。如图5所示,该测试结构包括:散热器1和固定在基板上的光模块笼子2,散热器1连接在光模块笼子2上。该测试结构还包括浮动支撑机构,浮动支撑机构包括第一推动机构和第二推动机构,第一推动机构一端连接在基板上,另一端与第二推动机构的一端连接,第二推动机构的另一端与散热器1活动连接,第一推动机构运动带动第二推动机构沿第一方向作往复运动,第二推动机构带动散热器1沿第一方向作往复运动。
该测试结构中,散热器1可以如图3、图4所示,散热器1用于为测试时的光模块散热,光模块笼子2用于固定光模块。如图1所示,光模块笼子2设置有顶部开口21和侧部开口22,顶部开口21用于放置散热器1,侧部开口22用于将光模块插入光模块笼子2中或者将光模块从光模块笼子2中取出。如图4所示,散热器1的底部设置有定位凸台10,定位凸台10的大小与光模块笼子2的顶部开口21的大小相匹配。在测试前,将散热器1放置在光模块笼子2上,使得散热器1底部的定位凸台10位于光模块笼子2内,然后用固定结构将散热器1和光模块笼子2进行固定。
上述的固定结构为现有技术,如可以采用卡扣,本实施例并不限定固定结构的具体形式。散热器1与光模块笼子2通过固定结构固定后,两者存在一定的位移余量,如位移余量为1-3mm,而非理论上的绝对固定。
如图5所示,在将光模块插入光模块笼子2之前,沿第二方向(图5中的水平向左方向)推动第一推动机构,第一推动机构带动第二推动机构沿第一方向(图5中的竖直向上方向)运动。如图6所示,第二推动机构将散热器1顶起,此时将光模块插入光模块笼子2中(图中未示出光模块的插入过程),光模块与散热器1底部的定位凸台10之间保持着一定的间隙,定位凸台10不会刮伤光模块。在将光模块放入到预先设置的位置之后,沿与第二方向相反的方向(图5中的水平向右方向)推动第一推动机构,第一推动机构带动第二推动机构沿与第一方向相反的方向(图5中的竖直向下方向)运动,第二推动机构不再顶起散热器1,散热器1回到初始位置(图5所示状态),保持与光模块之间的接触,实现散热器1对测试过程中的光模块进行散热。当需要将测试完后的光模块从光模块笼子2中取出时,沿第二方向(图5中的水平向左方向)推动第一推动机构,第一推动机构带动第二推动机构沿第一方向(图5中的竖直向上方向)运动,第二推动机构将散热器1顶起,此时将光模块从光模块笼子2中取出。在取出光模块后,可将另一个光模块插入光模块笼子2中,重复上述步骤,实现对下一个光模块的测试。
本实施例中的初始位置是指:将散热器1的定位凸台10放置于光模块笼子2中,且此时将光模块插入光模块笼子2中,可以使光模块与散热器1的定位凸台10保持接触状态时散热器1相对光模块笼子2的位置。本实施例中的活动连接包括滑动连接和铰接等连接方式,目的是实现相连的两者之间可以实现相对运动或者相对转动。
该测试机构的工作原理为:浮动机构包括第一推动机构和第二推动机构,第一推动机构的一端连接在基板上,另一端与散热器1活动连接,通过推动第一推动机构运动,带动与第一推动机构相连的第二推动机构沿第一方向作往复运动,第二推动机构带动与其相连的散热器1沿第一方向作往复运动。散热器1沿第一方向作往复运动可以实现在将光模块插入或者拔出光模块笼子2时,散热器1与光模块保持一定的间隙,实现防止散热器1刮伤光模块。
本实施例中可以将光模块笼子2和散热器1水平布置,因此第一方向可以是竖直方向。通过推动第一推动机构和第二推动机构,使得第一推动机构和第二推动机构的状态如图6所示,在此过程中,散热器1相对光模块笼子2在竖直方向上上升,此时将光模块插入到光模块笼子2中,由于散热器1被第二推动机构带动着上升,因此散热器1与光模块之间存在一定的间隙,光模块插入光模块笼子2时不会与散热器1相接触,避免了散热器1刮伤光模块。在光模块插入到预设位置时,推动第一推动机构和第二推动机构,使得第一推动机构和第二推动机构的状态如图5所示,在此过程中,散热器1相对光模块笼子2在竖直方向上下降,使得散热器1的底部与光模块相接触,实现对测试过程中的光模块进行散热。在需要将光模块从光模块笼子2拔出时,再次推动第一推动机构和第二推动机构使得散热器1相对光模块笼子2在竖直方向上上升,使得第二推动机构的状态如图6所示,实现在光模块拔出过程中与散热器1保持一定间隙,防止拔出过程中散热器1刮伤光模块。
通过设置浮动支撑机构,可以使得该测试结构在测试不同光模块时,在光模块插入和拔出光模块笼子2时,只需调节浮动支撑机构使散热器1与每个光模块之间保持间隙即可,无需根据每一个光模块组装相应的散热器1,实现了对光模块的大批量测 试。
在本申请一实施例中,散热器1沿第一方向作往复运动的运动行程为1mm-2mm。由于散热器1一般是通过固定结构连接在光模块笼子2上的,因此散热器1作往复运动的运动行程受限。通过第二推动机构将散热器1沿第一方向推动主要是为了在光模块的插入和拔出过程中与光模块保持间隙,因此将散热器1作往复运动的运动行程设置为1mm至2mm,既不会影响散热器1与光模块笼子2之间的连接,同时也使得散热器1与插拔过程中的光模块保持了间隙,避免了散热器1对光模块的刮伤。
示例的,运动行程可以为2mm。
本申请实施例中的浮动散热机构包括第一推动机构和第二推动机构,第一推动机构和第二推动机构的作用是在插入或者拔出光模块时,使散热器1与光模块之间保持间隙。因此第一推动机构的形式可以是多种多样的,可以是两个独立的机构配合所形成,也可以是一整个机构的不同部分。下面对第一推动机构和第二推动机构的具体形式进行举例说明。
示例一
本示例中,参考图5、图6,图5为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之一,图6为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之二。如图5、图6所述,第一推动机构包括设置于光模块笼子2两侧的导杆3,导杆3滑动连接在基板上;第二推动机构包括凸轮轴承随动器4和设置于散热器1的底部的坡形凸台,凸轮轴承随动器4固定在导杆3上,坡形凸台对应凸轮轴承随动器4设置,凸轮轴承随动器4与坡形凸台相接触。
需要说明的是,导杆3可以通过多种方式滑动连接在基板上,如通过滑轮的连接方式,或者通过在基板上设置滑槽的方式实现导杆3在基板上滑动。本实施例中,导杆3通过滑轨6与滑块7实现与基板滑动连接,滑轨6与滑块7为现有技术中的连接结构,参考图13,图13为本申请实施例提供的一种光模块测试结构中第一推动机构的爆炸图,如图13所示,滑块7滑动连接在滑轨6内,示例的,滑块7可以通过滚轮滑动连接在滑轨6内(图中未示出),然后将滑轨6固定在基板上,将导杆3固定在滑块7上,固定的方式可采用螺栓连接的方式进行固定,也可以采用焊接的方式进行固定,本实施例并不限定具体的固定方式。采用滑轨6与滑块7这样的连接结构,连接简便,且滑块7与滑轨6配合稳定,便于实现第一推动机构相对基板滑动。
本申请实施例中的坡形凸台是指具有一定坡度的凸台,可供凸轮轴承随动器4在改具有坡度的凸台上滑动;凸轮轴承随动器4可以是现有技术中的标准件。由于凸轮轴承随动器4上包括作为轴的螺栓,因此,为了方便凸轮轴承随动器4与导杆3之间的连接,在导杆3上开设有与凸轮轴承随动器4上的螺栓相对应的螺孔,导杆3上的螺孔如图13所示,设置在导杆3的侧边上。凸轮轴承随动器4和导杆3可以直接通过凸轮轴承随动器4上的螺栓与导杆3上的螺孔进行连接,十分方便,当然也可以通过其它的连接方式进行连接,如采用焊接的方式进行连接。坡形凸台设置在散热器1的底部,坡形凸台可以是固定在散热器1底部,如通过焊接的方式或者螺栓连接的方式固定在散热器1底部,坡形凸台也可以是与散热器1一体成型的。
在此基础上,通过滑轨6与滑块7的连接结构将导杆3滑动连接在基板上,推动 导杆3实现了第一推动机构沿基板所在平面进行运动。通过设置凸轮轴承随动器4和坡形凸台,凸轮轴承随动器4与坡形凸台相接触,由于凸轮轴承随动器4是固定在导杆3上的,因此凸轮轴承随动器4可以随着导杆3沿基板所在的平面进行运动,但被限制其它方向的运动。当凸轮轴承随动器4在坡形凸台上来回滑动时,由于凸轮轴承随动器4被限制其它方向的运动,则在凸轮轴承随动器4在坡形凸台上来回滑动的过程中,坡形凸台会沿某一方向作往复运动。然后可以通过限制坡形凸台,对其运动进行分解,使其沿着第一方向作往复运动。或者通过设置坡形凸台的位置和坡形的角度,使得坡形凸台沿着第一方向作往复运动,从而带动散热器1沿第一方向作往复运动。通过将凸轮轴承随动器4固定在导杆3上,将坡形凸台固定在散热器1上,推动导杆3来回运动,即可通过凸轮轴承随动器4和坡形凸台带动散热器1在第一方向上作往复运动。
在本申请一实施例中,坡形凸台为单边坡形凸台51,单边坡形凸台51是指凸台只有一侧具有坡形,或者是只有一侧的坡形适宜凸轮轴承随动器4在上面滑动。例如,将具有坡形一侧的坡度小于或者等于30°定义为适宜凸轮轴承随动器4滑动,则单边坡形凸台51一侧的坡形的坡度小于或者等于30°,另一侧的坡形的坡度大于30°。
由于坡形凸台为单边坡形凸台51,单边坡形凸台51相当于“单向锁”,则凸轮轴承随动器4在单边坡形凸台51上只能由坡度较小的一侧滑向另一侧,而不能从另一侧滑向坡度较小的一侧。因此,为了使得单边坡形凸台51能作往复运动,凸轮轴承随动器4要处于坡度较小的一侧上。为了实现该目的,在导杆3上设置有用于限制导杆3的滑动距离的限位凸台8,导杆3的滑动距离小于或等于单边坡形凸台51的坡形部分的水平长度,使得导杆3上的凸轮轴承随动器4一直处于单边坡形凸台51的坡面上,以实现通过导杆3的来回滑动带动单边坡形凸台51作往复运动,从而实现散热器1的往复运动。
例如,单边坡形凸台51的形状为直角三角形,则单边坡形凸台51的坡形部分的水平长度是指直角三角形中较长直角边的长度。又例如,单边坡形凸台51的形状为直角梯形,则单边坡形凸台51的坡形部分的水平长度可以是指梯形的斜边腰在底边上的投影长度;单边坡形凸台51的坡形部分的水平长度也可以是指梯形的下底边,当单边坡形凸台51包括水平部分时,可以将单边坡形凸台51的“坡形部分”理解为广义的坡形部分,即可以将单边坡形凸台51的水平部分算入“坡形部分”内,在本示例中,即“坡形部分”包括直角梯形的斜边腰和上底边。
在本申请一实施例中,参考图7、图8,图7为本申请实施例提供的一种光模块测试结构的示意图之三,图8为本申请实施例提供的一种光模块测试结构的示意图之四。如图7、图8所示,坡形凸台为双边坡形凸台52,导杆3上设置有用于限制导杆3的滑动距离的限位凸台8。双边坡形凸台52是指凸台的两侧均具有坡形,即凸轮轴承随动器4可以从双边坡形凸台52的一侧滑到另外一侧,也可以从双边坡形凸台52的另一侧滑向一侧。但是,由于整个测试结构的尺寸限制,第一推动机构也不能无限的运动,因此,在导杆3上设置有用于限制导杆3滑动距离的限位凸台8。限位凸台8对导杆3的滑动距离的限制可以根据实际情况中双边坡形凸台52的尺寸进行设置,一般限制导杆3的滑动距离可以等于或者略大于双边坡形凸台52的总水平距离。
在将光模块插入光模块笼子2时,可以通过推动第一推动机构和第二推动机构,使得第一推动机构和第二推动机构的状态如图8所示。在光模块插入到预设位置时,推动第一推动机构和第二推动机构,使得第一推动机构和第二推动机构的状态如图7所示,也可以反向推动第一推动机构,使得凸轮轴承随动器4运动到图7中所示双边坡形凸台52的另一侧。在需要将光模块从光模块笼子2拔出时,再次推动第一推动机构和第二推动机构使得散热器1相对光模块笼子2在竖直方向上上升,使得第二推动机构的状态如图8所示,实现在光模块拔出过程中与散热器1保持一定间隙,防止拔出过程中散热器1刮伤光模块。
双边坡形凸台52的具体形状不影响本申请发明目的的实现,可以根据实际情况进行设置,本实施例对双边坡形凸台52的具体形状不作限定。例如,双边坡形凸台52可以为钝角三角形或者梯形,且坡形部分的坡度小于或者等于45°。在此种情况下,限位凸台8对导杆3的滑动距离的限制可以根据三角形的底边或者梯形的下底边进行设置。
在本申请一实施例中,参考图11、图12,图11为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之一,图12为本申请实施例提供的一种光模块测试结构中第一推动机构的结构示意图之二。如图11、图12所示,导杆3为一体成型的“U”型导杆3,导杆3位于光模块笼子2的外侧。在此基础上,通过将导杆3设置为一体成型的“U”型导杆3,有利于对散热器1两侧的导杆3的运动进行统一控制,即控制一侧的导杆3运动即可带动另一侧的导杆3一起运动,可以实现两侧的导杆3同时运动且运动距离相同,从而实现散热器1整体的往复运动,使得散热器1的底部与光模块之间的间隙一致。
在本申请一实施例中,导杆3的一侧的长度长于另一侧的长度,导杆3的较长一侧的端部设置有手柄9。通过将导杆3的一侧的长度设置为长于另一侧的长度,较长的一侧方便推拉导杆3。示例的,若将该测试结构固定于一固定板上,或者将该测试结构设置于一盒体内,则较长一侧的导杆3可以穿过该固定板或者该盒体,便于在盒体外或者在固定板的另一侧控制U型导杆3的滑动。在较长的一侧的端部设置手柄9,更方便控制导杆3的移动。本实施例中手柄9的具体形状可以根据实际情况进行设置,手柄9的具体形状不影响本申请发明目的的实现,因此对手柄9的具体形状不作限定。
示例的,参考图13,图13为本申请实施例提供的一种光模块测试结构中第一推动机构的爆炸图。手柄9的形状可以如图12、11所示,手柄9上设置有连接槽和连接孔,便于与导杆3相连,手柄9与导杆3之间可以通过螺纹连接的方式进行连接。
示例二
本示例中,参考图9,图9为本申请实施例提供的一种光模块测试结构的示意图之五。如图9所示,第二推动机构包括设置于光模块笼子2的两侧的第一支杆13,第一支杆13的一端铰接在基板上,另一端滑动连接在散热器1的底部;第一推动机构包括对应第一支杆13设置的第一推杆14,第一推杆14铰接在第一支杆13的中部。
第二推动机构中的第一支杆13由于一端铰接在基板上,另一端在散热器1底部滑动,因此第一支杆13在运动时作圆弧运动,由于圆弧中每一点的空间位置都不相同,当第二推动机构中的第一支杆13沿着圆弧轨迹往复运动时,会推动散热器1沿第一方 向作往复运动。第一方向根据实际情况进行确定,第一方向与光模块进入或者拔出光模块笼子2的方向垂直,目的是使得光模块在进入或者拔出光模块笼子2时,散热器1可以与光模块之间保持一定的间隙。第一推动机构中的第一推杆14主要用于带动第一支杆13作往复运动,因此,将第一推杆14连接在第一支杆13上,在第一推杆14的另一端施加推力或者拉力即可带动第一支杆13运动。由于第一支杆13在运动时作圆弧运动,为了实现第一推杆14的灵活性,可以将第一推杆14的一端铰接在第一支杆13上,这样可以实现第一推杆14的另一端运动弧度较小,便于整体的布置。
在此基础上,通过设置第一推杆14作为第一推动机构,设置第一支杆13作为第二推动机构,通过推拉第一推杆14,带动第一支杆13转动,通过第一支杆13的转动,实现带动散热器1沿第一方向作往复运动,整体结构简单,易于操作。
在本申请一实施例中,散热器1的底部对应第一支杆13设置有滑槽,同侧的第一支杆13的另一端位于滑槽内。在散热器1的底部设置滑槽,实现与第一支杆13的配合,通过设置滑槽,可以限定第一支杆13在散热器1上的滑动路径,同时可以防止第一支杆13与散热器1脱落。由于散热器1的两侧均设置有第一支杆13,因此在散热器1底部的左右两侧对应第一支杆13处均设置有滑槽,将第一支杆13的另一端放置于其对应的滑槽内。在实际应用中,本领域技术人员可以根据情况在第一支杆13的另一端设置滑轮,以增加第一支杆13与散热器1之间的滑动性。
示例三
本示例中,参考图10,图10为本申请实施例提供的一种光模块测试结构的示意图之六。如图10所示,第一推动机构包括设置于光模块笼子2的两侧的第二支杆15和与第二支杆15对应设置的第二推杆16,第二支杆15的一端固定连接在基板上,第二支杆15的另一端与第二推杆16的中部铰接;第二推动机构包括第二推杆16和第三支杆17,第三支杆17的一端与第二推杆16靠近散热器1的一端固定连接,第三支杆17的另一端与散热器1的底部接触。
本示例中,第二推杆16既是第一推动机构的组成部分,又是第二推动机构的组成部分。通过设置第二支杆15和第二推杆16,第二推杆16的中部铰接在第二支杆15的顶端,使得第二推杆16形成一个杠杆,第二支杆15的顶端为杠杆的支点,第二推杆16与第二支杆15组成第一推动机构。通过在第二推杆16靠近散热器1的一端设置第三支杆17,第二推杆16与第三支杆17组成第二推动机构。将第三支杆17设置在第二支杆15靠近散热器1的一端,并使第三支杆17与散热器1底部接触,通过转动第二推杆16的另一端,带动第三支杆17作往复运动,第三支杆17带动散热器1沿第一方向作往复运动,以调节散热器1与光模块之间的间隙。当第一方向为非竖直方向时,可能散热器1的重力在第一方向上的分力较小,散热器1无法依靠自身的重力使其恢复到与光模块相接触的位置,此时,可以将第三支杆17与散热器1底部在接触的基础上,再进行相连,以带动散热器1返回到与光模块相接触的位置。
在本申请一实施例中,散热器1位于光模块笼子2内的底部上设置有导热垫18。参考图14,图14为本申请实施例提供的一种光模块测试结构中导热垫18的结构示意图。如图14所示,在此基础上,通过在散热器1位于光模块笼子2内的底部上设置导热垫18,当光模块插入到光模块笼子2后,光模块与散热器1相接触,便实现了在光 模块与散热器1的接触面间增加了导热垫18,导热垫18有利于增加散热器1的散热能力,提升散热性能。本实施例中的底部指的是散热器1与光模块相接触的面。通过设置第一推动机构和第二推动机构,在光模块插入和拔出光模块笼子2的时候,使得散热器1与光模块之间保持一定的间隙,也可以防止光模块在插入和拔出过程中刮掉导热垫18上的导热介质,有利于实现导热垫18的导热能力,提升散热性能。
此外,由于导热垫18具有一定的厚度,因此导热垫18的厚度不能影响光模块插入和拔出光模块笼子2,导热垫18的厚度可以根据散热器1作往复运动的最大行程进行设置。例如,散热器1作往复运动的最大行程为2mm,则可以设置导热垫18的厚度为1mm或者1.5mm,导热垫18是设置在散热器1上与光模块相接触的一面上,因此当导热垫18厚度为1mm时,散热器1运动到最大行程处,将光模块插入光模块笼子2时,光模块与导热垫18之间还保持有1mm的间隙;如果将导热垫18的厚度设置为1.5mm,则光模块与导热垫18之间可以保持最多0.5mm的间隙,不会对光模块和导热垫18产生刮伤。
基于同一发明构思,本申请一实施例提供一种光模块测试装置,该测试装置包括作为基板的印制电路板以及上述任一实施例所提供的光模块测试结构,光模块测试结构连接在印制电路板上。印制电路板为现有技术,本实施例中并不限定印制电路板的具体型号结构,可以根据实际情况灵活采用适宜的印制电路板。上述光模块测试装置具有与前述实施例提供的光模块测试结构相同的技术效果,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
以上对本申请所提供的一种光模块测试结构及装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种光模块测试结构,其特征在于,包括散热器和固定在基板上的光模块笼子,所述散热器连接在所述光模块笼子上,还包括浮动支撑机构,所述浮动支撑机构包括第一推动机构和第二推动机构,所述第一推动机构一端连接在所述基板上,另一端与所述第二推动机构的一端连接,所述第二推动机构的另一端与所述散热器活动连接,所述第一推动机构运动可带动所述第二推动机构沿第一方向作往复运动,所述第二推动机构可带动所述散热器沿第一方向作往复运动。
  2. 根据权利要求1所述的测试结构,其特征在于,所述散热器沿第一方向作往复运动的运动行程为1mm-2mm。
  3. 根据权利要求1或2所述的测试结构,其特征在于,所述第一推动机构包括设置于所述光模块笼子两侧的导杆,所述导杆滑动连接在所述基板上;
    所述第二推动机构包括凸轮轴承随动器和设置于所述散热器的底部的坡形凸台,所述凸轮轴承随动器固定在所述导杆上,所述坡形凸台对应所述凸轮轴承随动器设置,所述凸轮轴承随动器与所述坡形凸台相接触。
  4. 根据权利要求3所述的测试结构,其特征在于,所述坡形凸台为单边坡形凸台,所述导杆上设置有用于限制所述导杆的滑动距离的限位凸台,所述滑动距离小于或等于所述单边坡形凸台的坡形部分的水平长度。
  5. 根据权利要求3所述的测试结构,其特征在于,所述坡形凸台为双边坡形凸台,所述导杆上设置有用于限制导杆的滑动距离的限位凸台。
  6. 根据权利要求3至5中任一项所述的测试结构,其特征在于,所述导杆为一体成型的“U”型导杆,所述导杆位于所述光模块笼子的外侧。
  7. 根据权利要求6所述的测试结构,其特征在于,所述导杆的一侧的长度长于另一侧的长度,所述导杆的较长一侧的端部设置有手柄。
  8. 根据权利要求1或2所述的测试结构,其特征在于,所述第二推动机构包括设置于所述光模块笼子的两侧的第一支杆,所述第一支杆的一端铰接在所述基板上,另一端滑动连接在所述散热器的底部;
    所述第一推动机构包括对应所述第一支杆设置的第一推杆,所述第一推杆铰接在所述第一支杆的中部。
  9. 根据权利要求8所述的测试结构,其特征在于,所述散热器的底部对应所述第一支杆设置有滑槽,同侧的所述第一支杆的另一端位于所述滑槽内。
  10. 根据权利要求1或2所述的测试结构,其特征在于,所述第一推动机构包括设置于所述光模块笼子的两侧的第二支杆和与所述第二支杆对应设置的第二推杆,所述第二支杆的一端固定连接在所述基板上,所述第二支杆的另一端与所述第二推杆的中部铰接;
    所述第二推动机构包括所述第二推杆和第三支杆,所述第三支杆的一端与所述第二推杆靠近所述散热器的一端固定连接,所述第三支杆的另一端与所述散热器的底部接触。
  11. 根据权利要求1至10任一项所述的测试结构,其特征在于,所述散热器位于所述光模块笼子内的底部上设置有导热垫。
  12. 一种光模块测试装置,其特征在于,包括作为基板的印制电路板以及如权利要求1-11任一项所述的光模块测试结构;所述光模块测试结构连接在所述印制电路板上。
PCT/CN2020/119072 2020-09-29 2020-09-29 光模块测试结构及装置 WO2022067579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080104051.2A CN116113816A (zh) 2020-09-29 2020-09-29 光模块测试结构及装置
PCT/CN2020/119072 WO2022067579A1 (zh) 2020-09-29 2020-09-29 光模块测试结构及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119072 WO2022067579A1 (zh) 2020-09-29 2020-09-29 光模块测试结构及装置

Publications (1)

Publication Number Publication Date
WO2022067579A1 true WO2022067579A1 (zh) 2022-04-07

Family

ID=80949380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119072 WO2022067579A1 (zh) 2020-09-29 2020-09-29 光模块测试结构及装置

Country Status (2)

Country Link
CN (1) CN116113816A (zh)
WO (1) WO2022067579A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593863A (zh) * 2023-05-09 2023-08-15 上海捷策创电子科技有限公司 一种用于芯片测试的滑轨式探针接口板的锁紧装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996118A (zh) * 2023-09-19 2023-11-03 黑龙江和睿信诚科技有限公司 一种光模块生产调试设备及组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017789A (ja) * 2001-06-29 2003-01-17 Fujitsu Quantum Devices Ltd 光モジュール試験装置及び光モジュール特性の測定方法
CN106092509A (zh) * 2016-05-31 2016-11-09 武汉光迅科技股份有限公司 一种防刮伤cfp模块热循环测试装置
CN207336025U (zh) * 2017-08-24 2018-05-08 绵阳思迈光联通信技术有限公司 一种光模块温度性能测试装置
CN207937487U (zh) * 2018-04-08 2018-10-02 烽火通信科技股份有限公司 一种可插拔光电模块测试装置
CN109813530A (zh) * 2019-01-08 2019-05-28 深圳奥比中光科技有限公司 一种多功能光学模组测试台座
CN111181632A (zh) * 2020-01-02 2020-05-19 武汉思博源科技有限公司 一种sfp光模块的自动化测试系统
CN111290449A (zh) * 2020-03-23 2020-06-16 苏州苏驼通信科技股份有限公司 一种光模块测试用快速升降温装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017789A (ja) * 2001-06-29 2003-01-17 Fujitsu Quantum Devices Ltd 光モジュール試験装置及び光モジュール特性の測定方法
CN106092509A (zh) * 2016-05-31 2016-11-09 武汉光迅科技股份有限公司 一种防刮伤cfp模块热循环测试装置
CN207336025U (zh) * 2017-08-24 2018-05-08 绵阳思迈光联通信技术有限公司 一种光模块温度性能测试装置
CN207937487U (zh) * 2018-04-08 2018-10-02 烽火通信科技股份有限公司 一种可插拔光电模块测试装置
CN109813530A (zh) * 2019-01-08 2019-05-28 深圳奥比中光科技有限公司 一种多功能光学模组测试台座
CN111181632A (zh) * 2020-01-02 2020-05-19 武汉思博源科技有限公司 一种sfp光模块的自动化测试系统
CN111290449A (zh) * 2020-03-23 2020-06-16 苏州苏驼通信科技股份有限公司 一种光模块测试用快速升降温装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593863A (zh) * 2023-05-09 2023-08-15 上海捷策创电子科技有限公司 一种用于芯片测试的滑轨式探针接口板的锁紧装置
CN116593863B (zh) * 2023-05-09 2023-12-22 上海捷策创电子科技有限公司 一种用于芯片测试的滑轨式探针接口板的锁紧装置

Also Published As

Publication number Publication date
CN116113816A (zh) 2023-05-12
CN116113816A8 (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2022067579A1 (zh) 光模块测试结构及装置
US7733652B2 (en) Heat sink assembly for a pluggable module
US7667972B2 (en) Connector with a heat sink
CN108430188B (zh) 电子模块插件高效散热楔形锁紧装置
JP3566691B2 (ja) 半導体装置用ソケットおよび半導体装置のソケットへの取付け方法
US20090159241A1 (en) Cooling system for contact cooled electronic modules
US20070019379A1 (en) Supporting frame structure
US20120300407A1 (en) Pluggable module and method of inserting electronic module
WO2022057293A1 (zh) 一种散热装置和电子设备
EP1748521A1 (en) Hard drive pin connecting device
TWI331004B (en) Apparatus for fastening data-storage device
US6988906B1 (en) Fluorescent lamp tube seat
CN109407755B (zh) 具有间隙补偿功能的扩充座
TW201227221A (en) Base and electronic apparatus applying with the base
CN216532094U (zh) 一种具有拼接功能的电源
CN216708450U (zh) 一种反射膜压缩装置
CN217823610U (zh) 多串口复分复接模块
CN220040820U (zh) 一种散热装置和电子设备
CN218525064U (zh) 一种高效散热可插拔式散热模组
CN220108567U (zh) 一种具有耐腐蚀功能的电路板
CN215416589U (zh) 一种可散热的多功能键盘支架
CN218480390U (zh) 摄像摄影云台的拆装结构
CN215512274U (zh) 一种散热器贴膜送料装置
CN216249132U (zh) 一种cpu水冷散热用的五金散热器
CN116225186A (zh) 散热器结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080104051.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955604

Country of ref document: EP

Kind code of ref document: A1