WO2022067571A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022067571A1
WO2022067571A1 PCT/CN2020/119038 CN2020119038W WO2022067571A1 WO 2022067571 A1 WO2022067571 A1 WO 2022067571A1 CN 2020119038 W CN2020119038 W CN 2020119038W WO 2022067571 A1 WO2022067571 A1 WO 2022067571A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
message
repeated transmission
terminal device
repetition type
Prior art date
Application number
PCT/CN2020/119038
Other languages
English (en)
French (fr)
Inventor
余健
余雅威
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/119038 priority Critical patent/WO2022067571A1/zh
Priority to KR1020237013748A priority patent/KR20230073307A/ko
Priority to EP20955596.0A priority patent/EP4207919A4/en
Priority to CN202080105420.XA priority patent/CN116250355A/zh
Priority to AU2020470487A priority patent/AU2020470487A1/en
Publication of WO2022067571A1 publication Critical patent/WO2022067571A1/zh
Priority to US18/191,352 priority patent/US20230239932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/698Orthogonal indexing scheme relating to spread spectrum techniques in general relating to Uplink

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and device.
  • terminal equipment in an idle state or an inactive state can access a base station through a random access procedure.
  • the terminal device sends a message 3 (message 3, Msg 3) through a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • RRC radio resource control
  • the purpose of the embodiments of the present application is to provide a communication method and apparatus, so as to improve the success rate of random access of a terminal device to a network.
  • the present application provides a communication method, which is applied to a terminal device accessing a network device through a random access procedure.
  • the execution body of the method is a network device or a module in the network device, and the description is made by taking the network device as the execution body as an example.
  • the network device receives the random access request from the terminal device; the network device sends a random access response to the terminal device; the random access response includes the scheduling information of message 3, and the scheduling information includes the first information, and the first information indicates that the terminal device is repeatedly transmitting Message 3 uses the same transmit power and precoding matrix.
  • the terminal device when the terminal device repeatedly transmits the message 3, it uses the same transmit power and precoding matrix, which can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the access success rate of the access process when the terminal device repeatedly transmits the message 3, it uses the same transmit power and precoding matrix, which can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the access success rate of the access process when the terminal device repeatedly transmits the message 3, it uses the same transmit power and precoding matrix, which can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the access success rate of the access process when the terminal device repeatedly transmits the message 3, it uses the same transmit power and precoding matrix, which can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the scheduling information further includes second information, the second information indicates the repetition type of the message 3, and the repetition type is the first repetition type or the second repetition type; wherein, the first repetition is adopted
  • the second repetition type when the message 3 is repeatedly transmitted, the index value of the start symbol of the message 3 is the same each time; when the second repetition type is used, when the message 3 is repeatedly transmitted, the index value of the start symbol of the message 3 is repeated each time. Not the same.
  • the network device sends third information to the terminal device, where the third information indicates a frequency hopping manner used when the message 3 is repeatedly transmitted.
  • the frequency hopping manner includes one or more of the following: a first frequency hopping manner, the first frequency domain position is used for the first N repeated transmissions, and the first frequency domain position is used for the subsequent M repeated transmissions
  • the second frequency domain position N is an integer greater than 0, M is an integer greater than 0, and N+M is greater than 2;
  • the second frequency hopping mode includes X repeated transmissions, where the i-th repeated transmission is the same as the i+L-th repeated transmission.
  • the frequency domain positions used for the repeated transmissions are the same; the frequency domain positions used for at least two repeated transmissions in the i-th repeated transmission to the i+L-th time are different; X is an integer greater than 2, and i is 0, 1 ...X-1, L is an integer smaller than X.
  • the third information is located in scheduling information; or, the third information is located in a system information block SIB1 or other system messages.
  • the scheduling information further includes fourth information, where the fourth information indicates the number of times of repeated transmission of the message 3 .
  • the fourth information is an index value of the number of repeated transmissions.
  • the method further includes: the network device performs joint channel estimation on the repeatedly transmitted message 3 from the terminal device, and receives the message 3 according to the result of the joint channel estimation.
  • the present application further provides a communication device, the communication device having any of the methods provided in the above-mentioned first aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the above-described method.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and devices such as network equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • the present application provides a method, which is applied to a terminal device accessing a network device through a random access procedure.
  • the execution body of the method is a terminal device or a module in the terminal device, and the description is made by taking the terminal device as the execution body as an example.
  • the terminal device receives a random access response from the network device; the random access response includes scheduling information of message 3, and the scheduling information includes first information, which indicates that the terminal device uses the same transmit power and precoding when repeatedly transmitting message 3 matrix; the terminal device repeatedly transmits message 3 using the same transmit power and precoding matrix according to the first information.
  • the same transmission power and precoding matrix can be used, which can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the access success rate of the access process can improve the stability of the transmission of the message 3, improve the transmission success rate of the message 3, and thus improve the randomness of the terminal device.
  • the scheduling information further includes second information, the second information indicates the repetition type of message 3, and the repetition type is the first repetition type or the second repetition type; wherein, the first repetition is adopted
  • the second repetition type when the message 3 is repeatedly transmitted, the index value of the start symbol of the message 3 is the same each time; when the second repetition type is used, when the message 3 is repeatedly transmitted, the index value of the start symbol of the message 3 is repeated each time. Not the same.
  • the terminal device receives third information from the network device, where the third information indicates a frequency hopping manner used when the message 3 is repeatedly transmitted.
  • the frequency hopping manner includes one or more of the following: a first frequency hopping manner, the first frequency domain position is used for the first N repeated transmissions, and the first frequency domain position is used for the subsequent M repeated transmissions
  • the second frequency domain position N is an integer greater than 0, M is an integer greater than 0, and N+M is greater than 2;
  • the second frequency hopping mode includes X repeated transmissions, where the i-th repeated transmission is the same as the i+L-th repeated transmission.
  • the frequency domain positions used for the repeated transmissions are the same; the frequency domain positions used for at least two repeated transmissions in the i-th repeated transmission to the i+L-th time are different; X is an integer greater than 2, and i is 0, 1 ...X-1, L is an integer smaller than X.
  • the third information is located in scheduling information; or, the third information is located in a system information block SIB1 or other system messages.
  • the scheduling information further includes fourth information, where the fourth information indicates the number of times of repeated transmission of the message 3 .
  • the fourth information is an index value of the number of repeated transmissions.
  • the present application further provides a communication device, the communication device having any of the methods provided in the third aspect above.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor configured to support the communication apparatus to perform the corresponding functions of the network device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and devices such as network equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the second aspect which is not repeated here.
  • a communication apparatus including functional modules for implementing the method in the foregoing first aspect and any possible implementation manner of the first aspect.
  • a communication device including functional modules for implementing the method in the foregoing second aspect and any possible implementation manner of the second aspect.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the method in the first aspect or any possible implementation manner of any of the foregoing aspects through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the functional modules of the method in the second aspect and any possible implementation manner of the second aspect through logic circuits or executing code instructions.
  • a computer-readable storage medium is provided, a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is executed by a processor, the aforementioned first to sixth aspects are implemented A method of any aspect, any possible implementation of any aspect.
  • a tenth aspect provides a computer program product comprising instructions that, when the instructions are executed by a processor, implement the method in any of the foregoing first to sixth aspects, or any possible implementation manner of any aspect .
  • An eleventh aspect provides a chip system, the chip system includes a processor, and may further include a memory, for implementing the method described in any one of the foregoing first to sixth aspects.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a twelfth aspect provides a communication system, where the system includes the apparatus (eg, terminal equipment) described in the seventh aspect and the apparatus (eg, network equipment) described in the eighth aspect.
  • FIG. 1 is a schematic diagram of a network architecture applicable to the present application
  • FIG. 2 is a schematic diagram of a random access process in the prior art
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a joint channel estimation provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a frequency hopping manner provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • New Radio New Radio
  • the terminal equipment involved in the embodiments of this application is an entity on the user side that is used to receive or transmit signals.
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, or the like.
  • the terminal device may also be other processing device connected to the wireless modem.
  • a terminal device may also be called a wireless terminal, access point, remote terminal, access terminal, user terminal, user agent, user equipment device), or user equipment (user equipment, UE), etc.
  • Terminal devices may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized, hand-held, computer-built, or vehicle-mounted mobile devices, which are associated with wireless
  • the access network exchanges language and/or data.
  • Common terminal devices include, for example, mobile phones, tablet computers, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, pedometers, etc. The example is not limited to this.
  • the network devices involved in the embodiments of the present application are mainly responsible for providing wireless connections for terminal devices, ensuring reliable transmission of uplink and downlink data of the terminal devices, and the like.
  • the network device may be a next-generation base station (next Generation node B, gNB) in an NR system, an evolutional node (evolutional node B, eNB) in an LTE system, or the like.
  • gNB next-generation base station
  • evolutional node B, eNB evolutional node
  • LTE Long Term Evolutional node B
  • eNB evolutional node
  • the network device is a gNB, it can be composed of a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • the method provided in this embodiment of the present application can be applied to the communication system shown in FIG. 1 , in which the network device and the terminal device 1 to the terminal device 3 form a single-cell communication system, and the terminal device 1 to the terminal device 3 can transmit the data separately or simultaneously.
  • the uplink data is sent to the network device, and the network device can send the downlink data to the terminal device 1 to the terminal device 3 separately or simultaneously.
  • FIG. 1 is only an exemplary illustration, and does not specifically limit the number of terminal devices included in the communication system, the number of network devices, and the number of cells covered by the network devices.
  • the UE can enter the RRC connection state from an idle state or an inactive state through random access from radio resource control (RRC), and establish various connections with network devices. Bearer, obtain some necessary resources and parameter configuration, and then communicate with network equipment.
  • RRC radio resource control
  • Random access by a UE usually includes the following procedures, as shown in Figure 2:
  • the UE sends a random access preamble (random access preamble) to a network device.
  • a random access preamble random access preamble
  • the random access preamble may also be referred to as message 1 (message 1, Msg1) or a random access request.
  • message 1 messages 1, Msg1
  • the role of the random access preamble is to notify the network device that there is a random access request.
  • the network device After detecting the random access preamble, the network device sends a random access response (random access response, RAR) to the UE.
  • the random access response may also be referred to as message 2 (message 2, Msg2).
  • the random access response includes scheduling information of message 3, that is, RAR uplink (uplink, UL) grant (grant) information.
  • the random access response may also include other information, which will not be repeated here.
  • the UE receives the random access response, and sends message 3 in the time-frequency resource scheduled by the scheduling information in the random access response.
  • Message 3 is carried by the physical uplink shared channel (PUSCH).
  • the message 3 may carry information such as the unique user identifier of the terminal device.
  • the network device receives the message 3 of the UE, and returns a conflict resolution message, also referred to as message 4 (message 4, Msg4), to the UE that has successfully accessed.
  • the network device will carry the unique user identifier in message 3 in the conflict resolution message to designate the UE with successful access, while other UEs without successful access will re-initiate random access.
  • the present application provides a method to improve the success probability of message 3 transmission, thereby improving the success rate of random access. The following will be described in detail.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. It can be seen that, with the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 a schematic flowchart of a communication method provided by an embodiment of the present application is shown. Referring to Figure 3, the method includes:
  • S301 The network device receives a random access request from the terminal device.
  • the random access request may refer to a random access preamble or message 1 sent by the terminal device. It should be noted that, for how the terminal device specifically sends the random access request, and how the network device specifically receives the random access request, reference may be made to the description in the prior art, which is not limited in the embodiments of the present application.
  • S302 The network device sends a random access response to the terminal device.
  • the random access response may also be referred to as message 2, the random access response includes the scheduling information of message 3, and the scheduling information included in the random access response may refer to the RAR UL grant in the random access response.
  • the scheduling information may include first information indicating that the terminal device uses the same transmit power and precoding matrix when repeatedly transmitting the message 3 .
  • the scheduling information may also include other information, which will be described in detail later.
  • S303 The terminal device receives a random access response from the network device.
  • the terminal device According to the first information, the terminal device repeatedly transmits message 3 using the same transmit power and precoding matrix.
  • the repeated transmission of message 3 means that after the terminal device sends the message 3, before receiving the contention resolution message from the network device, the terminal device sends the repeated information corresponding to the message 3 or multiple pieces of the message 3 on multiple transmission opportunities. Redundancy version (RV).
  • the first transmission of message 3 is referred to as initial transmission or initial transmission or 0th repeated transmission, and subsequent transmissions are sequentially referred to as first repeated transmission, second repeated transmission, and so on.
  • the transmit power used by the terminal device each time when the message 3 is repeatedly transmitted is equal to the transmit power used when the message 3 is initially transmitted.
  • the precoding matrix used by the terminal device when repeatedly transmitting the message 3 is the same as the precoding matrix used when the message 3 is initially transmitted.
  • the index value RV_index of the redundant version of each repeated transmission satisfies the following formula:
  • RV_index mod(X-1,L)...(1)
  • L is the total number of redundant versions
  • X is the number of repeated transmissions
  • X is a positive integer greater than or equal to 1
  • mod() is the remainder function.
  • the total number of redundant versions is 4, and the set of redundant versions is ⁇ 0, 2, 3, 1 ⁇ .
  • RV_index corresponds to 0, the first redundant version in the set is taken, that is, the redundant version is 0; when the RV_index is 1, the second redundant version in the set is taken, that is, the redundant version is 2;
  • RV_index is 2, the third redundant version in the set is taken, that is, the redundant version is 3; when RV_index is 3, the fourth redundant version in the set is taken, that is, the redundant version is 1.
  • the terminal device when the terminal device repeatedly transmits the message 3, it uses the same transmission power and precoding matrix, which can improve the stability of the message 3 transmission, improve the transmission success rate of the message 3, and thus improve the random access process of the terminal device. Access success rate.
  • S305 is further included: the network device performs joint channel estimation on the repeatedly transmitted message 3, and sends a contention resolution message to the terminal device according to the result of the joint channel estimation.
  • the network device performs channel estimation according to the demodulation reference signal (demodulation reference signal, DMRS) in the PUSCH carrying message 3 in each time slot.
  • the network device may jointly perform channel estimation according to the DMRS of at least 2 time slots in the K time slots.
  • the joint channel estimation mentioned in this application taking FIG. 4 as an example, may mean that the channel estimation of time slot 1 can use the DMRS of this time slot and the DMRS of other time slots to jointly perform channel estimation, or the channel estimation of time slot 2 can be used for joint channel estimation.
  • the estimation can use the DMRS of this slot and the DMRS of other slots to jointly perform channel estimation.
  • joint channel estimation means that the channel estimation in a certain slot or mini-slot can be combined with the DMRS in this slot or mini-slot and the DMRS in other slots or mini-slots to perform channel estimation.
  • the number of symbols in one mini time slot is less than 14.
  • the symbols in the embodiments of the present application may refer to orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, which are hereinafter referred to as symbols for short.
  • the block error rate (BLER) is 0.1
  • the signal-to-noise ratio (SNR) corresponding to the joint channel estimation of three time slots is lower than the SNR without joint channel estimation. 2dB or so.
  • joint channel estimation can improve the channel estimation performance, the premise is to ensure that when the terminal device sends message 3 in the PUSCH, the transmission power consistency between each time slot is guaranteed, and the phase of the power amplifier is continuous. Otherwise, joint channel estimation may lead to negative gains.
  • the network device can perform joint channel estimation on the repeatedly transmitted message 3, and can effectively utilize the correlation of the time domain channel, A more accurate channel estimation result can be obtained, thereby improving the demodulation capability of the PUSCH.
  • the improvement of the PUSCH demodulation capability means that the message 3 can be successfully received under the condition of a lower signal to interference plus noise ratio (SINR), that is, the success rate of the message 3 reception can be improved, so that the message 3 can be successfully received.
  • SINR signal to interference plus noise ratio
  • the uplink coverage of the message 3 is effectively improved.
  • a field may be added to carry the first information. For details, please refer to Table 1.
  • the first information may also have other names, such as "Joint channel estimation flag for Msg3 repetition", etc.
  • the number of bits included in the first information may be 1 or greater than 1.
  • the first information includes 1 bit, when the value of the bit is 0, it indicates that the transmission power and the precoding matrix of the repeated transmission message 3 are not limited; when the value of the bit is 1, it indicates that the repeated transmission message 3 is not limited.
  • the transmission power and precoding matrix are limited, that is, the terminal device is instructed to use the same transmission power and precoding matrix when repeatedly transmitting message 3.
  • the scheduling information may also include other information, for example, including one or more of the following information:
  • the second information indicates the repetition type of message 3;
  • the third information indicates the frequency hopping mode used when the message 3 is repeatedly transmitted;
  • the fourth information indicates the number of repeated transmissions of the message 3 .
  • the second information may also be called a name such as repetition type (repetition type) information.
  • the repetition type indicated by the second information may be the first repetition type or the second repetition type.
  • the first repetition type may refer to repetition type A
  • the second repetition type may refer to repetition type B.
  • repetition type A and repetition type B reference may be made to the description in 3GPP TS38.214, which will not be repeated here.
  • the first repetition type and the second repetition type may also be other types.
  • the index value of the start symbol of the message 3 when the message 3 is repeatedly transmitted, the index value of the start symbol of the message 3 is the same each time, and the number of symbols used in each repeated transmission of the message 3 is the same; when the second repetition type is used, When the message 3 is repeatedly transmitted, the index values of the starting symbols of the repeated transmission of the message 3 may be the same or different, and the number of symbols used in the repeated transmission of the message 3 each time may be the same or different.
  • the number of bits included in the second information may be 1 or greater than 1.
  • the second information includes 1 bit, when the value of the bit is 0, it indicates that the repetition type is the first repetition type; when the value of the bit is 1, it indicates that the repetition type is the second repetition type.
  • the second information includes other numbers of bits, reference may be made to the above description, which will not be repeated here.
  • the scheduling information is indicated by the DCI.
  • a new field can be added to the DCI to indicate the repetition type. If the repetition type is not indicated, the same repetition type as the initial transmission message 3 is used by default.
  • the frequency hopping flag field in Table 1 indicates whether message 3 is to be transmitted with frequency hopping.
  • the frequency domain offset of frequency hopping is different according to the different values of the bandwidth part (BWP) where the PUSCH is located, as shown in Table 2 below (the specific content of Table 2 can be detailed See description in 3GPP TS 38.213 Section 8.3).
  • N UL,hop indicates the value of the frequency hopping indication bit.
  • N UL,hop corresponds to the PUSCH frequency resource allocation (PUSCH frequency resource allocation) field in Table 1.
  • Table 2 Represents a round-down operation.
  • the starting position of the RB can be calculated by the following formula:
  • RB start refers to the first resource block (resource block, RB) allocated for the terminal device, and the PUSCH frequency resource allocation field in Table 1 indicates the specific frequency domain resource allocation.
  • the performance of the message 3 can be improved by introducing multiple frequency hopping modes.
  • multiple frequency hopping modes can be defined, and the third information can indicate the frequency hopping mode used when the message 3 is repeatedly transmitted.
  • the third information may also be called a name such as frequency hopping pattern indication information (frequency hopping pattern indication), which is not limited in this embodiment of the present application.
  • the defined frequency hopping manner may include one or more of the following:
  • the first frequency domain position is used for the first N repeated transmissions, and the second frequency domain position is used for the subsequent M repeated transmissions;
  • N is an integer greater than
  • M is an integer greater than 0, and N+M greater than 2;
  • the second frequency hopping method includes X repeated transmissions, where the i-th repeated transmission uses the same frequency domain position as the i+L-th repeated transmission; the i-th repeated transmission is at least twice in the i+L-1th repeated transmission The frequency domain positions used during repeated transmission are different; X is an integer greater than 2, i is 0, 1...X-1, and L is an integer less than X.
  • the third frequency hopping mode includes X repeated transmissions, and the frequency domain positions used in each repeated transmission in the X repeated transmissions are different.
  • the frequency hopping position of each repeated transmission is calculated according to the following formula:
  • the RB offset adopts the value in Table 2. It can be seen from Figure 5 that the frequency domain position used in the 0th repeated transmission and the second repeated transmission is the same; the frequency domain position used in the first repeated transmission and the third repeated transmission is the same, and it is the same as the first repeated transmission.
  • FIG. 6 a schematic diagram of a frequency hopping manner provided by an embodiment of the present application is shown.
  • the frequency hopping mode shown in FIG. 6 may be the third frequency hopping mode.
  • the frequency hopping position of each repeated transmission is calculated according to the following formula:
  • RB offset (k) represents the frequency domain offset of different time slots
  • slot index is the slot index
  • the frequency hopping positions for different repeated transmissions can also be calculated according to the following formula:
  • the frequency hopping position of the i-th repeated transmission is calculated according to the following formula:
  • the frequency hopping position of the i-th repeated transmission is calculated according to the following formula:
  • the frequency hopping mode shown in FIG. 7 may be the first frequency hopping mode.
  • Formula (5a) can also have other variants, for example, it can be equivalent to formula (6):
  • the previous description takes the number of repeated transmissions equal to 4 as an example, and the following description takes the number of repeated transmissions equal to 8 as an example.
  • the frequency hopping position of each repeated transmission can be determined according to formula (5b), which is not repeated here.
  • the frequency hopping position of each repeated transmission is calculated according to the following formula:
  • FIG. 10 a schematic diagram of a frequency hopping manner provided in this embodiment of the present application is shown.
  • the frequency hopping method shown in Figure 10 includes 8 repeated transmissions, the 0th repeated transmission and the first repeated transmission use the same frequency domain position; the second repeated transmission and the third repeated transmission use the same frequency domain position ; The 4th repeated transmission and the 5th repeated transmission use the same frequency domain position; the 6th repeated transmission and the 7th repeated transmission use the same frequency domain position.
  • the frequency hopping method shown in Figure 10 can satisfy the following formula:
  • the frequency hopping positions for different repeated transmissions can also be calculated according to the following formula:
  • the frequency hopping method shown in Figure 10 can satisfy the following formula:
  • RB offset (k) represents the frequency domain offset of the k-th repeated transmission, is the slot index,
  • the third information may also be carried by a system information block 1 (system information block 1, SIB1) or by other system information (other system information, OSI).
  • the third information may include at least 1 bit.
  • the third information includes 1 bit, when the value of the bit is 0, it indicates the first frequency hopping mode; when the value of the bit is 1, it indicates the second frequency hopping mode.
  • the third information includes other numbers of bits, reference may be made to the above description, which will not be repeated here.
  • a new RB offset indication needs to be defined. More frequency hopping positions are beneficial to obtain more frequency domain diversity gain.
  • the indication of frequency offset can refer to Table 3.
  • a value of N UL,hop indicates a frequency domain offset set, that is, RB offset set 1, RB offset set 2, RB offset set 3, and RB offset set 4.
  • RB offset corresponds to the value of the kth element in the set
  • RB offset (1) corresponds to the first element
  • RB offset (2) corresponds to RBoffset(3) corresponds to Since the value of the RB offset in each set may have many possible values, it will not be listed one by one here.
  • Table 3 may be applied to indicate the value of the RB offset . If the frequency hopping candidate position in the selected frequency hopping mode is less than or equal to 2, the table in the existing standard can still be used.
  • message 3 when message 3 is retransmitted, its scheduling information is indicated by DCI. During retransmission, a new field may be added to the DCI to indicate the frequency hopping mode. If not indicated, the same frequency hopping method as the initial transmission is adopted by default.
  • the number of repeated transmissions of the message 3 may also be indicated by the fourth information.
  • the fourth information may directly indicate the number of repeated transmissions, for example, the fourth information may be the number of repeated transmissions, or the fourth information may be an index value of the number of repeated transmissions. For example, as shown in Table 4.
  • the fourth information may indirectly indicate the number of repeated transmissions, for example, the fourth information may indicate an index value of a relational expression used to determine the number of repeated transmissions. In this way, the number of repeated transmissions can be flexibly indicated. For example, as shown in Table 5.
  • the relational expression 2 is indicated.
  • Both Y and H can be default values; alternatively, both Y and H are values configured by the network device, such as configured through SIB1; or, one of Y and H can be a default value and the other is a value configured by the network device.
  • the fourth information may indirectly indicate the number of repeated transmissions, and another implementation manner is shown in Table 6.
  • the number of repeated transmissions is also determined. If Q is not configured on the network device, Q is set to 1 by default. If the network device configures the Q value, for example, it is configured through SIB1 or other system messages.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware, software, or a combination of hardware and software. Whether a function is performed by hardware, software, or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication apparatuses provided by the embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication apparatus may be a terminal device, a network device, or a module (eg, a chip) applied to the terminal device or the network device.
  • the communication device 1100 includes a processing unit 1101 and a communication unit 1102 .
  • the communication apparatus 1100 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 3 above.
  • the communication apparatus 1100 may include a module for implementing any function or operation of the terminal device or network device in the method embodiment shown in FIG. 3 , and the module may be implemented in whole or in part through software, hardware, firmware or other functions. any combination to achieve.
  • the processing unit is configured to receive a random access request from a terminal device through the communication unit; the processing unit is configured to use the communication unit to receive a random access request from the terminal device.
  • the processing unit is configured to receive a random access response from the network device through the communication unit; the random access response includes the message 3 scheduling information, where the scheduling information includes first information, the first information instructing the terminal device to use the same transmit power and precoding matrix when repeatedly transmitting the message 3; a processing unit, configured to message, the message 3 is repeatedly transmitted by the communication unit using the same transmit power and precoding matrix.
  • the communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 can be a transceiver or an input-output interface.
  • the communication apparatus 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or input data required by the processor 1210 to execute the instructions or data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the function of the above-mentioned processing unit 1101
  • the interface circuit 1220 is used to implement the function of the above-mentioned communication unit 1102 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable ROM
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • the present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to the present application.
  • each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

一种通信方法及装置,其中方法包括:网络设备接收来自终端设备的随机接入请求;网络设备向终端设备发送随机接入响应;随机接入响应包括消息3的调度信息,调度信息包括第一信息,第一信息指示终端设备在重复传输消息3时使用相同的发送功率以及预编码矩阵。终端设备在重复传输消息3时,使用相同的发送功率以及预编码矩阵,可以提高消息3传输的稳定性,提高消息3的传输成功率,从而提高终端设备随机接入过程的接入成功率。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
在长期演进(long term evolution,LTE)、新无线(new radio,NR)等无线通信系统中,空闲态或非激活(inactive)态的终端设备可以通过随机接入过程接入基站。在随机接入过程中,终端设备通过物理上行共享信道(physical uplink shared channel,PUSCH)发送消息3(message 3,Msg 3)。
在随机接入过程中,终端设备和网络设备之间还未建立无线资源控制(radio resource control,RRC)连接,因此在覆盖受限的场景下,由于信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较低,导致消息3传输成功率较低。如果消息3传输失败,一方面虽然能通过重传来增加消息3的成功传输概率,但这样会导致接入时延增大,另一方面可能终端设备完全无法接入网络,影响正常的通信。
综上所述,如何增强消息3的覆盖,以提高消息3的传输成功率,从而提高终端设备随机接入网络的成功率,是一个亟待解决的问题。
发明内容
本申请实施方式的目的在于提供一种通信方法及装置,用以提高终端设备随机接入网络的成功率。
第一方面,本申请提供一种通信方法,该方法应用于终端设备通过随机接入过程接入网络设备。该方法的执行主体为网络设备或网络设备中的一个模块,这里以网络设备为执行主体为例进行描述。网络设备接收来自终端设备的随机接入请求;网络设备向终端设备发送随机接入响应;随机接入响应包括消息3的调度信息,调度信息包括第一信息,第一信息指示终端设备在重复传输消息3时使用相同的发送功率以及预编码矩阵。
通过实施第一方面提供的方法,终端设备在重复传输消息3时,使用相同的发送功率以及预编码矩阵,可以提高消息3传输的稳定性,提高消息3的传输成功率,从而提高终端设备随机接入过程的接入成功率。
在第一方面的一种可能的实现方式中,调度信息还包括第二信息,第二信息指示消息3的重复类型,重复类型为第一重复类型或第二重复类型;其中,采用第一重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值相同;采用第二重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值不相同。
在第一方面的一种可能的实现方式中,网络设备向终端设备发送第三信息,第三信息指示重复传输消息3时使用的跳频方式。
在第一方面的一种可能的实现方式中,跳频方式包括以下一项或多项:第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L- 1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
在第一方面的一种可能的实现方式中,第三信息位于调度信息中;或者,第三信息位于系统信息块SIB1或其它系统消息中。
在第一方面的一种可能的实现方式中,调度信息还包括第四信息,第四信息指示消息3的重复传输次数。
在第一方面的一种可能的实现方式中,第四信息为重复传输次数的索引值。
在第一方面的一种可能的实现方式中,方法还包括:网络设备对来自终端设备的重复传输的消息3进行联合信道估计,并根据联合信道估计的结果接收消息3。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请提供一种方法,该方法应用于终端设备通过随机接入过程接入网络设备。该方法的执行主体为终端设备或终端设备中的一个模块,这里以终端设备为执行主体为例进行描述。终端设备接收来自网络设备的随机接入响应;随机接入响应包括消息3的调度信息,调度信息包括第一信息,第一信息指示终端设备在重复传输消息3时使用相同的发送功率以及预编码矩阵;终端设备根据第一信息,使用相同的发送功率以及预编码矩阵重复传输消息3。
通过实施第三方面提供的方法,终端设备在重复传输消息3时,使用相同的发送功率以及预编码矩阵,可以提高消息3传输的稳定性,提高消息3的传输成功率,从而提高终端设备随机接入过程的接入成功率。
在第三方面的一种可能的实现方式中,调度信息还包括第二信息,第二信息指示消息3的重复类型,重复类型为第一重复类型或第二重复类型;其中,采用第一重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值相同;采用第二重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值不相同。
在第三方面的一种可能的实现方式中,终端设备接收来自网络设备的第三信息,第三信息指示重复传输消息3时使用的跳频方式。
在第三方面的一种可能的实现方式中,跳频方式包括以下一项或多项:第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L- 1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
在第三方面的一种可能的实现方式中,第三信息位于调度信息中;或者,第三信息位于系统信息块SIB1或其它系统消息中。
在第三方面的一种可能的实现方式中,调度信息还包括第四信息,第四信息指示消息3的重复传输次数。
在第三方面的一种可能的实现方式中,第四信息为重复传输次数的索引值。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种通信装置,包括用于实现前述第一方面、第一方面的任意可能的实现方式中的方法的功能模块。
第六方面,提供了一种通信装置,包括用于实现前述第二方面、第二方面的任意可能的实现方式中的方法的功能模块。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面、任一方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面、第二方面的任意可能的实现方式中的方法的功能模块。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第六方面中任一方面、任一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面至第六方面中任一方面、任一方面的任意可能的实现方式中的方法。
第十一方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面至第六方面中任一方面描述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,提供一种通信系统,所述系统包括第七方面所述的装置(如终端设备)以及第八方面所述的装置(如网络设备)。
附图说明
图1为适用于本申请的一种网络架构示意图;
图2为现有技术中的一种随机接入过程示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种联合信道估计示意图;
图5为本申请实施例提供的一种跳频方式示意图;
图6为本申请实施例提供的一种跳频方式示意图;
图7为本申请实施例提供的一种跳频方式示意图;
图8为本申请实施例提供的一种跳频方式示意图;
图9为本申请实施例提供的一种跳频方式示意图;
图10为本申请实施例提供的一种跳频方式示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、新无线(New Radio,NR)等,在此不做限制。
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备也可以称为无线终端、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment,UE)等。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
本申请实施例中所涉及的网络设备,主要负责为终端设备提供无线连接,保证终端设备的上下行数据的可靠传输等。网络设备可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型节点(evolutional node B,eNB)等。网络设备为gNB时,可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。
本申请实施例提供的方法可以应用于图1所示的通信系统中,其中,网络设备和终端设备1~终端设备3组成一个单小区通信系统,终端设备1~终端设备3可以分别或同时发 送上行数据给网络设备,网络设备可以分别或同时发送下行数据给终端设备1~终端设备3。应理解,图1仅是一种示例性说明,并不对通信系统中包括的终端设备、网络设备的数量、网络设备覆盖的小区数量进行具体限定。
本申请适用于随机接入过程。在LTE、NR等无线通信系统中,UE可以通过随机接入从无线资源控制(radio resource control,RRC)由空闲态或非激活(inactive)态进入RRC连接态,与网络设备间建立起各种承载,获取到一些必须的资源以及参数配置,进而与网络设备进行通信。目前在LTE和NR等无线通信系统中,UE进行随机接入通常包括以下流程,如图2所示:
S201,UE向网络设备发送随机接入前导码(random access preamble)。
随机接入前导码也可以称为消息1(message 1,Msg1)或者随机接入请求。随机接入前导码的作用是通知网络设备有一个随机接入请求。
S202,网络设备在检测到随机接入前导码后向UE发送随机接入响应(random access response,RAR)。随机接入响应也可以称为消息2(message 2,Msg2)。随机接入响应中包括消息3的调度信息,即RAR上行(uplink,UL)授权(grant)信息。随机接入响应还可以包括其他信息,在此不再赘述。
S203,UE接收随机接入响应,并在随机接入响应中调度信息调度的时频资源中发送消息3。消息3由物理上行共享信道(physical uplink shared channel,PUSCH)承载。消息3中可以携带终端设备的唯一的用户标识等信息。
S204,网络设备接收到UE的消息3,向接入成功的UE返回冲突解决消息,也称为消息4(message 4,Msg4)。网络设备在冲突解决消息中将携带消息3中的唯一用户标识以指定接入成功的UE,而其他没有接入成功的UE将重新发起随机接入。
现有技术中,消息3的发送功率如何确定,可以根据第三代伙伴计划(the 3rd generation partnership project,3GPP)技术规范(technical specification,TS)38.213中的描述。根据3GPP TS 38.213中的内容,消息3的发送功率与多个参数相关,其中路损参数是不断变化的,会显著影响消息3在不同时间的发送功率。另外当消息3在进行时隙内和时隙间跳频时,由于频域资源块(resource block,RB)的起始位置会发生变化,功率回退值可能发生变化,从而导致消息3的发送功率也发生变化。
通过上面的过程可知,消息3的成功传输,对随机接入过程的成功较为重要,为此,本申请提供一种方法来提高消息3传输的成功概率,从而提高随机接入的成功率,下面将详细描述。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
结合前面的描述,如图3所示,为本申请实施例提供的一种通信方法流程示意图。参见图3,该方法包括:
S301:网络设备接收来自终端设备的随机接入请求。
其中,该随机接入请求可以是指终端设备发送的随机接入前导码或者消息1。需要说明的是,终端设备具体如何发送随机接入请求,以及网络设备具体如何接收随机接入请求,可以参考现有技术中的描述,本申请实施例并不限定。
S302:网络设备向终端设备发送随机接入响应。
其中随机接入响应也可以称为消息2,随机接入响应包括消息3的调度信息,随机接入响应中包括的调度信息,可以是指随机接入响应中的RAR UL grant。该调度信息可以包括第一信息,第一信息指示终端设备在重复传输消息3时使用相同的发送功率以及预编码矩阵。
需要说明的是,该调度信息除了包括第一信息之外,还可以包括其他信息,后面将详细描述。
S303:终端设备接收来自网络设备的随机接入响应。
终端设备具体如何接收随机接入响应,本申请实施例并不限定,可以参考现有技术中的描述。
S304:终端设备根据第一信息,使用相同的发送功率以及预编码矩阵重复传输消息3。
需要说明的是,重复传输消息3,是指终端设备发送消息3之后,在接收到来自网络设备的竞争解决消息之前,在多个传输机会上发送消息3对应的重复信息或者消息3的多个冗余版本(redundancy version,RV)。其中,消息3的第一次传输称为初始传输或者初次传输或者第0次重复传输,后续传输依次称为第1次重复传输、第2次重复传输等。
可选地,终端设备每次重复传输消息3时使用的发送功率,等于初始传输消息3时使用的发送功率。
可选地,终端设备每次重复传输消息3时使用的预编码矩阵,与初始传输消息3时使用的预编码矩阵相同。
可选地,在重复传输消息3时,每次重复传输的冗余版本的索引值RV_index满足以下公式:
RV_index=mod(X-1,L)···(1)
其中L为冗余版本的总数量,X为重复传输次数,X为大于或等于1的正整数,mod()为求余函数。举例来说,冗余版本的总数量为4,冗余版本的集合为{0,2,3,1}。当RV_index对应0时,取该集合中的第1个冗余版本,即冗余版本为0;当RV_index为1时,取该集合中的第2个冗余版本,即冗余版本为2;当RV_index为2时,取该集合中的第3个冗余版本,即冗余版本为3;当RV_index为3时,取该集合中的第4个冗余版本,即冗余版本为1。以上只是示例,本申请并不限制其它的冗余版本与索引值映射关系。
通过上面的流程,终端设备在重复传输消息3时,使用相同的发送功率以及预编码矩阵,可以提高消息3传输的稳定性,提高消息3的传输成功率,从而提高终端设备随机接入过程的接入成功率。
可选地,还包括S305:网络设备对重复传输的消息3进行联合信道估计,并根据联合信道估计的结果向终端设备发送竞争解决消息。
网络设备具体如何进行联合信道估计,本申请实施例对此并不限定。举例来说,如图4所述,当消息3重复传输K次时,假定每次重复传输在1个时隙(slot)内进行(即采用基于时隙的调度方法),则需要K个时隙(时隙1至时隙K)发送消息3。
如果不进行联合信道估计,则网络设备分别根据每个时隙中承载消息3的PUSCH中的解调参考信号(demodulation reference signal,DMRS)来进行信道估计。如果进行联合信道估计,网络设备则可以根据K个时隙中的至少2个时隙的DMRS联合进行信道估计。本申请所提到的联合信道估计,以图4为例,可以是指时隙1的信道估计可利用本时隙的 DMRS和其它时隙的DMRS来联合进行信道估计,或者时隙2的信道估计可利用本时隙的DMRS和其它时隙的DMRS来联合进行信道估计。也就是说,联合信道估计,就是某一个时隙或迷你(mini)时隙内的信道估计可联合本slot或mini-slot内的DMRS与其它slot或mini-slot内的DMRS来进行信道估计。其中,1个mini时隙的符号数小于14。本申请实施例中的符号,可以是指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,以下均简称为符号。
由于信道的变化在时间上具有相关性,通过多个时隙间的联合信道估计,可以获得更为准确的信道估计结果。举例来说,在误块率(Block error rate,BLER)为0.1时,3个时隙的联合信道估计对应的信号与噪声比(signal noise ratio,SNR)比没有采用联合信道估计的SNR,低2dB左右。
虽然联合信道估计能提升信道估计性能,但前提是需要保证终端设备在PUSCH中发送消息3时,每个时隙之间保证发送功率一致性,功率放大器的相位连续。否则,联合信道估计可能导致负增益。
结合上面的描述,由于终端设备每次重复传输消息3时使用相同的发送功率以及预编码矩阵,网络设备从而可以对重复传输的消息3进行联合信道估计,可以有效利用时域信道的相关性,可以获得更为准确的信道估计结果,进而提升PUSCH的解调能力。PUSCH解调能力的提升意味着可以在较低的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)情况下,成功地接收消息3,即提高消息3的接收成功率,从而可以在不增加消息3的发送功率的前提下,有效地提升消息3的上行的覆盖。
本申请实施例中,可以基于现有的调度消息3的调度信息,在其中增加一个字段用于承载第一信息。具体可以参考表1所示。
表1
Figure PCTCN2020119038-appb-000001
其中,第一信息也可以存在其他名称,例如“Joint channel estimation flag for Msg3 repetition”等,第一信息包括的比特数可以为1,也可以大于1。第一信息包括1个比特时,当该比特的值为0时,表示对重复传输消息3的发送功率以及预编码矩阵不做限定;当该比特的值为1时,表示对重复传输消息3的发送功率以及预编码矩阵进行限定,即指示终端设备在重复传输消息3时使用相同的发送功率以及预编码矩阵。
当然,也可以反过来,即当该比特的值为1时,表示对重复传输消息3的发送功率以及预编码矩阵不做限定;当该比特的值为0时,表示对重复传输消息3的发送功率以及预编码矩阵进行限定阵。第一信息包括其他数量的比特位时,可以参考上面的描述,在此不 再赘述。
前面描述了调度信息中包括第一信息的情况,本申请实施例中,调度信息中还可以包括其他信息,例如包括以下一项或多项信息:
第二信息,第二信息指示消息3的重复类型;
第三信息,第三信息指示重复传输消息3时使用的跳频方式;
第四信息,第四信息指示消息3的重复传输次数。
其中,第二信息也可以称为重复类型(repetition type)信息等名称。第二信息指示的重复类型可以为第一重复类型或第二重复类型。第一重复类型可以是指重复类型A,第二重复类型可以是指重复类型B。重复类型A和重复类型B的具体含义,可以参考3GPP TS38.214中的描述,在此不再赘述。
第一重复类型与第二重复类型也可以为其他类型。例如,采用第一重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值相同,每次重复传输消息3时使用的符号数相同;采用第二重复类型时,重复传输消息3时,每次重复传输消息3的起始符号的索引值可以相同或不相同,每次重复传输消息3时使用的符号数可以相同或不同。
第二信息包括的比特数可以为1,也可以大于1。第二信息包括1个比特时,当该比特的值为0时,表示重复类型为第一重复类型;当该比特的值为1时,表示重复类型为第二重复类型。当然,也可以反过来,即当该比特的值为1时,表示重复类型为第一重复类型;当该比特的值为0时,表示重复类型为第二重复类型。第二信息包括其他数量的比特位时,可以参考上面的描述,在此不再赘述。
需要说明的是,当消息3进行重传时,调度信息是通过DCI进行指示的。可以DCI中新增字段指示重复类型,如果不指示重复类型,则默认采用和初始传输消息3时相同的重复类型。
通过上面的方法,通过引入不同的重复类型来支持消息3的重复传输,增强了重复传输的灵活性,有利于提升重复传输时的资源利用率。
在现有NR标准中,由于消息3还不支持重复传输,因此默认采用时隙内的跳频。在表1中的跳频标志(frequency hopping flag)字段指示消息3是否进行跳频传输。当指示进行跳频传输时,根据PUSCH所处的带宽部分(bandwidth part,BWP)的不同取值,跳频的频域偏移也有所不同,如下表2所示(表2的具体内容可以详细见3GPP TS 38.213第8.3节中的描述)。
表2中,
Figure PCTCN2020119038-appb-000002
表示BWP包括的物理资源块(physical resource block,PRB)数,N UL,hop表示跳频指示比特的取值。N UL,hop对应表1中的PUSCH频率资源分配(PUSCH frequency resource allocation)字段。
表2
Figure PCTCN2020119038-appb-000003
表2中
Figure PCTCN2020119038-appb-000004
表示向下取整运算。
对于时隙内跳频,RB的起始位置可通过如下公式计算:
Figure PCTCN2020119038-appb-000005
其中,RB start是指为终端设备的分配的第一个资源块(resource block,RB),在表1中的PUSCH频率资源分配字段指示具体的频域资源分配。RB offset取值就是表2中的“第二跳的频率偏移”指示的值,i=0为第一跳(即没有偏移),i=1为第二跳,假设初始传输消息3,那么i=0,RB start保持不变;第1次重复传输消息3时,i=1,此时N UL,hop=0时,
Figure PCTCN2020119038-appb-000006
N UL,hop=1时,
Figure PCTCN2020119038-appb-000007
本申请实施例中,可以通过引入多种跳频方式来提升消息3的性能。具体的,可以定义多种跳频方式,第三信息可以指示重复传输消息3时使用的跳频方式。第三信息也可以称为频率跳频图案指示信息(frequency hopping pattern indication)等名称,本申请实施例并不限定。本申请实施例中,定义的跳频方式可以包括以下一项或多项:
第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;
第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L-1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
第三跳频方式,包括X次重复传输,X次重复传输中每一次重复传输时使用的频域位置均不相同。
举例来说,如图5所示,为本申请实施例提供的一种跳频方式示意图。图5所示的跳频方式可以为第二跳频方式,即以X=4次重复传输,L=2为例,假如重复类型为第一重复类型,那么每次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000008
假如重复类型为第二重复类型,那么每次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000009
其中
Figure PCTCN2020119038-appb-000010
为1个无线帧(10ms)中的时隙索引,RB offset采用表2中的取值。从图5可以看出,第0次重复传输和第2次重复传输时,使用的频域位置相同;第1次重复传输和第3次重复传输时,使用的频域位置相同,且与第0次重复传输的频域位置偏移RB offset
举例来说,如图6所示,为本申请实施例提供的一种跳频方式示意图。图6所示的跳频方式可以为第三跳频方式,以X=4次重复传输为例,每次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000011
其中RB offset(k)表示不同时隙的频域偏移,
Figure PCTCN2020119038-appb-000012
为时隙索引,
Figure PCTCN2020119038-appb-000013
从图6可以看出,第0次重复传输至第3次重复传输,均使用不同的频域位置。
可选地,还可按以下公式计算不同重复传输时的跳频位置:
Figure PCTCN2020119038-appb-000014
本申请实施例中,跳频方式为第一跳频方式时,假如重复类型为第一重复类型,那么第i次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000015
其中,
Figure PCTCN2020119038-appb-000016
表示向上取整,X表示重复传输次数。
假如重复类型为第二重复类型,那么第i次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000017
举例来说,如图7所示,为本申请实施例提供的一种跳频方式示意图。图7所示的跳频方式可以为第一跳频方式,以M=2,N=2为例,前面两次重复传输采用相同的频域位置,后两次重复传输与前两次重复传输的频域位置不同。
公式(5a)也可以存在其他变形,例如可以等价于公式(6):
Figure PCTCN2020119038-appb-000018
公式(6)中的参数的含义与前面公式中对应的参数相同,具体可以参考前面的描述,在此不再赘述。
前面以重复传输次数等于4为例进行描述,下面以重复传输次数等于8为例进行描述。
如图8所示,为本申请实施例提供的一种跳频方式示意图。图8所示的跳频方式可以为第二跳频方式,即以X=8次重复传输,L=5为例,假如重复类型为第一重复类型,那么每次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000019
公式(7)中的参数的含义与前面公式中对应的参数相同,具体可以参考前面的描述,在此不再赘述。
需要说明的是,假如重复类型为第二重复类型,那么每次重复传输的跳频位置可以根据公式(5b)确定,在此不再赘述。
如图9所示,为本申请实施例提供的一种跳频方式示意图。图9所示的跳频方式可以为第一跳频方式,即以M=4,N=4为例,假如重复类型为第一重复类型,那么每次重复传输的跳频位置根据如下任一公式计算:
Figure PCTCN2020119038-appb-000020
Figure PCTCN2020119038-appb-000021
公式(8)和公式(9a)中的参数的含义与前面公式中对应的参数相同,具体可以参考前面的描述,在此不再赘述。图9中,前4次重复传输采用相同的频域位置,后4次重复传输采用相同的频域位置,且后4次重复传输与前4次重复传输的频域位置不同。
假如重复类型为第二重复类型,那么每次重复传输的跳频位置根据如下公式计算:
Figure PCTCN2020119038-appb-000022
以上只是示例,还可能存在其他跳频方式,例如,如图10所示,为本申请实施例提供的一种跳频方式示意图。图10所示的跳频方式中包括8次重复传输,第0次重复传输和第1次重复传输采用相同的频域位置;第2次重复传输和第3次重复传输采用相同的频域位置;第4次重复传输和第5次重复传输采用相同的频域位置;第6次重复传输和第7次重复传输采用相同的频域位置。
假如重复类型为第一重复类型,那么图10所示的跳频方式可以满足以下公式:
Figure PCTCN2020119038-appb-000023
公式(10)中的参数的含义与前面公式中对应的参数相同,具体可以参考前面的描述,在此不再赘述。
可选地,还可按以下公式计算不同重复传输时的跳频位置:
Figure PCTCN2020119038-appb-000024
假如重复类型为第二重复类型,那么图10所示的跳频方式可以满足以下公式:
Figure PCTCN2020119038-appb-000025
其中,RB offset(k)表示第k次重复传输的频域偏移,
Figure PCTCN2020119038-appb-000026
为时隙索引,
Figure PCTCN2020119038-appb-000027
如前所述,在进行消息3重复传输时,到底需要选用哪一种跳频方式,需要通过调度信息中的第三信息进行指示。本申请实施例中,第三信息也可以通过系统信息块1(system information block 1,SIB1)携带或者通过其它系统信息(other system information,OSI)携带。
第三信息可以包括至少1个比特。第三信息包括1个比特时,当该比特的值为0时,指示第一跳频方式;当该比特的值为1时,指示第二跳频方式。当然,也可以反过来,即当该比特的值为1时,指示第一跳频方式;当该比特的值为0时,指示第二跳频方式。第三信息包括其他数量的比特位时,可以参考上面的描述,在此不再赘述。
进一步的,如果存在多个(大于2个)RB start的起如位置时,需要新定义RB offset的指示。更多的跳频位置有利于获得更多的频域分集增益。频率偏移的指示可以参考表3所示。
表3
Figure PCTCN2020119038-appb-000028
表3中,一个N UL,hop的取值指示的是一个频域偏移集合,即RB offset集合1,RB offset集合2,RB offset集合3,RB offset集合4。每一个集合预定义不同的RB offset。以4次重复传输为例,比如RB offset集合1包含的频域偏移位置可以为
Figure PCTCN2020119038-appb-000029
其中RB offset(k)对应集合中的第k个元素的取值,比如RB offset(1)对应第一个元素
Figure PCTCN2020119038-appb-000030
RB offset(2)对应
Figure PCTCN2020119038-appb-000031
RBoffset(3)对应
Figure PCTCN2020119038-appb-000032
由于每个集合中RB offset的值可以有很多可能的取值,在此不再一一列举。当消息3重复传输的次数大于2,且在跳频图案选择时选择跳频候选位置个数大于2时,可应用表3来指示RB offset的值。如果选择的跳频方式中跳频候选位置小于或等于2时,则仍可沿用现有标准中的表。
需要注意的是,当消息3进行重传时,其调度信息是通过DCI进行指示。在重传时,可在DCI中新增字段指示跳频方式。如果不指示,则默认采用和初传相同的跳频方式。
本申请实施例中,还可以通过第四信息指示消息3的重复传输次数。第一种可能的实现方式中,第四信息可以直接指示重复传输次数,例如第四信息可以为重复传输次数,或者第四信息可以为重复传输次数的索引值。举例来说,可以如表4所示。
表4
第四信息 索引值 重复传输次数
00 00 1
01 01 2
10 10 4
11 11 8
结合表4,当第四信息为01时,指示重复传输次数为2,其他情况不再赘述。
第二种可能的实现方式中,第四信息可以间接指示重复传输次数,例如第四信息可以指示用于确定重复传输次数的关系式的索引值。通过这种方法,可以灵活指示重复传输次数。举例来说,可以如表5所示。
表5
第四信息 索引值 重复传输次数
00 00 关系式1:Y/(8H)
01 01 关系式2:Y/(4H)
10 10 关系式3:Y/(2H)
11 11 关系式4:Y/H
结合表5,当第四信息为01时,指示关系式2。当Y和H的取值确定了时,重复传输次数也就确定了。假设Y=16,H=1时,那么表5中的重复传输次数依次为16,8,4,2。Y和H可以均为默认值;或者,Y和H均为网络设备配置的值,例如通过SIB1配置;或 者,Y和H中的一个为默认值,另一个为网络设备配置的值。
可选地,第四信息可以间接指示重复传输次数,另一种实现方式如表6所示。
表6
第四信息 索引值 重复传输次数
00 00 1*Q
01 01 2*Q
10 10 4*Q
11 11 8*Q
结合表6,当Q的取值确定时,重复传输次数也就确定了。网络设备如果不配置Q,则Q默认取1。如果网络设备配置Q值,例如通过SIB1或其它系统消息配置。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件、软件、或硬件和软件相结合的形式来实现。某个功能究竟以硬件、软件、或是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是终端设备,也可以是网络设备,还可以是应用于终端设备或网络设备中的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1101和通信单元1102。通信装置1100用于实现上述图3中所示的方法实施例中终端设备或网络设备的功能。或者,通信装置1100可以包括用于实现上述图3中所示的方法实施例中终端设备或网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当通信装置1100用于实现图3所示的方法实施例中网络设备的功能时,处理单元,用于通过通信单元接收来自终端设备的随机接入请求;处理单元,用于通过所述通信单元向所述终端设备发送随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵。
当通信装置1100用于实现图3所示的方法实施例中终端设备的功能时,处理单元,用于通过通信单元接收来自网络设备的随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵;处理单元,用于根据所述第一信息,通过所述通信单元使用相同的发送功率以及预编码矩阵重复传输所述消息3。
有关上述处理单元1101和通信单元1102更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现图3所示的方法时,处理器1210用于实现上述处理单元1101 的功能,接口电路1220用于实现上述通信单元1102的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    网络设备接收来自终端设备的随机接入请求;
    所述网络设备向所述终端设备发送随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述调度信息还包括第二信息,所述第二信息指示所述消息3的重复类型,所述重复类型为第一重复类型或第二重复类型;其中,采用所述第一重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值相同;采用所述第二重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值不相同。
  3. 根据权利要求1至2任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息指示重复传输所述消息3时使用的跳频方式。
  4. 根据权利要求3所述的方法,其特征在于,所述跳频方式包括以下一项或多项:
    第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;
    第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L-1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第三信息位于所述调度信息中;或者,所述第三信息位于系统信息块SIB1或其它系统消息中。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述调度信息还包括第四信息,所述第四信息指示所述消息3的重复传输次数。
  7. 根据权利要求6所述的方法,其特征在于,所述第四信息为所述重复传输次数的索引值。
  8. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵;
    所述终端设备根据所述第一信息,使用相同的发送功率以及预编码矩阵重复传输所述消息3。
  9. 根据权利要求8所述的方法,其特征在于,所述调度信息还包括第二信息,所述第二信息指示所述消息3的重复类型,所述重复类型为第一重复类型或第二重复类型;其中,采用所述第一重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值相同;采用所述第二重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值不相同。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三信息,所述第三信息指示重复传输所述消 息3时使用的跳频方式。
  11. 根据权利要求10所述的方法,其特征在于,所述跳频方式包括以下一项或多项:
    第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;
    第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L-1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第三信息位于所述调度信息中;或者,所述第三信息位于系统信息块SIB1或其它系统消息中。
  13. 根据权利要求8至12任一所述的方法,其特征在于,所述调度信息还包括第四信息,所述第四信息指示所述消息3的重复传输次数。
  14. 根据权利要求13所述的方法,其特征在于,所述第四信息为所述重复传输次数的索引值。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元接收来自终端设备的随机接入请求;
    所述处理单元,用于通过所述通信单元向所述终端设备发送随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵。
  16. 根据权利要求15所述的装置,其特征在于,所述调度信息还包括第二信息,所述第二信息指示所述消息3的重复类型,所述重复类型为第一重复类型或第二重复类型;其中,采用所述第一重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值相同;采用所述第二重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值不相同。
  17. 根据权利要求15或16所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第三信息,所述第三信息指示重复传输所述消息3时使用的跳频方式。
  18. 根据权利要求17所述的装置,其特征在于,所述跳频方式包括以下一项或多项:
    第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;
    第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L-1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第三信息位于所述调度信息中;或者,所述第三信息位于系统信息块SIB1或其它系统消息中。
  20. 根据权利要求15至19任一所述的装置,其特征在于,所述调度信息还包括第四信息,所述第四信息指示所述消息3的重复传输次数。
  21. 根据权利要求20所述的装置,其特征在于,所述第四信息为所述重复传输次数的索引值。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元接收来自网络设备的随机接入响应;所述随机接入响应包括消息3的调度信息,所述调度信息包括第一信息,所述第一信息指示所述终端设备在重复传输所述消息3时使用相同的发送功率以及预编码矩阵;
    所述处理单元,用于根据所述第一信息,通过所述通信单元使用相同的发送功率以及预编码矩阵重复传输所述消息3。
  23. 根据权利要求22所述的装置,其特征在于,所述调度信息还包括第二信息,所述第二信息指示所述消息3的重复类型,所述重复类型为第一重复类型或第二重复类型;其中,采用所述第一重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值相同;采用所述第二重复类型时,重复传输所述消息3时,每次重复传输所述消息3的起始符号的索引值不相同。
  24. 根据权利要求22或23所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述网络设备的第三信息,所述第三信息指示重复传输所述消息3时使用的跳频方式。
  25. 根据权利要求24所述的装置,其特征在于,所述跳频方式包括以下一项或多项:
    第一跳频方式,前面N次重复传输时使用第一频域位置,后面M次重复传输时使用第二频域位置;N是大于0的整数,M是大于0的整数,且N+M大于2;
    第二跳频方式,包括X次重复传输,其中第i次重复传输与第i+L次重复传输使用的频域位置相同;第i次重复传输到第i+L-1次中至少两次重复传输时使用的频域位置不相同;X是大于2的整数,i为0,1···X-1,L为小于X的整数。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第三信息位于所述调度信息中;或者,所述第三信息位于系统信息块SIB1或其它系统消息中。
  27. 根据权利要求22至26任一所述的装置,其特征在于,所述调度信息还包括第四信息,所述第四信息指示所述消息3的重复传输次数。
  28. 根据权利要求27所述的装置,其特征在于,所述第四信息为所述重复传输次数的索引值。
  29. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至7中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求8至14中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当处理器执行所述指令时,实现如权利要求1至14中任一项所述的方法。
  33. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中存储的所述计算机程序或指令时,如权利要求1至14中任意一项所述的方法被执行。
PCT/CN2020/119038 2020-09-29 2020-09-29 一种通信方法及装置 WO2022067571A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/119038 WO2022067571A1 (zh) 2020-09-29 2020-09-29 一种通信方法及装置
KR1020237013748A KR20230073307A (ko) 2020-09-29 2020-09-29 통신 방법 및 장치
EP20955596.0A EP4207919A4 (en) 2020-09-29 2020-09-29 COMMUNICATION METHOD AND APPARATUS
CN202080105420.XA CN116250355A (zh) 2020-09-29 2020-09-29 一种通信方法及装置
AU2020470487A AU2020470487A1 (en) 2020-09-29 2020-09-29 Communication method and apparatus
US18/191,352 US20230239932A1 (en) 2020-09-29 2023-03-28 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119038 WO2022067571A1 (zh) 2020-09-29 2020-09-29 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/191,352 Continuation US20230239932A1 (en) 2020-09-29 2023-03-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022067571A1 true WO2022067571A1 (zh) 2022-04-07

Family

ID=80949397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119038 WO2022067571A1 (zh) 2020-09-29 2020-09-29 一种通信方法及装置

Country Status (6)

Country Link
US (1) US20230239932A1 (zh)
EP (1) EP4207919A4 (zh)
KR (1) KR20230073307A (zh)
CN (1) CN116250355A (zh)
AU (1) AU2020470487A1 (zh)
WO (1) WO2022067571A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780617A (zh) * 2014-01-09 2015-07-15 中兴通讯股份有限公司 一种非竞争随机接入方法、节点设备及系统
WO2015109512A1 (zh) * 2014-01-24 2015-07-30 华为技术有限公司 一种随机接入的方法及装置
CN108347789A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 一种随机接入方法及装置
WO2019095307A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种传输消息的方法及设备
WO2019160359A1 (ko) * 2018-02-14 2019-08-22 엘지전자 주식회사 무선 통신 시스템에서 주파수 호핑을 통해 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780617A (zh) * 2014-01-09 2015-07-15 中兴通讯股份有限公司 一种非竞争随机接入方法、节点设备及系统
WO2015109512A1 (zh) * 2014-01-24 2015-07-30 华为技术有限公司 一种随机接入的方法及装置
CN108347789A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 一种随机接入方法及装置
WO2019095307A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种传输消息的方法及设备
WO2019160359A1 (ko) * 2018-02-14 2019-08-22 엘지전자 주식회사 무선 통신 시스템에서 주파수 호핑을 통해 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.213
3GPP TS 38.214
HUAWEI, HISILICON: "Consideration on RACH procedure", 3GPP DRAFT; R2-151297 CONSIDERATION ON RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Bratislava, Slovakia; 20150420 - 20150424, 19 April 2015 (2015-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050936246 *
MODERATOR (ZTE CORPORATION): "Feature lead summary on coverage enhancement for channels other than PUSCH and PUCCH", 3GPP DRAFT; R1-2007392, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 29 August 2020 (2020-08-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922984 *

Also Published As

Publication number Publication date
AU2020470487A1 (en) 2023-05-25
CN116250355A (zh) 2023-06-09
KR20230073307A (ko) 2023-05-25
US20230239932A1 (en) 2023-07-27
EP4207919A4 (en) 2023-10-18
EP4207919A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US11438888B2 (en) Beam configuration method and apparatus
US11533150B2 (en) Feedback information transmission method and communication device
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
US11419120B2 (en) Information transmission method and communications device
CN103190100A (zh) 发送探测基准信号的方法和设备
WO2020199856A1 (zh) 信息传输的方法和通信装置
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
US20220361164A1 (en) Uplink control information transmission method and apparatus
WO2018126833A1 (zh) 无线通信的方法和设备
US20220015085A1 (en) Communication method and apparatus
WO2021003620A1 (zh) 下行信号传输的方法和设备
US20190200328A1 (en) Method for transmitting data, terminal device and network device
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2022027515A1 (zh) 上行控制信息的发送方法、装置和系统
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2019029367A1 (zh) 一种通信方法及设备
WO2018058443A1 (zh) 信道发送方法、信道接收方法及设备
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
WO2022067571A1 (zh) 一种通信方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021159398A1 (zh) 波束失败恢复的方法和装置
TWI646815B (zh) 載波聚合中服務小區的分組方法與使用者設備
WO2022205459A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020955596

Country of ref document: EP

Effective date: 20230330

ENP Entry into the national phase

Ref document number: 20237013748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020470487

Country of ref document: AU

Date of ref document: 20200929

Kind code of ref document: A