WO2019095307A1 - 一种传输消息的方法及设备 - Google Patents

一种传输消息的方法及设备 Download PDF

Info

Publication number
WO2019095307A1
WO2019095307A1 PCT/CN2017/111721 CN2017111721W WO2019095307A1 WO 2019095307 A1 WO2019095307 A1 WO 2019095307A1 CN 2017111721 W CN2017111721 W CN 2017111721W WO 2019095307 A1 WO2019095307 A1 WO 2019095307A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
random access
message
transmit power
terminal device
Prior art date
Application number
PCT/CN2017/111721
Other languages
English (en)
French (fr)
Inventor
苏俞婉
汲桐
金哲
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17932047.8A priority Critical patent/EP3697139A4/en
Priority to PCT/CN2017/111721 priority patent/WO2019095307A1/zh
Priority to CN202210681095.2A priority patent/CN115134018B/zh
Priority to CN202210681254.9A priority patent/CN115134019A/zh
Priority to CN201780096267.7A priority patent/CN111279757B/zh
Priority to BR112020009319-0A priority patent/BR112020009319A2/pt
Priority to CN202210680241.XA priority patent/CN115134017B/zh
Publication of WO2019095307A1 publication Critical patent/WO2019095307A1/zh
Priority to US16/875,226 priority patent/US11523347B2/en
Priority to US17/955,316 priority patent/US20230020868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a message.
  • the uplink transmission can be scheduled only after the uplink transmission time is synchronized with the base station.
  • the terminal device establishes a connection with the base station through a random access procedure and obtains uplink synchronization.
  • the random access procedure is an important method for the terminal device to obtain the dedicated channel resource from the idle state to the connected state.
  • CE Level there are three types of coverage enhancement level (CE Level), which are CE0, CE1, and CE2.
  • CE Level coverage enhancement level
  • the uplink transmission adopts an open loop power control mode.
  • the terminal device sends the message 1 (msg1)
  • the coverage enhancement level of the signal is CE0
  • the terminal device enables the open loop power control.
  • the transmit power of msg1 is determined according to some power control parameters, such as the initial power of the preamble, the downlink path loss, and the like.
  • the terminal device After the terminal device successfully sends msg1, it receives msg2 from the base station, and then the terminal device sends msg3. If the message is sent or received unsuccessfully in each random access attempt of the random access procedure, the random access procedure fails, and the terminal device cannot access the base station.
  • the embodiment of the present invention provides a method and a device for transmitting a message, which are used to improve the success rate of random access.
  • a method of transmitting a message is provided, the method being executable by a terminal device.
  • the method includes: the terminal device performs a first random access attempt at coverage enhancement level 0, the first random access attempt including determining the first according to the first power control parameter and/or the transmit power of the first random access preamble message Transmit power; the first random access preamble message is a random access preamble message in the first random access attempt; the terminal device sends the first transmission message to the network device by using the first transmit power and/or Or a first uplink control message; the first transmission message is a third message in the first random access attempt, and the first uplink control message is a feedback of a fourth message in the first random access attempt a message that the terminal device performs a second random access attempt at the coverage enhancement level 0, where the second random access attempt is the next random access performed by the terminal device after the first random access attempt fails Attempting; the second random access attempt includes determining a second transmit power according to a second power control parameter and/or a transmit power of
  • a method for transmitting a message is provided, which can be performed by a network device, such as a base station.
  • the method includes: the network device receiving a first transmission message and/or a first uplink control message sent by the terminal device with the first transmit power at the coverage enhancement level 0, where the first transmit power is the first device at the first
  • the first transmission message is a third message in the first random access attempt, and the first transmission message is determined according to the first power control parameter and/or the transmit power of the first random access preamble message.
  • the first uplink control message is the first a feedback message of the fourth message in the random access attempt, the first random access preamble message is a random access preamble message in the first random access attempt; the network device receives the terminal device in the Covering a second transmission message and/or a second uplink control message sent by the second transmission power, the second transmission power is controlled by the terminal device according to the second power in the second random access attempt And determining, by the transmit power of the second random access preamble, the second transmit power is greater than or equal to the first transmit power, and the second random access attempt is the first random
  • the feedback message of the fourth message is attempted, and the second random access preamble message is a random access preamble message in the second random access attempt.
  • the first transmission message and the second transmission message are msg3 sent in different random access attempts, and the terminal device may perform the random access attempt under the coverage enhancement level 0, according to the first power control parameter. And determining the transmit power of the first transmission message and/or the first uplink control message, that is, determining the first transmit power, and similarly, according to the second power control parameter and/or determining the transmit power of the first random access preamble message. Or determining the transmit power of the second random access preamble message to determine the transmit power of the second transport message and/or the second uplink control message, that is, determining the second transmit power, which is equivalent to determining the first transmit message and/or according to actual conditions.
  • the network device determines the first power control parameter, the first power control parameter comprising at least one of the following parameters: in the first random access attempt, the Maximum transmit power of the terminal device, preamble target received power, downlink path loss, initial preamble target received power, offset power, number of preamble attempts, third power ramp step, number of repetitions of preamble transmission, the first transmission message a power offset relative to the preamble, a path loss scale factor, a transmission bandwidth parameter, a first power ramp step, a first power offset, and a third power offset, wherein the third power ramp
  • the step size is used to determine a transmit power of the first random access preamble message, and the first power ramp step, the first power offset, and the third power offset are used to determine the The first transmit power is sent by the network device to the terminal device, where the first indication signaling is used to indicate the first power control parameter.
  • the second power control parameter includes at least one of: a maximum transmit power, a preamble of the terminal device in the second random access attempt Target received power, downlink path loss, initial preamble target received power, offset power, number of preamble attempts, third power ramp step, number of repetitions of preamble transmission, power offset of the second transmission message relative to the preamble a path loss scale factor, a transmission bandwidth parameter, a second power ramp step, a second power offset, and a fourth power offset, wherein the third power ramp step is used to determine the Transmitting power of the second random access preamble, the second power ramp step, the second power offset, and the fourth power offset are used to determine the second transmit power; the network The device sends second indication signaling to the terminal device, where the second indication signaling is used to indicate the second power control parameter.
  • the first power control parameter and the second power control parameter may be determined by the network device, and the network device may send the first indication signaling to the terminal device after determining the first power control parameter, thereby indicating the first power control parameter to the terminal device, Similarly, after determining the second power control parameter, the network device may send the second indication signaling to the terminal device, thereby The second power control parameter is indicated to the terminal device, and the terminal device may determine the first transmit power according to the first power control parameter and/or the transmit power of the first random access preamble message, or according to the second power control parameter and/or the The transmit power of the second random access preamble determines the second transmit power, thereby implementing the solution provided by the embodiment of the present application.
  • the first power control parameter includes a first power offset
  • the terminal device determines the first transmit power according to the first power control parameter and the transmit power of the first random access preamble message.
  • the terminal device determines that a sum of a transmit power of the first random access preamble message and the first power offset is the first transmit power
  • the second power control parameter includes a second power
  • determining, by the terminal device, the second transmit power according to the second power control parameter and the transmit power of the second random access preamble message including: determining, by the terminal device, the second random access preamble message The sum of the power and the second power offset is the second transmit power.
  • the terminal device determines that the sum of the transmit power of the first random access preamble message and the first power offset is the first transmit power, and the first power offset may be included in the first power control parameter.
  • the terminal device directly obtains the first power offset by adding the first power offset to the transmit power of the first random access preamble message, and the same is directly based on the transmit power of the second random access preamble message.
  • the second transmit power is obtained by adding the second power offset, and it is relatively simple to use other parameters included in the second power control parameter.
  • the terminal device determines the first transmit power according to the first power control parameter and the transmit power of the first random access preamble message, including: the terminal device calculates the third transmit according to the first power control parameter. The terminal device determines that the transmit power of the first random access preamble message and the transmit power that is a large value of the third transmit power are the first transmit power. Similarly, the terminal device determines the second transmit power according to the second power control parameter and the transmit power of the second random access preamble message, including: the terminal device calculating the fourth transmit power according to the second power control parameter; The terminal device determines that the transmit power of the second random access preamble message and the transmit power that is a large value of the fourth transmit power are the second transmit power.
  • the terminal device may select the larger value between the transmit power calculated according to the open-loop calculation method and the transmit power of the random access preamble as the actual transmit power of msg1 and/or UCI,
  • the possibility that the actual transmission power of msg1 and/or UCI is too small and the transmission is unsuccessful is reduced, the success rate of random access is improved, and the random access process is also accelerated.
  • the terminal device determines the first transmit power according to the transmit power of the first random access preamble message, including: determining, by the terminal device, that the transmit power of the first random access preamble message is The first transmit power is described. Similarly, the terminal device determines, according to the transmit power of the second random access preamble message, the second transmit power, where the terminal device determines that the transmit power of the second random access preamble message is the second transmit power. .
  • the terminal device can directly determine the transmit power of the random access preamble message as the actual transmit power of msg1 and/or UCI, without other calculation process, which is simpler, achieves higher efficiency, and can further accelerate randomization. Access process.
  • the first power control parameter includes at least one of the following parameters: a maximum transmit power, a preamble target receive power, and a downlink of the terminal device in the first random access attempt. Path loss, initial preamble target received power, offset power, number of preamble attempts, third power ramp step, number of repetitions of preamble transmission, power offset of the first transmission message relative to the preamble, path loss ratio Coefficient, transmission bandwidth parameters, a first power ramp step, a first power offset, and a third power offset, wherein the third power ramp step is used to determine a transmit power of the first random access preamble, The first power ramp step, the first power offset, and the third power offset are used to determine the second transmit power.
  • Path loss initial preamble target received power, offset power, number of preamble attempts, third power ramp step, number of repetitions of preamble transmission, power offset of the first transmission message relative to the preamble, path loss ratio Coefficient, transmission bandwidth parameters, a first power ramp step, a first power offset, and a third power offset
  • the second power control parameter includes at least one of the following parameters: a maximum transmit power, a preamble target receive power, a downlink path loss, and an initial preamble target receive power of the terminal device in the second random access attempt. , offset power, number of preamble attempts, third power ramp step, number of repetitions of preamble transmission, power offset of the second transmission message relative to the preamble, path loss ratio coefficient, transmission bandwidth parameter, second a power ramp step, a second power offset, and a fourth power offset, wherein the third power ramp step is used to determine a transmit power of the second random access preamble, The second power ramp step, the second power offset, and the fourth power offset are used to determine the second transmit power.
  • the parameters that may be included in the power control parameters are introduced.
  • at least one of the power control parameters may be used for calculation.
  • the embodiment of the present application does not limit the specific calculation manner.
  • the network device further sends third indication signaling, where the third indication signaling is used to indicate that the terminal device is configured according to the first power control parameter and/or the first random access
  • the transmit power of the preamble message determines the first transmit power
  • the third indication signaling is used to indicate that the terminal device is configured according to the first power control parameter and/or the second random access preamble message.
  • the transmit power determines the second transmit power.
  • the terminal device receives the third indication signaling from the network device, where the third indication signaling is used to indicate that the terminal device is configured according to the first power control parameter and/or the first random access
  • the transmit power of the preamble message determines the first transmit power
  • the third indication signaling is used to indicate that the terminal device is configured according to the first power control parameter and/or the second random access preamble message.
  • the transmit power determines the second transmit power.
  • the new version of the terminal device has the ability to implement the solutions provided by the first aspect and the second aspect as before, while the old version of the terminal device may not be capable of implementing the solutions provided by the first aspect and the second aspect.
  • the new version of the terminal device can implement the solutions provided by the first aspect and the second aspect, and the old version of the terminal device can continue to determine the transmit power of the msg3 and/or UCI according to the manner in the prior art.
  • the third indication signaling can achieve the purpose, and the terminal device that receives and successfully parses the third indication signaling can use the technical solution provided by the embodiment of the present application to determine the transmit power of the msg3 and/or the UCI without receiving.
  • the third indication signaling or the terminal device that fails to successfully parse the third indication signaling continues to determine the transmit power of msg3 and/or UCI using the scheme in the prior art.
  • the third indicator signaling can perform different indications on the new version of the terminal device and the old version of the terminal device, so that different versions of the terminal device determine the transmission power of the msg3 and/or the UCI in different manners, and conform to the actual configuration of the terminal device. happening.
  • the technical solution provided by the embodiment of the present application described herein includes the solution provided by the embodiment shown in FIG. 4.
  • a method of transmitting a message is provided, the method being executable by a terminal device.
  • the method includes: when the RSRP of the terminal device is in the RSRP range corresponding to the coverage enhancement level 0, the terminal device receives the repetition quantity information from the network device, where the repetition quantity information is a repetition number indicating the first uplink message,
  • the first uplink message includes a third message in the random access attempt or a feedback message of the fourth message; for any value of the repetition number information, the terminal device calculates the transmission power according to the power control parameter; the terminal device Transmitting the first uplink message to the network device by using the transmit power.
  • a method for transmitting a message is provided, which may be performed by a network device, such as a base station.
  • the method includes: the network device sends the first indication signaling to the terminal device, where the first indication signaling is used to indicate the repetition quantity information, where the repetition quantity information is a repetition number indicating the first uplink message, the first uplink
  • the message includes a third message in the random access attempt or a feedback message of the fourth message; the network device receives the first uplink message sent by the terminal device by using transmit power, where the transmit power is Any value of the repetition number information is calculated according to the power control parameter.
  • the terminal device switches from coverage enhancement level 0 to coverage enhancement level 1 or from coverage enhancement level 1 to coverage enhancement level 2 in a random access attempt, or causes the terminal device to follow the terminal device at coverage enhancement level 0
  • the reason why the maximum transmit power transmits msg3 may be that the resource allocation under the coverage enhancement level 0 is unreasonable. Therefore, when msg3 and/or UCI are transmitted without considering the competition, the open loop calculation method is used to calculate the transmit power (ie, It is more reasonable to calculate the transmit power based on the power control parameters, that is, it is more reasonable to calculate the transmit power according to the power control parameters.
  • the terminal device can calculate the transmit power of msg3 and/or UCI according to the power control parameter regardless of the value indicated by the network device for the repetition number information of the msg3 and/or UCI. That is, in the embodiment of the present application, when the coverage enhancement level of the initial access of the terminal device is at the coverage enhancement level 0, the manner in which the terminal device determines the actual transmit power of the msg3 and/or the UCI is independent of the repetition, regardless of the indication indicated by the diploma.
  • the terminal device will calculate the actual transmit power of msg3 and/or UCI according to the power control parameters, and can reduce the actual transmit power of msg3 and/or UCI, thereby reducing system noise and avoiding affecting other terminal devices as much as possible. And it is also possible to reduce the power consumption of the terminal device.
  • the network device sends first signaling and second signaling, where the first signaling is used to indicate a first version of the terminal device, and the second signaling is used to indicate the a second version of the terminal device, where the first signaling is used to indicate the total maximum random access attempt number of the first version of the terminal device, the maximum random access attempt number under the coverage enhancement level 0, and the coverage Ensuring at least one of a maximum random access attempt number under level 1 and a maximum random access attempt number under coverage enhancement level 2; said second signaling is used to indicate a total of said second version of terminal devices At least one of a maximum random access attempt number, a maximum random access attempt number under coverage enhancement level 0, a maximum random access attempt number under coverage enhancement level 1, and a maximum random access attempt number under coverage enhancement level 2 One.
  • the terminal device is a second version of the terminal device, and the terminal device receives the first signaling and the second signaling from the network device, where the first signaling is used to indicate the first version.
  • a terminal device where the second signaling is used to indicate the second version of the terminal device; the terminal device performs a random access attempt according to the second signaling, where the first signaling is used to indicate the location
  • the total maximum random access attempt number of the first version of the terminal device, the maximum random access attempt number under the coverage enhancement level 0, the maximum random access attempt number under the coverage enhancement level 1, and the coverage enhancement level 2 At least one of the maximum number of random access attempts;
  • the second signaling is used to indicate the total maximum random access attempt number of the second version of the terminal device, and the maximum random access attempt under the coverage enhancement level 0 At least one of the number of times, the maximum number of random access attempts under coverage enhancement level 1, and the maximum number of random access attempts under coverage enhancement level 2.
  • the embodiment of the present application provides the first signaling and the second signaling, respectively, indicating that the new version of the terminal device and the old version of the terminal device perform different operations.
  • the technical solution provided by the embodiment of the present application can be compatible with the old version of the terminal device and the new version of the terminal device by configuring the first signaling and the second signaling.
  • the power control parameter includes at least one of the following parameters: a maximum transmit power of the terminal device, a preamble target receive power, a downlink path loss, an initial preamble target receive power, an offset power, The number of preamble attempts, the power ramp step, the number of repetitions of the preamble transmission, the power offset of the third message relative to the preamble, the path loss scale factor, and the transmission bandwidth parameter.
  • the parameters that may be included in the power control parameters are introduced. When calculating the transmit power, the power control parameters may be used. At least one item is included for calculation, and the embodiment of the present application does not limit the specific calculation manner.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver.
  • the specific structure of the network device may further include a processor.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the third or third aspect above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver.
  • the specific structure of the network device may further include a processor.
  • the processor and transceiver may perform the respective functions of the methods provided by any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver module.
  • the specific structure of the network device may further include a processing module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver may perform the corresponding ones of the methods provided by any of the possible aspects of the third aspect or the third aspect above Features.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver module.
  • the specific structure of the network device may further include a processing module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible designs of the fourth aspect or the fourth aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the second aspect or the second aspect above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the third aspect or the third aspect above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a communication system comprising a communication device and a network device.
  • the communication device is configured to perform a first random access attempt at a coverage enhancement level 0, where the first random access attempt includes a transmit power according to a first power control parameter and/or a first random access preamble message.
  • the first random access preamble message is a random access preamble message in the first random access attempt, using the first transmit power to send a first transmission message to a network device, and/or a first uplink control message, where the first transmission message is a third message in the first random access attempt, and the first uplink control message is a feedback message of a fourth message in the first random access attempt Performing a second random access attempt at the coverage enhancement level 0, where the second random access attempt is a next random access attempt performed by the communications device after the first random access attempt fails,
  • the second random access attempt includes determining a second transmit power according to a second power control parameter and/or a transmit power of the second random access preamble message, where the second random access preamble message is the second
  • the random access preamble message in the machine access attempt, the determining the second transmit power includes determining that the second transmit power is greater than or equal to the first transmit power, and sending the second transmit power to a network device a second transmission message and/or a second uplink
  • the second random access attempt is a next random access attempt performed by the communications device after the first random access attempt fails, and the second transmission message is the second of the second random access attempts.
  • the second uplink control message is a feedback message of a fourth message in the second random access attempt
  • the second random access preamble message is a random access in the second random access attempt Leading message.
  • a communication system including a communication device and a network device.
  • the communication device is configured to receive the repetition quantity information from the network device when the RSRP of the communication device is in the RSRP range corresponding to the coverage enhancement level 0, where the repetition quantity information is a repetition indicating the first uplink message.
  • the number of times, the first uplink message includes a third message in the random access attempt or a feedback message of the fourth message, and for any value of the repetition number information, the transmission power is calculated according to the power control parameter, and the transmission is used.
  • the network device is configured to send, to the communications device, first indication signaling, where the first indication signaling is used to indicate a repetition quantity information, the repetition The number information is a number of repetitions indicating a first uplink message, and the first uplink message includes a third message of the random access attempt or a feedback message of the fourth message, and the first message sent by the communication device by using the transmit power is received.
  • the network device provided in the seventeenth aspect and the communication system provided in the eighteenth aspect may be different communication systems, or may be the same communication system.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-second aspect a computer storage medium is provided, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • a twenty-third aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a twenty-fourth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect described above The method described in the design.
  • a twenty-fifth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-sixth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • the transmit power of each transmission message and/or uplink control message is gradually increased, which increases the transmission success rate of the transmission message and/or the uplink control message, which is helpful.
  • the random access is completed faster by the terminal device, which also increases the success rate of the random access process.
  • FIG. 1 is a schematic diagram of a terminal device transmitting msg3 in the prior art
  • FIG. 2 is a schematic diagram of a division manner of coverage enhancement levels
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for transmitting a message according to an embodiment of the present application
  • FIG. 9 are schematic diagrams of sending, by a terminal device, msg3 and/or UCI according to a determined transmit power according to an embodiment of the present disclosure
  • FIG. 10 is a flowchart of a method for transmitting a message according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device that sends msg3 and/or UCI according to a determined transmit power according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • 16A-16B are two schematic structural diagrams of a communication device according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, Or user equipment, etc.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or may also include a fifth generation mobile communication technology. (fifth generation, 5G)
  • the next generation node B (gNB) in the new radio (NR) system is not limited in the embodiment of the present application.
  • NB-IoT the current 3rd generation partnership project (3GPP) standard is based on cellular networks. By designing new air interfaces and making full use of the characteristics of narrowband technology to carry IoT services, this type of IoT Known as NB-IoT. Compared with the traditional cellular network, the services and terminal equipment of the NB-IoT system have the following characteristics:
  • a NB-IoT base station may cover a large number of this type of terminal devices, such as the number of possible More than tens of thousands.
  • the NB-IoT system requires lower power consumption of the terminal equipment, thereby saving the battery power of the terminal equipment and ensuring a long standby time of the terminal equipment, thereby saving the labor cost of replacing the battery.
  • a coverage enhancement level may be referred to FIG. 1.
  • two NRSRP thresholds (a first threshold and a second threshold) are divided into three coverage enhancement levels, and the second threshold is smaller than the first threshold, for example, the first The threshold is -112dBm, and the second threshold is -122dBm.
  • the NRSRP of CE0 is greater than or equal to the first threshold.
  • the NRSRP of CE1 is greater than or equal to the second threshold and less than the first threshold.
  • the NRSRP of CE3 is less than the second threshold.
  • the measured NRSRP determines the coverage enhancement level at which the terminal device is located.
  • the coverage enhancement level of the terminal device can be understood as the coverage enhancement level of the random access channel, that is, the terminal device sends the physical with the coverage enhancement level.
  • a physical random access channel PRACH
  • the terminal device transmits a narrowband physical random access channel at the coverage enhancement level. , NPRACH). Therefore, the coverage enhancement level of the terminal device, the coverage enhancement level of the terminal device, the coverage enhancement level corresponding to the terminal device, and the coverage enhancement level of the signal may be considered equivalent.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the embodiments of the present application can be applied to the NB-IoT system, and can also be applied to other similar communication systems, such as a long term evolution (LTE) system.
  • LTE long term evolution
  • the contention-based random access attempt generally includes four steps: the terminal device sends a random access preamble message (msg1), the terminal device receives a random access response (msg2) from the network device, and the terminal device sends the first transmission message ( Msg3), the terminal device receives a conflict resolution message (msg4) from the network device.
  • the terminal device can also send uplink control information (UCI) to the network device, and the UCI can be understood as a feedback message of the msg4.
  • UCI uplink control information
  • msg3 is also referred to as a third message (a third message in a random access procedure), and msg4 is referred to as a fourth message (a fourth message in a random access procedure), and UCI is referred to as Upstream control message.
  • the one-time random access procedure of the terminal device includes at least one random access attempt, and a random access procedure of the terminal device starts from a first random access attempt in the random access procedure, and the terminal device successfully completes the random access. After entering, or until the terminal device fails to perform random access and the number of random access attempts has reached the total maximum random access attempt number of the terminal device.
  • the terminal device In a random access attempt of the random access procedure, when the terminal device sends msg1, if the coverage enhancement level of the terminal device is coverage enhancement level 0, the terminal device enables open loop power control, according to some power control parameters, for example The initial power, downlink path loss, etc. of the preamble determine the transmit power of msg1. After the terminal device sends the msg1, it receives the msg2 from the base station, and then the terminal device sends the msg3. The transmit power of the msg3 is determined according to the repetition number carried in the msg2 sent by the base station. If the repetition indicated by the msg2 is greater than 2, the terminal device is used.
  • the terminal device will perform a random access attempt again, climb the transmit power of msg1, resend msg1, then receive msg2, determine the transmit power of msg3 according to the repetition indicated by msg2, and then send msg3 again.
  • the repetition indicated by the msg2 generally remains unchanged, and the transmission power of the msg3 calculated by the terminal device does not change, and when the terminal device sends the msg3 again, The transmission will still be unsuccessful, causing the terminal device to fail the random access attempt on CE0 again. Referring to FIG. 2, the terminal device attempts k times.
  • the transmission power of msg1 is P1_1.
  • the transmit power of msg1 has climbed to P1_k, but the transmit power of msg3 has not changed. It has been P3, and msg3 may always be unsuccessful, causing the terminal device to fail to complete the random access process at CE0. In turn, the base station cannot be accessed.
  • the technical solution of the embodiment of the present application is provided to improve the success rate of random access of the terminal device and accelerate the completion of the random access process.
  • FIG. 3 it is a schematic diagram of an application scenario according to an embodiment of the present application.
  • a network device and a plurality of terminal devices are included, and the terminal devices are terminal devices under the NB-IoT system, and include, for example, a refrigerator, a car, a television, and the like.
  • the network device is for example a base station. These terminal devices can access the base station through a random access procedure.
  • an embodiment of the present application provides a method for transmitting a message, and a process of the method is described as follows.
  • the terminal device performs a first random access attempt at coverage enhancement level 0, where the first random access attempt includes determining a first transmit power according to a first power control parameter and/or a transmit power of the first random access preamble message.
  • the first random access preamble message is a random access preamble message in the first random access attempt;
  • the terminal device sends the first transmission message and/or the first uplink control message to the network device by using the first transmit power, where the network device receives the first transmission message sent by the first transmit power from the terminal device, and The first uplink control message is the third message in the first random access attempt, and the first uplink control message is the fourth message in the first random access attempt.
  • Feedback message is the third message in the first random access attempt, and the fourth message in the first random access attempt.
  • the terminal device performs a second random access attempt at the coverage enhancement level 0, where the second random access attempt is the next random access performed by the terminal device after the first random access attempt fails. try;
  • the second random access attempt includes determining a second transmit power according to a second power control parameter and/or a transmit power of a second random access preamble message; the second random access preamble message is the second a random access preamble message in a random access attempt; the determining the second transmit power includes determining that the second transmit power is greater than or equal to the first transmit power;
  • the terminal device sends the second transmission message and/or the second uplink control message to the network device by using the second transmit power, where the network device receives the second transmission message sent by the second transmit power from the terminal device, and And a second uplink control message, the second transmission message is a third message in the second random access attempt, and the second uplink control message is a feedback message of the fourth message in the second random access attempt.
  • the embodiment of the present application mainly describes how the terminal device determines the transmit power of the msg3 or UCI under the coverage enhancement level 0.
  • the UCI may be configured by radio resource control (RRC) signaling or RRC broadcast signaling.
  • RRC signaling may be a random access response (RAR) message (msg2) or The RRC connection setup message (msg4) or the like
  • RRC broadcast signaling may be a system message.
  • S43 and S44 can be understood as two steps, or can also be understood as one step.
  • determining that the second transmit power is greater than or equal to the first transmit power may be understood as: if the power control parameter includes a path loss, if the path loss is not considered, the second transmit power is greater than or equal to the first Transmit power, and if the path loss is not included in the power control parameter, then the second transmit power is greater than or equal to the first transmit power.
  • the terminal device first determines the transmit power of msg3 or UCI before transmitting msg3 or UCI.
  • the terminal The device may determine the transmit power of msg3 and/or UCI, ie, the first transmit power or the second transmit power, according to the power control parameter and/or the transmit power of the random access preamble message.
  • the determined transmission power of the msg3 and/or the UCI is different according to the number of random access attempts, the determined msg3 and/or are named according to the number of random access attempts.
  • the transmit power of the UCI such as the transmit power of msg3 and/or UCI determined during the first random access attempt
  • the transmit power of the UCI is called the second transmit power, and so on. That is, the first transmit power or the second transmit power, such a name, represents the same parameter, both the actual transmit power of msg3 and/or UCI (or the actual transmit power of msg3 and/or UCI, or
  • the final transmit power, called msg3 and /UCI) differs only in value.
  • the first random access attempt is any random access attempt in a random access procedure
  • the second random access attempt is a random access attempt after the first random access attempt.
  • determining the first transmit power or the second transmit power including but not limited to the following determination manners:
  • the mode A determines the first transmit power or the second transmit power according to the power control parameter of the terminal device and the transmit power of the random access preamble message.
  • the transmission power of the msg3 may be the number of random access attempts. Increase and increase.
  • the transmit power of the UCI is determined according to the rebetition carried in the msg4 sent by the base station. If the repetition indicated by the msg4 is greater than 2, the UCI is transmitted according to the maximum transmit power of the terminal device, and if the repetition indicated by the msg4 is less than or If the terminal device uses the open loop power control method to calculate the transmit power of the UCI, then the transmit power of the UCI generally does not change if the coverage enhancement level of the terminal device does not change. Therefore, in the embodiment of the present application, when the coverage enhancement level of the terminal device is the coverage enhancement level 0, even if the repetition indicated by msg4 is less than 2, the transmission power of the UCI may increase as the number of random access attempts increases.
  • the manner of determining the actual transmit power of msg3 or UCI includes but is not limited to the following:
  • the transmit power of the first random access preamble message (hereinafter referred to as the first msg1) and the transmit power with the larger value of the third transmit power are the first transmit power, and the first transmit power is the first
  • the transmit power of the second random access preamble message (hereinafter referred to as the second msg1) and the transmit power with the larger value of the fourth transmit power may be determined as the second transmit power, and the second transmit power is the second.
  • the actual transmit power of msg3 and/or the second uplink control message hereinafter referred to as the second UCI).
  • the first msg1 is the msg1 sent in the first random access attempt
  • the first UCI is the UCI sent in the first random access attempt
  • the third transmit power is controlled according to the first power in the first random access attempt.
  • the calculated transmit power is understood to be that the third transmit power is the transmit power of the first msg3 and/or the first UCI calculated according to the first power control parameter in the first random access attempt, and the first transmit The power is the transmit power actually selected when transmitting the first msg3 and/or the first UCI, and the two are not the same concept.
  • the second msg1 is the msg1 sent in the second random access attempt
  • the second UCI is the UCI sent in the second random access attempt
  • the fourth transmit power is based on the second power in the second random access attempt.
  • the transmit power calculated by the control parameter is understood to be that the fourth transmit power is the transmit power of the second msg3 and/or the second UCI calculated according to the second power control parameter in the second random access attempt
  • the second The transmit power is the transmit power actually selected when transmitting the second msg3 and/or the second UCI, and the two are not the same concept.
  • the method of calculating the transmission power of msg3 and/or UCI according to the power control parameter may also be referred to as an open-loop calculation method, which will be described later.
  • the first power control parameter refers to a power control parameter used in the first random access attempt, for example, during a first random access attempt, or before the first random access attempt begins, the network device may determine the first power After the first power control parameter is determined, the network device sends the first indication signaling to the terminal device, where the first indication signaling is used to indicate the first power control parameter.
  • the second power control parameter refers to the power control parameter used in the second random access attempt, for example, during the second random access attempt, or before the second random access attempt starts, the network device can, the network device can Determining the second power control parameter, after determining the second power control parameter, the network device sends the second indication signaling to the terminal device, where the second indication signaling is used to indicate the second power control parameter.
  • the first power control parameter and the second power control parameter may include the same type and number of parameters, but some parameters may have different values, where the values are different, that is, for the same parameter, at the first power
  • the values in the control parameters and the values in the second power control parameters may be different. It is also possible that the values of the types, the numbers, and the parameters of the parameters included in the first power control parameter and the second power control parameter are the same, which is not limited in the embodiment of the present application.
  • the first power control parameter can include at least one of the following parameters:
  • the step size is used to determine the transmit power of the first random access preamble message, for example, the third power ramp step is a rising amount of the transmit power of the msg1 every time the random access attempt times increase, the first power ramp step,
  • the first power offset and the third power offset are used to determine the first transmit power.
  • the second power control parameter can include at least one of the following parameters:
  • the maximum transmit power, the preamble target receive power, the downlink path loss, the initial preamble target receive power, the offset power, the number of preamble attempts, and the third power ramp step of the terminal device The number of repetitions of the preamble transmission, the power offset of the second transmission message with respect to the preamble, the path loss conversion ratio coefficient, the transmission bandwidth parameter, the second power ramp step, the second power offset, and the fourth power offset And a third power ramp step for determining a transmit power of the second random access preamble, where the second power ramp step, the second power offset, and the fourth power offset are used The second transmit power is determined.
  • a k-time random access attempt procedure of the terminal device is illustrated, in which a rectangle drawing a vertical line represents the transmission power of msg1, and a rectangle drawn with a diagonal line represents the actual transmission power of msg3 and/or UCI.
  • the transmit power of msg1 is P1_1, and msg1 is successfully sent.
  • the transmit power of msg3 or UCI calculated by the terminal device through the open-loop calculation method is P3, and FIG. 5 is the first random.
  • the access attempt is the first random access attempt as an example, and P3 is calculated according to the first power control parameter, and the terminal device determines that the median value of the larger values of P1_1 and P3 is the actual transmit power of msg3 and/or UCI, The terminal device determines that the median value of P1_1 and P3 is the first transmit power, and the terminal device sends the first msg3 or the first UCI by using the first transmit power. For example, when P3 is greater than P1_1, the first random time is as shown in FIG. 5. P3 in the access attempt is the first transmit power.
  • the terminal device When the terminal device performs the second random access attempt, the terminal device climbs the transmit power of msg1, for example, from P1_1 to P1_2, and the terminal device transmits msg1 with the transmit power of P1_2, because the first random access attempt in this embodiment is For the first random access attempt, the second random access attempt is the second random access attempt, and the transmit power of the msg3 or UCI calculated by the terminal device by the open-loop calculation method is, for example, still P3, and the P3 is according to the first Calculated by the second power control parameter, Only the values of the parameters participating in the calculation of the first power control parameter and the second power control parameter may be equal, so the results of the two calculations are equal, both are P3, and the terminal device determines that the median value of P1_2 and P3 is the second emission.
  • P3 in the second random access attempt is the second transmit power. Since the transmit power of msg1 is rising during each random access attempt, the transmit power of msg3 or UCI calculated by the open-loop calculation method will be smaller than the transmit of msg1 after the terminal device performs a certain number of random access attempts. According to FIG. 5, when the terminal device performs the k-1th random access attempt and the kth random access attempt, the transmit power of the msg3 or UCI calculated by the open loop calculation method is less than the transmit power of the msg1.
  • the actual transmit power of msg3 and/or UCI is the transmit power of msg1 (will be in the k-1th random access attempt)
  • the actual transmit power of msg3 and/or UCI is referred to as k-1th transmit power
  • the actual transmit power of msg3 and/or UCI in the kth random access attempt is referred to as kth transmit power).
  • the maximum random access attempt number of the terminal device under the coverage enhancement level 0 may be preset by the network device or specified by the protocol.
  • the first random access attempt is the first random access attempt and the second random access attempt is the second random access attempt.
  • the first random access attempt may be in FIG. 5 .
  • Any random access attempt, the second random access attempt may be the next random access attempt in FIG. 5 after the first random access attempt.
  • the implementation manner A2 determining that the sum of the transmit power of the first msg1 and the first power offset is the first transmit power, and similarly, determining that the sum of the transmit power of the second msg1 and the second power offset is the second transmit power .
  • the first power control parameter and the second power control parameter may further include a power offset parameter.
  • the values of the power offset may be the same or different, in order to distinguish different random connections.
  • the power offset in the first random access attempt (also in the first power control parameter) is referred to as the first power offset
  • the second random access attempt (also the second power)
  • the power offset in the control parameters is referred to as the second power offset.
  • the first power offset and the second power offset are both used to determine the transmit power of msg3 and/or UCI, eg, the first power offset is used to determine the transmit power of the first msg3 and/or the first UCI, The second power offset is used to determine the transmit power of the second msg3 and/or the second UCI.
  • the first power offset or the second power offset may be specified by a protocol, or may be indicated by a network device.
  • the second power offset may be greater than the first power offset, that is, as the number of random access attempts increases, the value of the power offset may also be incremented, or the second power offset may be equal to the first A power offset, that is, the value of the power offset remains unchanged, since the transmit power of msg1 of the two random access attempts is different (the transmit power of msg1 will rise), so the second random access attempt
  • the second transmit power determined in the first random access attempt may be greater than the second transmit power determined in the first random access attempt, so the embodiment of the present application does not limit the second power offset to be greater than the first power offset.
  • a k-time random access attempt process of the terminal device is illustrated, in which a rectangle drawing a vertical line represents the transmission power of msg1, and a rectangle drawn by a diagonal line represents the actual transmission power of msg3 and/or UCI, 6 Taking the value of the power offset used by the terminal device in each random access attempt is the same, that is, the first power offset is equal to the second power offset.
  • the transmit power of msg1 is P1_1, for example
  • the first random access attempt is the first random access attempt
  • the terminal device determines that the sum of the P1_1 and the first power offset is the first transmit power, and sends the first msg3 and/or the first by the first transmit power.
  • UCI the first transmit power in the first random access attempt is represented by P3_1 in FIG.
  • the terminal device climbs the transmit power of msg1, for example, from P1_1 to P1_2, and the terminal device transmits msg1 with the transmit power of P1_2 because the first random access attempt is the first random access.
  • the terminal device determines that the sum of the P1_2 and the second power offset is the second transmit power, and transmits the second msg3 and the second transmit power. / or the second UCI, the second transmit power in the second random access attempt is represented by P3_2 in FIG. And so on, until the terminal device randomly accesses successfully, or until the number of random access attempts of the terminal device reaches the specified maximum random access attempt number under the coverage enhancement level 0.
  • the maximum random access attempt number of the terminal device under the coverage enhancement level 0 may be preset by the network device or specified by the protocol.
  • the first random access attempt is the first random access attempt and the second random access attempt is the second random access attempt.
  • the first random access attempt may be in FIG. 6.
  • Any random access attempt, the second random access attempt may be the next random access attempt in FIG. 6 after the first random access attempt.
  • the transmission power of the msg3 and/or UCI may be increased as the number of random access attempts increases during different random access attempts, by taking the msg1
  • the larger of the transmit power and the transmit power calculated according to the power control parameter is taken as the actual transmit power of msg3 and/or UCI, or the sum of the transmit power and the power offset of msg1 is msg3 and/or UCI.
  • the actual transmit power helps the terminal device complete the random access process faster and can reduce the power consumption of the terminal device.
  • the terminal device calculates the transmit power of the msg3 and/or the UCI according to the power control parameter, that is, the terminal device calculates the transmit power of the msg3 and/or the UCI according to the open-loop calculation manner.
  • the terminal device calculates the transmit power of msg3 and/or UCI according to the power control parameter, which can be implemented by the following formula (1):
  • the P NPUSCH,c (i) represents the transmit power of the signal on the narrowband physical uplink shared channel (NPUSCH) on the subframe i in the cell C;
  • P CMAX,c (i) represents the terminal device The maximum transmit power, specifically indicating the maximum transmit power of the signal that the terminal device transmits the PRACH or NPRACH on the subframe i in the cell C;
  • the M NPUSCH,c (i) takes different values under different subcarrier bandwidths, for example, When the subcarrier bandwidth is 3.75K, the value of M NPUSCH,c (i) is ⁇ 1/4 ⁇ , and when the subcarrier bandwidth is 15K, the value of M NPUSCH,c (i) is ⁇ 1,3,6, 12 ⁇ ;
  • P O_PRE represents the initial preamble target received power, consistent with P PIRT ;
  • ⁇ PREAMBLE_Msg3 represents the offset power, specifically refers to the power offset of msg3 relative to the preamble;
  • the power control parameter may be obtained by the terminal device by receiving a system message and/or a high layer signaling sent by the network device, and the high layer signaling is, for example, radio resource control (RRC). Signaling.
  • RRC radio resource control
  • the terminal device may obtain the first power control parameter and the second power control parameter by receiving a system message and/or higher layer signaling sent by the network device.
  • the previous solution also involves the terminal device transmitting msg1, and the terminal device also needs to calculate the transmit power of msg1.
  • the terminal device may also calculate the transmit power of the msg1 according to the power control parameter, for example, the terminal device is in the first random access attempt. And calculating, according to the first power control parameter, a transmit power of the first msg1, and in the second random access attempt, the terminal device calculates a transmit power of the second msg1 according to the second power control parameter.
  • the terminal device calculates the transmit power of the msg1 according to the power control parameter, that is, calculates the transmit power of the NPRACH, which can be implemented by the following formula (2):
  • P PRT P PIRT +P DP +(N p1 -1) ⁇ P s -10log 10 N p2 .
  • P NPRACH represents the transmit power of the signal on the NPRACH
  • P CMAX,c (i) represents the maximum transmit power of the terminal device, and specifically represents the signal that the terminal device transmits the physical random access channel on the subframe i in the cell C.
  • P PRT indicates the received power of the preamble
  • PL c indicates the downlink path loss of the cell C obtained by the terminal device
  • P PIRT indicates the initial received power of the target
  • P DP indicates the offset power, specifically The power offset of the preamble
  • N p1 represents the number of preamble attempts, specifically refers to the number of times the preamble attempts to send, such as when the terminal device sends the 5th attempt, its N p1 takes the value 5
  • P s represents the third power climb
  • the step size is specific to the power boost value when the terminal device fails to access after random access failure
  • N p2 indicates the number of times the lead repeat is repeated each time.
  • the formula (2) is only an example, and the manner in which the terminal device calculates the transmission power of the msg1 according to the power control parameter is not limited thereto.
  • the transmit power of the msg1 may be determined according to the power control parameter, and may be determined by using other parameters, which are not limited in the embodiment of the present application.
  • the formula (2) calculates the transmission power of the msg1 when the terminal device is at the coverage enhancement level 0, and if the terminal device is at another coverage enhancement level, such as the coverage enhancement level 1 or the coverage enhancement level 2, the terminal device can determine the msg1.
  • the transmit power is the maximum transmit power of the terminal device.
  • the first transmit power is determined according to the transmit power of the random access preamble message.
  • the transmit power of the msg3 may be the number of random access attempts. Increase and increase.
  • the transmission power of the UCI may increase as the number of random access attempts increases.
  • the transmit power of the first msg1 is determined to be the first transmit power, and similarly, the transmit power of the second msg1 is determined to be the second transmit power.
  • implementation B it is not necessary to calculate the transmit power of msg3 or UCI according to the power control parameter, and directly determine the transmit power of msg1 as the actual transmit power of msg3 and/or UCI, which is relatively simple.
  • a k-time random access attempt process of the terminal device is illustrated, in which a rectangle drawing a vertical line represents the transmission power of msg1, and a rectangle drawn with a diagonal line represents the actual transmission power of msg3 and/or UCI.
  • the transmit power of the msg1 is P1_1
  • the first random access attempt is the first random access attempt
  • the terminal device determines that P1_1 is the first transmit power. And transmitting the first msg3 and/or the first UCI by the first transmit power.
  • the terminal device When the terminal device performs the second random access attempt, the terminal device climbs the transmit power of msg1, for example, from P1_1 to P1_2, and the terminal device transmits msg1 with the transmit power of P1_2 because the first random access attempt is the first random access. If the second random access attempt is the second random access attempt, the terminal device determines that P1_2 is the second transmit power, and sends the second msg3 or the second UCI by using the second transmit power. And so on, until the terminal device randomly accesses successfully, or until the number of random access attempts of the terminal device reaches the specified maximum random access attempt number under the coverage enhancement level 0.
  • the maximum random access attempt number of the terminal device under the coverage enhancement level 0 may be preset by the network device or specified by the protocol.
  • the first random access attempt is the first random access attempt and the second random access attempt is the second random access attempt.
  • the first random access attempt may be in FIG. 7.
  • Any random access attempt, the second random access attempt may be the next random access attempt in FIG. 7 after the first random access attempt.
  • the transmission power of msg3 and/or UCI may increase as the number of random access attempts increases, and the power of msg1 will be transmitted during different random access attempts.
  • the method is simple, which helps the terminal device complete the random access process more quickly, and can reduce the power consumption of the terminal device.
  • Method C Calculate the actual transmit power of msg3 and/or UCI according to the power control parameter.
  • the transmit power of msg3 and/or UCI can be directly calculated according to the power control parameters, and the transmit power of msg1 or other messages is not needed, and the method is relatively simple.
  • the manner of determining the actual transmit power of msg3 and/or UCI includes but is not limited to the following:
  • the implementation manner C1 is: determining that the sum of the third transmit power and the third power offset is the first transmit power, and similarly, determining that the sum of the fourth transmit power and the fourth power offset is the second transmit power. Both the third power offset and the fourth power offset are used to determine the transmit power of msg3 and/or UCI.
  • the first power control parameter and the second power control parameter further include a power offset parameter, where the power offset parameter is not the same parameter as the power offset parameter in the implementation manner A2, and may be implemented for distinguishing.
  • the power offset parameter in the mode A2 is referred to as the power offset parameter A
  • the power offset parameter in the implementation C1 is referred to as the power offset parameter B
  • the power offset parameter A is used for the msg1
  • the transmit power jointly determines the actual transmit power of msg3 and/or UCI
  • the power offset parameter B is used to determine the actual transmit power of msg3 and/or UCI in conjunction with the transmit power calculated according to the open loop mode.
  • the power offset parameter A is a first power offset parameter
  • the power offset parameter B is a third power offset parameter
  • the power offset The parameter A is a second power offset parameter
  • the power offset parameter B is a fourth power offset parameter.
  • the third power offset and the fourth power offset (ie, the value of the power offset parameter B) may be protocol stipulated or may be indicated by the network device.
  • the third transmit power is the transmit power of the first msg3 and/or the first UCI calculated according to the first power control parameter in the first random access attempt
  • the fourth transmit power is in the second random access attempt according to the first The transmit power of the second msg3 and/or the second UCI calculated by the second power control parameter.
  • the value of the power offset parameter B used by the terminal device in each random access attempt may be the same or different, and is not limited in the embodiment of the present application, for example, the third power offset and the fourth power offset. Can be the same or different. In the case where the coverage enhancement level is unchanged, or in the case where the repetition indicated by msg2 and/or msg4 is less than 2, the transmission power of msg3 and/or UCI calculated according to the open-loop calculation method is generally unchanged, taking this into consideration.
  • the value of the power offset parameter B may be incremented as the number of random access attempts increases, for example, the fourth power offset is greater than the third power offset, so that the terminal device is in the second random access.
  • the second transmit power determined in the attempt is greater than or equal to the first transmit power determined in the first random access attempt.
  • a k-time random access attempt procedure of the terminal device is illustrated, where the rectangle represents the actual transmit power of msg3 and/or UCI.
  • the transmit power of the msg3 and/or UCI calculated by the open-loop calculation is P3.
  • the terminal device determines that the sum of the P3 and the third power offset is the first transmit power, and sends the first msg3 and/or the first UCI by using the first transmit power, where the first random access attempt is represented by P3_1 in FIG. The first transmit power.
  • the terminal device calculates the transmit power of msg3 and / by using an open-loop calculation manner (or, if it is determined that the transmit power of the msg3 or UCI calculated by the open-loop calculation method is equivalent to the first
  • the calculation result in a random access attempt is unchanged, and may not need to be calculated again. For example, it is still P3.
  • the terminal device determines that the sum of the P3 and the fourth power offset is the second transmit power, and sends the second msg3 and/or the second UCI by using the second transmit power, represented by P3_2 in FIG.
  • the second transmit power in the second random access attempt In this embodiment, as the number of random attempts increases, the value of the power offset parameter B is also incremented, so that the actual transmit power of the msg3 and/or UCI determined by the terminal device in the next random access attempt is greater than or Equal to the actual transmit power of msg3 and/or UCI determined in the previous random access attempt. And so on, until the terminal device randomly accesses successfully, or until the number of random access attempts of the terminal device reaches the specified maximum random access attempt number under the coverage enhancement level 0.
  • the maximum random access attempt number of the terminal device under the coverage enhancement level 0 may be preset by the network device or specified by the protocol.
  • the first random access attempt is the first random access attempt and the second random access attempt is the second random access attempt.
  • the first random access attempt may be in FIG. 8.
  • Any random access attempt, the second random access attempt may be the next random access attempt in FIG. 8 after the first random access attempt.
  • the implementation manner C2 determining that the sum of the third transmit power and the first power ramp step is the first transmit power, and similarly, determining that the sum of the fourth transmit power and the second power ramp step is the second transmit power.
  • the first power control parameter and the second control parameter may further include a power ramp step parameter, and the power ramp step parameter during a random access attempt of a random access procedure
  • the values may be the same or different.
  • the values of the power ramp step parameters may be the same or different, and thus will be in the first random access attempt (ie, The power ramp step in the first power control parameter is referred to as a first power ramp step, and the power ramp step in the second random access attempt (ie, in the second power control parameter) is referred to as a first Two power ramp steps.
  • the first power ramp step is used to determine the transmit power of the first msg3 and/or the first UCI
  • the second power ramp step is used to determine the transmit power of the second msg3 and/or the second UCI.
  • the first power ramp step or the second power ramp step may be an integer multiple of the third power ramp step, and the third power ramp step is the number of random access attempts.
  • the amount of increase in the transmit power of msg1 that is, the increase in the actual transmit power of msg3 and/or UCI may be an integral multiple of the rise of the transmit power of msg1, or the first power ramp step and the second power climb
  • the step size can also be set to other values, such as the first power step
  • the long or second power ramp step is specified by the protocol, etc., and it can be understood that the actual amount of increase in the transmit power of msg3 and/or UCI can be specified by the protocol.
  • the actual transmit power of msg3 and/or UCI can be increased. Specifically, when the random access attempt is increased once, the actual transmit power of msg3 and/or UCI climbs once.
  • a k-time random access attempt procedure of the terminal device is illustrated, in which a rectangle drawing a vertical line represents the transmission power of msg1, and a rectangle drawn with a diagonal line represents the actual transmission power of msg3 and/or UCI.
  • the transmit power of msg1 is P1_1
  • the transmit power of msg3 or UCI calculated by the terminal device through the open-loop calculation method is P3, and the first random access attempt is the first.
  • the random access attempt is taken as an example, and the first random access attempt is, for example, the first random access attempt in a random access procedure, and the transmit power of the msg3 and/or UCI does not rise, and the first power climb can be considered.
  • the step size is 0, the terminal device determines that P3 is the first transmit power, and transmits the first msg3 and/or the first UCI through P3, and P3_1 in FIG. 9 represents P3.
  • the terminal device When the terminal device performs the second random access attempt, the terminal device climbs the transmit power of msg1, for example, climbs the third power ramp step on the basis of P1_1, and then climbs from P1_1 to P1_2 (ie, the difference between P1_2 and P1_1) That is, the third power ramp step), the terminal device transmits msg1 with the transmit power of P1_2, and because the number of random access attempts is increased once, the terminal device also climbs P3 to obtain P3+D 1 because A random access attempt is the first random access attempt, so the second random access attempt is the second random access attempt, then D 1 is the second power ramp step, and the terminal device determines P3+D 1 is the second transmit power, P3_2 in FIG.
  • (P3_k-1) in FIG. 9 represents the actual transmit power of msg3 and/or UCI in the k-1th random access attempt
  • P3_k represents msg3 and/or in the kth random access attempt.
  • the actual transmit power of the UCI may be preset by the network device or specified by the protocol.
  • the first random access attempt is the first random access attempt and the second random access attempt is the second random access attempt.
  • the first random access attempt may be in FIG. Any random access attempt
  • the second random access attempt may be the next random access attempt in FIG. 9 after the first random access attempt.
  • the first power hill climb step may not be zero.
  • the first power ramp step and the second power ramp step may be specified by a protocol, or may be indicated by a network device.
  • the first power ramp step and the second power ramp step are used to determine the transmit power of msg3 and/or UCI.
  • the first power climbing step and the second power climbing step may be equal or may not be equal, for example, the second power climbing step may be greater than the first power climbing step, that is, with random access
  • the transmit power of msg3 and/or UCI can be increased to increase the transmission success rate of msg3 and/or UCI.
  • the transmission power of msg3 or UCI may be increased as the number of random access attempts increases.
  • the terminal device can help the random access process to be completed faster, and the power consumption of the terminal device can be reduced.
  • R14 which is a new version of terminal devices.
  • R13 is an old version of the terminal device.
  • the new version of the terminal device has the ability to implement the solution provided by the embodiment shown in FIG. 4, while the old version of the terminal device may not be capable of implementing the solution provided by the embodiment shown in FIG. In view of this, it can be considered that only the new version of the terminal device implements the solution provided by the embodiment shown in FIG. 4, and the old version of the terminal device can continue to determine the transmission power of msg3 and/or UCI in the manner of the prior art.
  • the embodiment of the present application provides a third indication signaling, where the third indication signaling is configured by a new version of the network device, for example, configured by the network device of the R14, and after the network device is configured, the third indication signaling may be sent, for example,
  • the third indication signaling may be received and identified by the new version of the terminal device, and the old version of the terminal device may not be able to receive the third indication signaling, or may not be able to identify the third indication signaling.
  • the third indication signaling is used to indicate that the terminal device uses the technical solution provided by the embodiment of the present application to determine the transmit power of the msg3 and/or the UCI, and then the terminal device that receives and successfully parses the third indication signaling may use the present Applying the technical solution provided by the embodiment to determine the transmit power of the msg3 and/or the UCI, and the terminal device that does not receive the third indication signaling or fails to successfully parse the third indication signaling, continues to determine by using the solution in the prior art.
  • the transmit power of msg3 and / or UCI is used to indicate that the terminal device uses the technical solution provided by the embodiment of the present application to determine the transmit power of the msg3 and/or the UCI, and then the terminal device that receives and successfully parses the third indication signaling may use the present Applying the technical solution provided by the embodiment to determine the transmit power of the msg3 and/or the UCI, and the terminal device that does not receive the third indication signaling or fails to successfully par
  • the third indicator signaling can perform different indications on the new version of the terminal device and the old version of the terminal device, so that different versions of the terminal device determine the transmission power of the msg3 and/or the UCI in different manners, and conform to the actual configuration of the terminal device. happening.
  • the technical solution provided by the embodiment of the present application described herein includes the solution provided by the embodiment shown in FIG. 4.
  • the first transmit power when the terminal device performs a random access attempt at the coverage enhancement level 0, the first transmit power may be determined according to the first power control parameter and/or the transmit power of the first random access preamble message, which is equivalent to Determining the transmit power of the first transport message and/or the first uplink control message according to actual conditions, and the second transmit power determined by the terminal device in the second random access attempt is greater than or equal to the terminal device in the first random access attempt
  • the transmit power of msg3 and/or UCI is gradually increased, and the transmission success rate of msg3 and/or UCI is increased, thereby speeding up the random access process.
  • the terminal device when the coverage enhancement level of the terminal device is the coverage enhancement level 0, the terminal device attempts to send the msg1 by gradually increasing the initial transmission power. For example, when the terminal device attempts the first random access attempt, the transmit power of msg1 is calculated according to the power control parameter, which is also the initial transmit power of msg1, and msg1 is transmitted according to the initial transmit power. When the terminal device attempts the second random access, it will increase the transmit power of msg1 based on the transmit power of msg1 in the first random access attempt, and send msg1 according to the transmitted transmit power.
  • the terminal device When the terminal device attempts the third random access attempt, it will again increase the transmit power of msg1 based on the transmit power of msg1 in the second random access attempt, and send msg1 according to the transmit power after the climb again. Similarly, until the terminal device randomly accesses successfully, or until the number of random access attempts of the terminal device reaches the specified maximum random access attempt number under the coverage enhancement level 0. If the terminal device fails to access successfully, the terminal device will always perform a random access attempt before the random attempt times reach the specified maximum random access attempt number, and msg1 is sent in each random access attempt.
  • the terminal device may use the maximum transmit power of the terminal device to send msg1, or if the number of random attempts of the terminal device reaches the specified maximum random access attempt at the coverage enhancement level 0, the terminal The coverage enhancement level of the device will be switched from coverage enhancement level 0 to coverage enhancement level 1. If the terminal device fails to obtain random access under coverage enhancement level 0, the terminal device will directly adopt the terminal under coverage enhancement level 1. The maximum transmit power of the device to send msg1. If the number of random attempts of the terminal device reaches the specified maximum number of random access attempts under the coverage enhancement level 1, the coverage enhancement level of the terminal device is switched from coverage enhancement level 1 to coverage enhancement level 2, if the terminal device is in coverage enhancement.
  • the terminal device will directly use the maximum transmit power of the terminal device to transmit msg1 under the coverage enhancement level 2.
  • the terminal device receives msg2 from the network device, if msg1 The maximum transmission power of the terminal device is sent.
  • the maximum transmission power of the terminal device is sent.
  • the value of the reset indication carried by the msg2 is relatively large, and is generally greater than 2, and the terminal device adopts The maximum transmit power of the terminal device is to transmit msg3.
  • UCI If msg1 is sent with the maximum transmit power of the terminal device, the value of the reset indication carried by msg4 is generally greater than 2.
  • the terminal device uses the maximum transmit power of the terminal device to transmit the UCI.
  • the terminal device is relatively close to the network device, the initial transmission power of the msg1 is relatively low, and the transmission power is gradually increased in the coverage enhancement level 0, and the transmission is unsuccessful.
  • the coverage enhancement level 0 is switched to the coverage enhancement level 1, the full power transmission msg3 and / or UCI.
  • the terminal device cannot successfully send msg1, not necessarily because the signal quality is not good, because the msg1 is in a competitive environment, and the terminal device may compete for less coverage under the level 0, then even the terminal The power of the device to send msg1 is sufficient, and may also cause the msg1 transmission to be unsuccessful.
  • the coverage enhancement level of the terminal device is switched from coverage enhancement level 0 to coverage enhancement level 1.
  • the network device can only know that the terminal device is in coverage enhancement level 1, but the terminal device is no longer in the transmission of msg3 and/or UCI.
  • msg3 and/or UCI can be successfully sent without using the maximum transmit power of the terminal device.
  • the value indicated by the network device configuration repetition is large, for example, greater than 2, the prior art scheme in this case is certain.
  • the maximum transmit power of the terminal device is used to transmit msg3 and/or UCI. If the power of the transmitted signal is too large, the system may cause unnecessary noise rise of the system, causing other terminal devices to be interfered, even affecting the uplink transmission process of the entire base station, and also causing an increase in power consumption of the terminal device itself.
  • the embodiment of the present application further provides a method for transmitting a message, which can solve the problem.
  • a method for transmitting a message which can solve the problem.
  • the flow of the method is described below.
  • the technical solution provided by the embodiment of the present application is applied to the application scenario shown in FIG. 3 as an example, and the actual application is of course not limited thereto.
  • the terminal device receives the first indication signaling from the network device, where the first indication signaling is used to indicate the repetition quantity information.
  • the network device needs to first Sending, by the terminal device, the first indication signaling, where the repetition number information is a number of repetitions indicating a first uplink message, where the first uplink message includes a third message in a random access attempt or a feedback message of a fourth message. (ie, the first uplink message includes msg3 or UCI);
  • the terminal device calculates a transmission power according to the power control parameter.
  • the terminal device sends the first uplink message to the network device by using the transmit power, and the network device receives the first uplink message that is sent by the terminal device by using the transmit power.
  • the power control parameters in the embodiment shown in FIG. 10 are not the same concept as the first power control parameter or the second power control parameter in the embodiment shown in FIG. 4, in the embodiment shown in FIG.
  • the power control parameter is a uniform term for the power control parameters used in each random access attempt.
  • the first indication signaling in the embodiment shown in FIG. 10 is not the same signaling as the first indication signaling in the embodiment shown in FIG. 4, and the first indication letter in the embodiment shown in FIG. For indicating the number of repetitions, the first indication signaling in the embodiment shown in FIG. 4 is used to indicate the first power control parameter.
  • the network device sends the repetition number information to the terminal device, where the network device sends the first indication signaling to the terminal device, and the first indication signaling is used to indicate the repetition number information.
  • the network device may determine the repetition number information. After determining the repetition number information, the network device may send the first indication signaling to the terminal device, where the first indication signaling is used to indicate the repetition number information.
  • the first indication signaling may be implemented by using msg2 or msg4, and the repetition number information may be implemented by a repetition.
  • the RSRP of the terminal device is in the RSRP range corresponding to the coverage enhancement level 0, that is, the coverage enhancement level of the terminal device is at the coverage enhancement level 0, where the terminal device performs an initial random access attempt.
  • the coverage enhancement level is 0. It can be understood that, in the first random access attempt in a random access procedure, the terminal device is at the coverage enhancement level 0, that is, the NRSRP or RSRP of the terminal device is located.
  • the range is the coverage of the NRSRP or RSRP range corresponding to the enhancement level 0.
  • the initial random access attempt by the terminal device is at the coverage enhancement level 0, and in any random access attempt after the initial random access attempt, regardless of the coverage enhancement level currently used by the terminal device, If the repetition carried by the msg2 (or msg4) sent by the network device indicates that the terminal device sends msg3 (or UCI) according to the maximum transmit power of the terminal device, it may be unreasonable. As the foregoing analysis, the power of the transmitted signal is too
  • the conference causes unnecessary noise rise of the system, which causes other terminal equipment to be interfered, and even affects the uplink transmission process of the entire base station, and also causes the power consumption of the terminal device itself to increase.
  • the coverage enhancement level of the terminal device is not limited, that is, at the initial random access.
  • the terminal device may continue to be at coverage enhancement level 0, or may be at coverage enhancement level 1, or may be at coverage enhancement level 2.
  • the technical solution shown in FIG. 10 can be executed as long as the initial random access attempt is at the coverage enhancement level 0, and the terminal device may continue to be executed when the technical solution shown in FIG. 10 is executed. Coverage enhancement level 0, or coverage enhancement level 1 or coverage enhancement level 2.
  • the following describes how the terminal device performs an initial random access attempt at coverage enhancement level 0, and how to enter at least one random access attempt at coverage enhancement level 0, coverage enhancement level 1 or coverage enhancement level 2, where at least one random access is performed.
  • the attempt is a subsequent random access attempt after the initial random access attempt.
  • the terminal device performs an initial random access attempt at coverage enhancement level 0.
  • the network device determines the repetition number information.
  • the information of the repetition number in the initial random access attempt is referred to as the first repetition number information.
  • the network device After determining the first repetition number information, the network device sends the first indication signaling to the terminal device. Also for distinguishing, the first indication signaling in the initial random access attempt is referred to as the first indication signaling A. Then, the terminal device receives the first indication signaling A from the network device, and the terminal device may determine the first repetition quantity information indicated by the first indication signaling A.
  • the terminal device may calculate the transmission power according to the initial power control parameter, and the transmission power is referred to as the first transmission power.
  • the terminal device does not determine the first repetition number information.
  • the value of the value is exactly, but the initial power is calculated directly using the initial power control parameters.
  • the initial power control parameter refers to the power control parameters used in the initial random access attempt.
  • the terminal device sends msg1 and/or UCI to the network device by using the first transmit power, and the network device can receive the msg1 and/or UCI from the terminal device using the first transmit power transmission.
  • the terminal device performs at least one random access attempt under coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement level 2.
  • the network device determines the repetition number information, and in order to distinguish different random access attempts, one of the random access attempts in the random access attempt The number of repetitions in the attempt is referred to as the second repetition number information.
  • the network device sends the first indication signaling to the terminal device, and also for distinguishing, the first indication signaling in one random access attempt in the at least one random access attempt is referred to herein as The first indication signaling B.
  • the terminal device receives the first indication signaling B from the network device, and the terminal device may determine the second repetition frequency information indicated by the first indication signaling B.
  • the terminal device may calculate the transmission power according to the power control parameter corresponding to the random access attempt, and the transmission power is referred to as a second transmission power, where is, the terminal device Will not judge the second weight
  • the value of the complex number information is exactly the number, but the second transmission power is calculated directly by using the power control parameter corresponding to the random access attempt.
  • the power control parameter corresponding to the random access attempt refers to the power control parameter used in the random access attempt.
  • the terminal device sends msg1 and/or UCI to the network device by using the second transmit power, and the network device can receive msg1 and/or UCI from the terminal device using the second transmit power transmission.
  • the terminal device switches from coverage enhancement level 0 to coverage enhancement level 1 or from coverage enhancement level 1 to coverage enhancement level 2 in a random access attempt, or causes the terminal device to follow the terminal device at coverage enhancement level 0
  • the reason why the maximum transmit power transmits msg3 may be that the resource allocation under the coverage enhancement level 0 is unreasonable. Therefore, when msg3 and/or UCI are transmitted without considering competition, the open loop power control method (also called open) is adopted. Loop calculation method) It is more reasonable to calculate the transmit power, that is, it is more reasonable to calculate the transmit power according to the power control parameters.
  • the terminal device can calculate the transmit power of the msg3 and/or the UCI according to the power control parameter regardless of the value indicated by the network device to the reset indication of the msg3 and/or the UCI. That is, in the embodiment of the present application, when the coverage enhancement level of the initial access of the terminal device is at the coverage enhancement level 0, the manner in which the terminal device determines the actual transmit power of the msg3 and/or the UCI is independent of the repetition, regardless of the indication indicated by the diploma. What is the value, the terminal device will calculate the actual transmit power of msg3 and / or UCI according to the power control parameters.
  • the terminal device may determine the transmit power calculated according to the power control parameter as the actual transmit power of msg3 and/or UCI.
  • the power control parameter may be indicated by the network device. For example, the network device may determine the power control parameter. After determining the power control parameter, the network device sends the second indication signaling to the terminal device, where the second indication signaling is used to indicate the Power control parameters.
  • the power control parameter includes at least one of the following parameters: a maximum transmit power of the terminal device, a preamble target receive power, a downlink path loss, an initial preamble target receive power, an offset power, a preamble attempt count, and a power ramp step.
  • the power ramp step may correspond to the third power ramp step as described in the embodiment shown in FIG.
  • the power control parameter may be obtained by the terminal device by receiving a system message and/or high layer signaling sent by the network device, and the high layer signaling is, for example, RRC signaling.
  • the terminal device performs the coverage enhancement level 0, where k is the maximum random access attempt number under the specified coverage enhancement level 0, and k times under the coverage enhancement level 0. During the random access attempt, the terminal devices did not successfully access the network device.
  • the terminal device After the number of random access attempts under the coverage enhancement level 0 reaches k times, the k is the maximum random access attempt number under the coverage enhancement level 0, the terminal device switches to the coverage enhancement level 1, and the coverage enhancement level 1 is re-established.
  • the terminal device sends msg1 with the maximum transmit power of the terminal device.
  • the maximum transmit power of the terminal device in Figure 11 is represented by P1_S.
  • the value indicated by the repetition carried by the msg2 sent by the network device or the network device sends
  • the value indicated by the repetition carried by the msg4 may be greater than 2, but as can be seen from FIG. 11, according to the solution provided by the embodiment of the present application, the terminal is provided.
  • the msg3 and/or UCI are not transmitted according to the maximum transmit power of the terminal device, but the actual transmit power of msg3 is continuously calculated according to the power control parameter, and/or the actual transmit power of the UCI is calculated according to the power control parameter.
  • 11 is an example in which the coverage enhancement level currently in which the terminal device is located is coverage enhancement level 0 or coverage enhancement level 1. The same is true for the case where the coverage enhancement level at which the terminal device is currently located is the coverage enhancement level 2.
  • the initial random access of the terminal device is the coverage enhancement level 0, and after the random access failure is performed on the coverage enhancement level 0, the terminal device switches to the coverage enhancement level 1, or if the coverage enhancement level 1 is randomly connected If the entry still fails, the terminal device can also switch to coverage enhancement level 2. Then, for the initial random access, the terminal device with the coverage enhancement level 0 may not directly use the maximum transmit power of the terminal device to send the uplink signal, which may reduce interference to other uplink transmissions, and also help reduce the power consumption of the terminal device itself.
  • R14 is a new version of the terminal device
  • R13 is an old version of the terminal device.
  • the new version of the terminal device has the ability to implement the solution provided by the embodiment shown in FIG. 10 (of course, it is also capable of implementing the solution provided by the embodiment shown in FIG. 4), while the old version of the terminal device may not be capable of implementing the method shown in FIG.
  • the solution provided by the embodiment as for the solution provided by the embodiment shown in FIG. 4, the old version of the terminal device may or may not be capable of being implemented, which is already described in the embodiment shown in FIG.
  • the problem of the old version of the terminal device not being able to implement the solution provided by the embodiment shown in FIG. 10 is mainly discussed. Therefore, in the embodiment of the present application, the network device may indicate, by using signaling, whether different versions of the terminal device implement the solution provided by the embodiment shown in FIG. 10.
  • the network device can configure two signalings, which are the first signaling and the second signaling, respectively.
  • the first signaling and the second signaling are used to indicate the maximum random access attempt times of the terminal device, that is, How many random access attempts can be made by the terminal device.
  • the first signaling is used to indicate the terminal device of the first version
  • the second signaling is used to indicate the terminal device of the second version.
  • the terminal device of the first version is, for example, the terminal device of the old version
  • the terminal device of the second version is, for example, A new version of the terminal device.
  • the old version of the terminal device is capable of receiving and identifying the first signaling
  • the new version of the terminal device is capable of receiving and identifying the second signaling.
  • the embodiment of the present application provides that if the terminal device receives and identifies the first signaling and the second signaling, the terminal device performs an indication of the second signaling, and ignores the first signaling. For example, the format of the first signaling and the second signaling is different, and the new version of the terminal device can determine which signaling is the second signaling by parsing.
  • the first signaling may indicate a total maximum random access attempt number of the first version of the terminal device, a maximum random access attempt number under the coverage enhancement level 0, and a maximum random access attempt number under the coverage enhancement level 1. And covering at least one of the maximum number of random access attempts under enhancement level 2.
  • the total number of random access attempts is used to indicate the maximum number of random access attempts that the terminal device can perform at all coverage enhancement levels.
  • the maximum number of random access attempts under the coverage enhancement level 0 is used to indicate that the terminal device is in the How many times the random access attempt can be performed under the coverage enhancement level 0, and the maximum number of random access attempts under the coverage enhancement level 1 is used to indicate how many random access attempts the terminal device can perform under the coverage enhancement level 1, and the coverage enhancement is performed.
  • the maximum number of random access attempts under level 2 is used to indicate how many random access attempts the terminal device can make under coverage enhancement level 2.
  • the value of the total maximum random access attempt number of the terminal device indicated by the first signaling is less than or equal to the value of the maximum random access attempt number under the coverage enhancement level 0 indicated by the first signaling.
  • the network device indicates that the initial random access of the old version of the terminal device can only work under the coverage enhancement level 0 and cannot switch to the coverage enhancement level 1 or the coverage enhancement level 2 when the coverage enhancement level is 0. Because the old version of the terminal device may not be able to implement Figure 10 In the solution provided by the illustrated embodiment, after the old version of the terminal device switches to coverage enhancement level 1 or coverage enhancement level 2, msg3 and/or UCI are sent according to the prior art, that is, the terminal may be followed.
  • the maximum transmit power of the device transmits msg3 and/or UCI, which causes a large noise, affects other terminal devices in the system, and also increases the power consumption of the terminal device. Therefore, the embodiment of the present application can limit the work of the old version of the terminal device to work only under the coverage enhancement level 0, thereby avoiding the occurrence of these problems.
  • the second signaling may indicate the total maximum random access attempt times of the second version of the terminal device, the maximum random access attempt number under the coverage enhancement level 0, the maximum random access attempt number under the coverage enhancement level 1, and the coverage enhancement. At least one of the maximum number of random access attempts under level 2.
  • the total number of random access attempts is used to indicate the maximum number of random access attempts that the terminal device can perform at all coverage enhancement levels.
  • the maximum number of random access attempts under the coverage enhancement level 0 is used to indicate that the terminal device is in the How many times the random access attempt can be performed under the coverage enhancement level 0, and the maximum number of random access attempts under the coverage enhancement level 1 is used to indicate how many random access attempts the terminal device can perform under the coverage enhancement level 1, and the coverage enhancement is performed.
  • the maximum number of random access attempts under level 2 is used to indicate how many random access attempts the terminal device can make under coverage enhancement level 2.
  • the value of the total maximum random access attempt number indicated by the second signaling is greater than the value of the maximum random access attempt number under the coverage enhancement level 0 indicated by the second signaling, and the total of the second signaling carries The value of the maximum number of random access attempts is less than or equal to the value of the maximum random access attempt number in the coverage enhancement level 0 carried by the second signaling, and the maximum random access attempt in the coverage enhancement level 1 carried by the second signaling. The sum of the value of the number of times and the value of the maximum number of random access attempts under the coverage enhancement level 2 carried by the second signaling.
  • the network device indicates that the initial random access of the new version of the terminal device can work under the coverage enhancement level 0 or the coverage enhancement level 1 or the coverage enhancement level 2 when the coverage enhancement level is 0. Since the new version of the terminal device can implement the solution provided by the embodiment shown in FIG. 10, after the new version of the terminal device switches to the coverage enhancement level 1 or the coverage enhancement level 2, the embodiment shown in FIG. 10 can be followed.
  • the provided solution sends msg3 and/or UCI, and does not directly use the maximum transmit power of the terminal device to send an uplink signal, which can reduce interference to other uplink transmissions, and also helps to reduce power consumption of the terminal device itself.
  • each parameter indicated by the first signaling and/or the value of each parameter indicated by the second signaling may be configured by the network device, and thus the foregoing value of the parameter indicated by the first signaling and the second signaling indication
  • the description of the value of the parameter is only an example.
  • the embodiment of the present application does not limit the value of each parameter indicated by the first signaling and/or the value of each parameter indicated by the second signaling.
  • the technical solution provided by the embodiment of the present application can be compatible with the old version of the terminal device and the new version of the terminal device by configuring the first signaling and the second signaling.
  • the embodiment shown in FIG. 4 and the embodiment shown in FIG. 10 can be applied separately or in combination, for example, in the embodiment shown in FIG. 4, if the value indicated by the repetition is higher. Small, for example less than 2, will determine the transmit power of msg3 and/or UCI according to the scheme provided by the embodiment shown in FIG. 4, and if the value indicated by the repetition is large, for example, greater than 2, it will be the largest according to the terminal device.
  • the transmit power transmits msg3 and/or UCI.
  • the embodiment shown in the figure is combined with the embodiment shown in FIG. 10, if the value indicated by the repetition is large, for example, greater than 2, the msg3 and the scheme are determined according to the scheme provided by the embodiment shown in FIG.
  • the transmission power of the msg3 and/or UCI may be determined according to the scheme provided by the embodiment shown in FIG. 4, or may be according to FIG.
  • the illustrated embodiment provides a scheme to determine the transmit power of msg3 and/or UCI.
  • the embodiment shown in FIG. 4 and/or the embodiment shown in FIG. 10 are used separately or in combination, and the embodiment of the present application is not limited.
  • FIG. 12 shows a schematic structural diagram of a communication device 1200.
  • the communication device 1200 can implement the functions of the terminal device referred to above.
  • the communication device 1200 may be the terminal device described above, or may be a chip disposed in the terminal device described above.
  • the communication device 1200 can include a processor 1201 and a transceiver 1202. Wherein, the processor 1201 can be used to perform S41, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 1202 can be used to perform S42 and S45 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processor 1201 is configured to perform a first random access attempt at a coverage enhancement level 0, where the first random access attempt includes determining according to a first power control parameter and/or a transmit power of a first random access preamble message. a first transmit power; the first random access preamble message is a random access preamble message in the first random access attempt;
  • the transceiver 1202 is configured to send, by using the first transmit power, a first transmission message and/or a first uplink control message to the network device, where the first transmission message is a third message in the first random access attempt
  • the first uplink control message is a feedback message of the fourth message in the first random access attempt
  • the processor 1201 is configured to perform a second random access attempt at the coverage enhancement level 0, where the second random access attempt is the next random access performed by the communications device after the first random access attempt fails try;
  • the processor 1201 is configured to determine, according to the second power control parameter and/or the transmit power of the second random access preamble message, the second transmit power, where the second random access attempt is included; the second random access preamble The message is a random access preamble message in the second random access attempt; the determining the second transmit power includes determining that the second transmit power is greater than or equal to the first transmit power;
  • the transceiver 1202 is configured to send, by using the second transmit power, a second transmission message and/or a second uplink control message to the network device, where the second transmission message is a third message in the second random access attempt, where The second uplink control message is a feedback message of the fourth message in the second random access attempt.
  • FIG. 13 shows a schematic structural diagram of a network device 1300.
  • the network device 1300 can implement the functionality of the network devices referred to above.
  • the network device 1300 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 1300 can include a transceiver 1302.
  • the network device 1300 can further include a processor 1301.
  • the processor 1301 may be configured to perform processes such as determining the first power control parameter and the second power control parameter in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 1302 can be used to perform S42 and S45 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 1302 is configured to receive a first transmission message and/or a first uplink control message that is sent by the communications device with the first transmit power at the coverage enhancement level 0, where the first transmit power is that the communications device is The first transmission message is determined according to the first power control parameter and/or the transmit power of the first random access preamble, and the first transmission message is a third message in the first random access attempt, The first uplink control message is a feedback message of the fourth message in the first random access attempt, and the first random access preamble message is a random access preamble message in the first random access attempt;
  • the transceiver 1302 is further configured to receive a second transmission message and/or a second uplink control message that is sent by the communications device with the second transmit power at the coverage enhancement level 0, where the second transmit power is the communications device Determining, according to the second power control parameter and/or the transmit power of the second random access preamble message, in the second random access attempt, the second transmit power is greater than or equal to the first transmit power, a second random access attempt is first for the communication device The second random access attempt is performed after the random access attempt fails, the second transmission message is a third message in the second random access attempt, and the second uplink control message is the second random access And a feedback message of the fourth message in the attempt, where the second random access preamble message is a random access preamble message in the second random access attempt.
  • FIG. 14 shows a schematic structural diagram of a communication device 1400.
  • the communication device 1400 can implement the functions of the terminal device referred to above.
  • the communication device 1400 may be the terminal device described above, or may be a chip disposed in the terminal device described above.
  • the communication device 1400 can include a processor 1401 and a transceiver 1402. Wherein, the processor 1401 can be used to perform S102 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver 1402 can be used to perform S101 and S103 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver 1402 is configured to receive the repetition quantity information from the network device when the RSRP of the communication device 1400 is within the RSRP range corresponding to the coverage enhancement level 0, where the repetition quantity information is a repetition indicating the first uplink message.
  • the number of times, the first uplink message includes a third message in the random access attempt or a feedback message of the fourth message;
  • the processor 1401 is configured to calculate, according to the power control parameter, a transmit power, for any value of the repetition quantity information
  • the transceiver 1402 is further configured to send the first uplink message to the network device by using the transmit power.
  • FIG. 15 shows a schematic structural diagram of a network device 1500.
  • the network device 1500 can implement the functions of the network devices referred to above.
  • the network device 1500 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 1500 can include a processor 1501 and a transceiver 1502.
  • the processor 1501 may be used to perform processes such as determining the number of repetitions in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver 1502 can be used to perform S101 and S103 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver 1502 is configured to send the first indication signaling to the communications device, where the first indication signaling is used to indicate the repetition number information, where the repetition number information is a number of repetitions indicating the first uplink message, where An uplink message includes a third message in the random access attempt or a feedback message of the fourth message;
  • the transceiver 1502 is further configured to receive, by the communications device, the first uplink message sent by using a transmit power, where the transmit power is any value of the communication device for the repetition number information according to the power control parameter Calculated.
  • communication device 1200, network device 1300, communication device 1400, or network device 1500 can also be implemented by the structure of communication device 1600 as shown in FIG. 16A.
  • the communication device 1600 can implement the functions of the network device or communication device referred to above.
  • the communication device 1600 can include a processor 1601. Wherein, when the communication device 1600 is used to implement the functions of the communication device in the embodiment shown in FIG. 4, the processor 1601 can be used to execute S41, S43, and S44 in the embodiment shown in FIG. 4, and/or Other processes for supporting the techniques described herein.
  • the processor 1601 can be used to perform processes such as determining first power control parameters and second power control parameters in the embodiment illustrated in FIG. 4, and/or other processes for supporting the techniques described herein. .
  • the processor 1601 may be configured to perform S102 in the embodiment shown in FIG. 10, and/or to support the description herein. Other processes of technology.
  • the processor 1601 may be configured to perform a process of determining the repetition number information and the like in the embodiment shown in FIG. 10, and/or for Other processes that support the techniques described herein.
  • the communication device 1600 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, The PLD) or other integrated chip implementation, the communication device 600 can be disposed in the network device or the communication device of the embodiment of the present application, so that the network device or the communication device implements the method for transmitting a message provided by the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 1600 can further include a memory 1602, which can be referenced to FIG. 16B, where the memory 1602 is used to store computer programs or instructions, and the processor 1601 is used to decode and execute the computer programs or instructions. .
  • these computer programs or instructions may include the functional programs of the network devices or communication devices described above.
  • the function program of the network device is decoded and executed by the processor 1601
  • the network device may be implemented in the method of transmitting the message provided by the embodiment shown in FIG. 4 or the embodiment shown in FIG. 10 in the embodiment of the present application.
  • the function When the function program of the communication device is decoded and executed by the processor 1601, the communication device may be caused to implement the terminal in the method shown in FIG. 4 of the embodiment of the present application or the method for transmitting a message provided by the embodiment shown in FIG. The function of the device.
  • the functional programs of these network devices or communication devices are stored in a memory external to the communication device 1600.
  • the function program of the network device is decoded and executed by the processor 1601, part or all of the contents of the function program of the network device are temporarily stored in the memory 1602.
  • the function program of the communication device is decoded and executed by the processor 1601, part or all of the contents of the function program of the communication device are temporarily stored in the memory 1602.
  • the functional programs of these network devices or communication devices are disposed in a memory 1602 stored within communication device 1600.
  • the function program of the network device is stored in the memory 1602 inside the communication device 1600
  • the communication device 1600 can be disposed in the network device of the embodiment of the present application.
  • the communication device 1600 can be provided in the communication device of the embodiment of the present application.
  • portions of the functional programs of the network devices are stored in a memory external to the communication device 1600, and other portions of the functional programs of the network devices are stored in the memory 1602 internal to the communication device 1600.
  • portions of the functional programs of these communication devices are stored in a memory external to the communication device 1600, and other portions of the functional programs of the communication devices are stored in the memory 1602 inside the communication device 1600.
  • the communication device 1200, the network device 1300, the communication device 1400, the network device 1500, and the communication device 1600 are presented in the form of dividing each functional module into functions, or the functional modules may be divided in an integrated manner.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the communication device 1200 provided by the embodiment shown in FIG. 12 can also be implemented in other forms.
  • the letter device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1201, and the transceiver module can be implemented by the transceiver 1202.
  • the processing module can be used to execute S41, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S42 and S45 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to perform a first random access attempt at coverage enhancement level 0, where the first random access attempt includes determining according to a first power control parameter and/or a transmit power of the first random access preamble message. a transmit power; the first random access preamble message is a random access preamble message in the first random access attempt;
  • a transceiver module configured to send, by using the first transmit power, a first transmission message and/or a first uplink control message to a network device, where the first transmission message is a third message in the first random access attempt,
  • the first uplink control message is a feedback message of the fourth message in the first random access attempt;
  • a processing module configured to perform a second random access attempt at the coverage enhancement level 0, where the second random access attempt is a next random access attempt performed by the communications device after the first random access attempt fails ;
  • a processing module configured to determine, according to a second power access parameter and/or a transmit power of a second random access preamble message, the second transmit power included in the second random access attempt; the second random access preamble message a random access preamble message in the second random access attempt; the determining the second transmit power includes determining that the second transmit power is greater than or equal to the first transmit power;
  • a transceiver module configured to send, by using the second transmit power, a second transmission message and/or a second uplink control message to the network device, where the second transmission message is a third message in the second random access attempt,
  • the second uplink control message is a feedback message of the fourth message in the second random access attempt.
  • the network device 1200 provided by the embodiment shown in FIG. 13 can also be implemented in other forms.
  • the network device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1301, and the transceiver module can be implemented by the transceiver 1302.
  • the processing module may be used to perform processes such as determining the first power control parameter and the second power control parameter in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S42 and S45 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module is configured to receive a first transmission message and/or a first uplink control message that is sent by the communications device with the first transmit power at the coverage enhancement level 0, where the first transmit power is the communication device in the Determining, according to the first power control parameter and/or the transmit power of the first random access preamble message, in a random access attempt, the first transmission message is a third message in the first random access attempt, The first uplink control message is a feedback message of the fourth message in the first random access attempt, and the first random access preamble message is a random access preamble message in the first random access attempt;
  • the transceiver module is further configured to receive a second transmission message and/or a second uplink control message that is sent by the communications device with the second transmit power at the coverage enhancement level 0, where the second transmit power is And determining, according to the second power control parameter and/or the transmit power of the second random access preamble message, that the second transmit power is greater than or equal to the first transmit power,
  • the second random access attempt is the next random access attempt performed by the communication device after the first random access attempt fails, and the second transmission message is the third message in the second random access attempt.
  • the second uplink control message is a feedback message of the fourth message in the second random access attempt, and the second random access preamble message is a random access preamble message in the second random access attempt.
  • the communication device 1400 provided by the embodiment shown in FIG. 14 can also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1401, and the transceiver module can be implemented by the transceiver 1402.
  • the processing module can be used to perform S102 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S101 and S103 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver module is configured to receive the repetition quantity information from the network device when the RSRP of the communication device is in the RSRP range corresponding to the coverage enhancement level 0, where the repetition quantity information is a repetition quantity indicating the first uplink message,
  • the first uplink message includes a third message of the random access attempt or a feedback message of the fourth message;
  • a processing module configured to calculate a transmit power according to the power control parameter, for any value of the repetition quantity information
  • the transceiver module is further configured to send the first uplink message to the network device by using the transmit power.
  • the network device 1400 provided by the embodiment shown in FIG. 15 can also be implemented in other forms.
  • the network device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1501
  • the transceiver module can be implemented by the transceiver 1502.
  • the processing module may be used to perform processes such as determining the number of repetitions in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S42 and S45 in the embodiment shown in FIG. 10, and/or other processes for supporting the techniques described herein.
  • the transceiver module is configured to send the first indication signaling to the communications device, where the first indication signaling is used to indicate the repetition number information, where the repetition number information is a number of repetitions indicating the first uplink message, the first The uplink message includes a third message in the random access attempt or a feedback message of the fourth message;
  • the transceiver module is further configured to receive the first uplink message that is sent by the communications device by using a transmit power, where the transmit power is any value of the communication device for the repetition number information, and is calculated according to the power control parameter. owned.
  • the communication device 1200, the network device 1300, the communication device 1400, the network device 1500, and the communication device 1600 provided by the embodiments of the present application may be used to perform the method provided in the embodiment shown in FIG. 4 or the embodiment shown in FIG.
  • the communication device and the terminal device can be understood as the same concept and can be replaced with each other.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输消息的方法及设备,用于加快随机接入过程。该方法包括:终端设备在覆盖增强等级0进行第一随机接入尝试,第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;终端设备使用第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;终端设备在覆盖增强等级0进行第二随机接入尝试;第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;确定第二发射功率包括确定第二发射功率大于或等于第一发射功率;终端设备使用第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息。

Description

一种传输消息的方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种传输消息的方法及设备。
背景技术
对于终端设备来说,只有当其上行传输时间与基站实现同步后,才能被调度进行上行传输。目前,终端设备是通过随机接入过程(random access procedure)与基站建立连接并取得上行同步。在窄带物联网(narrow band internet of things,NB-IoT)系统中,随机接入过程是终端设备从空闲态获取专用信道资源转变为连接态的重要方法手段。
在NB-IoT系统中,信号的覆盖增强等级(coverage enhancement level,CE Level)共有3种,分别为CE0、CE1及CE2。目前,上行传输采用开环功率控制方式,在随机接入过程的随机接入尝试中,终端设备发送消息1(msg1)时,如果信号的覆盖增强等级为CE0,则终端设备启用开环功率控制,根据一些功率控制参数,例如前导码(preamble)的初始功率、下行路径损耗等,确定msg1的发射功率。终端设备成功发送msg1后,接收来自基站的msg2,之后终端设备发送msg3。如果随机接入过程的每次随机接入尝试中,均有消息发送或接收不成功,则随机接入过程失败,进而终端设备无法接入基站。
发明内容
本申请实施例提供一种传输消息的方法及设备,用于提高随机接入的成功率。
第一方面,提供一种传输消息的方法,该方法可由终端设备执行。该方法包括:终端设备在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;所述终端设备使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;所述终端设备在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述终端设备在第一随机接入尝试失败后进行的下一次随机接入尝试;所述第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率;所述终端设备使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
相应的,第二方面,提供一种传输消息的方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备接收终端设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述终端设备在所述第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一 随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;所述网络设备接收所述终端设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述终端设备在所述第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述终端设备在第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
本申请实施例中,第一传输消息和第二传输消息是在不同的随机接入尝试中发送的msg3,终端设备在覆盖增强等级0下进行随机接入尝试时,可以根据第一功率控制参数和/或第一随机接入前导消息的发射功率来确定第一传输消息和/或第一上行控制消息的发射功率,即确定第一发射功率,同理也可以根据第二功率控制参数和/或第二随机接入前导消息的发射功率来确定第二传输消息和/或第二上行控制消息的发射功率,即确定第二发射功率,相当于是根据实际情况在确定第一传输消息和/或第一上行控制消息的发射功率,及确定第二传输消息和/或第二上行控制消息的发射功率,且终端设备在第二随机接入尝试中确定的第二发射功率大于或等于终端设备在第一随机接入尝试确定的第一发射功率,则对于多次随机接入尝试来说,每次传输消息和/或上行控制消息的发射功率会逐步递增,增加了传输消息和/或上行控制消息的发送成功率,有助于终端设备更快地完成随机接入,也增加了随机接入过程的成功率。
在一种可能的设计中,所述网络设备确定所述第一功率控制参数,所述第一功率控制参数包括以下参数中的至少一项:在所述第一随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第一发射功率;所述网络设备向终端设备发送第一指示信令,所述第一指示信令用于指示所述第一功率控制参数。所述网络设备确定所述第二功率控制参数,所述第二功率控制参数包括以下参数中的至少一项:在所述第二随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率;所述网络设备向终端设备发送第二指示信令,所述第二指示信令用于指示所述第二功率控制参数。
第一功率控制参数和第二功率控制参数可以是网络设备确定的,网络设备确定第一功率控制参数后可以向终端设备发送第一指示信令,从而将第一功率控制参数指示给终端设备,同理,网络设备确定第二功率控制参数后可以向终端设备发送第二指示信令,从而将 第二功率控制参数指示给终端设备,则终端设备可以根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率,或根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率,从而执行本申请实施例所提供的方案。
关于终端设备根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率,以及根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率,本申请实施例提供多种不同的方案,下面介绍几种。
在一种可能的设计中,所述第一功率控制参数包括第一功率偏移量,则所述终端设备根据第一功率控制参数和第一随机接入前导消息的发射功率确定第一发射功率,包括:所述终端设备确定所述第一随机接入前导消息的发射功率与所述第一功率偏移量之和为所述第一发射功率;所述第二功率控制参数包括第二功率偏移量,则所述终端设备根据第二功率控制参数和第二随机接入前导消息的发射功率确定第二发射功率,包括:所述终端设备确定所述第二随机接入前导消息的发射功率与所述第二功率偏移量之和为所述第二发射功率。
在这种方式中,终端设备确定第一随机接入前导消息的发射功率与第一功率偏移量之和为第一发射功率,第一功率偏移量可以是第一功率控制参数中包括的,则终端设备直接在第一随机接入前导消息的发射功率基础上加上第一功率偏移量即可得到第一发射功率,同理直接在第二随机接入前导消息的发射功率基础上加上第二功率偏移量即可得到第二发射功率,无需使用第二功率控制参数包括的其他参数,较为简单。
在一个可能的设计中,终端设备根据第一功率控制参数和第一随机接入前导消息的发射功率确定第一发射功率,包括:所述终端设备根据所述第一功率控制参数计算第三发射功率;所述终端设备确定所述第一随机接入前导消息的发射功率以及所述第三发射功率中取值大的发射功率为所述第一发射功率。类似的,所述终端设备根据第二功率控制参数和第二随机接入前导消息的发射功率确定第二发射功率,包括:所述终端设备根据所述第二功率控制参数计算第四发射功率;所述终端设备确定所述第二随机接入前导消息的发射功率以及所述第四发射功率中取值大的发射功率为所述第二发射功率。
在这种方式中,终端设备可以选择根据开环计算方法计算得到的发射功率和随机接入前导消息的发射功率之间的取值较大者作为msg1和/或UCI的实际发射功率,以尽量减少因msg1和/或UCI的实际发射功率太小而发送不成功的可能性,提高随机接入的成功率,也加快随机接入过程。
在一种可能的设计中,所述终端设备根据第一随机接入前导消息的发射功率确定第一发射功率,包括:所述终端设备确定所述第一随机接入前导消息的发射功率为所述第一发射功率。类似的,所述终端设备根据第二随机接入前导消息的发射功率确定第二发射功率,包括:所述终端设备确定所述第二随机接入前导消息的发射功率为所述第二发射功率。
在这种方式中,终端设备可以直接将随机接入前导消息的发射功率确定为msg1和/或UCI的实际发射功率,无需其他的计算过程,较为简单,实现效率较高,也可以进一步加快随机接入过程。
在一种可能的设计中,所述第一功率控制参数包括以下参数中的至少一项:在所述第一随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、 第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第二发射功率。所述第二功率控制参数包括以下参数中的至少一项:在所述第二随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率。
介绍了功率控制参数可能包括的参数,在计算发射功率时可以采用功率控制参数中包括的至少一项来进行计算,本申请实施例对于具体的计算方式不作限制。
在一种可能的设计中,所述网络设备还发送第三指示信令,所述第三指示信令用于指示所述终端设备根据所述第一功率控制参数和/或第一随机接入前导消息的发射功率确定所述第一发射功率,和/或,所述第三指示信令用于指示所述终端设备根据所述第一功率控制参数和/或第二随机接入前导消息的发射功率确定所述第二发射功率。相应的,所述终端设备接收来自所述网络设备的第三指示信令,所述第三指示信令用于指示所述终端设备根据所述第一功率控制参数和/或第一随机接入前导消息的发射功率确定所述第一发射功率,和/或,所述第三指示信令用于指示所述终端设备根据所述第一功率控制参数和/或第二随机接入前导消息的发射功率确定所述第二发射功率。
目前有新版本的终端设备和老版本的终端设备,例如R14为新版本的终端设备,而R13为老版本的终端设备。新版本的终端设备有能力实施如前的第一方面和第二方面所提供的方案,而老版本的终端设备可能没有能力实施第一方面和第二方面提供的方案。鉴于此,可以只让新版本的终端设备实施第一方面和第二方面提供的方案,而老版本的终端设备可以继续按照现有技术中的方式来确定msg3和/或UCI的发射功率,通过第三指示信令就可以达到这种目的,接收并成功解析了第三指示信令的终端设备就可以采用本申请实施例提供的技术方案来确定msg3和/或UCI的发射功率,而未接收第三指示信令或未能成功解析第三指示信令的终端设备,就继续采用现有技术中的方案确定msg3和/或UCI的发射功率。通过第三指示信令能够对新版本的终端设备和老版本的终端设备进行不同的指示,使得不同版本的终端设备采用不同的方式确定msg3和/或UCI的发射功率,符合终端设备的实际配置情况。这里所述的本申请实施例提供的技术方案,包括图4所示的实施例提供的方案。
第三方面,提供一种传输消息的方法,该方法可由终端设备执行。该方法包括:终端设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,所述终端设备从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;对于所述重复次数信息的任何取值,所述终端设备均根据功率控制参数计算发射功率;所述终端设备使用所述发射功率向所述网络设备发送所述第一上行消息。
相应的,第四方面,提供一种传输消息的方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备向终端设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行 消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;所述网络设备接收所述终端设备用发射功率发送的所述第一上行消息,所述发射功率是所述终端设备对于所述重复次数信息的任何取值均根据所述功率控制参数计算得到的。
导致终端设备在随机接入尝试中从覆盖增强等级0切换到覆盖增强等级1或从覆盖增强等级1切换到覆盖增强等级2的原因,或者导致终端设备在覆盖增强等级0下按照该终端设备的最大发射功率发送msg3的原因,都可能是覆盖增强等级0下的资源分配不合理,因此在不考虑竞争的情况下,发送msg3和/或UCI时,采用开环计算方法计算发射功率(即通过功率控制参数计算发射功率)更为合理,即,根据功率控制参数来计算发射功率更为合理。因此在本申请实施例中,无论网络设备给msg3和/或UCI配的重复次数信息指示的值是多少,终端设备都可以根据功率控制参数来计算msg3和/或UCI的发射功率。也就是说,本申请实施例中,终端设备初始接入的覆盖增强等级在覆盖增强等级0时,所述终端设备确定msg3和/或UCI的实际发射功率的方式与repetition无关,无论repetition指示的值是多少,终端设备都会根据功率控制参数来计算msg3和/或UCI的实际发射功率,可以减小msg3和/或UCI的实际发射功率,从而能够减小系统噪声,尽量避免影响其他终端设备,并且也能够减小终端设备的能耗。
在一种可能的设计中,所述网络设备发送第一信令和第二信令,所述第一信令用于指示第一版本的终端设备,所述第二信令用于指示所述第二版本的终端设备;其中,所述第一信令用于指示所述第一版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;所述第二信令用于指示所述第二版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。相应的,所述终端设备为第二版本的终端设备,则所述终端设备接收来自所述网络设备的第一信令和第二信令,所述第一信令用于指示第一版本的终端设备,所述第二信令用于指示所述第二版本的终端设备;所述终端设备根据所述第二信令进行随机接入尝试,其中,所述第一信令用于指示所述第一版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;所述第二信令用于指示所述第二版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。
因新版本的终端设备和老版本的终端设备的能力不同,因此本申请实施例提供第一信令和第二信令,分别指示新版本的终端设备和老版本的终端设备进行不同的操作。网络设备通过配置第一信令和第二信令,可以让本申请实施例提供的技术方案对老版本的终端设备和新版本的终端设备具有兼容性。
在一种可能的设计中,所述功率控制参数包括以下参数中的至少一项:所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、所述第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数。
介绍了功率控制参数可能包括的参数,在计算发射功率时可以采用功率控制参数中包 括的至少一项来进行计算,本申请实施例对于具体的计算方式不作限制。
第五方面,提供一种通信设备。该通信设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发器,可选的,该网络设备的具体结构还可包括处理器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信设备。该通信设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发器,可选的,该网络设备的具体结构还可包括处理器。处理器和收发器可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第九方面,提供一种通信设备。该通信设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第十方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发模块,可选的,该网络设备的具体结构还可包括处理模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第十一方面,提供一种通信设备。该通信设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信设备的具体结构可包括处理模块和收发模块。处理模块和收发器可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应 功能。
第十二方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发模块,可选的,该网络设备的具体结构还可包括处理模块。处理模块和收发模块可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第十三方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中终端设备所执行的方法。
第十四方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中网络设备所执行的方法。
第十五方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第三方面或第三方面的任意一种可能的设计中终端设备所执行的方法。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第四方面或第四方面的任意一种可能的设计中网络设备所执行的方法。
第十七方面,提供一种通信系统,该通信系统包括通信设备和网络设备。其中,所述通信设备,用于在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息,使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息,所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率,使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈 消息;所述网络设备,用于接收所述通信设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述通信设备在所述第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息,及,还用于接收所述通信设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述通信设备在所述第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
第十八方面,提供一种通信系统,包括通信设备和网络设备。其中,所述通信设备,用于在所述通信设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息,对于所述重复次数信息的任何取值,均根据功率控制参数计算发射功率,使用所述发射功率向所述网络设备发送所述第一上行消息;所述网络设备,用于向所述通信设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息,接收所述通信设备用发射功率发送的所述第一上行消息,所述发射功率是所述通信设备对于所述重复次数信息的任何取值都根据所述功率控制参数计算得到的。
其中,第十七方面提供的网络设备和第十八方面提供的通信系统可以是不同的通信系统,或者也可以是同一通信系统。
第十九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
本申请实施例中,对于多次随机接入尝试来说,每次传输消息和/或上行控制消息的发射功率会逐步递增,增加了传输消息和/或上行控制消息的发送成功率,有助于终端设备更快地完成随机接入,也增加了随机接入过程的成功率。
附图说明
图1为现有技术中终端设备发送msg3的示意图;
图2为覆盖增强等级的划分方式示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种传输消息的方法的流程图;
图5-图9为本申请实施例提供的终端设备根据确定的发射功率发送msg3和/或UCI的几种示意图;
图10为本申请实施例提供的一种传输消息的方法的流程图;
图11为本申请实施例提供的终端设备根据确定的发射功率发送msg3和/或UCI的一种示意图;
图12为本申请实施例提供的通信设备的一种结构示意图;
图13为本申请实施例提供的网络设备的一种结构示意图;
图14为本申请实施例提供的通信设备的一种结构示意图;
图15为本申请实施例提供的网络设备的一种结构示意图;
图16A-图16B为本申请实施例提供的通信装置的两种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、 或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)NB-IoT,目前第三代合作伙伴计划(3rd generation partnership project,3GPP)标准在研究基于蜂窝网络,通过设计新的空口,充分利用窄带技术的特点,来承载IoT业务,这一类IoT被称为NB-IoT。与传统的蜂窝网络相比,NB-IoT系统的业务和终端设备具有以下特点:
(1)业务低速率、长周期:与传统的蜂窝网络相比,NB-IoT业务产生的数据包更小,同时对于时延通常不是很敏感。
(2)海量连接要求:对大规模部署的智能水/电表,智能家居,汽车,可穿戴设备等物联网终端设备,一个NB-IoT的基站下可能覆盖大量这类型的终端设备,例如数量可能超过数万个。
(3)低成本要求:相较于现有的蜂窝网络终端设备来说,NB-IoT系统要求终端设备的成本更低,以实现终端设备的海量部署。而低成本的需求要求终端设备的实现复杂性也要很低。
(4)低功耗要求:NB-IoT系统要求终端设备的功耗更低,从而节约终端设备的电池电量,保证终端设备超长的待机时间,进而节约更换电池的人力成本。
4)覆盖增强等级,在NB-IoT系统中,共有CE0、CE1、及CE2三种覆盖增强等级。覆盖增强等级例如是根据窄带参考信号接收功率(narrow reference signal receiving power,NRSRP)确定的。一种覆盖增强等级的划分方式可参考图1,图1中,两个NRSRP门限(第一门限和第二门限)划分出了三个覆盖增强等级,第二门限小于第一门限,例如第一门限为-112dBm,第二门限为-122dBm,CE0的NRSRP大于或等于第一门限,CE1的NRSRP大于或等于第二门限以及小于第一门限,CE3的NRSRP小于第二门限,则终端设备可根据测量的NRSRP确定该终端设备所在的覆盖增强等级。
其中,本文中所述的终端设备的覆盖增强等级,或终端设备所在的覆盖增强等级,均可理解为随机接入信道的覆盖增强等级,即,终端设备是在该覆盖增强等级下发送物理随 机接入信道(physical random access channel,PRACH),当然,对于NB-IoT系统中的终端设备来说,是指终端设备在该覆盖增强等级下发送窄带物理随机接入信道(narrowband physical random access channel,NPRACH)。因此,终端设备的覆盖增强等级,终端设备所在的覆盖增强等级,终端设备对应的覆盖增强等级,信号的覆盖增强等级,这几种描述可以认为是等价的。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例可以适用于NB-IoT系统,也可以适用于其他类似的通信系统,例如长期演进(long term evolution,LTE)系统等。
为了更好地理解本申请实施例提供的技术方案,下面先介绍本申请实施例的技术背景。
目前,基于竞争的随机接入尝试一般包括4个步骤:终端设备发送随机接入前导消息(msg1),终端设备接收来自网络设备的随机接入响应(msg2),终端设备发送第一传输消息(msg3),终端设备接收来自网络设备的冲突解决消息(msg4)。在终端设备接收msg4之后,终端设备还可以向网络设备发送上行控制信息(uplink control information,UCI),UCI就可以理解为是msg4的反馈消息。在本申请实施例中,也将msg3称为第三消息(随机接入过程中的第三消息),将msg4称为第四消息(随机接入过程中的第四消息),将UCI称为上行控制消息。其中,终端设备的一次随机接入过程包括至少一次随机接入尝试,终端设备的一次随机接入过程从该随机接入过程中的第一随机接入尝试开始,至该终端设备成功完成随机接入为止,或者至该终端设备进行随机接入失败且随机接入尝试次数已达到终端设备的总的最大随机接入尝试次数为止。
在随机接入过程的一次随机接入尝试中,终端设备发送msg1时,如果该终端设备所在的覆盖增强等级为覆盖增强等级0,则终端设备启用开环功率控制,根据一些功率控制参数,例如preamble的初始功率、下行路径损耗等,确定msg1的发射功率。终端设备发送msg1后,接收来自基站的msg2,之后终端设备发送msg3,msg3的发射功率会按照基站发送的msg2中携带的重复次数(repetition)决定,如果msg2指示的repetition大于2,则按照终端设备的最大发射功率发送msg3,而如果msg2指示的repetition小于或者等于2,则终端设备同样采用开环功率控制的方法计算msg3的发送功率。例如msg2指示的repetition小于或者等于2,终端设备采用开环功率控制的方法计算msg3的发送功率。但如果计算得到的msg3的发射功率较低,则可能导致msg3发送不成功,则随机接入过程中的本次随机接入尝试失败。此时终端设备会再次进行随机接入尝试,攀升msg1的发射功率,重新发送msg1,之后接收msg2,根据msg2指示的repetition确定msg3的发射功率,接着再次发送msg3。而根据现有技术,在终端设备的覆盖增强等级不变的情况下,msg2指示的repetition一般会保持不变,则终端设备计算得到的msg3的发射功率不变,那么终端设备再次发送msg3时,依然会发送不成功,致使终端设备在CE0上的随机接入尝试再次失败。可参考图2,终端设备尝试了k次,在第一次尝试时,msg1的发射功率为P1_1, 到第k次尝试时,msg1的发射功率已经攀升到了P1_k,但是msg3的发射功率始终没变,一直是P3,则msg3可能始终发送不成功,导致终端设备在CE0时无法完成随机接入过程,进而无法接入基站。
鉴于此,提供本申请实施例的技术方案,以提高终端设备随机接入的成功率并加快完成随机接入过程。
如上介绍了本申请实施例的技术背景,下面请参见图3,为本申请实施例的一种应用场景示意图。
在图3中包括网络设备和多个终端设备,这些终端设备为NB-IoT系统下的终端设备,例如包括冰箱、汽车、电视机等。网络设备例如为基站。这些终端设备都可通过随机接入过程接入基站。
下面结合附图介绍本申请实施例提供的技术方案,在下文的介绍过程中,以本申请实施例提供的技术方案应用在图3所示的应用场景为例,在实际应用中当然不限于此。
请参见图4,本申请实施例提供一种传输消息的方法,该方法的流程描述如下。
S41、终端设备在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
S42、所述终端设备使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息,则网络设备接收来自终端设备的用第一发射功率发送的第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;
S43、所述终端设备在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述终端设备在第一随机接入尝试失败后进行的下一次随机接入尝试;
S44、所述第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率;
S45、所述终端设备使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,则网络设备接收来自终端设备的用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
本申请实施例主要介绍在覆盖增强等级0下,终端设备如何确定msg3或UCI的发射功率。其中,UCI可以是通过无线资源控制(radio resource control,RRC)信令或者RRC广播信令配置的,具体的,RRC信令可以是随机接入响应(random access response,RAR)消息(msg2)或RRC连接建立消息(msg4)等,RRC广播信令可以是系统消息。
本申请实施例中,S43和S44可以理解为两个步骤,或者也可以理解为是一个步骤。
本申请实施例中,确定第二发射功率大于或等于第一发射功率可理解为,如果功率控制参数中包括路损,则在不考虑路损的情况下,第二发射功率大于或等于第一发射功率,而如果功率控制参数中不包括路损,则就是第二发射功率大于或等于第一发射功率。
在随机接入过程中,终端设备在发送msg3或UCI之前,首先确定msg3或UCI的发射功率。本申请实施例中,当终端设备所在的覆盖增强等级为覆盖增强等级0时,该终端 设备可以根据功率控制参数和/或随机接入前导消息的发射功率来确定msg3和/或UCI的发射功率,即第一发射功率或第二发射功率。其中,本申请实施例中,因为随着随机接入尝试的次数不同,所确定的msg3和/或UCI的发射功率也不同,因此本文根据随机接入尝试的次数来命名所确定的msg3和/或UCI的发射功率,例如在第一随机接入尝试过程中所确定的msg3和/或UCI的发射功率称为第一发射功率,在第二随机接入尝试过程中所确定的msg3和/或UCI的发射功率称为第二发射功率,以此类推。也就是说,第一发射功率或第二发射功率此类名称,代表的是同一参数,都是msg3和/或UCI的实际的发射功率(或称为msg3和/或UCI的实际发射功率,或称为msg3和/UCI的最终发射功率),只是值不同。第一随机接入尝试是一次随机接入过程中的任意一次随机接入尝试,第二随机接入尝试是第一随机接入尝试之后的一次随机接入尝试。以第一随机接入尝试过程和第二随机接入尝试过程为例,则关于确定第一发射功率或第二发射功率,包括但不限于以下几种确定方式:
方式A、根据该终端设备的功率控制参数及随机接入前导消息的发射功率来确定第一发射功率或第二发射功率。
在本申请实施例中,终端设备所在的覆盖增强等级为覆盖增强等级0时,当发送msg1并接收msg2后,即使msg2指示的repetition小于2,msg3的发射功率也可以随着随机接入尝试次数的增加而递增。
另外,现有技术中,UCI的发射功率会按照基站发送的msg4中携带的repetition决定,如果msg4指示的repetition大于2,则按照终端设备的最大发射功率发送UCI,而如果msg4指示的repetition小于或者等于2,则终端设备采用开环功率控制的方法计算UCI的发送功率,那么,在终端设备的覆盖增强等级不变的情况下,UCI的发射功率一般也不会变化。因此在本申请实施例中,终端设备所在的覆盖增强等级为覆盖增强等级0时,即使msg4指示的repetition小于2,UCI的发射功率也可以随着随机接入尝试次数的增加而递增。
具体的,在方式A下,确定msg3或UCI的实际发射功率的方式包括但不限于以下几种:
实现方式A1、确定第一随机接入前导消息(下文称为第一msg1)的发射功率以及第三发射功率中取值较大的发射功率为第一发射功率,第一发射功率即为第一msg3和/或第一上行控制消息(下文称为第一UCI)的实际发射功率。同理,可确定第二随机接入前导消息(下文称为第二msg1)的发射功率以及第四发射功率中取值较大的发射功率为第二发射功率,第二发射功率即为第二msg3和/或第二上行控制消息(下文称为第二UCI)的实际发射功率。
其中,第一msg1是第一随机接入尝试中发送的msg1,第一UCI是第一随机接入尝试中发送的UCI,第三发射功率是在第一随机接入尝试中根据第一功率控制参数计算得到的发射功率,可以理解为,第三发射功率是在第一随机接入尝试中根据第一功率控制参数计算得到的第一msg3和/或第一UCI的发射功率,而第一发射功率则是在发送第一msg3和/或第一UCI时实际选用的发射功率,二者不是同一概念。
类似的,第二msg1是第二随机接入尝试中发送的msg1,第二UCI是第二随机接入尝试中发送的UCI,第四发射功率是在第二随机接入尝试中根据第二功率控制参数计算得到的发射功率,可以理解为,第四发射功率是在第二随机接入尝试中根据第二功率控制参数计算得到的第二msg3和/或第二UCI的发射功率,而第二发射功率则是在发送第二msg3和/或第二UCI时实际选用的发射功率,二者不是同一概念。
在本申请实施例中,根据功率控制参数计算msg3和/或UCI的发射功率的方法也可称为开环计算方法,将在后文介绍。
第一功率控制参数是指第一随机接入尝试中所使用的功率控制参数,例如在第一随机接入尝试过程中,或者在第一随机接入尝试开始之前,网络设备可以确定第一功率控制参数,在确定第一功率控制参数后,网络设备向终端设备发送第一指示信令,第一指示信令就用于指示第一功率控制参数。第二功率控制参数是指第二随机接入尝试中所使用的功率控制参数,例如在第二随机接入尝试过程中,或者在第二随机接入尝试开始之前,网络设备可以,网络设备可以确定第二功率控制参数,在确定第二功率控制参数后,网络设备向终端设备发送第二指示信令,第二指示信令就用于指示第二功率控制参数。第一功率控制参数和第二功率控制参数,所包括的参数的种类和数量都可以相同,只是有些参数的取值可能不同,这里的取值不同,是说针对同一个参数,在第一功率控制参数中的取值和在第二功率控制参数中的取值可能不同。当然也可能第一功率控制参数和第二功率控制参数所包括的参数的种类、数量和参数的取值都相同,本申请实施例不作限制。
例如,第一功率控制参数可包括以下参数中的至少一项:
所述终端设备的最大发射功率、前导目标接收功率、第三功率爬坡步长、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,第三功率爬坡步长用于确定第一随机接入前导消息的发射功率,例如第三功率爬坡步长是随机接入尝试次数每增加一次时msg1的发射功率的攀升量,第一功率爬坡步长、所述第一功率偏移量和第三功率偏移量用于确定所述第一发射功率。
第二功率控制参数可以包括以下参数中的至少一项:
在所述第二随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,第三功率爬坡步长用于确定第二随机接入前导消息的发射功率,第二功率爬坡步长、第二功率偏移量和所述第四功率偏移量用于确定第二发射功率。
例如,可参考图5,示出了终端设备的k次随机接入尝试过程,其中画竖线的矩形表示msg1的发射功率,画斜线的矩形表示msg3和/或UCI的实际发射功率。在终端设备进行第一次随机接入尝试过程中,msg1的发射功率为P1_1,且msg1成功发送,终端设备通过开环计算方法计算的msg3或UCI的发射功率为P3,图5以第一随机接入尝试是第一次随机接入尝试为例,则P3是根据第一功率控制参数计算得到的,终端设备确定P1_1和P3中值较大的为msg3和/或UCI的实际发射功率,则终端设备确定P1_1和P3中值较大的为第一发射功率,则终端设备通过第一发射功率发送第一msg3或第一UCI,例如此时P3大于P1_1,则如图5,第一次随机接入尝试中的P3就是第一发射功率。在终端设备进行第二次随机接入尝试时,终端设备攀升msg1的发射功率,例如从P1_1攀升为P1_2,终端设备以P1_2的发射功率发送msg1,因为本实施例中第一随机接入尝试是第一次随机接入尝试,则第二随机接入尝试是第二次随机接入尝试,终端设备通过开环计算方法计算的msg3或UCI的发射功率例如还是为P3,此时P3是根据第二功率控制参数计算得到的, 只是第一功率控制参数和第二功率控制参数中参与计算的参数的值可能相等,因此两次计算的结果相等,都是P3,那么终端设备确定P1_2和P3中值较大的为第二发射功率,并通过第二发射功率发送第二msg3或第二UCI,例如此时P3大于P1_2,则如图5,第二次随机接入尝试中的P3是第二发射功率。由于msg1的发射功率在每次随机接入尝试过程中都在攀升,则在终端设备进行一定次数的随机接入尝试之后,通过开环计算方法计算的msg3或UCI的发射功率会小于msg1的发射功率,根据图5可知,在终端设备进行第k-1次随机接入尝试和第k次随机接入尝试时,通过开环计算方法计算的msg3或UCI的发射功率都小于msg1的发射功率,因此在终端设备进行第k-1次随机接入尝试和第k次随机接入尝试时,msg3和/或UCI的实际发射功率是msg1的发射功率(将第k-1次随机接入尝试中的msg3和/或UCI的实际发射功率称为第k-1发射功率,将第k次随机接入尝试中的msg3和/或UCI的实际发射功率称为第k发射功率)。以此类推,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,终端设备的在覆盖增强等级0下的最大随机接入尝试次数可以是网络设备事先设置的,或者是协议规定的。
图5是以第一随机接入尝试是第一次随机接入尝试、以及第二随机接入尝试是第二次随机接入尝试为例,实际上第一随机接入尝试可以是图5中的任意一次随机接入尝试,第二随机接入尝试可以是图5中位于第一随机接入尝试之后的下一次随机接入尝试。
实现方式A2、确定第一msg1的发射功率与第一功率偏移量之和为第一发射功率,类似的,确定第二msg1的发射功率与第二功率偏移量之和为第二发射功率。
其中,第一功率控制参数和第二功率控制参数均还可以包括功率偏移量参数,在不同的随机接入尝试中,功率偏移量的值可能相同也可能不同,为了区分不同的随机接入尝试过程,将第一随机接入尝试中的(也是第一功率控制参数中的)功率偏移量称为第一功率偏移量,将第二随机接入尝试中的(也是第二功率控制参数中的)功率偏移量称为第二功率偏移量。第一功率偏移量和第二功率偏移量都用于确定msg3和/或UCI的发射功率,例如,第一功率偏移量用于确定第一msg3和/或第一UCI的发射功率,第二功率偏移量用于确定第二msg3和/或第二UCI的发射功率。
即,在实现方式A2中,无需根据功率控制参数来计算msg3和/或UCI的发射功率,而确定msg1的发射功率与功率偏移量之和确定为msg3和/或UCI的最终的发射功率,方式较为简单。其中,第一功率偏移量或第二功率偏移量(即功率偏移量的值)可以是协议规定的,或者可以是网络设备指示的。
例如,第二功率偏移量可以大于第一功率偏移量,即,随着随机接入尝试次数的递增,功率偏移量的值也可以递增,或者第二功率偏移量也可以等于第一功率偏移量,即功率偏移量的值保持不变,由于前后两次随机接入尝试的msg1的发射功率是不同的(msg1的发射功率会攀升),因此在第二随机接入尝试中确定的第二发射功率会大于在第一随机接入尝试中确定的第二发射功率,因此本申请实施例不限制第二功率偏移量必须大于第一功率偏移量。
例如,可参考图6,示出了终端设备的k次随机接入尝试过程,其中画竖线的矩形表示msg1的发射功率,画斜线的矩形表示msg3和/或UCI的实际发射功率,图6以终端设备在每次随机接入尝试中使用的功率偏移量的值相同为例,即第一功率偏移量等于第二功率偏移量。在终端设备进行第一次随机接入尝试过程中,msg1的发射功率为P1_1,例如 第一随机接入尝试为第一次随机接入尝试,则终端设备确定P1_1与第一功率偏移量之和为第一发射功率,并通过第一发射功率发送第一msg3和/或第一UCI,图6中以P3_1表示第一随机接入尝试中的第一发射功率。在终端设备进行第二随机接入尝试时,终端设备攀升msg1的发射功率,例如从P1_1攀升为P1_2,终端设备以P1_2的发射功率发送msg1,因为第一次随机接入尝试是第一随机接入尝试,因此第二次随机接入尝试是第二随机接入尝试,则终端设备确定P1_2与第二功率偏移量之和为第二发射功率,并通过第二发射功率发送第二msg3和/或第二UCI,图6中以P3_2表示第二随机接入尝试中的第二发射功率。以此类推,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,终端设备的在覆盖增强等级0下的最大随机接入尝试次数可以是网络设备事先设置的,或者是协议规定的。
图6是以第一随机接入尝试是第一次随机接入尝试、以及第二随机接入尝试是第二次随机接入尝试为例,实际上第一随机接入尝试可以是图6中的任意一次随机接入尝试,第二随机接入尝试可以是图6中位于第一随机接入尝试之后的下一次随机接入尝试。
终端设备所在覆盖增强等级为覆盖增强等级0时,在不同的随机接入尝试过程中,msg3和/或UCI的发射功率是可以随着随机接入尝试次数的增加而递增的,通过取msg1的发射功率与根据功率控制参数计算得到的发射功率中的取值较大者作为msg3和/或UCI的实际发射功率,或者取msg1的发射功率与功率偏移量之和为msg3和/或UCI的实际发射功率,有助于终端设备更快地完成随机接入过程,并且能够降低终端设备的功耗。
在方式A中,涉及到终端设备根据功率控制参数计算msg3和/或UCI的发射功率,即终端设备按照开环计算方式计算msg3和/或UCI的发射功率。作为一种示例,终端设备根据功率控制参数计算msg3和/或UCI的发射功率,可通过以下公式(1)实现:
Figure PCTCN2017111721-appb-000001
具体的,PO_NPUSCH,c(2)=PO_NORMINAL_NPUSCH,c(2)=PO_PREPREAMBLE_Msg3
其中,PNPUSCH,c(i)表示窄带物理上行共享信道(narrowband physical uplink shared channel,NPUSCH)上的信号在小区C内的子帧i上的发射功率;PCMAX,c(i)表示终端设备的最大发射功率,具体的表示终端设备在小区C内的子帧i上发送PRACH或NPRACH的信号的最大发射功率;MNPUSCH,c(i)在不同子载波带宽下取不同的值,例如,子载波带宽为3.75K时,MNPUSCH,c(i)的取值为{1/4},子载波带宽为15K时,MNPUSCH,c(i)的取值为{1,3,6,12};PO_PRE表示初始前导目标接收功率,与PPIRT一致;ΔPREAMBLE_Msg3表示偏移功率,具体指的是相对于前导,msg3的功率偏移量;αc(j),当j=2时,取值为1;PLc表示终端设备通过测量得到的小区C的下行路径损耗。
当然,公式(1)只是示例,终端设备根据功率控制参数计算msg3和/或UCI的发射功率的方式不限于此。其中,功率控制参数可以是终端设备通过接收网络设备发送的系统消息和/或高层信令获取的,高层信令例如为无线资源控制(radio resource control,RRC) 信令。例如,终端设备可通过接收网络设备发送的系统消息和/或高层信令获得第一功率控制参数和第二功率控制参数。
另外,如前的方案还涉及到终端设备发送msg1,则终端设备也需要计算msg1的发射功率。本申请实施例中,在终端设备所在的覆盖增强等级为覆盖增强等级0的情况下,终端设备也可以根据功率控制参数来计算msg1的发射功率,例如,终端设备在第一随机接入尝试中,根据第一功率控制参数计算第一msg1的发射功率,终端设备在第二随机接入尝试中,根据第二功率控制参数计算第二msg1的发射功率。作为一种示例,以NB-IoT系统为例,终端设备根据功率控制参数计算msg1的发射功率,即计算NPRACH的发射功率,可通过以下公式(2)实现:
Figure PCTCN2017111721-appb-000002
具体的,PPRT=PPIRT+PDP+(Np1-1)×Ps-10log10Np2
其中,PNPRACH表示NPRACH上的信号的发射功率;PCMAX,c(i)表示终端设备的最大发射功率,具体的表示终端设备在小区C内的子帧i上发送物理随机接入信道的信号的最大发射功率;PPRT表示前导目标接收功率;PLc表示终端设备通过测量得到的小区C的下行路径损耗;PPIRT表示一个初始前导目标接收功率;PDP表示偏移功率,具体指的是前导的功率偏移量;Np1表示前导尝试次数,具体指的是前导尝试发送的次数,如当终端设备第5次尝试发送时,其Np1取值为5;Ps表示第三功率爬坡步长,具体的表示终端设备随机接入失败后重新接入时的功率提升值;Np2表示每次尝试前导重复的次数。
当然,公式(2)只是示例,终端设备根据功率控制参数计算msg1的发射功率的方式不限于此。另外,msg1的发射功率除了可以根据功率控制参数确定之外,也可以采用其他参数来确定,本申请实施例不作限制。
另外,公式(2)计算的是终端设备处于覆盖增强等级0时msg1的发射功率,而如果终端设备处于其它覆盖增强等级,例如覆盖增强等级1或覆盖增强等级2,则终端设备可以确定msg1的发射功率为该终端设备的最大发射功率。
方式B、根据随机接入前导消息的发射功率来确定第一发射功率。
在本申请实施例中,终端设备所在的覆盖增强等级为覆盖增强等级0时,当发送msg1并接收msg2后,即使msg2指示的repetition小于2,msg3的发射功率是可以随着随机接入尝试次数的增加而递增。类似的,终端设备所在的覆盖增强等级为覆盖增强等级0时,即使msg4指示的repetition小于2,UCI的发射功率也是可以随着随机接入尝试次数的增加而递增。
具体的,在方式B下,可确定第一msg1的发射功率为第一发射功率,类似的,可确定第二msg1的发射功率为第二发射功率。
即,在实现方式B中,无需根据功率控制参数来计算msg3或UCI的发射功率,而直接将msg1的发射功率确定为msg3和/或UCI的实际发射功率,方式较为简单。
例如,可参考图7,示出了终端设备的k次随机接入尝试过程,其中画竖线的矩形表示msg1的发射功率,画斜线的矩形表示msg3和/或UCI的实际发射功率。在终端设备进行第一次随机接入尝试过程中,msg1的发射功率为P1_1,以第一随机接入尝试是第一次随机接入尝试为例,则终端设备确定P1_1为第一发射功率,并通过第一发射功率发送第一msg3和/或第一UCI。在终端设备进行第二次随机接入尝试时,终端设备攀升msg1的发射功率,例如从P1_1攀升为P1_2,终端设备以P1_2的发射功率发送msg1,因为第一随机接入尝试是第一次随机接入尝试,则第二随机接入尝试是第二次随机接入尝试,则终端设备确定P1_2为第二发射功率,并通过第二发射功率发送第二msg3或第二UCI。以此类推,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,终端设备的在覆盖增强等级0下的最大随机接入尝试次数可以是网络设备事先设置的,或者是协议规定的。
图7是以第一随机接入尝试是第一次随机接入尝试、以及第二随机接入尝试是第二次随机接入尝试为例,实际上第一随机接入尝试可以是图7中的任意一次随机接入尝试,第二随机接入尝试可以是图7中位于第一随机接入尝试之后的下一次随机接入尝试。
关于计算msg1的发射功率的方式,可参考方式A中的相关描述,不多赘述。
终端设备所在覆盖增强等级为覆盖增强等级0时,在不同的随机接入尝试过程中,msg3和/或UCI的发射功率是可以随着随机接入尝试次数的增加而递增,将发送msg1的功率直接作为msg3的发射功率,方式简单,有助于终端设备更快地完成随机接入过程,并且能够降低终端设备的功耗。
方式C、根据功率控制参数来计算msg3和/或UCI的实际发射功率。
在实现方式C中,可以直接根据功率控制参数来计算msg3和/或UCI的发射功率,无需用到msg1或其他消息的发射功率,方式较为简单。
具体的,在方式C下,确定msg3和/或UCI的实际发射功率的方式包括但不限于以下几种:
实现方式C1、确定第三发射功率与第三功率偏移量之和为第一发射功率,类似的,确定第四发射功率与第四功率偏移量之和为第二发射功率。第三功率偏移量和第四功率偏移量均用于确定msg3和/或UCI的发射功率。
其中,第一功率控制参数和第二功率控制参数还包括功率偏移量参数,这里的功率偏移量参数与实现方式A2中的功率偏移量参数不是同一个参数,为了区分,可将实现方式A2中的功率偏移量参数称为功率偏移量参数A,将实现方式C1中的功率偏移量参数称为功率偏移量参数B,功率偏移量参数A是用于与msg1的发射功率联合确定msg3和/或UCI的实际发射功率,功率偏移量参数B是用于与根据开环方式计算得到的发射功率联合确定msg3和/或UCI的实际发射功率。在第一功率控制参数中,功率偏移量参数A为第一功率偏移量参数,功率偏移量参数B为第三功率偏移量参数,在第二功率控制参数中,功率偏移量参数A为第二功率偏移量参数,功率偏移量参数B为第四功率偏移量参数。第三功率偏移量和第四功率偏移量(即功率偏移量参数B的值)可以是协议规定的,或者可以是网络设备指示的。
第三发射功率是在第一随机接入尝试中根据第一功率控制参数计算得到的第一msg3和/或第一UCI的发射功率,第四发射功率是在第二随机接入尝试中根据第二功率控制参数计算得到的第二msg3和/或第二UCI的发射功率。
终端设备在每次随机接入尝试中使用的功率偏移量参数B的值,可以相同,也可以不同,本申请实施例不作限制,例如,第三功率偏移量与第四功率偏移量可以相同也可以不同。在覆盖增强等级不变的情况下,或者说在msg2和/或msg4指示的repetition小于2的情况下,一般根据开环计算方法计算得到的msg3和/或UCI的发射功率不变,考虑到这一点,可以令功率偏移量参数B的值随着随机接入尝试的次数的增加而递增,例如第四功率偏移量大于第三功率偏移量,则使得终端设备在第二随机接入尝试中确定的第二发射功率大于或等于在第一随机接入尝试中确定的第一发射功率。
例如,可参考图8,示出了终端设备的k次随机接入尝试过程,其中的矩形表示msg3和/或UCI的实际发射功率。在终端设备进行第一次随机接入尝试过程中,通过开环计算方式计算得到的msg3和/或UCI的发射功率为P3,例如第一次随机接入尝试为第一随机接入尝试,则终端设备确定P3与第三功率偏移量之和为第一发射功率,并通过第一发射功率发送第一msg3和/或第一UCI,图8中以P3_1表示第一次随机接入尝试中的第一发射功率。在终端设备进行第二次随机接入尝试时,终端设备再通过开环计算方式计算msg3和/的发射功率(或者,如果确定通过开环计算方式计算得到的msg3或UCI的发射功率相当于第一次随机接入尝试中的计算结果不变,也可以无需再次计算),例如依然为P3,因为第一次随机接入尝试为第一随机接入尝试,则第二次随机接入尝试为第二随机接入尝试,则终端设备确定P3与第四功率偏移量之和为第二发射功率,并通过第二发射功率发送第二msg3和/或第二UCI,图8中以P3_2表示第二次随机接入尝试中的第二发射功率。在本实施例中,随着随机尝试次数的递增,功率偏移量参数B的值也在递增,使得终端设备在后一次随机接入尝试中确定的msg3和/或UCI的实际发射功率大于或等于在前一次随机接入尝试中确定的msg3和/或UCI的实际发射功率。以此类推,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,终端设备的在覆盖增强等级0下的最大随机接入尝试次数可以是网络设备事先设置的,或者是协议规定的。
图8是以第一随机接入尝试是第一次随机接入尝试、以及第二随机接入尝试是第二次随机接入尝试为例,实际上第一随机接入尝试可以是图8中的任意一次随机接入尝试,第二随机接入尝试可以是图8中位于第一随机接入尝试之后的下一次随机接入尝试。
实现方式C2、确定第三发射功率与第一功率爬坡步长之和为第一发射功率,类似的,确定第四发射功率与第二功率爬坡步长之和为第二发射功率。
在这种实现方式中,第一功率控制参数和第二控制参数还均可包括功率爬坡步长参数,在一次随机接入过程的不同的随机接入尝试过程中,功率爬坡步长参数的值可能相同也可能不同,例如第一随机接入尝试和第二随机接入尝试中,功率爬坡步长参数的值可能相同也可能不同,因此将第一随机接入尝试中的(即第一功率控制参数中的)功率爬坡步长称为第一功率爬坡步长,将第二随机接入尝试中的(即第二功率控制参数中的)功率爬坡步长称为第二功率爬坡步长。第一功率爬坡步长用于确定第一msg3和/或第一UCI的发射功率,第二功率爬坡步长用于确定第二msg3和/或第二UCI的发射功率。
作为一种示例,第一功率爬坡步长或第二功率爬坡步长可以是第三功率爬坡步长的整数倍,第三功率爬坡步长为随着随机接入尝试的次数的递增,msg1的发射功率的攀升量,即,msg3和/或UCI的实际发射功率的攀升量可以是msg1的发射功率的攀升量的整数倍,或者第一功率爬坡步长和第二功率爬坡步长也可以设置为其他的值,例如第一功率爬坡步 长或第二功率爬坡步长由协议规定等,可理解为,msg3和/或UCI的实际发射功率的攀升量可由协议规定。
根据如前介绍可知,在实现方式C2中,msg3和/或UCI的实际发射功率可以实现攀升。具体来讲,随机接入尝试增加一次,则msg3和/或UCI的实际发射功率就攀升一次。
例如,可参考图9,示出了终端设备的k次随机接入尝试过程,其中画竖线的矩形表示msg1的发射功率,画斜线的矩形表示msg3和/或UCI的实际发射功率。在终端设备进行第一次随机接入尝试过程中,msg1的发射功率为P1_1,终端设备通过开环计算方法计算的msg3或UCI的发射功率为P3,以第一次随机接入尝试是第一随机接入尝试为例,且第一次随机接入尝试例如为一次随机接入过程中的第一次随机接入尝试,则msg3和/或UCI的发射功率不攀升,可认为第一功率爬坡步长为0,终端设备确定P3为第一发射功率,并通过P3发送第一msg3和/或第一UCI,图9中的P3_1表示P3。在终端设备进行第二次随机接入尝试时,终端设备攀升msg1的发射功率,例如在P1_1的基础上攀升第三功率爬坡步长,则从P1_1攀升为P1_2(即P1_2和P1_1的差值即为第三功率爬坡步长),终端设备以P1_2的发射功率发送msg1,而因随机接入尝试的次数增加了一次,则终端设备也将P3进行攀升,得到P3+D1,因为第一次随机接入尝试是第一随机接入尝试,因此第二次随机接入尝试是第二随机接入尝试,则D1此时为第二功率爬坡步长,终端设备确定P3+D1为第二发射功率,图9中的P3_2即表示第二发射功率,终端设备通过第二发射功率发送第二msg3和/或第二UCI。以此类推,图9中的(P3_k-1)表示第k-1次随机接入尝试中的msg3和/或UCI的实际发射功率,P3_k表示第k次随机接入尝试中的msg3和/或UCI的实际发射功率。如此,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,终端设备的在覆盖增强等级0下的最大随机接入尝试次数可以是网络设备事先设置的,或者是协议规定的。
图9是以第一随机接入尝试是第一次随机接入尝试、以及第二随机接入尝试是第二次随机接入尝试为例,实际上第一随机接入尝试可以是图9中的任意一次随机接入尝试,第二随机接入尝试可以是图9中位于第一随机接入尝试之后的下一次随机接入尝试。当然,如果第一随机接入尝试不是一次随机接入过程中的第一次随机接入尝试,则第一功率爬坡步长可能就不为0。
其中,第一功率爬坡步长和第二功率爬坡步长可以是协议规定的,或者可以是网络设备指示的。第一功率爬坡步长和第二功率爬坡步长用于确定msg3和/或UCI的发射功率。其中,第一功率爬坡步长和第二功率爬坡步长可以相等,或者也可以不相等,例如第二功率爬坡步长可以大于第一功率爬坡步长,即随着随机接入尝试次数的增加,msg3和/或UCI的发射功率可以攀升,以提高msg3和/或UCI的发送成功率。
终端设备所在覆盖增强等级为覆盖增强等级0时,在不同的随机接入尝试过程中,当发送msg1并接收msg2后,msg3或UCI的发射功率是可以随着随机接入尝试次数的增加而递增的,通过攀升msg3发射功率或者根据功率控制参数计算msg3的发射功率,有助于终端设备更快地完成随机接入过程,并且能够降低终端设备的功耗。
如上介绍了几种确定msg3或UCI的实际发射功率的方式,在实际应用中可根据协议的规定确定选择哪种方式,或者也可以根据网络设备的指示来确定选择哪种方式。
另外,目前有新版本的终端设备和老版本的终端设备,例如R14为新版本的终端设备, 而R13为老版本的终端设备。新版本的终端设备有能力实施图4所示的实施例提供的方案,而老版本的终端设备可能没有能力实施图4所示的实施例提供的方案。鉴于此,可以考虑只让新版本的终端设备实施图4所示的实施例提供的方案,而老版本的终端设备可以继续按照现有技术中的方式来确定msg3和/或UCI的发射功率。
对此,本申请实施例提供第三指示信令,第三指示信令由新版本的网络设备配置,例如由R14的网络设备配置,网络设备配置完成后可以发送第三指示信令,例如通过广播方式发送,第三指示信令可以被新版本的终端设备接收并识别,老版本的终端设备可能无法接收第三指示信令,或者可能无法识别第三指示信令。第三指示信令就用于指示终端设备采用本申请实施例提供的技术方案来确定msg3和/或UCI的发射功率,那么,接收并成功解析了第三指示信令的终端设备就可以采用本申请实施例提供的技术方案来确定msg3和/或UCI的发射功率,而未接收第三指示信令或未能成功解析第三指示信令的终端设备,就继续采用现有技术中的方案确定msg3和/或UCI的发射功率。通过第三指示信令能够对新版本的终端设备和老版本的终端设备进行不同的指示,使得不同版本的终端设备采用不同的方式确定msg3和/或UCI的发射功率,符合终端设备的实际配置情况。这里所述的本申请实施例提供的技术方案,包括图4所示的实施例提供的方案。
本申请实施例中,终端设备在覆盖增强等级0下进行随机接入尝试时,可以根据第一功率控制参数和/或第一随机接入前导消息的发射功率来确定第一发射功率,相当于是根据实际情况在确定第一传输消息和/或第一上行控制消息的发射功率,且终端设备在第二随机接入尝试中确定的第二发射功率大于或等于终端设备在第一随机接入尝试中确定的第一发射功率,则msg3和/或UCI的发射功率会逐步递增,增加了msg3和/或UCI的发送成功率,从而也就加快完成随机接入过程。
另外,现有技术中,终端设备所在的覆盖增强等级为覆盖增强等级0时,终端设备通过逐步攀升初始发射功率的方式尝试发送msg1。例如,终端设备在第一次随机接入尝试时,根据功率控制参数计算msg1的发射功率,这也是msg1的初始发射功率,并按照该初始发射功率发送msg1。终端设备在第二次随机接入尝试时,会在第一次随机接入尝试中的msg1的发射功率的基础上攀升msg1的发射功率,按照攀升后的发射功率发送msg1。终端设备在第三次随机接入尝试时,会在第二次随机接入尝试中的msg1的发射功率的基础上再次攀升msg1的发射功率,并按照再次攀升后的发射功率发送msg1,以此类推,直到终端设备随机接入成功为止,或者直到终端设备的随机接入尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数为止。其中,如果终端设备一直未能接入成功,则在随机尝试次数达到规定的最大随机接入尝试次数前,终端设备会一直进行随机接入尝试,在每次随机接入尝试中都会发送msg1,随机接入尝试增多后,终端设备可能会采用该终端设备的最大发射功率来发送msg1,或者,如果终端设备的随机尝试次数达到规定的在覆盖增强等级0下的最大随机接入尝试次数,终端设备所在的覆盖增强等级会从覆盖增强等级0切换到覆盖增强等级1,如果终端设备在覆盖增强等级0下未能随机接入成功,则终端设备在覆盖增强等级1下也会直接采用该终端设备的最大发射功率来发送msg1。如果终端设备的随机尝试次数达到规定的在覆盖增强等级1下的最大随机接入尝试次数,终端设备所在的覆盖增强等级会从覆盖增强等级1切换到覆盖增强等级2,如果终端设备在覆盖增强等级1下未能随机接入成功,则终端设备在覆盖增强等级2下也会直接采用该终端设备的最大发射功率来发送msg1。在发送msg1后,终端设备接收来自网络设备的msg2,如果msg1 是以该终端设备的最大发射功率发送的,例如终端设备是在覆盖增强等级1或覆盖增强等级2下,则msg2携带的repetition指示的数值会比较大,一般会大于2,则终端设备会采用该终端设备的最大发射功率来发送msg3。对于UCI也是同样,如果msg1是以该终端设备的最大发射功率发送的,则msg4携带的repetition指示的数值一般也会大于2,则终端设备会采用该终端设备的最大发射功率来发送UCI。
但终端设备距离网络设备比较近,msg1的初始发送功率比较低,在覆盖增强等级0中逐渐攀升发射功率也发射不成功,在覆盖增强等级0切换到覆盖增强等级1后会满功率发射msg3和/或UCI。或者终端设备不能成功发送msg1,不一定是因为信号质量不好,因为发送msg1时是处于竞争的环境下,可能该终端设备竞争到的覆盖增强等级0下的资源较少,那么,即使该终端设备发送msg1的功率是足够的,也可能导致msg1发送不成功。终端设备所在的覆盖增强等级会从覆盖增强等级0切换到覆盖增强等级1,此时网络设备只能知道终端设备在覆盖增强等级1,但是终端设备在发送msg3和/或UCI时已经不再处于竞争环境,无需使用该终端设备的最大发射功率也可以成功发送msg3和/或UCI,但如果网络设备配置repetition指示的值较大,例如大于2,则现有技术在此情况下的方案是一定会使用该终端设备的最大发射功率来发送msg3和/或UCI。发送信号的功率太大会造成系统不必要的底噪抬升,使得其他的终端设备受到干扰,甚至影响整个基站的上行发送过程,并且也会导致终端设备自身的功耗增加。
鉴于此,本申请实施例再提供一种传输消息的方法,能够解决该问题。请参见图10,该方法的流程描述如下。其中,在下文的介绍过程中,以本申请实施例提供的技术方案应用在图3所示的应用场景为例,在实际应用中当然不限于此。
S101、终端设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,终端设备从网络设备接收第一指示信令,第一指示信令用于指示重复次数信息,自然的,网络设备需要先向终端设备发送所述第一指示信令,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息(即所述第一上行消息包括msg3或UCI);
S102、对于所述重复次数信息的任何取值,所述终端设备均根据功率控制参数计算发射功率;
S103、所述终端设备使用所述发射功率向所述网络设备发送所述第一上行消息,则网络设备接收所述终端设备使用所述发射功率发送的所述第一上行消息。
需注意的是,图10所示的实施例中的功率控制参数与图4所示的实施例中的第一功率控制参数或第二功率控制参数不是同一概念,图10所示的实施例中的功率控制参数是对每次随机接入尝试中使用的功率控制参数的统一称呼。另外,图10所示的实施例中的第一指示信令与图4所示的实施例中的第一指示信令也不是同一信令,图10所示的实施例中的第一指示信令用于指示重复次数信息,图4所示的实施例中的第一指示信令用于指示第一功率控制参数。
另外图10中对于S101,画的是网络设备向终端设备发送重复次数信息,这里的含义是网络设备向终端设备发送第一指示信令,第一指示信令用于指示重复次数信息。
网络设备可以确定重复次数信息,在确定重复次数信息后,网络设备可向终端设备发送第一指示信令,第一指示信令就用于指示所述重复次数信息。例如在本实施例中,第一指示信令可通过msg2或msg4实现,重复次数信息可通过repetition实现。
在本申请实施例中,终端设备的RSRP处于覆盖增强等级0所对应的RSRP范围内,即终端设备的覆盖增强等级是在覆盖增强等级0,这里是指,该终端设备进行初始随机接入尝试时是在覆盖增强等级0,可以理解为,在一次随机接入过程中的第一次随机接入尝试中,该终端设备是在覆盖增强等级0下,即该终端设备的NRSRP或RSRP所在的范围是覆盖增强等级0对应的NRSRP或RSRP范围。
该终端设备进行初始随机接入尝试是在覆盖增强等级0,而在初始随机接入尝试之后的任意一次随机接入尝试中,无论该终端设备当前所在的覆盖增强等级是何种覆盖增强等级,如果网络设备发送的msg2(或msg4)携带的repetition指示该终端设备按照该终端设备的最大发射功率来发送msg3(或UCI),可能都是不合理的,如前文分析可知,发送信号的功率太大会造成系统不必要的底噪抬升,使得其他的终端设备受到干扰,甚至影响整个基站的上行发送过程,并且也会导致终端设备自身的功耗增加。因此,对于初始随机接入尝试在覆盖增强等级0下的终端设备,在初始随机接入尝试之后的任意一次随机接入尝试中,不限制该终端设备的覆盖增强等级,即,在初始随机接入尝试之后的任意一次随机接入尝试中,该终端设备可以继续在覆盖增强等级0,或者可以在覆盖增强等级1,或者可以在覆盖增强等级2。或者理解为,只要是初始随机接入尝试在覆盖增强等级0下的终端设备,都可以执行图10所示的技术方案,而在执行图10所示的技术方案时,该终端设备可能继续在覆盖增强等级0,也可能在覆盖增强等级1或者覆盖增强等级2。
下面分别介绍终端设备如何在覆盖增强等级0进行初始随机接入尝试,以及如何在覆盖增强等级0、覆盖增强等级1或覆盖增强等级2进至少一次随机接入尝试,这里的至少一次随机接入尝试是初始随机接入尝试之后的后续的随机接入尝试。
终端设备在覆盖增强等级0下进行初始随机接入尝试。在该初始随机接入尝试中,网络设备确定重复次数信息,为了区分不同的随机接入尝试,本文将在初始随机接入尝试中的重复次数信息称为第一重复次数信息。在确定第一重复次数信息后,网络设备向终端设备发送第一指示信令,同样为了区分,本文将在初始随机接入尝试中的第一指示信令称为第一指示信令A。则终端设备从网络设备接收第一指示信令A,终端设备可以确定第一指示信令A所指示的第一重复次数信息。终端设备对于第一重复次数信息的任何取值,均可以根据初始功率控制参数来计算发射功率,将该发射功率称为第一发射功率,这里是说,终端设备不会判断第一重复次数信息的取值究竟是多少,而是直接使用初始功率控制参数计算第一发射功率。初始功率控制参数是指在初始随机接入尝试中使用的功率控制参数。则终端设备使用第一发射功率向网络设备发送msg1和/或UCI,网络设备就可以接收来自终端设备的使用第一发射功率发射的msg1和/或UCI。
终端设备在覆盖增强等级0、覆盖增强等级1、或覆盖增强等级2下进行至少一次随机接入尝试。在该至少一次随机接入尝试中的每次随机接入尝试中,网络设备确定重复次数信息,为了区分不同的随机接入尝试,本文将在至少一次随机接入尝试中的其中一次随机接入尝试中的重复次数信息称为第二重复次数信息。在确定第二重复次数信息后,网络设备向终端设备发送第一指示信令,同样为了区分,本文将在至少一次随机接入尝试中的一次随机接入尝试中的第一指示信令称为第一指示信令B。则终端设备从网络设备接收第一指示信令B,终端设备可以确定第一指示信令B所指示的第二重复次数信息。终端设备对于第二重复次数信息的任何取值,均可以根据该次随机接入尝试所对应的功率控制参数来计算发射功率,将该发射功率称为第二发射功率,这里是说,终端设备不会判断第二重 复次数信息的取值究竟是多少,而是直接使用该次随机接入尝试所对应的功率控制参数计算第二发射功率。该次随机接入尝试所对应的功率控制参数是指在该次随机接入尝试中使用的功率控制参数。则终端设备使用第二发射功率向网络设备发送msg1和/或UCI,网络设备就可以接收来自终端设备的使用第二发射功率发射的msg1和/或UCI。
导致终端设备在随机接入尝试中从覆盖增强等级0切换到覆盖增强等级1或从覆盖增强等级1切换到覆盖增强等级2的原因,或者导致终端设备在覆盖增强等级0下按照该终端设备的最大发射功率发送msg3的原因,都可能是覆盖增强等级0下的资源分配不合理,因此在不考虑竞争的情况下,发送msg3和/或UCI时,采用开环功率控制方法(也称为开环计算方法)计算发射功率更为合理,即,根据功率控制参数来计算发射功率更为合理。因此在本申请实施例中,无论网络设备给msg3和/或UCI配的repetition指示的值是多少,终端设备都可以根据功率控制参数来计算msg3和/或UCI的发射功率。也就是说,本申请实施例中,终端设备初始接入的覆盖增强等级在覆盖增强等级0时,所述终端设备确定msg3和/或UCI的实际发射功率的方式与repetition无关,无论repetition指示的值是多少,终端设备都会根据功率控制参数来计算msg3和/或UCI的实际发射功率。因此在S102中并没有判断的过程,即终端设备接收来自网络设备的重复次数后,并不会判断重复次数究竟是多少,而是会直接根据功率控制参数来计算msg3和/或UCI的实际发射功率。
具体的,终端设备可以将根据功率控制参数计算得到的发射功率确定为msg3和/或UCI的实际发射功率。
即,直接根据功率控制参数计算msg3和/或UCI的实际发射功率即可,较为简单。其中,功率控制参数可以是网络设备指示的,例如网络设备可以确定功率控制参数,在确定功率控制参数后,网络设备向终端设备发送第二指示信令,第二指示信令就用于指示该功率控制参数。该功率控制参数包括以下参数中的至少一项:所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、随机接入尝试中的第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数。这里的功率爬坡步长,可相当于图4所示的实施例中介绍的第三功率爬坡步长。
终端设备根据功率控制参数来计算发射功率的方式可参考图4所示的实施例中的相关介绍,不多赘述。其中,功率控制参数可以是终端设备通过接收网络设备发送的系统消息和/或高层信令获取的,高层信令例如为RRC信令。
可参考图11,示出了终端设备在覆盖增强等级0下的k次随机接入尝试以及在覆盖增强等级1下进行的k次随机接入尝试,其中画竖线的矩形表示msg1的发射功率,画斜线的矩形表示根据功率控制参数计算得到的msg3和/或UCI的发射功率,即msg3和/或UCI的实际发射功率。终端设备在进行前k次随机接入尝试时,都是在覆盖增强等级0下进行,k为规定的覆盖增强等级0下的最大随机接入尝试次数,而在覆盖增强等级0下的k次随机接入尝试过程中,终端设备均未成功接入网络设备。在覆盖增强等级0下的随机接入尝试次数达到k次后,所述k为覆盖增强等级0下的最大随机接入尝试次数,终端设备切换到覆盖增强等级1,在覆盖增强等级1下重新发送msg1,此时终端设备会采用该终端设备的最大发射功率发送msg1,图11中该终端设备的最大发射功率以P1_S表示,那么在网络设备发送的msg2携带的repetition指示的值或网络设备发送的msg4携带的repetition指示的值可能都会大于2,但从图11中可以看到,按照本申请实施例所提供的方案,终端设 备没有按照该终端设备的最大发射功率来发送msg3和/或UCI,而是继续根据功率控制参数计算msg3的实际发射功率,和/或根据功率控制参数计算UCI的实际发射功率。其中,图11是以终端设备当前所在的覆盖增强等级是覆盖增强等级0或覆盖增强等级1为例。对于终端设备当前所在的覆盖增强等级是覆盖增强等级2的情况也是同样,不多举例。
本申请实施例中,终端设备初次随机接入是覆盖增强等级0,在覆盖增强等级0上进行随机接入失败后,终端设备切换到覆盖增强等级1,或者如果在覆盖增强等级1上随机接入依然失败,则终端设备还可以切换到覆盖增强等级2。那么对于初次随机接入是在覆盖增强等级0的终端设备,可以不直接采用该终端设备的最大发射功率发送上行信号,可以降低对其它上行传输的干扰,也有助于降低终端设备自身功耗。
目前,有新版本的终端设备和老版本的终端设备,例如R14为新版本的终端设备,而R13为老版本的终端设备。新版本的终端设备有能力实施图10所示的实施例提供的方案(当然也有能力实施图4所示的实施例提供的方案),而老版本的终端设备可能没有能力实施图10所示的实施例提供的方案,至于图4所示的实施例提供的方案,老版本的终端设备可能有能力实施,也可能没有能力实施,这一点在图4所示的实施例中已有介绍,此处主要讨论老版本的终端设备没有能力实施图10所示的实施例提供的方案的问题。因此在本申请实施例中,网络设备可以通过信令来指示不同版本的终端设备是否实施图10所示的实施例提供的方案。
例如,网络设备可以配置两个信令,分别为第一信令和第二信令,第一信令和第二信令都用于指示终端设备的最大随机接入尝试次数,即用于指示终端设备最多能进行多少次随机接入尝试。第一信令用于指示第一版本的终端设备,第二信令用于指示第二版本的终端设备,第一版本的终端设备例如为老版本的终端设备,第二版本的终端设备例如为新版本的终端设备。其中,老版本的终端设备能够接收并识别第一信令,而新版本的终端设备能够接收并识别第二信令。这里存在一种情况,如果网络设备是通过广播方式发送第一信令和第二信令,则老版本的终端设备可能无法接收或无法识别第二信令,但新版本的终端设备除了可以接收并识别第二信令外,很可能也能够接收并识别第一信令。因此本申请实施例规定,如果终端设备接收并识别了第一信令和第二信令,则该终端设备执行第二信令的指示,而忽略第一信令。例如第一信令和第二信令的格式不同,新版的终端设备通过解析就可以确定哪个信令是第二信令。
具体的,第一信令可指示第一版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。其中,总的最大随机接入尝试次数用于指示终端设备在所有的覆盖增强等级上最多能够进行多少次随机接入尝试,覆盖增强等级0下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级0下最多能够进行多少次随机接入尝试,覆盖增强等级1下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级1下最多能够进行多少次随机接入尝试,覆盖增强等级2下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级2下最多能够进行多少次随机接入尝试。
可选的,第一信令指示的终端设备总的最大随机接入尝试次数的值小于或等于第一信令指示的覆盖增强等级0下的最大随机接入尝试次数的值。可以理解为,网络设备指示老版本的终端设备的初始随机接入在覆盖增强等级0时,只能工作在覆盖增强等级0下,无法切换到覆盖增强等级1或覆盖增强等级2。因为老版本的终端设备可能无法实施图10所 示的实施例所提供的方案,则老版本的终端设备切换到覆盖增强等级1或覆盖增强等级2后,会按照现有技术中的方式发送msg3和/或UCI,也就是可能会按照该终端设备的最大发射功率发送msg3和/或UCI,从而带来较大的噪声,影响系统中的其他终端设备,也使得该终端设备的功耗增加。因此本申请实施例就可以限制老版本的终端设备的工作,使其只工作在覆盖增强等级0下,从而避免这些问题的发生。
第二信令可指示第二版本的终端设备总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。其中,总的最大随机接入尝试次数用于指示终端设备在所有的覆盖增强等级上最多能够进行多少次随机接入尝试,覆盖增强等级0下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级0下最多能够进行多少次随机接入尝试,覆盖增强等级1下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级1下最多能够进行多少次随机接入尝试,覆盖增强等级2下的最大随机接入尝试次数用于指示终端设备在覆盖增强等级2下最多能够进行多少次随机接入尝试。
可选的,第二信令指示的总的最大随机接入尝试次数的值大于第二信令指示的覆盖增强等级0下的最大随机接入尝试次数的值,且第二信令携带的总的最大随机接入尝试次数的值小于或等于第二信令携带的覆盖增强等级0下的最大随机接入尝试次数的值、第二信令携带的覆盖增强等级1下的最大随机接入尝试次数的值、以及第二信令携带的覆盖增强等级2下的最大随机接入尝试次数的值这三者之和。可以理解为,网络设备指示新版本的终端设备的初始随机接入在覆盖增强等级0时,既能工作在覆盖增强等级0下,也能工作在覆盖增强等级1或覆盖增强等级2下。因为新版本的终端设备可以实施例图10所示的实施例所提供的方案,则新版本的终端设备切换到覆盖增强等级1或覆盖增强等级2后,就能按照图10所示的实施例所提供的方案发送msg3和/或UCI,不直接采用该终端设备的最大发射功率发送上行信号,可以降低对其它上行传输的干扰,也有助于降低终端设备自身功耗。
当然,第一信令指示的各参数的值和/或第二信令指示的各参数的值可由网络设备配置,因此前述的对于第一信令指示的参数的值和第二信令指示的参数的值的介绍只是示例,本申请实施例不限制第一信令指示的各参数的值和/或第二信令指示的各参数的值。
网络设备通过配置第一信令和第二信令,可以让本申请实施例提供的技术方案对老版本的终端设备和新版本的终端设备具有兼容性。
如前介绍的图4所示的实施例与图10所示的实施例,两者可以单独应用,或者也可以结合应用,例如在图4所示的实施例中,如果repetition所指示的值较小,例如小于2,则会按照图4所示的实施例提供的方案确定msg3和/或UCI的发射功率,而如果repetition所指示的值较大,例如大于2,则会按照终端设备的最大发射功率发送msg3和/或UCI。而如果将图所示的实施例与图10所示的实施例相结合,则如果repetition所指示的值较大,例如大于2,则会按照图10所示的实施例提供的方案确定msg3和/或UCI的发射功率,如果repetition所指示的值较小,例如小于2,则可以按照图4所示的实施例提供的方案确定msg3和/或UCI的发射功率,或者也可以按照图10所示的实施例提供的方案确定msg3和/或UCI的发射功率。具体图4所示的实施例和/或图10所示的实施例是单独应用还是结合应用,本申请实施例不作限制。
下面结合附图介绍本申请实施例提供的设备。
图12示出了一种通信设备1200的结构示意图。该通信设备1200可以实现上文中涉及的终端设备的功能。该通信设备1200可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该通信设备1200可以包括处理器1201和收发器1202。其中,处理器1201可以用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。收发器1202可以用于执行图4所示的实施例中的S42及S45,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1201,用于在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
收发器1202,用于使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;
处理器1201,用于在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试;
处理器1201,用于完成所述第二随机接入尝试包括的根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率;
收发器1202,用于使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图13示出了一种网络设备1300的结构示意图。该网络设备1300可以实现上文中涉及的网络设备的功能。该网络设备1300可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备1300可以包括收发器1302,可选的,该网络设备1300还可以包括处理器1301。其中,处理器1301可以用于执行图4所示的实施例中的确定第一功率控制参数和第二功率控制参数等过程,和/或用于支持本文所描述的技术的其它过程。收发器1302可以用于执行图4所示的实施例中的S42及S45,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1302,用于接收通信设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述通信设备在所述第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
收发器1302,还用于接收所述通信设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述通信设备在所述第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述通信设备在第一 随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图14示出了一种通信设备1400的结构示意图。该通信设备1400可以实现上文中涉及的终端设备的功能。该通信设备1400可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该通信设备1400可以包括处理器1401和收发器1402。其中,处理器1401可以用于执行图10所示的实施例中的S102,和/或用于支持本文所描述的技术的其它过程。收发器1402可以用于执行图10所示的实施例中的S101及S103,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1402,用于在所述通信设备1400的RSRP处于覆盖增强等级0所对应的RSRP范围内时,从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
处理器1401,用于对于所述重复次数信息的任何取值,均根据功率控制参数计算发射功率;
收发器1402,还用于使用所述发射功率向所述网络设备发送所述第一上行消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15示出了一种网络设备1500的结构示意图。该网络设备1500可以实现上文中涉及的网络设备的功能。该网络设备1500可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备1500可以包括处理器1501和收发器1502。其中,处理器1501可以用于执行图10所示的实施例中确定重复次数信息等过程,和/或用于支持本文所描述的技术的其它过程。收发器1502可以用于执行图10所示的实施例中的S101及S103,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1502,用于向通信设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
收发器1502,还用于接收所述通信设备用发射功率发送的所述第一上行消息,所述发射功率是所述通信设备对于所述重复次数信息的任何取值都根据所述功率控制参数计算得到的。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信设备1200、网络设备1300、通信设备1400或网络设备1500通过如图16A所示的通信装置1600的结构实现。该通信装置1600可以实现上文中涉及的网络设备或通信设备的功能。该通信装置1600可以包括处理器1601。其中,在该通信装置1600用于实现图4所示的实施例中的通信设备的功能时,处理器1601可用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图4所示的实施例中 的网络设备的功能时,处理器1601可用于执行图4所示的实施例中确定第一功率控制参数和第二功率控制参数等过程,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图10所示的实施例中的通信设备的功能时,处理器1601可以用于执行图10所示的实施例中的S102,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图10所示的实施例中的网络设备的功能时,处理器1601可以用于执行图10所示的实施例中确定重复次数信息等过程,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1600可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置600可被设置于本申请实施例的网络设备或通信设备中,以使得该网络设备或通信设备实现本申请实施例提供的传输消息的方法。
在一种可选实现方式中,该通信装置1600还可以包括存储器1602,可参考图16B,其中,存储器1602用于存储计算机程序或指令,处理器1601用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述网络设备或通信设备的功能程序。当网络设备的功能程序被处理器1601译码并执行时,可使得网络设备实现本申请实施例图4所示的实施例或图10所示的实施例所提供的传输消息的方法中网络设备的功能。当通信设备的功能程序被处理器1601译码并执行时,可使得通信设备实现本申请实施例的图4所示的实施例或图10所示的实施例所提供的传输消息的方法中终端设备的功能。
在另一种可选实现方式中,这些网络设备或通信设备的功能程序存储在通信装置1600外部的存储器中。当网络设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述网络设备的功能程序的部分或全部内容。当通信设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述通信设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些网络设备或通信设备的功能程序被设置于存储在通信装置1600内部的存储器1602中。当通信装置1600内部的存储器1602中存储有网络设备的功能程序时,通信装置1600可被设置在本申请实施例的网络设备中。当通信装置1600内部的存储器1602中存储有通信设备的功能程序时,通信装置1600可被设置在本申请实施例的通信设备中。
在又一种可选实现方式中,这些网络设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。或,这些通信设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些通信设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。
在本申请实施例中,通信设备1200、网络设备1300、通信设备1400、网络设备1500及通信装置1600对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图12所示的实施例提供的通信设备1200还可以通过其他形式实现。例如该通 信设备包括处理模块和收发模块。例如处理模块可通过处理器1201实现,收发模块可通过收发器1202实现。其中,处理模块可以用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S42及S45,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
收发模块,用于使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;
处理模块,用于在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试;
处理模块,用于完成所述第二随机接入尝试包括的根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率;
收发模块,用于使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图13所示的实施例提供的网络设备1200还可以通过其他形式实现。例如该网络设备包括处理模块和收发模块。例如处理模块可通过处理器1301实现,收发模块可通过收发器1302实现。其中,处理模块可以用于执行图4所示的实施例中的确定第一功率控制参数和第二功率控制参数等过程,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S42及S45,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于接收通信设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述通信设备在所述第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
收发模块,还用于接收所述通信设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述通信设备在所述第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图14所示的实施例提供的通信设备1400还可以通过其他形式实现。例如该通信设备包括处理模块和收发模块。例如处理模块可通过处理器1401实现,收发模块可通过收发器1402实现。其中,处理模块可以用于执行图10所示的实施例中的S102,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图10所示的实施例中的S101及S103,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于在所述通信设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
处理模块,用于对于所述重复次数信息的任何取值,均根据功率控制参数计算发射功率;
收发模块,还用于使用所述发射功率向所述网络设备发送所述第一上行消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15所示的实施例提供的网络设备1400还可以通过其他形式实现。例如该网络设备包括处理模块和收发模块。例如处理模块可通过处理器1501实现,收发模块可通过收发器1502实现。其中,处理模块可以用于执行图10所示的实施例中确定重复次数信息等过程,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图10所示的实施例中的S42及S45,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于向通信设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
收发模块,还用于接收所述通信设备用发射功率发送的所述第一上行消息,所述发射功率是所述通信设备对于所述重复次数信息的任何取值都根据所述功率控制参数计算得到的。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信设备1200、网络设备1300、通信设备1400、网络设备1500及通信装置1600可用于执行图4所示的实施例或图10所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。需注意的是,本申请实施例中,通信设备和终端设备可以理解为同一概念,可互相替换。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种传输消息的方法,其特征在于,包括:
    终端设备在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
    所述终端设备使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;
    所述终端设备在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述终端设备在第一随机接入尝试失败后进行的下一次随机接入尝试;
    所述第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述确定所述第二发射功率包括确定所述第二发射功率大于或等于所述第一发射功率;
    所述终端设备使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
  2. 如权利要求1所述的方法,其特征在于,
    所述第一功率控制参数包括第一功率偏移量,所述终端设备根据第一功率控制参数和第一随机接入前导消息的发射功率确定第一发射功率,包括:
    所述终端设备确定所述第一随机接入前导消息的发射功率与所述第一功率偏移量之和为所述第一发射功率;
    所述第二功率控制参数包括第二功率偏移量,所述终端设备根据第二功率控制参数和第二随机接入前导消息的发射功率确定第二发射功率,包括:
    所述终端设备确定所述第二随机接入前导消息的发射功率与所述第二功率偏移量之和为所述第二发射功率。
  3. 如权利要求1所述的方法,其特征在于,
    所述终端设备根据第一功率控制参数和第一随机接入前导消息的发射功率确定第一发射功率,包括:
    所述终端设备根据所述第一功率控制参数计算第三发射功率;所述终端设备确定所述第一随机接入前导消息的发射功率以及所述第三发射功率中取值大的发射功率为所述第一发射功率;
    所述终端设备根据第二功率控制参数和第二随机接入前导消息的发射功率确定第二发射功率,包括:
    所述终端设备根据所述第二功率控制参数计算第四发射功率;所述终端设备确定所述第二随机接入前导消息的发射功率以及所述第四发射功率中取值大的发射功率为所述第二发射功率。
  4. 如权利要求1所述的方法,其特征在于,
    所述终端设备根据第一随机接入前导消息的发射功率确定第一发射功率,包括:
    所述终端设备确定所述第一随机接入前导消息的发射功率为所述第一发射功率;
    所述终端设备根据第二随机接入前导消息的发射功率确定第二发射功率,包括:
    所述终端设备确定所述第二随机接入前导消息的发射功率为所述第二发射功率。
  5. 如权利要求1至4任一项所述的方法,其特征在于,
    所述第一功率控制参数包括以下参数中的至少一项:
    在所述第一随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第一发射功率;
    所述第二功率控制参数包括以下参数中的至少一项:
    在所述第二随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率。
  6. 一种传输消息的方法,其特征在于,包括:
    终端设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,所述终端设备从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
    对于所述重复次数信息的任何取值,所述终端设备均根据功率控制参数计算发射功率;
    所述终端设备使用所述发射功率向所述网络设备发送所述第一上行消息。
  7. 如权利要求6所述的方法,其特征在于,所述终端设备为第二版本的终端设备,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第一信令和第二信令,所述第一信令用于指示第一版本的终端设备,所述第二信令用于指示所述第二版本的终端设备;
    所述终端设备根据所述第二信令进行随机接入尝试,其中,
    所述第一信令用于指示所述第一版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;
    所述第二信令用于指示所述第二版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。
  8. 如权利要求6或7所述的方法,其特征在于,所述功率控制参数包括以下参数中的至少一项:
    所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、所述第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数。
  9. 一种传输消息的方法,其特征在于,包括:
    网络设备接收终端设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述终端设备在第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
    所述网络设备接收所述终端设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述终端设备在第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述终端设备在所述第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
  10. 如权利要求9所述的方法,其特征在于,所述方法进一步包括:
    所述网络设备确定所述第一功率控制参数,所述第一功率控制参数包括以下参数中的至少一项:
    在所述第一随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第一发射功率;
    所述网络设备向终端设备发送第一指示信令,所述第一指示信令用于指示所述第一功率控制参数;
    所述网络设备确定所述第二功率控制参数,所述第二功率控制参数包括以下参数中的至少一项:
    在所述第二随机接入尝试中,所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率;
    所述网络设备向终端设备发送第二指示信令,所述第二指示信令用于指示所述第二功率控制参数。
  11. 一种传输消息的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
    所述网络设备接收所述终端设备用发射功率发送的所述第一上行消息,所述发射功率是所述终端设备对于所述重复次数信息的任何取值均根据所述功率控制参数计算得到的。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一信令和第二信令,所述第一信令用于指示第一版本的终端设备,所述第二信令用于指示所述第二版本的终端设备;其中,
    所述第一信令用于指示所述第一版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;
    所述第二信令用于指示所述第二版本的终端设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法进一步包括:
    所述网络设备确定所述功率控制参数,所述功率控制参数包括以下参数中的至少一项:
    所述终端设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、所述第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数;
    所述网络设备向终端设备发送第二指示信令,所述第二指示信令用于指示所述功率控制参数。
  14. 一种通信设备,其特征在于,包括:
    处理器,用于在覆盖增强等级0进行第一随机接入尝试,所述第一随机接入尝试包括根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定第一发射功率;所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
    收发器,用于使用所述第一发射功率向网络设备发送第一传输消息和/或第一上行控制消息;所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息;
    所述处理器,还用于在所述覆盖增强等级0进行第二随机接入尝试,所述第二随机接入尝试为所述通信设备在第一随机接入尝试失败后进行的下一次随机接入尝试;
    所述第二随机接入尝试包括根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定第二发射功率;所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息;所述处理器确定所述第二发射功率大于或等于所述第一发射功率;
    所述收发器,还用于使用所述第二发射功率向网络设备发送第二传输消息和/或第二上行控制消息,所述第二传输消息为第二随机接入尝试中的第三消息,所述第二上行控制消息为第二随机接入尝试中第四消息的反馈消息。
  15. 如权利要求14所述的通信设备,其特征在于,
    所述第一功率控制参数包括第一功率偏移量,所述处理器具体用于:
    确定所述第一随机接入前导消息的发射功率与所述第一功率偏移量之和为所述第一发射功率;
    所述第二功率控制参数包括第二功率偏移量,所述处理器具体用于:
    确定所述第二随机接入前导消息的发射功率与所述第二功率偏移量之和为所述第二发射功率。
  16. 如权利要求14所述的通信设备,其特征在于,
    所述处理器具体用于:
    根据所述第一功率控制参数计算第三发射功率;确定所述第一随机接入前导消息的发 射功率以及所述第三发射功率中取值大的发射功率为所述第一发射功率;
    所述处理器具体用于:
    根据所述第二功率控制参数计算第四发射功率;确定所述第二随机接入前导消息的发射功率以及所述第四发射功率中取值大的发射功率为所述第二发射功率。
  17. 如权利要求14所述的通信设备,其特征在于,
    所述处理器具体用于:
    确定所述第一随机接入前导消息的发射功率为所述第一发射功率;
    所述处理器具体用于:
    确定所述第二随机接入前导消息的发射功率为所述第二发射功率。
  18. 如权利要求14至17任一项所述的通信设备,其特征在于,
    所述第一功率控制参数包括以下参数中的至少一项:
    在所述第一随机接入尝试中,所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第一发射功率;
    所述第二功率控制参数包括以下参数中的至少一项:
    在所述第二随机接入尝试中,所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率。
  19. 一种通信设备,其特征在于,包括:
    收发器,用于在所述通信设备的RSRP处于覆盖增强等级0所对应的RSRP范围内时,从网络设备接收重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
    处理器,用于对于所述重复次数信息的任何取值,均根据功率控制参数计算发射功率;
    所述收发器,还用于使用所述发射功率向所述网络设备发送所述第一上行消息。
  20. 如权利要求19所述的通信设备,其特征在于,所述通信设备为第二版本的通信设备,
    所述收发器还用于:接收来自所述网络设备的第一信令和第二信令,所述第一信令用于指示第一版本的通信设备,所述第二信令用于指示所述第二版本的通信设备;
    所述处理器还用于根据所述第二信令进行随机接入尝试,其中,
    所述第一信令用于指示所述第一版本的通信设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;
    所述第二信令用于指示所述第二版本的通信设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以 及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。
  21. 如权利要求19或20所述的通信设备,其特征在于,所述功率控制参数包括以下参数中的至少一项:
    所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、所述第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数。
  22. 一种网络设备,其特征在于,包括:
    收发器,用于接收通信设备在覆盖增强等级0用第一发射功率发送的第一传输消息和/或第一上行控制消息,所述第一发射功率是所述通信设备在第一随机接入尝试中根据第一功率控制参数和/或第一随机接入前导消息的发射功率确定的,所述第一传输消息为所述第一随机接入尝试中的第三消息,所述第一上行控制消息为所述第一随机接入尝试中第四消息的反馈消息,所述第一随机接入前导消息为所述第一随机接入尝试中的随机接入前导消息;
    所述收发器,还用于接收所述通信设备在所述覆盖增强等级0用第二发射功率发送的第二传输消息和/或第二上行控制消息,所述第二发射功率是所述通信设备在第二随机接入尝试中根据第二功率控制参数和/或第二随机接入前导消息的发射功率确定的,所述第二发射功率大于或等于所述第一发射功率,所述第二随机接入尝试为所述通信设备在所述第一随机接入尝试失败后进行的下一次随机接入尝试,所述第二传输消息为所述第二随机接入尝试中的第三消息,所述第二上行控制消息为所述第二随机接入尝试中第四消息的反馈消息,所述第二随机接入前导消息为所述第二随机接入尝试中的随机接入前导消息。
  23. 如权利要求22所述的网络设备,其特征在于,所述网络设备还包括处理器;
    所述处理器用于确定所述第一功率控制参数,所述第一功率控制参数包括以下参数中的至少一项:
    在所述第一随机接入尝试中,所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第一传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第一功率爬坡步长、第一功率偏移量以及第三功率偏移量,其中,所述第三功率爬坡步长用于确定所述第一随机接入前导消息的发射功率,所述第一功率爬坡步长、所述第一功率偏移量和所述第三功率偏移量用于确定所述第一发射功率;
    所述收发器,还用于向通信设备发送第一指示信令,所述第一指示信令用于指示所述第一功率控制参数;
    所述处理器还用于确定所述第二功率控制参数,所述第二功率控制参数包括以下参数中的至少一项:
    在所述第二随机接入尝试中,所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、第三功率爬坡步长、前导发送的重复次数、所述第二传输消息相对于前导的功率偏移量、路损折算比例系数、传输带宽参数、第二功率爬坡步长、第二功率偏移量以及第四功率偏移量,其中,所述第三功率爬坡步长用于确定所述第二随机接入前导消息的发射功率,所述第二功率爬坡步长、所述第二功率偏移量和所述第四功率偏移量用于确定所述第二发射功率;
    所述收发器还用于向通信设备发送第二指示信令,所述第二指示信令用于指示所述第 二功率控制参数。
  24. 一种网络设备,其特征在于,包括:
    收发器,用于向通信设备发送第一指示信令,所述第一指示信令用于指示重复次数信息,所述重复次数信息是指示第一上行消息的重复次数,所述第一上行消息包括随机接入尝试中的第三消息或者第四消息的反馈消息;
    所述收发器,还用于接收所述通信设备用发射功率发送的所述第一上行消息,所述发射功率是所述通信设备对于所述重复次数信息的任何取值均根据所述功率控制参数计算得到的。
  25. 如权利要求24所述的网络设备,其特征在于,
    所述收发器,还用于发送第一信令和第二信令,所述第一信令用于指示第一版本的通信设备,所述第二信令用于指示所述第二版本的通信设备;其中,
    所述第一信令用于指示所述第一版本的通信设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项;
    所述第二信令用于指示所述第二版本的通信设备的总的最大随机接入尝试次数、覆盖增强等级0下的最大随机接入尝试次数、覆盖增强等级1下的最大随机接入尝试次数、以及覆盖增强等级2下的最大随机接入尝试次数中的至少一项。
  26. 如权利要求24或25所述的网络设备,其特征在于,所述网络设备还包括处理器;
    所述处理器用于确定所述功率控制参数,所述功率控制参数包括以下参数中的至少一项:
    所述通信设备的最大发射功率、前导目标接收功率、下行路径损耗、初始前导目标接收功率、偏移功率、前导尝试次数、功率爬坡步长、前导发送的重复次数、所述第三消息相对于前导的功率偏移量、路损折算比例系数、以及传输带宽参数;
    所述收发器,还用于向通信设备发送第二指示信令,所述第二指示信令用于指示所述功率控制参数。
  27. 一种通信设备,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至5中任一项所述的传输消息的方法。
  28. 一种通信设备,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求6至8中任一项所述的传输消息的方法。
  29. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被终端设备执行时使得,所述终端设备执行如权利要求1至5中任一项所述的传输消息的方法。
  30. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被终端设备执行时使得,所述终端设备执行如权利要求6至8中任一项所述的传输消息的方法。
  31. 一种包含指令的计算机程序产品,其特征在于,所述指令被计算机执行时使得计算机执行如权利要求1至5中任一项所述的传输消息的方法。
  32. 一种包含指令的计算机程序产品,其特征在于,所述指令被计算机执行时使得计 算机执行如权利要求6至8中任一项所述的传输消息的方法。
PCT/CN2017/111721 2017-11-17 2017-11-17 一种传输消息的方法及设备 WO2019095307A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP17932047.8A EP3697139A4 (en) 2017-11-17 2017-11-17 MESSAGE TRANSMISSION PROCESS AND DEVICE
PCT/CN2017/111721 WO2019095307A1 (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备
CN202210681095.2A CN115134018B (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备
CN202210681254.9A CN115134019A (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备
CN201780096267.7A CN111279757B (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备
BR112020009319-0A BR112020009319A2 (pt) 2017-11-17 2017-11-17 método de transmissão de mensagem e dispositivo
CN202210680241.XA CN115134017B (zh) 2017-11-17 2017-11-17 一种传输消息的方法、设备、计算机存储介质及芯片
US16/875,226 US11523347B2 (en) 2017-11-17 2020-05-15 Message transmissions based on power control parameters
US17/955,316 US20230020868A1 (en) 2017-11-17 2022-09-28 Message transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111721 WO2019095307A1 (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/875,226 Continuation US11523347B2 (en) 2017-11-17 2020-05-15 Message transmissions based on power control parameters

Publications (1)

Publication Number Publication Date
WO2019095307A1 true WO2019095307A1 (zh) 2019-05-23

Family

ID=66539224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111721 WO2019095307A1 (zh) 2017-11-17 2017-11-17 一种传输消息的方法及设备

Country Status (5)

Country Link
US (2) US11523347B2 (zh)
EP (1) EP3697139A4 (zh)
CN (4) CN115134019A (zh)
BR (1) BR112020009319A2 (zh)
WO (1) WO2019095307A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201831A (zh) * 2019-11-11 2020-05-26 北京小米移动软件有限公司 随机接入方法及装置、终端及存储介质
CN112867168A (zh) * 2019-11-27 2021-05-28 中国移动通信集团陕西有限公司 窄带物联网高并发接入方法、装置、计算设备及存储介质
CN114071777A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种随机接入增强的方法、网络设备和终端
WO2022067571A1 (zh) * 2020-09-29 2022-04-07 华为技术有限公司 一种通信方法及装置
WO2023051258A1 (zh) * 2021-09-29 2023-04-06 北京紫光展锐通信技术有限公司 物理随机接入信道处理方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095307A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种传输消息的方法及设备
WO2020167202A2 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure
WO2020220323A1 (zh) * 2019-04-30 2020-11-05 富士通株式会社 随机接入的方法、装置和通信系统
US11646826B2 (en) * 2020-01-29 2023-05-09 Qualcomm Incorporated Message repetition configurations for random access procedures
CN113873630B (zh) * 2020-06-30 2023-07-11 华为技术有限公司 一种上行功率控制方法及终端
US11889576B2 (en) * 2020-08-14 2024-01-30 Qualcomm Incorporated Techniques for radio link management
CN114287166B (zh) * 2021-12-06 2024-04-05 北京小米移动软件有限公司 一种基于四步随机接入的第三条消息重复的覆盖增强方法
CN117560787A (zh) * 2022-08-02 2024-02-13 大唐移动通信设备有限公司 随机接入资源确定方法、终端、装置及存储介质
WO2024026895A1 (en) * 2022-08-05 2024-02-08 Nec Corporation Methods, devices, and medium for communication
WO2024031573A1 (zh) * 2022-08-11 2024-02-15 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918895A (zh) * 2011-05-31 2013-02-06 华为技术有限公司 非自适应重传中的功率控制方法及用户设备
CN104811995A (zh) * 2014-01-29 2015-07-29 阿尔卡特朗讯 控制重复等级测量报告的发送以增强覆盖的方法和设备
WO2016153025A1 (ja) * 2015-03-25 2016-09-29 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
CN106961721A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
WO2015056924A1 (ko) * 2013-10-14 2015-04-23 주식회사 케이티 랜덤 액세스 프리앰블 송수신 방법 및 그 장치
US9596660B2 (en) * 2013-10-14 2017-03-14 Kt Corporation Method for transmitting and receiving random access preamble and device therefor
EP3413642B1 (en) * 2014-01-28 2021-06-16 Huawei Technologies Co., Ltd. Method for determining transmit power in coverage enhancement scenario and device
KR102470913B1 (ko) * 2014-01-29 2022-11-28 인터디지탈 패튼 홀딩스, 인크 커버리지 향상 무선 송신을 위한 액세스 및 링크 적응 방법
CN105432121A (zh) * 2014-04-23 2016-03-23 华为技术有限公司 随机接入方法、随机接入装置及用户设备
WO2016033989A1 (zh) * 2014-09-04 2016-03-10 华为技术有限公司 信息传输方法、用户侧设备及网络侧设备
CN105636232B (zh) * 2014-11-28 2019-03-15 联芯科技有限公司 一种随机接入过程的处理方法和装置
US10595280B2 (en) * 2015-03-06 2020-03-17 Qualcomm Incorporated Repetition level coverage enhancement techniques for physical random access channel transmissions
JP2018093248A (ja) * 2015-04-03 2018-06-14 シャープ株式会社 無線通信システム、端末装置、基地局装置、無線通信方法および集積回路
WO2016161606A1 (zh) * 2015-04-09 2016-10-13 华为技术有限公司 消息发送/接收方法、覆盖增强等级确定/获取方法及相关设备
CA2995677C (en) * 2015-08-14 2023-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure for mtc operation
CN109392071B (zh) * 2017-08-11 2021-06-08 中兴通讯股份有限公司 一种功率控制的方法及装置
WO2019095307A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种传输消息的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918895A (zh) * 2011-05-31 2013-02-06 华为技术有限公司 非自适应重传中的功率控制方法及用户设备
CN104811995A (zh) * 2014-01-29 2015-07-29 阿尔卡特朗讯 控制重复等级测量报告的发送以增强覆盖的方法和设备
WO2016153025A1 (ja) * 2015-03-25 2016-09-29 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
CN106961721A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"4-step RACH Procedure Consideration", 3GPP TSG-RAN WG1 NR ADHOC, RL-1700791, 20 January 2017 (2017-01-20), XP051208312 *
See also references of EP3697139A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201831A (zh) * 2019-11-11 2020-05-26 北京小米移动软件有限公司 随机接入方法及装置、终端及存储介质
WO2021092734A1 (zh) * 2019-11-11 2021-05-20 北京小米移动软件有限公司 随机接入方法及装置、终端及存储介质
EP4061084A4 (en) * 2019-11-11 2023-07-19 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR RANDOM ACCESS, TERMINAL, AND STORAGE MEDIUM
CN112867168A (zh) * 2019-11-27 2021-05-28 中国移动通信集团陕西有限公司 窄带物联网高并发接入方法、装置、计算设备及存储介质
CN112867168B (zh) * 2019-11-27 2024-03-22 中国移动通信集团陕西有限公司 窄带物联网高并发接入方法、装置、计算设备及存储介质
CN114071777A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种随机接入增强的方法、网络设备和终端
WO2022067571A1 (zh) * 2020-09-29 2022-04-07 华为技术有限公司 一种通信方法及装置
WO2023051258A1 (zh) * 2021-09-29 2023-04-06 北京紫光展锐通信技术有限公司 物理随机接入信道处理方法及装置

Also Published As

Publication number Publication date
CN115134019A (zh) 2022-09-30
CN115134017A (zh) 2022-09-30
CN115134018B (zh) 2024-04-26
BR112020009319A2 (pt) 2020-10-27
CN111279757A (zh) 2020-06-12
US20200288408A1 (en) 2020-09-10
US11523347B2 (en) 2022-12-06
EP3697139A4 (en) 2020-10-28
CN111279757B (zh) 2022-06-14
EP3697139A1 (en) 2020-08-19
CN115134017B (zh) 2023-04-11
CN115134018A (zh) 2022-09-30
US20230020868A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2019095307A1 (zh) 一种传输消息的方法及设备
EP3605932B1 (en) Beam management methods, terminal device, network device and computer program
JP7306501B2 (ja) 基地局、基地局における方法、及び無線端末
US20200187266A1 (en) Random access method, device, and system
WO2017028644A1 (zh) 一种mtc ue随机接入的方法及装置
WO2019157911A1 (zh) 波束管理方法、终端、网络设备以及存储介质
CN111989959B (zh) 一种信息发送、接收方法及装置
WO2021063344A1 (zh) 一种随机接入方法及装置
WO2020191588A1 (zh) 信道检测方法、装置及存储介质
WO2021031046A1 (zh) 一种随机接入方法、终端设备和网络设备
US20170359838A1 (en) Method for transmitting random access response, base station and user equipment
WO2019214583A1 (zh) 上行传输的方法和用户设备
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2023207657A1 (zh) 随机接入过程的控制方法和相关设备
WO2020220311A1 (en) Systems and methods of enhanced random access procedure
WO2019041261A1 (zh) 一种通信方法及设备
CN108702691B (zh) 一种发送通信消息的方法和装置
WO2017166023A1 (zh) 一种随机接入的方法及装置
WO2020061961A1 (zh) 测量信道质量的方法和装置
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
CN116456381A (zh) 测量方法及装置、存储介质、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017932047

Country of ref document: EP

Effective date: 20200511

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009319

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009319

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200511