WO2023207657A1 - 随机接入过程的控制方法和相关设备 - Google Patents

随机接入过程的控制方法和相关设备 Download PDF

Info

Publication number
WO2023207657A1
WO2023207657A1 PCT/CN2023/088729 CN2023088729W WO2023207657A1 WO 2023207657 A1 WO2023207657 A1 WO 2023207657A1 CN 2023088729 W CN2023088729 W CN 2023088729W WO 2023207657 A1 WO2023207657 A1 WO 2023207657A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink signal
signal
terminal
configuration information
Prior art date
Application number
PCT/CN2023/088729
Other languages
English (en)
French (fr)
Inventor
敦泊森
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207657A1 publication Critical patent/WO2023207657A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to communication technology, and in particular, to a control method for a random access process, network equipment, a signal conditioning device, a terminal, a computer-readable storage medium and a computer program product.
  • RIS Reconfigurable Intelligent Surface
  • Smart Repeater Smart Repeater
  • the position of the terminal can be roughly estimated by distinguishing the accessed synchronization signal and PBCH block (SSB) beams, but the accuracy of the method is low, and due to the beam coverage of frequency range two (FR2)
  • SSB PBCH block
  • FR2 frequency range two
  • the range is relatively large, and there may be terminals connected directly and terminals connected through RIS/Smart Repeater relays under the same receiving beam, so it is difficult to accurately identify the type of terminal during the access stage.
  • Embodiments of the present application provide a control method for a random access process, network equipment, a signal conditioning device, a terminal, a computer-readable storage medium, and a computer program product for identifying terminal types in the access phase.
  • embodiments of the present application provide a method for controlling a random access process, which is applied to network equipment.
  • the method includes:
  • the first configuration information is used to instruct the terminal to repeatedly send multiple uplink signals after receiving the random access response message.
  • the multiple uplink signals include a first uplink signal and a third uplink signal. 2. Uplink signal;
  • the type of the terminal is determined based on the uplink signal reception conditions.
  • embodiments of the present application provide a method for controlling a random access process, which is applied to a signal conditioning device.
  • the method includes:
  • the plurality of uplink signals are relayed to the network device according to the second configuration information.
  • the plurality of uplink signals include a first uplink signal and a second uplink signal, and the first uplink signal and the third uplink signal are Two uplink signals pass through different presets mode relay, so that the network device determines the type of the terminal according to the uplink signal reception situation.
  • embodiments of the present application provide a method for controlling a random access process, which is applied to terminals.
  • the method includes:
  • Multiple uplink signals are repeatedly sent to the signal conditioning device according to the first configuration information, and the multiple uplink signals are relayed to the network device through the signal conditioning device, so that the network device determines the uplink signal reception condition based on the uplink signal reception.
  • the type of terminal, the plurality of uplink signals include a first uplink signal and a second uplink signal, and the first uplink signal and the second uplink signal are relayed by the signal conditioning device in different preset ways.
  • embodiments of the present application provide a network device, where the network device includes:
  • Program instructions are stored on the memory, and when executed by the processor, the program instructions cause the processor to perform the control method of the random access process as described in the first aspect above.
  • inventions of the present application provide a signal conditioning device.
  • the signal conditioning device includes:
  • Program instructions are stored on the memory, and when executed by the processor, the program instructions cause the processor to perform the control method of the random access process as described in the second aspect above.
  • embodiments of the present application provide a terminal, where the terminal includes:
  • Program instructions are stored on the memory, and when executed by the processor, the program instructions cause the processor to perform the control method of the random access process as described in the third aspect above.
  • embodiments of the present application provide a computer-readable storage medium that stores program instructions.
  • the program instructions When the program instructions are executed by a computer, the above first aspect, second aspect, or third aspect is implemented.
  • embodiments of the present application provide a computer program product.
  • the computer program product stores program instructions. When executed by a computer, the program instructions enable the computer to implement the first aspect, the second aspect, or the above.
  • the network device delivers first configuration information to the terminal.
  • the first configuration information is used to instruct the terminal to repeatedly send multiple uplink signals after receiving the random access response message.
  • the signal includes a first uplink signal and a second uplink signal; the network device sends second configuration information to the signal conditioning device, and the second configuration information is used to instruct the signal conditioning device to relay the first uplink signal in different preset ways.
  • An uplink signal and the second uplink signal when the network device receives multiple uplink signals repeatedly sent by the terminal according to the random access response message, the network device determines the type of the terminal based on the uplink signal reception.
  • the network equipment Since the terminal accessed through the signal conditioning device, multiple uplink signals sent by it are relayed by the signal conditioning device to the network equipment in different preset ways, so that these uplink signals relayed in different preset ways are transmitted to the network equipment side. It has a large difference, so the network equipment can judge whether these uplink signals from the terminal are sent directly by the terminal or relayed by the signal conditioning device based on the difference between the multiple uplink signals received, and then realize the The terminal type is identified during the access phase.
  • Figure 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • Figure 2 is a flow chart of a control method applied to a random access process on the network device side provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the format of RACH-Config Common information provided by the embodiment of this application;
  • Figure 4 is a flow chart for determining the type of terminal in the embodiment of the present application.
  • Figure 5 is a flow chart of a control method for a random access process applied to the signal conditioning device side provided by an embodiment of the present application;
  • Figure 6 is a flow chart of a control method applied to a random access process on the terminal side provided by an embodiment of the present application
  • Figure 7 is a schematic flow chart of Example 1 provided by the embodiment of this application.
  • Figure 8 is a schematic flow chart of Example 2 provided by the embodiment of this application.
  • Figure 9 is a schematic flow chart of Example 3 provided by the embodiment of this application.
  • Figure 10 is a schematic flow chart of Example 4 provided by the embodiment of this application.
  • Figure 11 is a schematic flow chart of Example 5 provided by the embodiment of this application.
  • Figure 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a signal conditioning device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • At least one of the following and similar expressions refers to any group of these items, including any group of singular or plural items.
  • at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c, or, a and b and c, where a, b, c can be a single , or multiple.
  • a major problem in high-frequency communications is that signal energy attenuates sharply as the transmission distance increases, resulting in a short signal transmission distance and affecting the signal coverage of the cell.
  • RIS reconfigurable intelligent surface
  • Smart Repeater Smart Repeater
  • FIG. 1 it is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system shown in Figure 1 It includes network equipment 10, signal conditioning device 20 and multiple terminals (31, 41, 42).
  • terminals can be divided into two categories: the first category is a terminal located within the direct coverage of the network device and directly connected to the network device, such as the terminal 31 in Figure 1; the second category is located within the direct coverage of the network device.
  • terminals that access the network equipment through the signal conditioning device such as terminals 41 and 42 in Figure 1, that is to say, the information between the network device 10 and the terminals 41 and 42 needs to be relayed through the signal conditioning device 20.
  • the signal conditioning device 20 here can be understood as a RIS or Smart Repeater.
  • the network equipment involved in the embodiments of the present application may be a node in a wireless access network, may also be called a base station, or may be called a Radio Access Network (Radio Access Network, RAN) node (or device).
  • the network equipment may include an evolutionary base station (NodeB or eNB or e-NodeB, evolutionary Node B) in a Long Term Evolution (Long Term Evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as Traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can also include the next generation node B (Next generation node B, gNB) in the 5G new radio (new radio, NR) system, or it can also include transmission Reception point (Transmission Reception Point, TRP), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (Base Band Unit, BBU), baseband pool BBU pool, or WiFi
  • TRP Transmission
  • network equipment can serve as a layer 1 (L1) relay (Relay), or as a base station, or as a DU, or it can be used as an integrated access and backhaul (IAB) node; or the network device can be a device that implements base station functions in the IoT, such as Vehicle-to-everything (V2X), equipment
  • L1 layer 1
  • Relay relay
  • IAB integrated access and backhaul
  • the network device can be a device that implements base station functions in the IoT, such as Vehicle-to-everything (V2X), equipment
  • V2X Vehicle-to-everything
  • the embodiments of this application are not limited to devices that implement base station functions in Device to Device (D2D) or Machine to Machine (M2M).
  • the terminal involved in the embodiments of this application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, and wireless communication equipment. , user agent or user device.
  • the terminal can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (Personal Digital Assistant, PDA), or a device with wireless communication functions Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved communication networks, etc., the embodiments of this application do not limited.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the smart metasurface (RIS) involved in the embodiment of the present application is an artificial electromagnetic surface structure with programmable electromagnetic characteristics. Its panel contains a large number of electromagnetic units arranged in a matrix, which can be controlled by a control circuit. Dynamically regulating the electromagnetic properties of electromagnetic units and realizing intelligent reconstruction of wireless signal propagation characteristics in three-dimensional space can break through the limitations of passive adaptation to traditional wireless environments.
  • the smart repeater (Smart Repeater) involved in the embodiment of the present application can be considered as a signal relay device deployed between the network node and the terminal device to enhance the performance of the link.
  • the smart repeater Smart Repeater
  • the downlink information from network nodes is received, enhanced and amplified, and then sent to the terminal device; the same is true for the uplink.
  • base station will be used to refer to network equipment
  • RIS or “Smart Repeater” will be used to refer to signal conditioning devices
  • UE or “UE” will be used to refer to network equipment.
  • User refers to the terminal.
  • the random access process refers to the process from when the user attempts to access the network by sending a random access preamble to when a basic signaling connection is established with the network. Random access is a very critical step in the mobile communication system, and it is also the last step in establishing a communication link between the terminal device and the network. Terminal devices can interact with network devices through random access. Depending on whether the user monopolizes the preamble resource, the user's random access method can be divided into contention-based random access (Content on-based Random Access) and non-contention-based random access (Contention-free Random Access).
  • the competitive random access process mainly includes the following four steps: In the first step, the terminal randomly selects a preamble from the preamble resource pool and sends a random access request to the network device through the first message Msg1, including random access. Preamble; in the second step, the network device sends a Random Access Response (RAR) to the terminal through the second message Msg2, including a random access preamble identifier and a temporary cell-radio network temporary identifier (Cell-Radio Network Temporary). Identifier, CRNTI) and other information, as well as the time-frequency resources allocated for the terminal’s next uplink transmission; in the third step, the terminal sends a Radio Resource Control (RRC) connection request to the network device through the third message Msg3.
  • RAR Random Access Response
  • CRNTI Cell-Radio Network Temporary
  • Msg4 contains the identity of the user terminal that won the conflict resolution.
  • the user upgrades the temporary C-RNTI to C-RNTI, sends an ACK signal to the base station, completes the random access process, and waits for scheduling by the base station. Otherwise, the user will start a new random access process after a delay.
  • the non-contention random access process mainly includes the following two steps: first, the terminal sends the allocated random access preamble to the network device through the A message MsgA (random access request); second, the network device detects After the random access preamble is assigned, information such as timing advance and uplink resource allocation is sent to the terminal through the B message MsgB (Random Access Response RAR (Random Access Response)). After receiving the random access response, the user considers that uplink synchronization has been completed and waits for further scheduling by the base station. Therefore, the non-contention-based random access process only includes two steps: step one is sending the preamble sequence; step two is sending the random access response.
  • the terminal is connected to the network device via RIS/Smart Repeater, then the interactive information between the terminal and the network device during the above random access process must be realized through the RIS/Smart Repeater relay.
  • RIS/Smart Repeater relay For network equipment, during the random access process, if it can be identified whether the terminal's access method is direct access or access via RIS/Smart Repeater relay, then personalized strategies can be formulated, which is beneficial to RIS/ Geolocation deployment of Smart Repeater. Under the current protocol framework, the location of the terminal can be roughly estimated by distinguishing the accessed SSB beams, but the accuracy of the method is low, and because the beam coverage of FR2 is relatively large, there may be directly accessed terminals and terminals under the same receiving beam. RIS/Smart Repeater relays connected terminals, so it is difficult to accurately identify the type of terminal during the access phase.
  • embodiments of the present application provide a control method for a random access process, network equipment, a signal conditioning device, a terminal, a computer-readable storage medium, and a computer program product for realizing identification in the access phase. terminal type.
  • FIG. 2 it is a flow chart of a random access process control method provided by an embodiment of the present application. This method is applied to the network device side and includes the following steps S110-S130. Each step is introduced in sequence below:
  • Step S110 Send first configuration information to the terminal.
  • the first configuration information is used to instruct the terminal to repeatedly send multiple uplink signals after receiving the random access response message.
  • the network device delivers the first configuration information to the terminal, with the purpose of enabling the terminal to initiate After receiving the random access request and receiving the random access response from the network device, multiple uplink signals are repeatedly sent to the network device according to the first configuration information.
  • the terminal if the terminal initiates a contention random access request to the network device, then the terminal repeatedly sends multiple uplink signals to the network device, which may be multiple third messages in the random access process to the network device. (Msg3).
  • the terminal repeatedly sends multiple uplink signals to the network device, or may repeatedly send multiple physical uplink shared channels (Physical Uplink Shared Channel, PUSCH) to the network device. After receiving the uplink resources allocated by the network device, the terminal can repeatedly send PUSCH to the network device according to the allocated uplink resources.
  • PUSCH Physical Uplink Shared Channel
  • the uplink signal repeatedly sent by the terminal can also be other types of signals, and the embodiment of the present application does not limit this.
  • the first configuration information in the embodiment of the present application includes at least one of the following information: the time domain starting position of repeated transmission, the time domain interval of repeated transmission, and the number of repeated transmission signals.
  • the time domain starting position of repeated transmission indicates the time domain position of the first uplink signal among the multiple uplink signals that are repeatedly transmitted.
  • the repeated transmission of the uplink signal begins after the reception time of the response message has passed the above offset interval;
  • the time domain interval of repeated transmission indicates the transmission time domain interval of the repeatedly transmitted uplink signal, that is, the time domain interval of the two repeated transmission signals, the unit can It is the time slot, symbol, etc.;
  • the number of repeatedly transmitted signals indicates the number of repeated transmissions of the repeatedly transmitted uplink signal, for example, it is repeated 4 times, that is, the number of repeatedly transmitted signals is 4.
  • the first configuration information may contain more or less information than the above.
  • the first configuration information may not indicate the starting position of the time domain for repeated transmission, and the terminal uses the default offset interval to determine the time domain for repeated transmission. Starting position; the first configuration information may not indicate the time domain interval for repeated transmission, and the terminal uses the default time domain interval for repeated transmission; the first configuration information may not indicate the number of repeated transmission signals, and the terminal uses the default repetition The number of signals sent is repeated.
  • the network device can deliver the first configuration information to the terminal in the following ways:
  • the network device delivers the random access channel (RACH) configuration information to the terminal, and the RACH configuration information includes the information element carrying the first configuration information.
  • the RACH configuration information can be RACH-Config Common information, or RACH-Config Dedicated signaling, or RACH-Config Generic signaling.
  • the first configuration information can be added to the information element (IE) of RACH-Config Common. related fields.
  • IE information element
  • Figure 3 it is a schematic diagram of the format of RACH-Config Common information, in which the fields related to the first configuration information include K2-offset-repetition and repetition-Number-Msg3.
  • K2-offset-repetition refers to the time domain interval of repeated transmission
  • repetition-Number-Msg3 refers to the number of repeated transmission signals.
  • the network device delivers the random access response message to the terminal, and the first configuration information is carried in the random access response message.
  • the network device can deliver the first configuration information to the terminal through the RAR message in the random access process, that is, the first configuration information is carried in the RAR message in the random access process.
  • the RAR message here may specifically be the second message in the random access process (including contention or non-contention random access mode).
  • fields related to the first configuration information can be added to the RAR message, for example: k2+j (referring to the time domain starting position of repeated transmission), K2-offset-repetition (referring to the time domain interval of repeated transmission) ,repetition-Number-Msg3 (referring to repetition number of signals sent).
  • Step S120 Send second configuration information to the signal conditioning device.
  • the second configuration information is used to instruct the signal conditioning device to relay the first uplink signal and the second uplink signal in different preset ways.
  • the terminal initiates a random access request to the network device, and the network device sends a random access response to the terminal. After receiving the random access response, the terminal repeatedly sends multiple messages to the network device according to the preset first configuration information. Upward signal.
  • the multiple uplink signals repeatedly sent by the terminal include a first uplink signal and a second uplink signal.
  • the first uplink signal and the second uplink signal are different signals among multiple uplink signals repeatedly sent by the terminal.
  • the first uplink signal may include one or more signals
  • the second uplink signal may also include one or more signals.
  • the first uplink signal represents the odd-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal;
  • the second uplink signal represents the even-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal.
  • the terminal after receiving the random access response from the network device side, the terminal repeatedly sends 4 uplink signals.
  • the 1st and 3rd signals belong to the first uplink signal, and the 2nd and 4th signals belong to the 1st uplink signal.
  • the first uplink signal and the second uplink signal may also represent a specific one or more signals among multiple uplink signals repeatedly sent by the terminal. For example, after receiving the random access response from the network device side, the terminal repeatedly sent 4 uplink signals.
  • the first uplink signal specifically refers to the 1st and 2nd signals
  • the second uplink signal specifically refers to the 3rd and 2nd signals. 4 signals.
  • the network equipment sends the second configuration information to the signal conditioning device, with the purpose of causing the signal conditioning device to process the first uplink signal among these uplink signals after receiving multiple repeatedly sent uplink signals from the terminal.
  • signal and the second uplink signal are relayed in different ways.
  • signals relayed in different ways will have greater differences on the network device side; however, multiple uplink signals directly and repeatedly sent by the terminal to the network device have not been specially processed, so there will be no greater differences on the network device side. Big difference.
  • the network equipment can determine whether these uplink signals are relayed by the signal conditioning device or directly sent by the terminal based on whether the received repeatedly transmitted uplink signals have a large difference.
  • the second configuration information includes at least one of the following information: the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, changed codebook information, changed phase information, stopping.
  • the instructions include the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, changed codebook information, changed phase information, stopping.
  • the time domain starting position of the repeated transmission indicates the time domain position of the first uplink signal among the multiple uplink signals repeatedly sent by the terminal, and the signal conditioning device can determine the starting position of the uplink signal reception based on the time domain starting position.
  • the time domain interval of repeated transmission indicates the time domain interval of multiple uplink signals that are repeatedly transmitted, and the signal conditioning device can repeatedly transmit the uplink signal to the receiving terminal according to the time domain interval.
  • the number of repeatedly transmitted signals indicates the number of repeatedly transmitted uplink signals by the terminal, and the signal conditioning device can receive a corresponding number of uplink signals according to this number.
  • the signal conditioning device may specifically change the codebook information to a codebook index, so that the signal conditioning device obtains the second codebook based on the codebook index.
  • the second codebook is a codebook that is different from the first codebook.
  • the first codebook refers to the codebook originally used by the signal conditioning device to relay the current terminal signal.
  • the changed phase information is used to cause the signal conditioning device to change the phase of the first codebook to obtain the third codebook.
  • the stop-relay instruction information is used to cause the signal conditioning device to use a stop-relay strategy to relay part of the uplink signals repeatedly sent by the terminal.
  • the second configuration information may include the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, change codebook information, change phase information, and stop relay indication information.
  • the embodiments of this application do not limit the specific content of the second configuration information.
  • the signal conditioning device relays the first uplink signal and the second uplink signal in different preset ways, which may include the following implementation ways:
  • the signal conditioning device relays the first uplink signal through the first codebook, and relays the second uplink signal through the second codebook.
  • the signal conditioning device can obtain the second codebook based on the modified codebook information.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the second codebook to relay the second uplink signal. In this way, the first uplink signal is It is different from the relay method of the second uplink signal.
  • the first uplink signal is relayed through the first codebook, and the second uplink signal is relayed through the third codebook obtained by changing the phase of the first codebook.
  • the signal conditioning device can change the phase of the first codebook according to the changed phase information to obtain the third codebook.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the third codebook to relay the second uplink signal. In this way, the first uplink signal is It is different from the relay method of the second uplink signal.
  • the third method is to relay the first uplink signal through the first codebook and relay the second uplink signal through a stop-relay strategy.
  • the signal conditioning device can use the first codebook to relay the first uplink signal, and the first codebook can be used to relay the uplink signal.
  • the second uplink signal is relayed using a strategy of stopping relaying. Specifically, the panel can be closed when relaying the second uplink signal to achieve the purpose of stopping relaying.
  • the second configuration information is sent to the signal conditioning device in any of the following ways:
  • the first method is to send the second configuration information to the signal conditioning device when establishing a connection with the signal conditioning device.
  • the network device can deliver the second configuration information as part of the existing communication content in a semi-static manner when adding a RIS or Smart Repeater.
  • a terminal needs to deliver a random access response, it can deliver the second configuration information through a new
  • the second configuration information activation signaling is notified to the RIS/Smart Repeater through reference signals, data packets, etc.
  • the second configuration information is delivered to the signal conditioning device.
  • the network device can dynamically deliver the second configuration information to the RIS/Smart Repeater in the form of new reference signals, data packets, etc. when a terminal needs to deliver a random access response, and activate it directly. .
  • Step S130 When multiple uplink signals repeatedly sent by the terminal according to the random access response message are received, the type of the terminal is determined based on the uplink signal reception.
  • the types of terminals described in the embodiments of this application include the first type and the second type.
  • the first type indicates that the terminal directly accesses the network equipment
  • the second type indicates that the terminal accesses the network equipment through a signal conditioning device.
  • the type of the terminal is determined based on the uplink signal reception situation. Specifically, the type of the terminal can be determined based on the signal quality information of multiple received uplink signals.
  • the signal quality information may include Reference Signal Receiving Power (RSRP), Signal to Interference plus Noise Ratio (SINR), Channel Quality Indicator (CQI), Information such as Reference Signal Received Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • CQI Channel Quality Indicator
  • RSSI Reference Signal Received Quality
  • the type of terminal is determined based on the signal quality information of multiple received uplink signals, Specifically, it includes but is not limited to the following steps S131-S133:
  • Step S131 Obtain the first signal quality information of the first uplink signal among the multiple received uplink signals;
  • Step S132 Obtain the second signal quality information of the second uplink signal among the received multiple uplink signals
  • Step S133 Determine whether the difference between the first signal quality information and the second signal quality information is less than or equal to the preset difference threshold. If so, determine the type of the terminal to be the first type; if not, determine the type of the terminal to be the second type. .
  • the signal conditioning device uses different methods to relay the first uplink signal and the second uplink signal, so that the first uplink signal and the second uplink signal received by the network equipment side are Signal quality varies greatly.
  • the embodiment of the present application sets a reasonable gap threshold to determine whether the gap value between the first signal quality information corresponding to the first uplink signal and the second signal quality information corresponding to the second uplink signal is greater than the gap threshold, and then determines whether the terminal Belongs to the first type or the second type.
  • the first signal quality information includes a first RSRP and a first SINR
  • the second signal quality information includes a second RSRP and a second SINR
  • the gap threshold includes an RSRP gap threshold and an SINR gap threshold; when the first signal quality information and the first SINR
  • the difference value between the two signal quality information is greater than the preset difference threshold, and determining the type of the terminal to be the second type includes: when the difference value between the first RSRP and the second RSRP is greater than the preset RSRP difference threshold, and the first SINR and the second SINR are of the second type. If the difference value between the two SINRs is greater than the preset SINR difference threshold, the type of the terminal is determined to be the second type.
  • the signal quality information corresponding to the multiple first uplink signals can be averaged to obtain the first signal quality information;
  • the signal quality information corresponding to the signal is averaged to obtain the second signal quality information.
  • the first RSRP is the average of the RSRPs corresponding to the multiple first uplink signals
  • the first SINR is the average value of the RSRP corresponding to the multiple first uplink signals
  • the second RSRP is the average value of the RSRP corresponding to the plurality of second uplink signals
  • the second SINR is the average value of the SINR corresponding to the plurality of second uplink signals.
  • FIG. 5 it is a flow chart of a random access process control method provided by an embodiment of the present application. This method is applied to the signal conditioning device side and includes the following steps S210-S220. Each step is introduced in sequence below:
  • Step S210 Upon receiving multiple uplink signals repeatedly sent by the terminal according to the random access response message, obtain the second configuration information issued by the network device.
  • Step S220 Relay multiple uplink signals to the network device according to the second configuration information.
  • the multiple uplink signals include a first uplink signal and a second uplink signal, and the first uplink signal and the second uplink signal pass through different preset methods.
  • Relay allows network equipment to determine the type of terminal based on uplink signal reception.
  • the network device after receiving the second configuration information issued by the network device, if it receives multiple repeatedly sent uplink signals from the terminal, it will adjust the uplink signals in these uplink signals according to the second configuration information.
  • the first uplink signal and the second uplink signal are relayed in different ways.
  • the terminal initiates a random access request to the network device, and the network device sends a random access response to the terminal. After receiving the random access response, the terminal repeatedly sends multiple uplink signals to the network device according to the preset first configuration information.
  • the uplink signal includes the third message or PUSCH sent by the terminal during the random access process.
  • first uplink signal and the second uplink signal are different signals among multiple uplink signals repeatedly sent by the terminal.
  • the first uplink signal and the second uplink signal may respectively include one or more signals.
  • the first uplink signal represents the odd-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal;
  • the second uplink signal represents the even-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal.
  • the terminal after receiving the random access response from the network device side, the terminal repeatedly sends 4 uplink signals.
  • the 1st and 3rd signals belong to the first uplink signal, and the 2nd and 4th signals belong to the 1st uplink signal.
  • the first uplink signal and the second uplink signal may also represent a specific one or more signals among multiple uplink signals repeatedly sent by the terminal. For example, after receiving the random access response from the network device side, the terminal repeatedly sent 4 uplink signals.
  • the first uplink signal specifically refers to the 1st and 2nd signals
  • the second uplink signal specifically refers to the 3rd and 2nd signals. 4 signals.
  • the second configuration information includes at least one of the following information: the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, changed codebook information, changed phase information, stopping.
  • the instructions include the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, changed codebook information, changed phase information, stopping.
  • the time domain starting position of the repeated transmission indicates the time domain position of the first uplink signal among the multiple uplink signals repeatedly sent by the terminal, and the signal conditioning device can determine the starting position of the uplink signal reception based on the time domain starting position.
  • the time domain interval of repeated transmission indicates the time domain interval of multiple uplink signals that are repeatedly transmitted, and the signal conditioning device can repeatedly transmit the uplink signal to the receiving terminal according to the time domain interval.
  • the number of repeatedly transmitted signals indicates the number of repeatedly transmitted uplink signals by the terminal, and the signal conditioning device can receive a corresponding number of uplink signals according to this number.
  • Changing the codebook information causes the signal conditioning device to change the first codebook, which may specifically be the codebook index, so that the signal conditioning device obtains the second codebook based on the codebook index.
  • the second codebook is a codebook that is different from the first codebook.
  • the first codebook refers to the codebook originally used by the signal conditioning device to relay the current terminal signal.
  • the changed phase information is used to cause the signal conditioning device to change the phase of the first codebook to obtain the third codebook.
  • the stop-relay instruction information is used to cause the signal conditioning device to use a stop-relay strategy to relay part of the uplink signals repeatedly sent by the terminal.
  • the second configuration information may include the time domain starting position of repeated transmission, the time domain interval of repeated transmission, the number of repeated transmission signals, change codebook information, change phase information, and stop relay indication information.
  • the embodiments of this application do not limit the specific content of the second configuration information.
  • the signal conditioning device relays the first uplink signal and the second uplink signal in different preset ways, which may include the following implementation ways:
  • the signal conditioning device relays the first uplink signal through the first codebook, and relays the second uplink signal through the second codebook.
  • the signal conditioning device can obtain the second codebook based on the modified codebook information.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the second codebook to relay the second uplink signal.
  • the first uplink signal is It is different from the relay method of the second uplink signal.
  • the first codebook and the second codebook are different codebooks.
  • the first uplink signal is relayed through the first codebook, and the second uplink signal is relayed through the third codebook obtained by changing the phase of the first codebook.
  • the signal conditioning device can change the phase of the first codebook according to the changed phase information to obtain the third codebook.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the third codebook to relay the second uplink signal. In this way, the first uplink signal is It is different from the relay method of the second uplink signal.
  • the third method is to relay the first uplink signal through the first codebook and relay the second uplink signal through a stop-relay strategy.
  • the signal conditioning device is a RIS and the second configuration information contains stop relay indication information
  • the RIS can use the first codebook to relay the first uplink signal.
  • the second uplink signal is relayed using a strategy of stopping relaying. Specifically, the panel can be closed when relaying the second uplink signal to achieve the purpose of stopping relaying.
  • the signal conditioning apparatus may obtain the second configuration information issued by the network device in any of the following ways:
  • the first is to receive the second configuration information from the network device when establishing a connection with the network device;
  • the network device can deliver the second configuration information as part of the existing communication content in a semi-static manner when adding a RIS or Smart Repeater.
  • the second configuration information activation signaling is notified to the RIS/Smart Repeater through new reference signals, data packets, etc., so that the RIS/Smart Repeater detects the repeatedly sent uplink signals of the terminal. .
  • the network device can dynamically deliver the second configuration information to the RIS/Smart Repeater in the form of new reference signals, data packets, etc. when a terminal needs to deliver a random access response, and activate it directly. .
  • the signal conditioning device receives the random access response message from the network device and forwards the random access response message to the terminal.
  • the above random access response message may also carry first configuration information, and the first configuration information is used to instruct the terminal to repeatedly send multiple uplink signals after receiving the random access response message.
  • the first configuration information includes at least one of the following information: the time domain starting position of repeated transmission, the time domain interval of repeated transmission, and the number of repeated transmission signals. Among them, the time domain starting position of repeated transmission indicates the time domain position of the first uplink signal among the multiple uplink signals that are repeatedly transmitted.
  • the repeated transmission of the uplink signal begins after the reception time of the response message has passed the above offset interval;
  • the time domain interval of repeated transmission indicates the transmission time domain interval of the repeatedly transmitted uplink signal, that is, the time domain interval of the two repeated transmission signals, the unit can It is the time slot, symbol, etc.;
  • the number of repeatedly transmitted signals indicates the number of repeated transmissions of the repeatedly transmitted uplink signal, for example, it is repeated 4 times, that is, the number of repeatedly transmitted signals is 4.
  • the network equipment can determine whether these uplink signals are relayed by the signal conditioning device or directly sent by the terminal based on whether the received repeatedly transmitted uplink signals have a large difference. For example, the type of the terminal is determined based on the received signal quality information of multiple uplink signals.
  • an embodiment of the present application provides a method for controlling a random access process.
  • the method is applied to a terminal and includes the following steps S310 to S330:
  • Step S310 Upon receiving the random access response message from the network device, obtain the first configuration information issued by the network device.
  • the terminal initiates a random access request to the network device, and the network device sends a random access response to the terminal. Accordingly, after receiving the random access response, the terminal repeatedly sends multiple uplink signals to the network device according to the preset first configuration information.
  • the uplink signal includes the third message in the random access process or the physical uplink shared channel PUSCH.
  • the terminal if the terminal initiates a contention random access request to the network device, then the terminal repeatedly sends multiple uplink signals to the network device, which may be multiple third messages in the random access process to the network device. (Msg3).
  • the terminal repeatedly sends multiple uplink signals to the network device, or may repeatedly send multiple PUSCHs to the network device. After receiving the uplink resources allocated by the network device, the terminal can repeatedly send PUSCH to the network device according to the allocated uplink resources.
  • the uplink signal repeatedly sent by the terminal can also be other types of signals, and the embodiment of the present application does not limit this.
  • the first configuration information in the embodiment of the present application includes at least one of the following information: the time domain starting position of repeated transmission, the time domain interval of repeated transmission, and the number of repeated transmission signals.
  • the time domain starting position of repeated transmission indicates the time domain position of the first uplink signal among the multiple uplink signals that are repeatedly transmitted.
  • the repeated transmission of the uplink signal begins after the reception time of the response message has passed the above offset interval;
  • the time domain interval of repeated transmission indicates the transmission time domain interval of the repeatedly transmitted uplink signal, that is, the time domain interval of the two repeated transmission signals, the unit can It is the time slot, symbol, etc.;
  • the number of repeatedly transmitted signals indicates the number of repeated transmissions of the repeatedly transmitted uplink signal, for example, it is repeated 4 times, that is, the number of repeatedly transmitted signals is 4.
  • the first configuration information may contain more or less information than the above.
  • the first configuration information may not indicate the starting position of the time domain for repeated transmission, and the terminal uses the default offset interval to determine the time domain for repeated transmission. Starting position; the first configuration information may not indicate the time domain interval for repeated transmission, and the terminal uses the default time domain interval for repeated transmission; the first configuration information may not indicate the number of repeated transmission signals, and the terminal uses the default repetition The number of signals sent is repeated.
  • the terminal can obtain the first configuration information in any of the following ways:
  • the first method is to obtain the first configuration information from the random access channel RACH configuration information sent by the network device, and the random access channel RACH configuration information includes information elements carrying the first configuration information.
  • the RACH configuration information may be RACH-Config Common information, or other levels of signaling, which are not limited in the embodiments of this application.
  • RACH-Config Common information As an example, in order for the first configuration information to be carried in RACH-Config Common, fields related to the first configuration information can be added to the information element (IE) of RACH-Config Common.
  • IE information element
  • Figure 3 it is a schematic diagram of the format of RACH-Config Common information, in which the fields related to the first configuration information include K2-offset-repetition and repetition-Number-Msg3.
  • K2-offset-repetition refers to the time domain interval of repeated transmission
  • repetition-Number-Msg3 refers to the number of repeated transmission signals.
  • the first configuration information is obtained from the random access response message, and the first configuration information is carried in the random access response message.
  • the terminal can obtain the first configuration information issued by the network device through the RAR message in the random access process, that is, the first configuration information is carried in the RAR message in the random access process.
  • the RAR message here may specifically be the second message in the random access process (including contention or non-contention random access mode).
  • fields related to the first configuration information can be added to the RAR message, for example: k2+j (referring to the time domain starting position of repeated transmission), K2-offset-repetition (referring to the time domain interval of repeated transmission) ,repetition-Number-Msg3 (referring to repetition number of signals sent).
  • the types of terminals described in the embodiments of this application include the first type and the second type.
  • the first type indicates that the terminal directly accesses the network equipment, and the second type indicates that the terminal accesses the network equipment through a signal conditioning device. If the terminal is a terminal of the first type, the following step S320 is executed; if the terminal is a terminal of the second type, the following step S330 is executed.
  • Step S320 Repeatly send multiple uplink signals to the network device according to the first configuration information, so that the network device determines the type of the terminal based on the uplink signal reception.
  • the first type of terminal it directly sends the uplink signal to the network device, and no special processing is performed on any uplink signal in the process.
  • Step S330 Repeatly send multiple uplink signals to the signal conditioning device according to the first configuration information, and relay the multiple uplink signals to the network device through the signal conditioning device, so that the network device determines the type of the terminal according to the uplink signal reception situation, where the multiple uplink signals are
  • the uplink signal includes a first uplink signal and a second uplink signal, and the first uplink signal and the second uplink signal are relayed by the signal conditioning device in different preset ways.
  • the multiple uplink signals repeatedly sent by the terminal include a first uplink signal and a second uplink signal.
  • the first uplink signal and the second uplink signal are different signals among multiple uplink signals repeatedly sent by the terminal.
  • the first uplink signal may include one or more signals
  • the second uplink signal may also include one or more signals.
  • the first uplink signal represents the odd-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal;
  • the second uplink signal represents the even-numbered uplink signal among the multiple uplink signals repeatedly sent by the terminal.
  • the terminal after receiving the random access response from the network device side, the terminal repeatedly sends 4 uplink signals.
  • the 1st and 3rd signals belong to the first uplink signal, and the 2nd and 4th signals belong to the 1st uplink signal.
  • the first uplink signal and the second uplink signal may also represent a specific one or more signals among multiple uplink signals repeatedly sent by the terminal. For example, after receiving the random access response from the network device side, the terminal repeatedly sent 4 uplink signals.
  • the first uplink signal specifically refers to the 1st and 2nd signals
  • the second uplink signal specifically refers to the 3rd and 2nd signals. 4 signals.
  • the second type of terminal repeatedly sends uplink signals to the signal conditioning device.
  • the signal conditioning device will relay the first uplink signal and the second uplink signal through different preset methods, specifically including the following. ways:
  • the signal conditioning device relays the first uplink signal through the first codebook, and relays the second uplink signal through the second codebook.
  • the signal conditioning device can obtain the second codebook based on the modified codebook information.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the second codebook to relay the second uplink signal. In this way, the first uplink signal is It is different from the relay method of the second uplink signal.
  • the first uplink signal is relayed through the first codebook, and the second uplink signal is relayed through the third codebook obtained by changing the phase of the first codebook.
  • the signal conditioning device can change the phase of the first codebook according to the changed phase information to obtain the third codebook.
  • the signal conditioning device uses the first codebook to relay the first uplink signal, and uses the third codebook to relay the second uplink signal. In this way, the first uplink signal is It is different from the relay method of the second uplink signal.
  • the third method is to relay the first uplink signal through the first codebook and relay the second uplink signal through a stop-relay strategy.
  • the signal conditioning device is a RIS and the second configuration information contains stop relay indication information
  • the RIS can use the first codebook to relay the first uplink signal.
  • the second uplink signal is relayed using a strategy of stopping relaying. Specifically, the panel can be closed when relaying the second uplink signal to achieve the purpose of stopping relaying.
  • the network equipment can determine whether these uplink signals are relayed by the signal conditioning device or directly sent by the terminal based on whether the received repeatedly transmitted uplink signals have a large difference. For example, the type of the terminal is determined based on the received signal quality information of multiple uplink signals.
  • FIG. 7 it is a schematic flow chart of Example 1.
  • the scenario shown in Figure 7 is the Msg3 repeated reporting process in a competitive access scenario, which includes the following steps:
  • Step S401 the base station broadcasts the main system information block MIB and system information block SIB1 information.
  • the cell level of SIB1 from top to bottom is: SIB, ServingCellConfigCommonSIB, UplinkConfigCommonSIB, BWP-UplinkCommon, RACH-ConfigCommon, of which RACH-ConfigCommon carries
  • the information element indicating the first configuration information allows the UE to extract the first configuration information from SIB1.
  • the first configuration information includes k2+j (referring to the time domain starting position of repeated transmission), K2-offset-repetition (referring to time domain interval for repeated transmission), repetition-Number-Msg3 (referring to the number of repeated transmission signals) information.
  • Step S402 the UE reports Msg1 to the base station to initiate a contention random access process
  • Step S403 The base station sends Msg2 to the UE;
  • Step S404 According to the first configuration information, the UE reports the first Msg3 at the position of the Msg2 reception time interval k2+j slot;
  • Step S405 The UE reports the second Msg3 after the interval K2-offset-repetition according to the first configuration information
  • Step S406 The UE reports Msg3 up to the 3rd repetitionNumber-Msg3 at intervals of k2-offset-repetition.
  • FIG. 8 it is a schematic flow chart of Example 2.
  • the scenario shown in Figure 8 is the PUSCH repeated reporting process in a non-contention access scenario, which includes the following steps:
  • Step S501 The source base station delivers the first configuration information to the UE through RRC reconfiguration signaling;
  • RRC reconfiguration signaling includes SCG addition signaling of LTE base stations in EN-DC, SCG addition signaling of NR base stations in NR-DC, cell switching signaling of NR base stations during cell switching, and the cell level of RRC reconfiguration signaling. From top to bottom, they are: RRCReconfiguration, ServingCellConfigCommon, UplinkConfigCommonSIB, BWP-UplinkCommon, RACH-ConfigCommon; among them, the information element indicating the first configuration information is carried under the RACH-ConfigCommon level, so that the UE can extract the first configuration information from the reconfiguration signaling.
  • the first configuration information includes k2+j (referring to the time domain starting position of repeated transmission), K2-offset-repetition (referring to the time domain interval of repeated transmission), repetition-Number-Msg3 (referring to repeated number of signals sent) information.
  • Step S502 the UE reports Msg1 to the target base station to initiate a contention random access process
  • Step S503 The target base station sends Msg2 to the UE;
  • Step S504 the UE reports the first PUSCH at the k2+j slot position according to the first configuration information, and the PUSCH is scheduled by the RAR UL grant;
  • Step S505 The UE reports the second PUSCH after the interval K2-offset-repetition according to the first configuration information
  • Step S506 The UE reports the PUSCH up to the 3rd repetitionNumber-Msg at intervals of k2-offset-repetition.
  • FIG. 9 it is a schematic flow chart of Example 3.
  • the scenario shown in Figure 9 is the process of the base station dynamically instructing the RIS/Smart Repeater to take effect of the second configuration information, including the following steps:
  • Step S601 the base station delivers Msg2 (the second message in the random access process) to the RIS/Smart Repeater, and then the RIS/Smart Repeater relays the Msg2 to the UE;
  • Step S602 while the base station delivers Msg2, it sends the second configuration information to the RIS/Smart Repeater through a new reference signal, data packet, etc., and the RIS/Smart Repeater then takes effect.
  • the second configuration information
  • Step S603 the UE reports the first Msg3 (the third message in the random access process) to the RIS/Smart Repeater, and the RIS/Smart Repeater relays the first Msg3 to the base station through the first codebook;
  • Step S604 the UE reports the second Msg3 (the third message in the random access process) to the RIS/Smart Repeater, and the RIS/Smart Repeater relays the second Msg3 to the base station through the second codebook.
  • FIG. 10 it is a schematic flow chart of Example 4.
  • the scenario shown in Figure 10 is the process of the base station semi-dynamically instructing the RIS/Smart Repeater to take effect the second configuration information, including the following steps:
  • Step 701 The base station sends the second configuration information through the dedicated interface with the RIS/Smart Repeater. Specifically, the time domain location information (k2+j, K2-offset-repetition) of Msg3 or PUSCH is added to the existing communication content. , repetitionNumber-Msg3) and the relay information of the second signal (change codebook information, change phase information or stop relay instruction information);
  • Step 702 The base station delivers Msg2 to the RIS/Smart Repeater, and the RIS/Smart Repeater relays the Msg2 to the UE;
  • Step 703 While sending Msg2, the base station sends the second configuration information activation signaling to the RIS/Smart Repeater through new reference signals, data packets, etc., to trigger the RIS/Smart Repeater to detect the uplink signal of the UE;
  • Step 704 After receiving Msg2, the UE reports the first Msg3 at the position of k2+j slot, and the corresponding RIS/Smart Repeater uses the first codebook for relay at the time of Msg3;
  • Step 705 After reporting the first Msg3, the UE reports the second Msg3 after the interval k2-offset-repetition.
  • the corresponding RIS/Smart Repeater is in progress by changing the codebook, changing the phase or closing the panel at the time of the second Msg3. Continue.
  • FIG. 10 it is a schematic flow chart of Example 5.
  • the scenario shown in Figure 10 is the process for the base station to identify the UE, which includes the following steps:
  • Step S801 the UE reports the first Msg3, and the RIS/Smart Repeater relays the first Msg3 to the base station through the first codebook;
  • Step S802 the UE reports the second Msg3, and the RIS/Smart Repeater relays the first Msg3 to the base station through the second codebook;
  • Step S803 the base station performs UE identification processing, including: calculating the RSRP gap value and SINR gap value of the first Msg3 and the second Msg3. According to the RSRP gap value is greater than or equal to the preset RSRP gap threshold, and the SINR gap value is greater than or equal to the preset value.
  • the SINR difference threshold determines that the UE is a UE accessed via RIS/Smart Repeater.
  • the network device delivers first configuration information to the terminal.
  • the first configuration information is used to instruct the terminal to repeatedly send multiple uplink signals after receiving the random access response message.
  • the multiple uplink signals include the first uplink signal. signal and the second uplink signal;
  • the network equipment sends the second configuration information to the signal conditioning device, and the second configuration information is used to instruct the signal conditioning device to relay the first uplink signal and the second uplink signal in different preset ways;
  • the network equipment When multiple uplink signals repeatedly sent by the terminal according to the random access response message are received, the type of the terminal is determined based on the reception of the uplink signals.
  • the network equipment Since the terminal accessed through the signal conditioning device, multiple uplink signals sent by it are relayed by the signal conditioning device to the network equipment in different preset ways, so that these uplink signals relayed in different preset ways are transmitted to the network equipment side. It has a large difference, so the network equipment can judge whether these uplink signals from the terminal are sent directly by the terminal or relayed by the signal conditioning device based on the difference between the multiple uplink signals received, and then realize the The terminal type is identified during the access phase.
  • the network device 700 includes but is not limited to:
  • Program instructions are stored on the memory 720, and when executed by the processor 710, the program instructions cause the processor 710 to perform the control method of the random access process described in the above embodiment.
  • processor 710 and memory 720 may be connected through a bus or other means.
  • the processor 710 can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 710 uses one or more integrated circuits to execute relevant programs to implement the technical solutions provided by the embodiments of the present application.
  • the memory 720 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the control method of the random access process described in any embodiment of this application.
  • the processor 710 implements the above control method of the random access process by running non-transient software programs and instructions stored in the memory 720 .
  • the memory 720 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store a control method for executing the above random access process.
  • memory 720 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 720 optionally includes memory located remotely relative to the processor 710, and these remote memories may be connected to the processor 710 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transient software programs and instructions required to implement the above control method of the random access process are stored in the memory 720.
  • the random access process provided by the embodiment of the present application is executed. Control Method.
  • the embodiment of the present application also provides a signal conditioning device, as shown in Figure 13.
  • the signal conditioning device 800 includes but is not limited to:
  • Program instructions are stored on the memory 820, and when executed by the processor 810, the program instructions cause the processor 810 to perform the control method of the random access process described in the above embodiment.
  • processor 810 and memory 820 may be connected through a bus or other means.
  • the processor 810 can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 810 uses one or more integrated circuits to execute relevant programs to implement the technical solutions provided by the embodiments of this application.
  • the memory 820 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the control method of the random access process described in any embodiment of this application.
  • the processor 810 implements the above control method of the random access process by running non-transient software programs and instructions stored in the memory 820 .
  • the memory 820 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store a control method for executing the above-mentioned random access process.
  • memory 820 may include high-speed random access memory, and may also include non-transitory memory, such as at least one disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 820 optionally includes memory located remotely relative to the processor 810, and these remote memories may be connected to the processor 810 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transient software programs and instructions required to implement the above control method of the random access process are stored in the memory 820.
  • the random access process provided by the embodiment of the present application is executed. Control Method.
  • the terminal 900 includes but is not limited to:
  • Program instructions are stored on the memory 920, and when executed by the processor 910, the program instructions cause the processor 910 to perform the control method of the random access process described in the above embodiment.
  • processor 910 and memory 920 may be connected through a bus or other means.
  • the processor 910 can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 910 uses one or more integrated circuits to execute relevant programs to implement the technical solutions provided by the embodiments of this application.
  • the memory 920 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the control method of the random access process described in any embodiment of this application.
  • the processor 910 implements the above random access process by running non-transient software programs and instructions stored in the memory 920 Control Method.
  • the memory 920 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store a control method for executing the above random access process.
  • memory 920 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 920 optionally includes memory located remotely relative to the processor 910, and these remote memories may be connected to the processor 910 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transient software programs and instructions required to implement the above control method of the random access process are stored in the memory 920.
  • the random access process provided by the embodiment of the present application is executed. Control Method.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. When the program instructions are executed by the computer, the control method of the random access process described in any of the above embodiments is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including, but not limited to, wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages, or a combination thereof.
  • Programming language such as "C” or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through the Internet). connect).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through the Internet. connect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入过程的控制方法和相关设备,方法包括:向终端下发第一配置信息,所述第一配置信息用于指示所述终端在接收到随机接入响应消息后重复发送多个上行信号,所述多个上行信号包括第一上行信号和第二上行信号;向信号调节装置下发第二配置信息,所述第二配置信息用于指示所述信号调节装置通过不同的预设方式中继所述第一上行信号和所述第二上行信号;当接收到所述终端根据所述随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定所述终端的类型。

Description

随机接入过程的控制方法和相关设备
相关申请的交叉引用
本申请基于申请号为202210468455.0、申请日为2022年04月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术,特别是涉及一种随机接入过程的控制方法、网络设备、信号调节装置、终端、计算机可读存储介质和计算机程序产品。
背景技术
相关技术中,通过部署可重构智能超表面(Reconfigurable Intelligent Surface,RIS)或智能中继器(Smart Repeater)的方式来增加小区覆盖。对于网络设备来说,在随机接入过程中,如果能够识别终端的接入方式是直接接入还是经RIS/Smart Repeater中继接入,那么就可以制定个性化的策略,并且有利于RIS/Smart Repeater的地理位置部署。当前协议框架下可以通过区分接入的同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)波束来粗略估计终端的位置,但方法准确度较低,并且由于频率范围二(FR2)的波束覆盖范围比较大,同一个接收波束下可能存在直接接入的终端与通过RIS/Smart Repeater中继接入的终端,因此很难实现准确地在接入阶段进行识别终端的类型。
发明内容
本申请实施例提供了一种随机接入过程的控制方法、网络设备、信号调节装置、终端、计算机可读存储介质和计算机程序产品,用于实现在接入阶段中识别终端类型。
第一方面,本申请实施例提供了一种随机接入过程的控制方法,应用于网络设备,所述方法包括:
向终端下发第一配置信息,所述第一配置信息用于指示所述终端在接收到随机接入响应消息后重复发送多个上行信号,所述多个上行信号包括第一上行信号和第二上行信号;
向信号调节装置下发第二配置信息,所述第二配置信息用于指示所述信号调节装置通过不同的预设方式中继所述第一上行信号和所述第二上行信号;
当接收到所述终端根据所述随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定所述终端的类型。
第二方面,本申请实施例提供了一种随机接入过程的控制方法,应用于信号调节装置,所述方法包括:
当接收到终端根据随机接入响应消息重复发送的多个上行信号,获取网络设备下发的第二配置信息;
根据所述第二配置信息将所述多个上行信号中继给所述网络设备,所述多个上行信号包括第一上行信号和第二上行信号,且所述第一上行信号和所述第二上行信号通过不同的预设 方式中继,使得所述网络设备根据上行信号接收情况确定所述终端的类型。
第三方面,本申请实施例提供了一种随机接入过程的控制方法,应用于终端,所述方法包括:
当接收到来自网络设备的随机接入响应消息,获取所述网络设备下发的第一配置信息;
根据所述第一配置信息重复发送多个上行信号给所述网络设备,使得所述网络设备根据上行信号接收情况确定所述终端的类型;或者,
根据所述第一配置信息重复发送多个上行信号给信号调节装置,通过所述信号调节装置将所述多个上行信号中继给网络设备,使得所述网络设备根据上行信号接收情况确定所述终端的类型,所述多个上行信号包括第一上行信号和第二上行信号,所述第一上行信号和所述第二上行信号由所述信号调节装置通过不同的预设方式进行中继。
第四方面,本申请实施例提供了一种网络设备,所述网络设备包括:
处理器和存储器;
所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行如上第一方面所述的随机接入过程的控制方法。
第五方面,本申请实施例提供了一种信号调节装置,所述信号调节装置包括:
处理器和存储器;
所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行如上第二方面所述的随机接入过程的控制方法。
第六方面,本申请实施例提供了一种终端,所述终端包括:
处理器和存储器;
所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行如上第三方面所述的随机接入过程的控制方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序指令,所述程序指令被计算机执行时,实现如上第一方面、第二方面或者第三方面中任一所述的随机接入过程的控制方法。
第八方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品存储有程序指令,所述程序指令在由计算机执行时,使得所述计算机实施如上第一方面、第二方面或者第三方面中任一所述的随机接入过程的控制方法。
本申请实施例中,网络设备向终端下发第一配置信息,所述第一配置信息用于指示所述终端在接收到随机接入响应消息后重复发送多个上行信号,所述多个上行信号包括第一上行信号和第二上行信号;网络设备向信号调节装置下发第二配置信息,所述第二配置信息用于指示所述信号调节装置通过不同的预设方式中继所述第一上行信号和所述第二上行信号;网络设备当接收到所述终端根据所述随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定所述终端的类型。由于经信号调节装置接入的终端,其发送的多个上行信号被信号调节装置以不同的预设方式中继给网络设备,使得这些以不同的预设方式中继的上行信号在网络设备侧具有较大的差别性,因而网络设备能够根据接收到的多个上行信号之间的差别性,判断这些来自终端的上行信号是由终端直接发送,还是经信号调节装置中继发送,进而实现在接入阶段中识别终端类型。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例适用的一种通信系统的示意图;
图2是本申请实施例提供的一种应用于网络设备侧的随机接入过程的控制方法的流程图;
图3是本申请实施例提供的RACH-Config Common信息的格式示意图;
图4是本申请实施例中确定终端的类型的流程图;
图5是本申请实施例提供的一种应用于信号调节装置侧的随机接入过程的控制方法的流程图;
图6是本申请实施例提供的一种应用于终端侧的随机接入过程的控制方法的流程图;
图7是本申请实施例提供的示例1的流程示意图;
图8是本申请实施例提供的示例2的流程示意图;
图9是本申请实施例提供的示例3的流程示意图;
图10是本申请实施例提供的示例4的流程示意图;
图11是本申请实施例提供的示例5的流程示意图;
图12是本申请实施例提供的一种网络设备的结构示意图;
图13是本申请实施例提供的一种信号调节装置的结构示意图;
图14是本申请实施例提供的一种终端的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组,包括单项或复数项的任意组。例如,a、b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c,或者,a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
高频通信的一个主要问题是信号能量随传输距离增加而急剧衰减,导致信号传输距离短,影响小区的信号覆盖。为增加小区的信号覆盖范围,相关技术提出,在网络设备和终端之间增加可重构智能超表面(Reconfigurable Intelligent Surface,RIS)或智能中继器(Smart Repeater)的方式来增加小区覆盖。
如图1所示,为本申请实施例适用的一种通信系统的示意图。在图1所示的通信系统中, 包括网络设备10、信号调节装置20和多个终端(31、41、42)。其中,终端可以分成两类:第一类,是位于网络设备的直接覆盖范围内,直接接入网路设备的终端,如图1中的终端31;第二类,是位于网络设备的直接覆盖范围以外,通过信号调节装置接入网路设备的终端,如图1中的终端41、42,也就是说网络设备10和终端41、42之间的信息需要经过信号调节装置20进行中继才能到达。这里的信号调节装置20可理解为是RIS或者Smart Repeater。
可以理解的是,本申请实施例涉及的网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(Radio Access Network,RAN)节点(或设备)。例如,网络设备可以包括长期演进(Long Term Evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者也可以包括5G新无线(new radio,NR)系统中的下一代节点B(Next generation node B,gNB),或者还可以包括传输接收点(Transmission Reception Point,TRP)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU)、基带池BBU pool,或WiFi接入点(Access Point,AP)等;再或者还可以包括云接入网(Cloud Radio Access Network,CloudRAN)系统中的集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU);又或者可以包括非陆地网络(Non-Terrestrial Network,NTN)中的基站,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(Relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhual,IAB)节点;又或者,网络设备可以是IoT中实现基站功能的设备,例如车联网(Vehicle-to-everything,V2X)、设备到设备(Device to Device,D2D)、或者机器到机器(Machine to Machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可以理解的是,本申请实施例涉及的终端可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接收到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的通信网络中的终端设备等,本申请实施例对此并不限定。
可以理解的是,本申请实施例涉及的智能超表面(RIS),是一种具有可编程电磁特性的人工电磁表面结构,其面板上包含大量按照矩阵方式排布的电磁单元,通过控制电路可以动态地调控电磁单元的电磁性质,实现三维空间内无线信号传播特性的智能化重构,可以突破传统无线环境被动适应的局限性。
可以理解的是,本申请实施例涉及的智能中继器(Smart Repeater),可以认为是部署在网络节点和终端设备之间的一个信号的中继装置,用于增强链路的性能。在下行,接收来自于网络节点的信息,将其进行增强放大之后,再发送给终端设备;对于上行也类似。
需说明的是,为方便起见,在本申请实施例的一些描述中,会使用“基站”指代网络设备,使用“RIS”或者“Smart Repeater”指代信号调节装置,使用“UE”或者“用户”指代终端。
为方便理解本申请的技术方案,下面对终端与网络设备建立连接的随机接入过程进行简 单的介绍。
随机接入过程是指从用户发送随机接入前导码开始尝试接入网络到与网络间建立起基本的信令连接之前的过程。随机接入是移动通信系统中非常关键的步骤,也是终端设备与网络建立通信链路的最后一步。终端设备可以通过随机接入与网络设备进行信息交互。根据用户是否独占前导码资源,可将用户的随机接入方式划分为基于竞争的随机接入(Contenti on-based Random Access)以及基于非竞争的随机接入(Contention-free Random Access)。
竞争的随机接入过程主要包括如下四步:第一步,终端从前导码资源池中随机选择一个前导码(preamble),通过第一消息Msg1向网络设备发送随机接入请求,包含随机接入前导码;第二步,网络设备通过第二消息Msg2向终端发送随机接入响应(Random Access Response,RAR),包含随机接入前导码标识符、临时小区无线网络临时标识(Cell-Radio Network Temporary Identifier,CRNTI)等信息,以及为终端下次上行传输所分配的时频资源;第三步,终端通过第三消息Msg3向网络设备发送无线资源控制(Radio Resource Control,RRC)连接请求,Msg3中包含用户终端标识以及RRC链接请求等信息,其中,该用户终端标识是用户唯一的,用于解决冲突;第四步,网络设备向终端发送第四消息Msg4(此过程也即为竞争解决content ion resolution过程),Msg4包含了冲突解决中胜出的用户终端标识。用户在检测出自己的标识后,将临时C-RNTI升级为C-RNTI,并向基站发送ACK信号,完成随机接入过程,并等待基站的调度。否则,用户将在一段延时后开始新的随机接入过程。
非竞争的随机接入过程主要包括如下两步:第一步,终端通过A消息MsgA(随机接入请求)向网络设备发送已分配好的随机接入前导码;第二步,网络设备检测到分配好的随机接入前导码后,通过B消息MsgB(随机接入响应RAR(Random Access Response))向终端发送定时提前以及上行资源分配等信息。用户接收到随机接入响应后,认为已完成上行同步,等待基站的进一步调度。因此,基于非竞争的随机接入过程仅包含两个步骤:步骤一为发送前导序列;步骤二为随机接入响应的发送。
应能理解,如果终端是经RIS/Smart Repeater接入网络设备的,那么上述随机接入过程中终端和网络设备之间的交互信息均需通过RIS/Smart Repeater中继才能实现。
对于网络设备来说,在随机接入过程中,如果能够识别终端的接入方式是直接接入还是经RIS/Smart Repeater中继接入,那么就可以制定个性化的策略,并且有利于RIS/Smart Repeater的地理位置部署。当前协议框架下可以通过区分接入的SSB波束来粗略估计终端的位置,但方法准确度较低,并且由于FR2的波束覆盖范围比较大,同一个接收波束下可能存在直接接入的终端与通过RIS/Smart Repeater中继接入的终端,因此很难准确地在接入阶段识别终端的类型。
为解决上述技术问题,本申请实施例提供了一种随机接入过程的控制方法、网络设备、信号调节装置、终端、计算机可读存储介质和计算机程序产品,用于实现在接入阶段中识别终端类型。
如图2所示,为本申请实施例提供的一种随机接入过程的控制方法的流程图,该方法应用于网络设备侧,包括如下步骤S110-S130,下面依次对各个步骤进行介绍:
步骤S110,向终端下发第一配置信息,第一配置信息用于指示终端在接收到随机接入响应消息后重复发送多个上行信号。
本申请实施例中,网络设备向终端下发第一配置信息,目的是使终端在向网络设备发起 随机接入请求,并接收到网络设备的随机接入响应之后,根据该第一配置信息,向网络设备重复发送多个上行信号。
作为一种示例,如果终端向网络设备发起的是竞争随机接入请求,那么,终端向网络设备重复发送多个上行信号,可以是向网络设备重复发送多个随机接入过程中的第三消息(Msg3)。
作为另一种示例,终端向网络设备重复发送多个上行信号,还可以是向网络设备重复发送多个物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。终端接收到网络设备分配的上行资源后,则可根据所分配的上行资源重复地向网络设备发送PUSCH。
应能理解,终端重复发送的上行信号还可以是其他类型的信号,本申请实施例对此不作限制。
本申请实施例的第一配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目。其中,重复发送的时域起始位置指示重复发送的多个上行信号中的第一个上行信号的时域位置,具体可以是一个单位为时隙或者符号的偏移间隔,即在随机接入响应消息的接收时刻经过上述偏移间隔后开始进行上行信号的重复发送;重复发送的时域间隔指示重复发送的上行信号的发送时域间隔,即两次重复发送的信号时域间隔,单位可以是时隙、符号等;重复发送的信号数目指示重复发送的上行信号的重复发送次数,例如重复发送4次,即重复发送的信号数目为4。当然,第一配置信息可以包含比上述更多或者更少的信息,例如,第一配置信息可以不指示重复发送的时域起始位置,而终端采用默认的偏移间隔确定重复发送的时域起始位置;第一配置信息也可以不指示重复发送的时域间隔,终端采用默认的时域间隔进行重复发送;第一配置信息还可以不指示重复发送的信号数目,而终端采用默认的重复发送信号数目进行重复发送。
示例性的,网络设备可以通过以下几种方式将第一配置信息下发给终端:
第一种,网络设备通过随机接入信道(Random Access Channel,RACH)配置信息下发给终端,该RACH配置信息包含携带第一配置信息的信元。其中,RACH配置信息可以是RACH-Config Common信息,或者RACH-Config Dedicated信令,还可以是RACH-Config Generic信令。
可以理解的是,以RACH配置信息是RACH-Config Common信息为例,为了第一配置信息承载于RACH-Config Common中,可以在RACH-Config Common的信元(IE)中添加与第一配置信息相关的字段。如图3所示,为RACH-Config Common信息的格式示意图,其中,与第一配置信息相关的字段包括K2-offset-repetition、repetition-Number-Msg3。这里,K2-offset-repetition指代重复发送的时域间隔;repetition-Number-Msg3指代重复发送的信号数目。
第二种,网络设备通过随机接入响应消息下发给终端,第一配置信息携带在随机接入响应消息中。
可以理解的是,网络设备可以通过随机接入过程中的RAR消息将第一配置信息下发给终端,也就是说,令第一配置信息承载于随机接入过程中的RAR消息中。这里的RAR消息具体可以是随机接入过程(包括竞争或者非竞争随机接入方式)中的第二条消息。具体地,可以在RAR消息添加与第一配置信息相关的字段,例如:k2+j(指代重复发送的时域起始位置),K2-offset-repetition(指代重复发送的时域间隔),repetition-Number-Msg3(指代重复 发送的信号数目)。
步骤S120,向信号调节装置下发第二配置信息,第二配置信息用于指示信号调节装置通过不同的预设方式中继第一上行信号和第二上行信号。
本申请实施例中,终端向网络设备发起随机接入请求,网络设备向终端发送随机接入响应,终端收到随机接入响应后,根据预置的第一配置信息向网络设备重复发送多个上行信号。
终端重复发送的多个上行信号中包括第一上行信号和第二上行信号。具体而言,第一上行信号和第二上行信号是终端重复发送的多个上行信号中不同的信号。第一上行信号可以包括一个或者多个信号,第二上行信号也可以包括一个或者多个信号。
在一个示例中,第一上行信号表征终端重复发送的多个上行信号中的第奇数个上行信号;第二上行信号表征终端重复发送的多个上行信号中的第偶数个上行信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,其中,第1个、第3个信号属于第一上行信号,第2个、第4个信号属于第二上行信号。
第一上行信号、第二上行信号也可以表征终端重复发送的多个上行信号中的特定一个或多个信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,第一上行信号特指第1个、第2个信号,第二上行信号特指第3个、第4个信号。
本申请实施例中,网络设备向信号调节装置下发第二配置信息,目的是使信号调节装置在接收到来自于终端的多个重复发送的上行信号之后,对这些上行信号中的第一上行信号和第二上行信号采用不同方式进行中继。一般而言,采用不同方式中继的信号在网络设备侧会具有较大的差别性;而终端直接重复发送给网络设备的多个上行信号没有经过特殊处理,所以在网络设备侧不会具有较大的差别性。这样,网络设备就可以根据接收到的重复发送的上行信号是否具有较大差别性,来确定这些上行信号是经信号调节装置中继而来,还是由终端直接发送。
示例性的,第二配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息。
其中,重复发送的时域起始位置指示终端重复发送的多个上行信号中的第一个上行信号的时域位置,信号调节装置可以根据该时域起始位置确定上行信号接收的起始位置。
重复发送的时域间隔指示重复发送的多个上行信号的时域间隔,信号调节装置可以根据该时域间隔对接收终端重复发送的上行信号。
重复发送的信号数目指示终端重复发送的上行信号的数目,信号调节装置可以根据该数目接收对应数量的上行信号。
变更码本信息使信号调节装置具体可以是码本索引,使信号调节装置根据码本索引获取到第二码本。可以理解,第二码本是与第一码本不相同的码本,第一码本指信号调节装置原来用于中继当前终端信号的码本。
变更相位信息用于使信号调节装置对第一码本进行相位变更,得到第三码本。
停止中继指示信息用于使信号调节装置对终端重复发送的部分上行信号采用停止中继的策略进行中继。
应能理解的是,第二配置信息可以包括重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息中的一项或者多项,本申请实施例对第二配置信息的具体内容不作限制。
示例性的,信号调节装置通过不同的预设方式中继第一上行信号和第二上行信号,可以包括以下几种实现方式:
第一种,信号调节装置通过第一码本对第一上行信号进行中继,通过第二码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更码本信息,那么信号调节装置可以根据变更码本信息获取第二码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第二码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。
第二种,通过第一码本对第一上行信号进行中继,通过对第一码本变更相位后获得的第三码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更相位信息,那么信号调节装置可以根据变更相位信息对第一码本进行相位变更,得到第三码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第三码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。
第三种,通过第一码本对第一上行信号进行中继,通过停止中继的策略对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含停止中继指示信息,那么对于终端重复发送的上行信号,信号调节装置可以对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用停止中继的策略进行中继,具体地,可以在中继第二上行信号时关闭面板,达到停止中继目的。
示例性的,第二配置信息通过以下任一种方式下发给信号调节装置:
第一种,在与信号调节装置建立连接时,将第二配置信息下发给信号调节装置。
可以理解的是,网络设备可以通过半静态方式,在添加RIS或者Smart Repeater时,将第二配置信息作为现有通信内容的一部分下发,当有终端需要下发随机接入响应时,通过新的参考信号、数据包等方式将第二配置信息激活信令通知给RIS/Smart Repeater。
第二种,在下发随机接入响应消息时,将第二配置信息下发给信号调节装置。
可以理解的是,网络设备可以通过动态方式,当有终端需要下发随机接入响应时,将第二配置信息以新的参考信号、数据包等方式下发给RIS/Smart Repeater,并直接激活。
步骤S130,当接收到终端根据随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定终端的类型。
本申请实施例描述的终端的类型包括第一类型和第二类型,其中,第一类型表征终端直接接入网络设备,第二类型表征终端通过信号调节装置接入网络设备。
本申请实施例中,根据上行信号接收情况确定终端的类型,具体可以根据接收到的多个上行信号的信号质量信息确定终端的类型。
示例性的,信号质量信息可以包括参考信号接收功率(Reference Signal Receiving Power,RSRP)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、信道质量指示(Channel Quality Indicator,CQI)、参考信号接收质量(Reference Signal Received Quality,RSRQ)等信息。
示例性的,如图4所示,根据接收到的多个上行信号的信号质量信息确定终端的类型, 具体包括但不限于如下步骤S131-S133:
步骤S131,获取接收到的多个上行信号中的第一上行信号的第一信号质量信息;
步骤S132,获取接收到的多个上行信号中的第二上行信号的第二信号质量信息;
步骤S133,判断第一信号质量信息和第二信号质量信息的差距值是否小于或者等于预设的差距阈值,若是,确定终端的类型为第一类型;若否,确定终端的类型为第二类型。
本申请实施例,通过比较第一上行信号和第二上行信号的信号质量信息,判断当前接收到的多个重复的上行信号是由第一类型还是第二类型的终端发送。可以理解的是,如果由第一类型的终端发送,那么,网络设备侧接收到的第一上行信号和第二上行信号的信号质量不会相差很大;如果由第二类型的终端发送,由于第二类型的终端的信号需要经过信号调节装置,而信号调节装置采用不同的方式中继第一上行信号和第二上行信号,使得网络设备侧接收到的第一上行信号和第二上行信号的信号质量相差较大。
举例来说,在RIS关闭面板的情况下,网络设备接收到的第二类型终端发出的第二上行信号的RSRP和SINR均很小,与RIS打开面板的情况下收到的第二类型终端发出的第一上行信号的RSRP和SINR相差较大。本申请实施例基于此,通过设置一个合理的差距阈值,判断第一上行信号对应的第一信号质量信息和第二上行信号对应的第二信号质量信息的差距值是否大于差距阈值,进而确定终端属于第一类型还是第二类型。
可以理解的是,为了提高终端类型识别的准确性,可以结合多种信号质量信息作为判断因素。示例性,第一信号质量信息包括第一RSRP和第一SINR,第二信号质量信息包括第二RSRP和第二SINR,差距阈值包括RSRP差距阈值和SINR差距阈值;当第一信号质量信息和第二信号质量信息的差距值大于预设的差距阈值,确定终端的类型为第二类型,包括:当第一RSRP和第二RSRP的差距值大于预设的RSRP差距阈值、且第一SINR和第二SINR的差距值大于预设的SINR差距阈值,确定终端的类型为第二类型。
可以理解,在第一上行信号和第二上行信号分别有多个的情况下,可以对多个第一上行信号对应的信号质量信息求平均,得到第一信号质量信息;对多个第二上行信号对应的信号质量信息求平均,得到第二信号质量信息。
示例性的,在第一上行信号和第二上行信号分别有多个的情况下,第一RSRP为多个第一上行信号对应的RSRP的平均值,第一SINR为多个第一上行信号对应的SINR的平均值,第二RSRP为多个第二上行信号对应的RSRP的平均值,第二SINR为多个第二上行信号对应的SINR的平均值。
如图5所示,为本申请实施例提供的一种随机接入过程的控制方法的流程图,该方法应用于信号调节装置侧,包括如下步骤S210-S220,下面依次对各个步骤进行介绍:
步骤S210,当接收到终端根据随机接入响应消息重复发送的多个上行信号,获取网络设备下发的第二配置信息。
步骤S220,根据第二配置信息将多个上行信号中继给网络设备,多个上行信号包括第一上行信号和第二上行信号,且第一上行信号和第二上行信号通过不同的预设方式中继,使得网络设备根据上行信号接收情况确定终端的类型。
本申请实施例中,信号调节装置在接收到网络设备下发的第二配置信息之后,如果接收到来自于终端的多个重复发送的上行信号,则根据第二配置信息对这些上行信号中的第一上行信号和第二上行信号采用不同方式进行中继。
具体地,终端向网络设备发起随机接入请求,网络设备向终端发送随机接入响应,终端收到随机接入响应后,根据预置的第一配置信息向网络设备重复发送多个上行信号。上行信号包括随机接入过程中终端发送的第三消息或者PUSCH。
可以理解的是,第一上行信号和第二上行信号是终端重复发送的多个上行信号中不同的信号。第一上行信号、第二上行信号可以分别包括一个或者多个信号。
在一个示例中,第一上行信号表征终端重复发送的多个上行信号中的第奇数个上行信号;第二上行信号表征终端重复发送的多个上行信号中的第偶数个上行信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,其中,第1个、第3个信号属于第一上行信号,第2个、第4个信号属于第二上行信号。
第一上行信号、第二上行信号也可以表征终端重复发送的多个上行信号中的特定一个或多个信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,第一上行信号特指第1个、第2个信号,第二上行信号特指第3个、第4个信号。
示例性的,第二配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息。
其中,重复发送的时域起始位置指示终端重复发送的多个上行信号中的第一个上行信号的时域位置,信号调节装置可以根据该时域起始位置确定上行信号接收的起始位置。
重复发送的时域间隔指示重复发送的多个上行信号的时域间隔,信号调节装置可以根据该时域间隔对接收终端重复发送的上行信号。
重复发送的信号数目指示终端重复发送的上行信号的数目,信号调节装置可以根据该数目接收对应数量的上行信号。
变更码本信息使信号调节装置对第一码本进行变更,具体可以是码本索引,使信号调节装置根据码本索引获取到第二码本。可以理解,第二码本是与第一码本不相同的码本,第一码本指信号调节装置原来用于中继当前终端信号的码本。
变更相位信息用于使信号调节装置对第一码本进行相位变更,得到第三码本。
停止中继指示信息用于使信号调节装置对终端重复发送的部分上行信号采用停止中继的策略进行中继。
应能理解的是,第二配置信息可以包括重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息中的一项或者多项,本申请实施例对第二配置信息的具体内容不作限制。
示例性的,信号调节装置通过不同的预设方式中继第一上行信号和第二上行信号,可以包括以下几种实现方式:
第一种,信号调节装置通过第一码本对第一上行信号进行中继,通过第二码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更码本信息,那么信号调节装置可以根据变更码本信息获取第二码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第二码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。这里的第一码本和第二码本是不相同的码本。
第二种,通过第一码本对第一上行信号进行中继,通过对第一码本变更相位后获得的第三码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更相位信息,那么信号调节装置可以根据变更相位信息对第一码本进行相位变更,得到第三码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第三码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。
第三种,通过第一码本对第一上行信号进行中继,通过停止中继的策略对第二上行信号进行中继。
可以理解的是,如果信号调节装置为RIS,第二配置信息中包含停止中继指示信息,那么对于终端重复发送的上行信号,RIS可以对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用停止中继的策略进行中继,具体地,可以在中继第二上行信号时关闭面板,达到停止中继目的。
示例性的,信号调节装置可以通过以下任一种方式获取网络设备下发的第二配置信息:
第一种,在与网络设备建立连接时,从网络设备接收第二配置信息;
可以理解的是,网络设备可以通过半静态方式,在添加RIS或者Smart Repeater时,将第二配置信息作为现有通信内容的一部分下发。当有终端需要下发随机接入响应时,通过新的参考信号、数据包等方式将第二配置信息激活信令通知给RIS/Smart Repeater,使RIS/Smart Repeater检测终端的重复发送的上行信号。
第二种,在接收到网络设备的随机接入响应消息时,从网络设备接收第二配置信息。
可以理解的是,网络设备可以通过动态方式,当有终端需要下发随机接入响应时,将第二配置信息以新的参考信号、数据包等方式下发给RIS/Smart Repeater,并直接激活。
可以理解的是,信号调节装置从网络设备接收随机接入响应消息,并将随机接入响应消息转发给终端。
上述随机接入响应消息还可以携带第一配置信息,第一配置信息用于指示终端在接收到随机接入响应消息后重复发送多个上行信号。第一配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目。其中,重复发送的时域起始位置指示重复发送的多个上行信号中的第一个上行信号的时域位置,具体可以是一个单位为时隙或者符号的偏移间隔,即在随机接入响应消息的接收时刻经过上述偏移间隔后开始进行上行信号的重复发送;重复发送的时域间隔指示重复发送的上行信号的发送时域间隔,即两次重复发送的信号时域间隔,单位可以是时隙、符号等;重复发送的信号数目指示重复发送的上行信号的重复发送次数,例如重复发送4次,即重复发送的信号数目为4。
可以理解的是,采用不同方式中继的信号在网络设备侧会具有较大的差别性;而终端直接重复发送给网络设备的多个上行信号没有经过特殊处理,所以在网络设备侧不会具有较大的差别性。这样,网络设备就可以根据接收到的重复发送的上行信号是否具有较大差别性,来确定这些上行信号是经信号调节装置中继而来,还是由终端直接发送。例如,根据接收到的多个上行信号的信号质量信息确定终端的类型。
如图6所示,为本申请实施例提供的一种随机接入过程的控制方法,该方法应用于终端,包括如下步骤S310至步骤S330:
步骤S310,当接收到来自网络设备的随机接入响应消息,获取网络设备下发的第一配置信息。
本申请实施例中,终端向网络设备发起随机接入请求,网络设备向终端发送随机接入响 应,终端收到随机接入响应后,根据预置的第一配置信息向网络设备重复发送多个上行信号。
上行信号包括随机接入过程中的第三消息或者物理上行共享信道PUSCH。
作为一种示例,如果终端向网络设备发起的是竞争随机接入请求,那么,终端向网络设备重复发送多个上行信号,可以是向网络设备重复发送多个随机接入过程中的第三消息(Msg3)。
作为另一种示例,终端向网络设备重复发送多个上行信号,还可以是向网络设备重复发送多个PUSCH。终端接收到网络设备分配的上行资源后,则可根据所分配的上行资源重复地向网络设备发送PUSCH。
应能理解,终端重复发送的上行信号还可以是其他类型的信号,本申请实施例对此不作限制。
本申请实施例的第一配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目。其中,重复发送的时域起始位置指示重复发送的多个上行信号中的第一个上行信号的时域位置,具体可以是一个单位为时隙或者符号的偏移间隔,即在随机接入响应消息的接收时刻经过上述偏移间隔后开始进行上行信号的重复发送;重复发送的时域间隔指示重复发送的上行信号的发送时域间隔,即两次重复发送的信号时域间隔,单位可以是时隙、符号等;重复发送的信号数目指示重复发送的上行信号的重复发送次数,例如重复发送4次,即重复发送的信号数目为4。当然,第一配置信息可以包含比上述更多或者更少的信息,例如,第一配置信息可以不指示重复发送的时域起始位置,而终端采用默认的偏移间隔确定重复发送的时域起始位置;第一配置信息也可以不指示重复发送的时域间隔,终端采用默认的时域间隔进行重复发送;第一配置信息还可以不指示重复发送的信号数目,而终端采用默认的重复发送信号数目进行重复发送。
可以理解的是,终端可以通过以下任一种方式获取第一配置信息:
第一种,从网络设备发送的随机接入信道RACH配置信息获取第一配置信息,随机接入信道RACH配置信息包含携带第一配置信息的信元。
其中,RACH配置信息可以是RACH-Config Common信息,或者其他层级的信令,本申请实施例不作限制。
以RACH配置信息是RACH-Config Common信息为例,为了第一配置信息承载于RACH-Config Common中,可以在RACH-Config Common的信元(IE)中添加与第一配置信息相关的字段。如图3所示,为RACH-Config Common信息的格式示意图,其中,与第一配置信息相关的字段包括K2-offset-repetition、repetition-Number-Msg3。这里,K2-offset-repetition指代重复发送的时域间隔;repetition-Number-Msg3指代重复发送的信号数目。
第二种,从随机接入响应消息获取第一配置信息,第一配置信息携带在随机接入响应消息中。
可以理解的是,终端可以通过随机接入过程中的RAR消息获取网络设备下发的第一配置信息,也就是说,令第一配置信息承载于随机接入过程中的RAR消息中。这里的RAR消息具体可以是随机接入过程(包括竞争或者非竞争随机接入方式)中的第二条消息。具体地,可以在RAR消息添加与第一配置信息相关的字段,例如:k2+j(指代重复发送的时域起始位置),K2-offset-repetition(指代重复发送的时域间隔),repetition-Number-Msg3(指代重复 发送的信号数目)。
本申请实施例描述的终端的类型包括第一类型和第二类型,其中,第一类型表征终端直接接入网络设备,第二类型表征终端通过信号调节装置接入网络设备。如果终端为第一类型的终端,则执行下面步骤S320;如果终端为第二类型的终端,则执行下面步骤S330。
步骤S320,根据第一配置信息重复发送多个上行信号给网络设备,使得网络设备根据上行信号接收情况确定终端的类型。
对于第一类型的终端,其直接将上行信号发送给网络设备,过程中不会对任一上行信号作特殊的处理。
步骤S330,根据第一配置信息重复发送多个上行信号给信号调节装置,通过信号调节装置将多个上行信号中继给网络设备,使得网络设备根据上行信号接收情况确定终端的类型,其中,多个上行信号包括第一上行信号和第二上行信号,第一上行信号和第二上行信号由信号调节装置通过不同的预设方式进行中继。
本申请实施例中,终端重复发送的多个上行信号中包括第一上行信号和第二上行信号。具体而言,第一上行信号和第二上行信号是终端重复发送的多个上行信号中不同的信号。第一上行信号可以包括一个或者多个信号,第二上行信号也可以包括一个或者多个信号。
在一个示例中,第一上行信号表征终端重复发送的多个上行信号中的第奇数个上行信号;第二上行信号表征终端重复发送的多个上行信号中的第偶数个上行信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,其中,第1个、第3个信号属于第一上行信号,第2个、第4个信号属于第二上行信号。
第一上行信号、第二上行信号也可以表征终端重复发送的多个上行信号中的特定一个或多个信号。例如,终端在接收到网络设备侧的随机接入响应后,重复发送了4个上行信号,第一上行信号特指第1个、第2个信号,第二上行信号特指第3个、第4个信号。
可以理解的是,第二类型的终端将上行信号重复发送给信号调节装置,对于其中的第一上行信号和第二上行信号,信号调节装置会通过不同的预设方式中继,具体包括以下几种方式:
第一种,信号调节装置通过第一码本对第一上行信号进行中继,通过第二码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更码本信息,那么信号调节装置可以根据变更码本信息获取第二码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第二码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。
第二种,通过第一码本对第一上行信号进行中继,通过对第一码本变更相位后获得的第三码本对第二上行信号进行中继。
可以理解的是,如果第二配置信息中包含变更相位信息,那么信号调节装置可以根据变更相位信息对第一码本进行相位变更,得到第三码本。对于终端重复发送的上行信号,信号调节装置对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用第三码本进行中继,如此达到对第一上行信号和第二上行信号的中继方式不一样。
第三种,通过第一码本对第一上行信号进行中继,通过停止中继的策略对第二上行信号进行中继。
可以理解的是,如果信号调节装置为RIS,第二配置信息中包含停止中继指示信息,那么对于终端重复发送的上行信号,RIS可以对其中的第一上行信号采用第一码本进行中继,对其中的第二上行信号采用停止中继的策略进行中继,具体地,可以在中继第二上行信号时关闭面板,达到停止中继目的。
可以理解的是,采用不同方式中继的信号在网络设备侧会具有较大的差别性;而终端直接重复发送给网络设备的多个上行信号没有经过特殊处理,所以在网络设备侧不会具有较大的差别性。这样,网络设备就可以根据接收到的重复发送的上行信号是否具有较大差别性,来确定这些上行信号是经信号调节装置中继而来,还是由终端直接发送。例如,根据接收到的多个上行信号的信号质量信息确定终端的类型。
为了更好理解本申请实施例的方案,下面通过几个具体示例进行说明。
示例1:
如图7所示,为示例1的流程示意图。图7所示的场景为竞争接入场景下Msg3重复上报流程,包括以下步骤:
步骤S401,基站广播主系统信息块MIB与系统信息块SIB1信息,其中SIB1的信元层级由上至下依次为:SIB、ServingCellConfigCommonSIB、UplinkConfigCommonSIB、BWP-UplinkCommon、RACH-ConfigCommon,其中RACH-ConfigCommon下携带指示第一配置信息的信元,使得UE可以从SIB1提取到第一配置信息,该第一配置信息包括k2+j(指代重复发送的时域起始位置)、K2-offset-repetition(指代重复发送的时域间隔)、repetition-Number-Msg3(指代重复发送的信号数目)信息。
步骤S402,UE向基站上报Msg1以发起竞争随机接入流程;
步骤S403,基站向UE下发Msg2;
步骤S404,UE根据第一配置信息,在Msg2的接收时刻间隔k2+j slot的位置上报第一个Msg3;
步骤S405,UE根据第一配置信息,在间隔K2-offset-repetition之后上报第二个Msg3;
步骤S406,UE以k2-offset-repetition为间隔,一直上报到第repetitionNumber-Msg3个Msg3。
示例2:
如图8所示,为示例2的流程示意图。图8所示的场景为非竞争接入场景下PUSCH重复上报流程,包括以下步骤:
步骤S501,源基站通过RRC重配信令将第一配置信息下发给UE;
其中,RRC重配信令包括EN-DC中LTE基站的SCG添加信令、NR-DC中NR基站的SCG添加信令、小区切换时NR基站的小区切换信令,RRC重配信令的信元层级由上至下依次为:RRCReconfiguration、ServingCellConfigCommon、UplinkConfigCommonSIB、BWP-UplinkCommon、RACH-ConfigCommon;其中,在RACH-ConfigCommon层级下承载有指示第一配置信息的信元,使得UE可以从重配信令提取到第一配置信息,该第一配置信息包括k2+j(指代重复发送的时域起始位置)、K2-offset-repetition(指代重复发送的时域间隔)、repetition-Number-Msg3(指代重复发送的信号数目)信息。
步骤S502,UE向目标基站上报Msg1以发起竞争随机接入流程;
步骤S503,目标基站向UE下发Msg2;
步骤S504,UE根据第一配置信息,在k2+j slot的位置上报第一个PUSCH,该PUSCH由RAR UL grant调度;
步骤S505,UE根据第一配置信息,在间隔K2-offset-repetition之后上报第二个PUSCH;
步骤S506,UE以k2-offset-repetition为间隔,一直上报到第repetitionNumber-Msg3个PUSCH。
示例3:
如图9所示,为示例3的流程示意图。图9所示的场景为基站动态指示RIS/Smart Repeater生效第二配置信息的流程,包括以下步骤:
步骤S601,基站下发Msg2(随机接入过程中的第二消息)至RIS/Smart Repeater,再由RIS/Smart Repeater将Msg2中继给UE;
步骤S602,基站在下发Msg2的同时,通过新的参考信号、数据包等承载第二配置信息发送给RIS/Smart Repeater,RIS/Smart Repeater随即生效第二配置信息;
步骤S603,UE上报第一个Msg3(随机接入过程中的第三消息)至RIS/Smart Repeater,RIS/Smart Repeater通过第一码本将第一个Msg3中继给基站;
步骤S604,UE上报第二个Msg3(随机接入过程中的第三消息)至RIS/Smart Repeater,RIS/Smart Repeater通过第二码本将第二个Msg3中继给基站。
示例4:
如图10所示,为示例4的流程示意图。图10所示的场景为基站半动态指示RIS/Smart Repeater生效第二配置信息的流程,包括以下步骤:
步骤701,基站通过与RIS/Smart Repeater的专用接口下发第二配置信息,具体地,在现有的通信内容中新增Msg3或PUSCH的时域位置信息(k2+j、K2-offset-repetition、repetitionNumber-Msg3)以及第二信号的中继信息(变更码本信息、变更相位信息或者停止中继指示信息);
步骤702,基站下发Msg2给RIS/Smart Repeater,RIS/Smart Repeater将Msg2中继给UE;
步骤703,基站在下发Msg2的同时,通过新的参考信号、数据包等方式下发第二配置信息激活信令给RIS/Smart Repeater,以触发RIS/Smart Repeater检测UE的上行信号;
步骤704,UE在收到Msg2之后,在k2+j slot的位置上报第一个Msg3,对应RIS/Smart Repeater在Msg3的时刻使用第一码本进行中继;
步骤705,UE在上报第一个Msg3之后,在间隔k2-offset-repetition之后上报第二个Msg3,对应RIS/Smart Repeater在第二个Msg3的时刻通过变更码本、变更相位或者关闭面板进行中继。
示例5:
如图11所示,为示例5的流程示意图。图10所示的场景为基站识别UE的流程,包括以下步骤:
步骤S801,UE上报第一个Msg3,RIS/Smart Repeater通过第一码本将第一个Msg3中继给基站;
步骤S802,UE上报第二个Msg3,RIS/Smart Repeater通过第二码本将第一个Msg3中继给基站;
步骤S803,基站进行UE识别处理,包括:计算第一个Msg3和第二个Msg3的RSRP差距值和SINR差距值,根据RSRP差距值大于等于预设RSRP差距阈值、且SINR差距值大于等于预设SINR差距阈值确定UE为经RIS/Smart Repeater接入的UE。
本申请实施例的方案,网络设备向终端下发第一配置信息,第一配置信息用于指示终端在接收到随机接入响应消息后重复发送多个上行信号,多个上行信号包括第一上行信号和第二上行信号;网络设备向信号调节装置下发第二配置信息,第二配置信息用于指示信号调节装置通过不同的预设方式中继第一上行信号和第二上行信号;网络设备当接收到终端根据随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定终端的类型。由于经信号调节装置接入的终端,其发送的多个上行信号被信号调节装置以不同的预设方式中继给网络设备,使得这些以不同的预设方式中继的上行信号在网络设备侧具有较大的差别性,因而网络设备能够根据接收到的多个上行信号之间的差别性,判断这些来自终端的上行信号是由终端直接发送,还是经信号调节装置中继发送,进而实现在接入阶段中识别终端类型。
本申请实施例还提供了一种网络设备,如图12所示,该网络设备700包括但不限于:
处理器710和存储器720;
存储器720上存储有程序指令,程序指令当被处理器710执行时使得处理器710执行如上实施例描述的随机接入过程的控制方法。
上述处理器710和存储器720可以通过总线或者其他方式连接。
应能理解的是,该处理器710可以采用中央处理单元(Central Processing Unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门矩阵(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器710采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器720作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的随机接入过程的控制方法。处理器710通过运行存储在存储器720中的非暂态软件程序以及指令,从而实现上述的随机接入过程的控制方法。
存储器720可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的随机接入过程的控制方法。此外,存储器720可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器720可选包括相对于处理器710远程设置的存储器,这些远程存储器可以通过网络连接至该处理器710。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的随机接入过程的控制方法所需的非暂态软件程序以及指令存储在存储器720中,当被一个或者多个处理器710执行时,执行本申请实施例提供的随机接入过程的控制方法。
本申请实施例还提供了一种信号调节装置,如图13所示,该信号调节装置800包括但不限于:
处理器810和存储器820;
存储器820上存储有程序指令,程序指令当被处理器810执行时使得处理器810执行如上实施例描述的随机接入过程的控制方法。
上述处理器810和存储器820可以通过总线或者其他方式连接。
应能理解的是,该处理器810可以采用中央处理单元(Central Processing Unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门矩阵(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器810采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器820作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的随机接入过程的控制方法。处理器810通过运行存储在存储器820中的非暂态软件程序以及指令,从而实现上述的随机接入过程的控制方法。
存储器820可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的随机接入过程的控制方法。此外,存储器820可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器820可选包括相对于处理器810远程设置的存储器,这些远程存储器可以通过网络连接至该处理器810。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的随机接入过程的控制方法所需的非暂态软件程序以及指令存储在存储器820中,当被一个或者多个处理器810执行时,执行本申请实施例提供的随机接入过程的控制方法。
本申请实施例还提供了一种终端,如图14所示,该终端900包括但不限于:
处理器910和存储器920;
存储器920上存储有程序指令,程序指令当被处理器910执行时使得处理器910执行如上实施例描述的随机接入过程的控制方法。
上述处理器910和存储器920可以通过总线或者其他方式连接。
应能理解的是,该处理器910可以采用中央处理单元(Central Processing Unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门矩阵(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器910采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器920作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的随机接入过程的控制方法。处理器910通过运行存储在存储器920中的非暂态软件程序以及指令,从而实现上述的随机接入过程的 控制方法。
存储器920可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的随机接入过程的控制方法。此外,存储器920可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器920可选包括相对于处理器910远程设置的存储器,这些远程存储器可以通过网络连接至该处理器910。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的随机接入过程的控制方法所需的非暂态软件程序以及指令存储在存储器920中,当被一个或者多个处理器910执行时,执行本申请实施例提供的随机接入过程的控制方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有程序指令,程序指令被计算机执行时,实现如上任意实施例描述的随机接入过程的控制方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括、但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
需说明的是,本申请实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
另外,在本申请实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或 记载的部分,可以参见其它实施例的相关描述。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (30)

  1. 一种随机接入过程的控制方法,应用于网络设备,所述方法包括:
    向终端下发第一配置信息,所述第一配置信息用于指示所述终端在接收到随机接入响应消息后重复发送多个上行信号,所述多个上行信号包括第一上行信号和第二上行信号;
    向信号调节装置下发第二配置信息,所述第二配置信息用于指示所述信号调节装置通过不同的预设方式中继所述第一上行信号和所述第二上行信号;
    当接收到所述终端根据所述随机接入响应消息重复发送的多个上行信号,则根据上行信号接收情况确定所述终端的类型。
  2. 根据权利要求1所述的方法,其中,所述终端的类型包括第一类型和第二类型,所述第一类型表征所述终端直接接入所述网络设备,所述第二类型表征所述终端通过所述信号调节装置接入所述网络设备。
  3. 根据权利要求2所述的方法,其中,所述通过不同的预设方式中继所述第一上行信号和所述第二上行信号,包括:
    通过第一码本对所述第一上行信号进行中继,通过第二码本对所述第二上行信号进行中继;或者,
    通过所述第一码本对所述第一上行信号进行中继,通过对所述第一码本变更相位后获得的第三码本对所述第二上行信号进行中继;或者,
    通过所述第一码本对所述第一上行信号进行中继,通过停止中继策略对所述第二上行信号进行中继。
  4. 根据权利要求3所述的方法,其中,所述根据上行信号接收情况确定所述终端的类型,包括:
    根据接收到的所述多个上行信号的信号质量信息确定所述终端的类型。
  5. 根据权利要求4所述的方法,其中,所述根据接收到的所述多个上行信号的信号质量信息确定所述终端的类型,包括:
    获取接收到的所述多个上行信号中的第一上行信号的第一信号质量信息;
    获取接收到的所述多个上行信号中的第二上行信号的第二信号质量信息;
    当所述第一信号质量信息和所述第二信号质量信息的差距值大于预设的差距阈值,确定所述终端的类型为第二类型。
  6. 根据权利要求5所述的方法,其中,所述第一信号质量信息包括第一RSRP和第一SINR,第二信号质量信息包括第二RSRP和第二SINR,所述差距阈值包括RSRP差距阈值和SINR差距阈值;
    所述当所述第一信号质量信息和所述第二信号质量信息的差距值大于预设的差距阈值,确定所述终端的类型为第二类型,包括:
    当所述第一RSRP和所述第二RSRP的差距值大于预设的RSRP差距阈值、且所述第一SINR和所述第二SINR的差距值大于预设的SINR差距阈值,确定所述终端的类型为第二类型。
  7. 根据权利要求6所述的方法,其中,所述第一上行信号和所述第二上行信号分别有多个,所述第一RSRP为多个第一上行信号对应的RSRP的平均值,所述第一SINR为多个第一上行信号对应的SINR的平均值,所述第二RSRP为多个第二上行信号对应的RSRP的平均值,所 述第二SINR为多个第二上行信号对应的SINR的平均值。
  8. 根据权利要求1所述的方法,其中,所述第一配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目。
  9. 根据权利要求1所述的方法,其中,所述第二配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息。
  10. 根据权利要求1所述的方法,其中,所述第一配置信息通过以下任一种方式下发给终端:
    通过随机接入信道RACH配置信息下发给所述终端,所述随机接入信道RACH配置信息包含携带所述第一配置信息的信元;
    通过所述随机接入响应消息下发给所述终端,所述第一配置信息携带在所述随机接入响应消息中。
  11. 根据权利要求1所述的方法,其中,所述第二配置信息通过以下任一种方式下发给所述信号调节装置:
    在与所述信号调节装置建立连接时,将所述第二配置信息下发给所述信号调节装置;
    在下发随机接入响应消息时,将所述第二配置信息下发给所述信号调节装置。
  12. 根据权利要求1所述的方法,其中,所述上行信号包括随机接入过程中的第三消息或者物理上行共享信道PUSCH。
  13. 根据权利要求1所述的方法,其中,所述第一上行信号表征所述多个上行信号中的第奇数个上行信号;所述第二上行信号表征所述多个上行信号中的第偶数个上行信号。
  14. 一种随机接入过程的控制方法,应用于信号调节装置,所述方法包括:
    当接收到终端根据随机接入响应消息重复发送的多个上行信号,获取网络设备下发的第二配置信息;
    根据所述第二配置信息将所述多个上行信号中继给所述网络设备,所述多个上行信号包括第一上行信号和第二上行信号,且所述第一上行信号和所述第二上行信号通过不同的预设方式中继,使得所述网络设备根据上行信号接收情况确定所述终端的类型。
  15. 根据权利要求14所述的方法,其中,所述第二配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目,变更码本信息,变更相位信息,停止中继指示信息。
  16. 根据权利要求14所述的方法,其中,所述第一上行信号和所述第二上行信号通过不同的预设方式中继,包括:
    通过第一码本对所述第一上行信号进行中继,通过第二码本对所述第二上行信号进行中继;或者,
    通过第一码本对所述第一上行信号进行中继,通过对所述第一码本变更相位后获得的第三码本对所述第二上行信号进行中继;或者,
    通过所述第一码本对所述第一上行信号进行中继,通过停止中继策略对所述第二上行信号进行中继。
  17. 根据权利要求14所述的方法,其中,所述获取网络设备下发的第二配置信息,包括:
    在与所述网络设备建立连接时,从所述网络设备接收所述第二配置信息;或者,
    在接收到所述网络设备的随机接入响应消息时,从所述网络设备接收所述第二配置信息。
  18. 根据权利要求14所述的方法,还包括:
    从所述网络设备接收所述随机接入响应消息,将所述随机接入响应消息转发给所述终端。
  19. 根据权利要求14所述的方法,其中,所述上行信号包括随机接入过程中的第三消息或者物理上行共享信道PUSCH。
  20. 根据权利要求14所述的方法,其中,所述第一上行信号表征所述多个上行信号中的第奇数个上行信号;所述第二上行信号表征所述多个上行信号中的第偶数个上行信号。
  21. 一种随机接入过程的控制方法,应用于终端,所述方法包括:
    当接收到来自网络设备的随机接入响应消息,获取所述网络设备下发的第一配置信息;
    根据所述第一配置信息重复发送多个上行信号给所述网络设备,使得所述网络设备根据上行信号接收情况确定所述终端的类型;或者,
    根据所述第一配置信息重复发送多个上行信号给信号调节装置,通过所述信号调节装置将所述多个上行信号中继给网络设备,使得所述网络设备根据上行信号接收情况确定所述终端的类型,所述多个上行信号包括第一上行信号和第二上行信号,所述第一上行信号和所述第二上行信号由所述信号调节装置通过不同的预设方式进行中继。
  22. 根据权利要求21所述的方法,其中,所述第一配置信息包括以下信息中的至少一项:重复发送的时域起始位置,重复发送的时域间隔,重复发送的信号数目。
  23. 根据权利要求21所述的方法,其中,所述第一配置信息通过以下任一种方式获取:
    从所述网络设备发送的随机接入信道RACH配置信息获取所述第一配置信息,所述随机接入信道RACH配置信息包含携带所述第一配置信息的信元;
    从所述随机接入响应消息获取所述第一配置信息,所述第一配置信息携带在所述随机接入响应消息中。
  24. 根据权利要求21所述的方法,其中,所述上行信号包括随机接入过程中的第三消息或者物理上行共享信道PUSCH。
  25. 根据权利要求21所述的方法,其中,所述第一上行信号表征所述多个上行信号中的第奇数个上行信号;所述第二上行信号表征所述多个上行信号中的第偶数个上行信号。
  26. 一种网络设备,包括:
    处理器和存储器;
    所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求1-13任一项所述的方法。
  27. 一种信号调节装置,包括:
    处理器和存储器;
    所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求14-20任一项所述的方法。
  28. 一种终端,包括:
    处理器和存储器;
    所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求21-25任一项所述的方法。
  29. 一种计算机可读存储介质,存储有程序指令,所述程序指令被计算机执行时,实现权 利要求1-25任一项所述的方法。
  30. 一种计算机程序产品,所述计算机程序产品存储有程序指令,所述程序指令在由计算机执行时,使得所述计算机实施权利要求1-25任意一项所述的方法。
PCT/CN2023/088729 2022-04-29 2023-04-17 随机接入过程的控制方法和相关设备 WO2023207657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468455.0 2022-04-29
CN202210468455.0A CN115955726A (zh) 2022-04-29 2022-04-29 随机接入过程的控制方法和相关设备

Publications (1)

Publication Number Publication Date
WO2023207657A1 true WO2023207657A1 (zh) 2023-11-02

Family

ID=87288273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088729 WO2023207657A1 (zh) 2022-04-29 2023-04-17 随机接入过程的控制方法和相关设备

Country Status (2)

Country Link
CN (1) CN115955726A (zh)
WO (1) WO2023207657A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955726A (zh) * 2022-04-29 2023-04-11 中兴通讯股份有限公司 随机接入过程的控制方法和相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586879A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法和装置
WO2021138919A1 (zh) * 2020-01-10 2021-07-15 华为技术有限公司 一种通信方法和设备
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备
CN113826436A (zh) * 2019-09-19 2021-12-21 华为技术有限公司 一种通信方法、装置及设备
WO2022077479A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种通信方法及装置
CN115955726A (zh) * 2022-04-29 2023-04-11 中兴通讯股份有限公司 随机接入过程的控制方法和相关设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586879A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法和装置
CN113826436A (zh) * 2019-09-19 2021-12-21 华为技术有限公司 一种通信方法、装置及设备
WO2021138919A1 (zh) * 2020-01-10 2021-07-15 华为技术有限公司 一种通信方法和设备
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备
WO2022077479A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种通信方法及装置
CN115955726A (zh) * 2022-04-29 2023-04-11 中兴通讯股份有限公司 随机接入过程的控制方法和相关设备

Also Published As

Publication number Publication date
CN115955726A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
JP7414118B2 (ja) Ue、ranノード、及びそれらによって実行される方法
CN110402602B (zh) 取决于参数集的通信时序方法和装置
TWI676400B (zh) 一種進行隨機存取的方法和設備
WO2017028644A1 (zh) 一种mtc ue随机接入的方法及装置
US20200100296A1 (en) Listen before Talk and Channel Access Priority Class for RACH in New Radio Unlicensed
US10462706B2 (en) Use of wait period to obtain on-demand system information for wireless networks
JP7441960B2 (ja) 情報伝送方法、端末機器及びネットワーク機器
US20230084028A1 (en) Beam failure recovery
WO2023207657A1 (zh) 随机接入过程的控制方法和相关设备
US11570824B2 (en) Methods and devices for random access
WO2021077343A1 (zh) 无线通信方法和终端设备
US20230041847A1 (en) Joint-Processing of Random Access Channel Communications
US20210368544A1 (en) Methods, Terminal Device and Base Station for Channel Sensing in Unlicensed Spectrum
WO2023016332A1 (zh) 一种通信方法以及装置
CN113573401B (zh) 通信方法、装置及系统
KR20180110675A (ko) 주파수 분할 듀플렉싱 기반 무선 통신 네트워크에서 harq 프로세싱
WO2024031587A1 (zh) 通信方法、终端设备和网络设备
WO2023134681A1 (zh) 传输信息的方法和装置
WO2019047969A1 (zh) 一种随机接入方法和设备
JP2020505837A (ja) 無線通信ネットワークにおける制御プレーンレイテンシ低減
WO2023151508A1 (zh) 通信方法与装置、终端设备和网络设备
WO2023155118A1 (en) Techniques for dynamic resource allocation
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
US12035379B2 (en) Communication method and apparatus
WO2022193924A1 (zh) 无线通信的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795090

Country of ref document: EP

Kind code of ref document: A1