WO2022065968A1 - 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물 - Google Patents
에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물 Download PDFInfo
- Publication number
- WO2022065968A1 WO2022065968A1 PCT/KR2021/013186 KR2021013186W WO2022065968A1 WO 2022065968 A1 WO2022065968 A1 WO 2022065968A1 KR 2021013186 W KR2021013186 W KR 2021013186W WO 2022065968 A1 WO2022065968 A1 WO 2022065968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evodiamine
- lung cancer
- small cell
- cell lung
- cells
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
- A61K31/522—Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to a composition for preventing or treating non-small cell lung cancer comprising evodiamine as an active ingredient.
- Cancer is a major cause of death, and early diagnosis and development of anticancer drugs that can suppress cancer, such as immunotherapy, are being made due to the development of diagnostic technology. and cancer recurrence, it is essential to develop an effective anticancer drug.
- Lung cancer refers to a malignant tumor that occurs in the lungs, and may occur either in the lung itself (primary lung cancer) or by metastasis to the lungs of cancer originating from other organs.
- Primary lung cancer is classified into non-small cell lung cancer and small cell lung cancer based on the size and shape of cancer cells.
- Non-small cell lung cancer accounts for 80-85% of lung cancers. It is divided into squamous cell carcinoma, adenocarcinoma (adenocarcinoma), large cell carcinoma, adenosquamous cell carcinoma, sarcoma, carcinoid tumor, salivary gland carcinoma, and unclassified carcinoma.
- the rest, small cell lung cancer has a high overall malignancy, and has already metastasized to other organs or the contralateral lung, mediastinum (the space between the two lungs, where the heart, trachea, esophagus, aorta, etc. are located) through lymphatic vessels or blood vessels at the time of discovery.
- mediastinum the space between the two lungs, where the heart, trachea, esophagus, aorta, etc. are located
- Drug-resistant lung cancer occurs when drug-resistant cells make up the majority of cancer cells in the lung.
- the generation of the drug-resistant cells is a major obstacle in cancer treatment using an anticancer agent or the like. Since most cancer cells have already lost the function related to gene mutation suppression, each cell in one cancer mass also has various gene expression patterns. Due to this genetic diversity, drug-resistant cells selectively survive, and the surviving drug-resistant cells proliferate, eventually leading to drug resistance in most cancerous cells.
- drug resistance due to genetic diversity or mutation when the patient's side effects are too severe to administer a sufficient amount of the drug, when drug absorption is abnormally reduced during oral administration, or physiologically between blood vessels and cancerous tissue Drug resistance can occur even when the drug does not penetrate properly due to the barrier made of
- the KRAS gene is a gene that makes the KRAS protein involved in cell signaling pathways that regulate cell growth, maturation, and death. Mutant forms of KRAS are found in some cancers, including non-small cell lung cancer, colorectal cancer, and pancreatic cancer. This helps cancer cells grow and spread within the body. Therefore, determining whether a patient's tumor has a mutated KRAS gene is helpful in cancer treatment.
- Heat shock protein 70 (Hsp70) is overexpressed in several cancer cells and is known to mediate cancer cell survival and anticancer drug resistance.
- inhibition of Hsp70 has been shown to inhibit cancer initiation and metastasis through inhibition of cancer initiating cells, and Hsp70 is considered a target for the development of new anticancer drugs.
- Hsp70 inhibitors are under development, most of them are in the preclinical stage, so the development of effective Hsp70 inhibitors is required.
- the present invention has been devised to solve the problems in the prior art as described above, and it was confirmed that the composition containing evodiamine as an active ingredient inhibits HSP70 and effectively inhibits the growth of tumors, thereby preventing non-small cell lung cancer or After confirming the therapeutic effect, the present invention was completed based on this.
- the present invention provides a use for preventing or treating non-small cell lung cancer of a pharmaceutical composition comprising evodiamine or a pharmaceutically acceptable salt thereof as an active ingredient.
- the present invention provides the use of evodiamine or a pharmaceutically acceptable salt thereof for producing a medicament for the prevention or treatment of non-small cell lung cancer.
- the non-small cell lung cancer may be one or more selected from the group consisting of KRAS-mutated non-small cell lung cancer and drug-resistant non-small cell lung cancer, but is not limited thereto.
- the ebodiamine may reduce one or more selected from the group consisting of the number and volume of tumors, but is not limited thereto.
- the evodiamine may inhibit the spheroid-forming ability of cancer stem cells, but is not limited thereto.
- the evodiamine may inhibit the expression of one or more proteins or genes selected from the group consisting of HIF-1 ⁇ , Akt, Src, MEK, POUSF1, NANOG, and SOX2, but is limited thereto it is not
- the composition may further include one or more selected from the group consisting of pemetrexed, cisplatin, and paclitaxel, but is not limited thereto.
- the drug may be at least one selected from the group consisting of pemetrexed, cisplatin, and paclitaxel, but is not limited thereto.
- the anticancer agent may be one or more selected from the group consisting of pemetrexed, cisplatin, and paclitaxel, but is not limited thereto.
- composition comprising evodiamine of the present invention as an active ingredient inhibits tumor growth, inhibits HSP70 protein expression and spheroid formation ability of cancer stem cells, and tumors in cancer cell line xenografts and patient-derived cancer xenograft mouse models In addition to inhibiting the growth of cancer cells, it has a synergistic effect when combined with drugs such as pemetrexed, cisplatin, and paclitaxel, and has anticancer effects on drug-resistant cancer cells, so it is widely used in the prevention and treatment of non-small cell lung cancer It is expected that it will be possible.
- drugs such as pemetrexed, cisplatin, and paclitaxel
- 1 shows a gating strategy for determining GFP High and GFP Low populations.
- Figure 2a shows the results of confirming the component expression (mRNA: HSPB1, DNAJB1, HSPD1, HSPA1A, HSP90AA1, HSPA4, STIP1, AHSA1 ) of the NSCLC cell line (H460, H1299, A549) grown in monolayer or spheroid formation conditions. it has been shown
- Figure 2b shows components of the HSP system (proteins: Hsp70, Hsp90, Hop), stem cell-related markers (Sox2 and Oct4), HSP system client proteins of NSCLC cell lines (H460, H1299, A549) grown in monolayer or spheroid-forming conditions. Expression levels of (HIF-1 ⁇ , Akt and Src) and their phosphorylated forms are shown by Western blot.
- Figure 2c shows the spheroid-forming ability of pOct4-GFP High and pNanog-GFP High compared to pOct4-GFP Low and pNanog-GFP Low in H460 and H1299 cells [scale bar: 100 ⁇ m].
- Figure 2d shows the mRNA expression of CSC markers and HSP system components of pOct4-GFP High and pNanog-GFP High compared to pOct4-GFP Low and pNanog-GFP Low in H460 and H1299 cells.
- Figure 2e shows the mRNA expression of HSPA1A and HSP90AA1 in ALDH High versus ALDH Low populations in primary culture cells of A549, H460 NSCLC cell lines and PDX tumors.
- 2G shows the results of gene set enrichment analysis of publicly available data for HSP system related gene sets in NSCLC, colon and breast cancer and tumors from lung adenocarcinoma (ADC) patients.
- FIG. 3b shows the results of analyzing ALDH activity in H1299 cells forcedly overexpressing HSP70 or HSP90.
- 3c shows the results of analysis of spheroid formation in H1299 and A549 cells in which HSP70 or HSP90 expression was silenced by stable transfection with specific shRNAs compared to the respective controls.
- Figure 3d is a Western blot of the expression levels of CSC markers (Oct4, Nanog, Sox2) and HSP system client proteins (Art, Src, MEK) in H1299 and A549 cells in which HSP70 or HSP90 expression was silenced by stable transfection with specific shRNAs. is shown through
- Figure 3f shows the size and number of spheroids according to the treatment of HSP70 inhibitor (MKT-077) or HSP90 inhibitor (17-AAG) in H1299, A549, HCT116 and MDA-MB-231 (MDA231).
- 3G shows CSC markers of HSP system, HSP70/HSP90 client protein following treatment of HSP70 inhibitor (MKT-077) or HSP90 inhibitor (17-AAG) in H1299, H460, A549, HCT116 or MDA-MB-231 (MDA231). represents the level of expression.
- Figure 3h shows the expression level of proteins separated by SDS-PAGE and Coomassie brilliant blue staining of H1299 and H460 cells after treatment with 17-AAG or MKT-077 for 2 days.
- FIG. 4A shows the screening results of a large-scale natural product-derived compound library using H1299 cells (H1299/total) and Oct4 + subpopulation (H1299/pOct4-GFP) including putative CSCs.
- Figure 4b shows the results of three potent compounds (evodiamine, diosine, bitexicarpine) significantly inhibiting the number of H460/total cells and H460/pOct4-GFP subpopulations compared to control cells.
- Figure 4c confirms the inhibitory effect of the spheroid formation ability of three compounds (evodiamine, diosine, bitexicarpine) in H1299 / pOct4-GFP and H460 / pOct4-GFP cells [scale bar: 1,000 ⁇ m].
- Figure 4d shows the results of analyzing the ALDH activity according to the treatment of three compounds (evodiamine, diosine, bitexicarpine) in H460/pOct4-GFP cells.
- Figure 4e shows the expression of HSP system client proteins (Akt, MEK, Src) according to the treatment of three compounds (evodiamine, diosine, bitexicarpine) by Western blot.
- Figure 4f shows Akt, MEK and Evodiamine treatment in CSC and non-CSC populations of cancer cells of NSCLC (H1299, H460), colon (HCT116) and breast (MDA-MB-231) in monolayer or spheroid-forming conditions. Expression of Src and their active (phosphorylated) forms is shown by Western blot.
- Figure 4g shows the interaction between HSP70 and HSP90 protein according to the treatment of evodiamine in H460 cells through immunoprecipitation analysis.
- Figure 4h is a Western blot showing the expression of Oct4 and Nanog proteins according to the treatment with evodiamine in H1299 cells forced to overexpress HSP70 or HSP90.
- Figure 4i shows the mRNA expression and spheroid formation effect of POU5F1 and NANOG according to the treatment of evodiamine in H1299 cells forced overexpression of HSP70.
- Figure 4j shows the mRNA expression and spheroid formation effect of POU5F1 and NANOG according to the treatment of evodiamine in H1299 cells forced overexpression of HSP90.
- Figure 4k shows the results of analysis of anchorage-dependent colony formation according to the treatment of evodiamine in H1299 cells in which the expression of HSP70 or HSP90 was stably knocked down using a specific shRNA.
- Figure 5a shows the results of analyzing the number of H1299 / pOct4-GFP, H1299 / pNanog-GFP, H460 / pOct4-GFP and H460 / pNanog-GFP cells according to ebodiamine treatment.
- Figure 5c shows the expression levels of Oct4 and Nanog according to evodiamine treatment in H1299 or H460 cells through Western blot.
- Figure 5d shows the results of analyzing the spheroid-forming ability according to the ebodiamine treatment in H1299 or H460 cells (scale bar: 500 ⁇ m).
- Figure 5e shows the expression of apoptosis markers including cleaved PARP (Cl-PARP) and cleaved caspase 3 (Cl-Cas3) according to evodiamine treatment in H460 cells through Western blot.
- Cl-PARP cleaved PARP
- Cl-Cas3 cleaved caspase 3
- Figure 5f shows the results of analyzing the degree of growth of spheroids according to ebodiamine treatment in H1299 or H460 cells. Tumor initiating cell frequency was determined by ELDA.
- Figure 5g shows the tumorigenic activity according to evodiamine treatment in H460 cells through limiting dilution analysis.
- Figure 5h shows the expression level and spheroids of Oct4, Nanog, truncated PARP (Cl-PARP) and caspase-3 (Cl-Cas3) according to evodiamine treatment in HCT116 or MDA231 cells in monolayer or spheroid-forming conditions. The results of analyzing the formation ability are shown (scale bar: 500 ⁇ m).
- Figure 5i shows the tumorigenic activity according to evodiamine treatment in MDA-MB-231 (MDA231) cells through limiting dilution analysis. Tumor initiating cell frequency was determined by ELDA.
- Figure 7i shows the results of analyzing the mouse body weight according to the evodiamine treatment.
- Figure 7j shows the results of analysis of the number of red blood cells (RBC) and white blood cells (WBC) in mice according to evodiamine treatment.
- Figure 7k shows the results of analyzing the histological characteristics of the brain, lung, liver and kidney tissues of mice according to evodiamine treatment (scale bar: 250 ⁇ m).
- Figure 8a shows the results of analyzing the expression of HSP70, HSP90 and Hop protein in H1299 or H460 NSCLC cells through Western blot.
- Figure 8c shows the expression of HSPA1A gene in NSCLC cells according to evodiamine treatment.
- Figure 8e shows the results of analyzing the half-life of HSP70/HSP90 protein according to ebodiamine treatment through Western blot.
- Figure 8i shows the results of analyzing the binding of biotinylated ebodiamine (Biotin-ebodiamine) to HSP70 or HSP90 in H1299 whole cell lysate (WCL) through a pull-down assay.
- 8K shows the results of analyzing the binding of NBD to evodiamine of HSP70 through DARTS analysis of a recombinant protein including a truncated N-terminal or C-terminal (C) domain.
- the evodiamine of the present invention is expected to be effective in the treatment or prevention of non-small cell lung cancer, as it has low toxicity, low effect reduction due to resistance, and significantly inhibits tumor growth.
- lung cancer refers to a malignant tumor that occurs in the lung, and primary lung cancer that occurs in the lung itself is classified into non-small cell lung cancer and small cell lung cancer based on the size and shape of cancer cells.
- non-small cell lung cancer refers to lung cancer in which the size of cancer cells is not small. It accounts for 80-85% of lung cancers, and includes squamous cell carcinoma, adenocarcinoma (adenocarcinoma), large cell carcinoma, adenosquamous cell carcinoma, sarcoma, carcinoid tumor, salivary gland carcinoma, and unclassified cancer.
- Non-small cell lung cancer can be caused by mutations, such as EGFR (epidermal growth factor receptor) mutated non-small cell lung cancer, KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutated non-small cell lung cancer, ALK (Anaplastic Lymphoma Kinase) mutated arsenic. and cell lung cancer.
- EGFR epidermal growth factor receptor
- KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
- ALK Anaplastic Lymphoma Kinase
- KRAS KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
- KRAS KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
- evodiamine may be represented by Formula 1 below, and (1S)-21-methyl-3,13,21-triazapentacyclo[11.8.0.0 2,10 0.0 4,9 . 0 15,20 ]henicosa-2(10),4,6,8,15,17,19-heptaen-14-one may have an IUPAC name.
- the molecular weight may be 303.4, and the chemical formula may be C 19 H 17 N 3 O.
- the ebodiamine may be chemically synthesized by a method known in the field of the present invention or a commercially available material may be used, and may be obtained by extraction and separation, but is not limited thereto.
- the HSP70 (heat shock protein 70, heat shock protein 70) is a kind of chaperone involved in the protein folding process for forming the complete structure of the protein. In several cancer cells, HSP70 is overexpressed and mediates cancer cell survival and anticancer drug resistance. The non-small cell lung cancer is prevented or treated by inhibiting HSP70.
- the spheroid-forming ability means that when cancer cells form spheroids through cell-to-cell activity, cancer is well formed and the size of the cancer is large. Therefore, inhibiting the spheroid-forming ability of cancer stem cells is to inhibit cancer.
- the drug-resistant non-small cell lung cancer refers to a case in which drug-resistant cells occupy most of the cancer cells of the lung. This proceeds as most cancer masses become drug-resistant as cells with drug-resistant cells survive and multiply selectively.
- the agent may be pemetrexed, cisplatin, or paclitaxel, but is not limited thereto.
- composition according to the present invention may further include pemetrexed, cisplatin, paclitaxel, and the like, but is not limited thereto.
- the present invention may also include a pharmaceutically acceptable salt of ebodiamine as an active ingredient.
- pharmaceutically acceptable salt includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases.
- acids examples include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, citric acid, methanesulfonic acid, formic acid , benzoic acid, malonic acid, gluconic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid, and the like.
- the content of the ebodiamine in the composition of the present invention can be appropriately adjusted depending on the symptoms of the disease, the degree of progression of the symptoms, the condition of the patient, etc., for example, 0.0001 to 99.9% by weight, or 0.001 to 50% by weight based on the total weight of the composition may be, but is not limited thereto.
- the content ratio is a value based on the dry amount from which the solvent is removed.
- the ebodiamine in the composition of the present invention is 1-500 ⁇ M, 1-400 ⁇ M, 1-300 ⁇ M, 1-200 ⁇ M, 1-150 Mm, 2-500 ⁇ M, 2-400 ⁇ M, 2-300 ⁇ M, 2 to 200 ⁇ M, 2-150 ⁇ M, 5-500 ⁇ M, 5-400 ⁇ M, 5-300 ⁇ M, 5-200 ⁇ M, 5-150 ⁇ M, 7-500 ⁇ M, 7-400 ⁇ M, 7-300 ⁇ M, 7 to 200 ⁇ M, 7 to 150 ⁇ M or 7 to 120 ⁇ M may be included, but is not limited thereto.
- the pharmaceutical composition according to the present invention may further include suitable carriers, excipients and diluents commonly used in the preparation of pharmaceutical compositions.
- the excipient may be, for example, at least one selected from the group consisting of a diluent, a binder, a disintegrant, a lubricant, an adsorbent, a humectant, a film-coating material, and a controlled-release additive.
- tablets, sustained release tablets, enteric tablets, sublingual tablets, hard capsules, soft capsules, sustained release capsules, enteric capsules, pills, tinctures, soft extracts, dry extracts, fluid extracts, injections, capsules, perfusates It can be formulated and used in the form of external preparations such as warning agents, lotions, pasta agents, sprays, inhalants, patches, sterile injection solutions, or aerosols, and the external preparations are creams, gels, patches, sprays, ointments, warning agents. , lotion, liniment, pasta, or cataplasma.
- Carriers, excipients and diluents that may be included in the pharmaceutical composition according to the present invention include lactose, dextrose, sucrose, oligosaccharide, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
- water diluted hydrochloric acid, diluted sulfuric acid, sodium citrate, monostearate sucrose, polyoxyethylene sorbitol fatty acid esters (Twinester), polyoxyethylene monoalkyl ethers, lanolin ethers, Lanolin esters, acetic acid, hydrochloric acid, aqueous ammonia, ammonium carbonate, potassium hydroxide, sodium hydroxide, prolamine, polyvinylpyrrolidone, ethyl cellulose, sodium carboxymethyl cellulose, etc.
- water diluted hydrochloric acid, diluted sulfuric acid, sodium citrate, monostearate sucrose, polyoxyethylene sorbitol fatty acid esters (Twinester), polyoxyethylene monoalkyl ethers, lanolin ethers, Lanolin esters, acetic acid, hydrochloric acid, aqueous ammonia, ammonium carbonate, potassium hydroxide, sodium hydroxide, prolamine, polyvinylpyrrolidone,
- sucrose solution other sugars or sweeteners may be used, and if necessary, a fragrance, colorant, preservative, stabilizer, suspending agent, emulsifying agent, thickening agent, etc. may be used.
- Purified water may be used in the emulsion according to the present invention, and if necessary, an emulsifier, preservative, stabilizer, fragrance, etc. may be used.
- a suspending agent such as acacia, tragacantha, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, microcrystalline cellulose, sodium alginate, hydroxypropylmethylcellulose, HPMC 1828, HPMC 2906, HPMC 2910 may be used. and, if necessary, surfactants, preservatives, stabilizers, colorants, and fragrances may be used.
- the injection according to the present invention includes distilled water for injection, 0.9% sodium chloride injection solution, ring gel injection solution, dextrose injection solution, dextrose + sodium chloride injection solution, PEG (PEG), lactated ring gel injection solution, ethanol, propylene glycol, non-volatile oil-sesame oil , solvents such as cottonseed oil, peanut oil, soybean oil, corn oil, ethyl oleate, isopropyl myristate, and benzene benzoate; Solubilizing aids such as sodium benzoate, sodium salicylate, sodium acetate, urea, urethane, monoethylacetamide, butazolidine, propylene glycol, tweens, nijeongtinamide, hexamine, and dimethylacetamide; Weak acids and their salts (acetic acid and sodium acetate), weak bases and their salts (ammonia and ammonium acetate), organic compounds, proteins, buffers such as albumin
- the suppository according to the present invention includes cacao fat, lanolin, witepsol, polyethylene glycol, glycerogelatin, methyl cellulose, carboxymethyl cellulose, a mixture of stearic acid and oleic acid, Subanal, cottonseed oil, peanut oil, palm oil, cacao butter + Cholesterol, Lecithin, Lanet Wax, Glycerol Monostearate, Tween or Span, Imhausen, Monolene (Propylene Glycol Monostearate), Glycerin, Adeps Solidus, Butyrum Tego -G), Cebes Pharma 16, Hexalide Base 95, Cotomar, Hydroxote SP, S-70-XXA, S-70-XX75 (S-70-XX95), Hydro Hydrokote 25, Hydrokote 711, Idropostal, Massa estrarium, A, AS, B, C, D, E, I, T, Massa-MF, Masupol, Masupol-15, Neos
- Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations include at least one excipient in the extract, for example, starch, calcium carbonate, sucrose ) or lactose, gelatin, etc.
- excipients for example, starch, calcium carbonate, sucrose ) or lactose, gelatin, etc.
- lubricants such as magnesium stearate and talc are also used.
- Liquid formulations for oral administration include suspensions, internal solutions, emulsions, syrups, etc.
- various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included.
- Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
- Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
- composition according to the present invention is administered in a pharmaceutically effective amount.
- pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, drug activity, and type of the patient's disease; Sensitivity to the drug, administration time, administration route and excretion rate, treatment period, factors including concurrent drugs and other factors well known in the medical field may be determined.
- the pharmaceutical composition according to the present invention may be administered as an individual therapeutic agent or may be administered in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. In consideration of all of the above factors, it is important to administer an amount capable of obtaining the maximum effect with a minimum amount without side effects, which can be easily determined by a person skilled in the art to which the present invention pertains.
- the pharmaceutical composition of the present invention may be administered to an individual by various routes. All modes of administration can be contemplated, for example, oral administration, subcutaneous injection, intraperitoneal administration, intravenous injection, intramuscular injection, paraspinal space (intrathecal) injection, sublingual administration, buccal administration, rectal insertion, vaginal It can be administered according to internal insertion, ocular administration, ear administration, nasal administration, inhalation, spraying through the mouth or nose, skin administration, transdermal administration, and the like.
- the pharmaceutical composition of the present invention is determined according to the type of drug as an active ingredient along with several related factors such as the disease to be treated, the route of administration, the patient's age, sex, weight, and the severity of the disease.
- “individual” means a subject in need of treatment for a disease, and more specifically, human or non-human primates, mice, rats, dogs, cats, horses, cattle, etc. means the mammals of
- administration means providing a predetermined composition of the present invention to an individual by any suitable method.
- the present invention is an anticancer adjuvant for enhancing the anticancer efficacy of an anticancer agent comprising evodiamine or a pharmaceutically acceptable salt thereof as an active ingredient, wherein the cancer is non-small cell lung cancer, an anticancer adjuvant provides
- the anticancer adjuvant may enhance the efficacy of the anticancer agent.
- the anticancer adjuvant may be administered simultaneously or sequentially with the anticancer agent.
- sequential administration the anticancer agent may be added after the anticancer adjuvant is injected, and the anticancer adjuvant may be added after the anticancer drug is injected, but is not limited thereto.
- the administration method may be changed so as to enhance the anticancer effect.
- H1299 and H460 cells stably transfected with either human POUSF1 or GFP reporter vectors carrying NANOG promoters were subjected to in vitro experiments.
- NANOG promoters H1299/pOct4-GFP, H1299/pNanog-GFP, H460/pOct4-GFP and H460/pNanog-GFP
- FACS Aria III flow cytometer BD Biosciences
- cells were treated with evodiamine for 2 days, followed by FACS.
- the gating strategy for determining the GFP High and GFP Low populations as indicators of each promoter activity in these cells is shown in FIG. 1 .
- Ebodiamine and biotinylated ebodiamine were synthesized with reference to a method known in the literature (J Med Chem. 2012; 55: 7593-613.).
- Cells were placed in a 96-well plate at a density of 2 x 10 3 to 1 x 10 4 cells/well, and then cultured for 24 hours to allow attachment. Cells were treated with the indicated concentrations of test compounds diluted in vehicle (DMSO) or medium for 2 days, then treated with MTT solution (final concentration 500 ⁇ g/mL) and incubated at 37° C. for 2 to 4 hours. The formazan product was dissolved in DMSO, and the absorbance of each well was measured at 570 nm. Data are expressed as a percentage of the control group.
- DMSO vehicle
- MTT solution final concentration 500 ⁇ g/mL
- Cell populations with high ALDH enzyme activity were identified using the AldeRed ALDH assay kit (Merck Millipore, Billerica, MA, USA). First, 1 x 10 6 H1299 cells were suspended in AldeRed buffer and stained with AldeRed A588 at 37°C for 40 minutes. Each group contained a blank sample (AldeRed A588 alone) and a positive control sample (AldeRed A588 + DEAB). Fluorescence intensities were obtained by flow cytometry, and samples treated with DEAB (negative control) were used to set a sorting gate. ALDH high and ALDH low populations were sorted using a FACS Aria III flow cytometer (BD Biosciences) for in vitro experiments.
- AldeRed ALDH assay kit Merck Millipore, Billerica, MA, USA.
- H1299, H460, HCT116 and MDA-MB-231 cells were treated with various doses (0, 1 and 5 ⁇ M) of evodiamine for 48 hours.
- the cells were then incubated with Hoechst 33342 (Thermo Fisher Scientific) diluted in fresh serum-containing medium (20 ⁇ M) for 30 minutes, and then observed under a fluorescence microscope. Cells with condensed, fragmented or degraded nuclei were counted.
- Cells were treated with various concentrations of evodiamine for 2 days. Adherent and floating cells were collected and washed with PBS. Cells were stained with Annexin V-FITC and PI using Annexin V-FITC/PI double staining kit (BD Bioscience). Fluorescence intensity was analyzed using a FACSCalibur® flow cytometer (BD Biosciences) and Flowing software (Cell Imaging and Cytometry (CIC) Core, Turku Bioscience).
- Modified RIPA lysis buffer containing various protease and phosphatase inhibitors 100 mM NaF, 5 mM Na 3 VO 4 , 1 mM PMSF, 1 ⁇ g/mL proteinin, 1 ⁇ g/mL leupeptin, and 1 ⁇ g/mL pepstatin
- Proteins were extracted with a cell lysing agent prepared with (Tris-HCl [pH 7.4] 50 mM, NaCl 150 mM, EDTA 1 mM, 0.25% sodium deoxycholate, 1% Triton X-100).
- PVDF polyvinylidene difluoride
- the membrane was washed several times with TBST and incubated for 1 hour at room temperature with a secondary antibody diluted 1:5000 in a 5% nonfat dry milk solution prepared with TBST. Finally, the membrane was washed several times with TBST and the protein bands were visualized using an Enhanced chemiluminescence (ECL) detection kit (Thermo Fisher Scientific).
- ECL Enhanced chemiluminescence
- H1299 cells were transduced with lentiviral particles containing a control vector (shCon; pLKO.1) or HSP90 or HSP70 shRNA (purchased from Sigma-Aldrich).
- lentiviral particles containing a control vector (shCon; pLKO.1) or HSP90 or HSP70 shRNA (purchased from Sigma-Aldrich).
- the target sequences of HSP90 or HSP70 shRNA are shown in Table 2 below.
- HSP90 shRNA GTTATCCTACACCTGAAAGAA SEQ ID NO: 25
- HSP70 shRNA GCCTTTCCAAGATTGCTGTTT SEQ ID NO: 26
- the human HSP1A1 gene (full length, N-terminal and C-terminal domains) was cloned into the pET28a vector with an N-terminal (His) tag.
- E. coli BL21 cells were transformed into the construct and cultured in LB (lysogeny broth) medium at 37° C. until the absorbance at 600 nm reached 0.5. Protein expression was induced by adding 0.2 mM isopropyl- ⁇ -d-thiogalactopyranoside (IPTG) and then incubating at 37° C. for 6 hours.
- IPTG isopropyl- ⁇ -d-thiogalactopyranoside
- biotin-avidin pulldown assay cell lysates were incubated with vehicle (DMSO) or 5 ⁇ M biotinylated-evodiamine at 4° C. for 4 hours. Then, streptavidin agarose was added and incubated at 4° C. for 2 hours. Beads were collected, washed once with PBST and twice with PBS, and proteins were extracted by boiling at 95° C. for 5 min with 5 ⁇ SDS-PAGE sample buffer. Thereafter, Western blot analysis was performed in the same manner as in Experimental Method 12.
- DMSO vehicle
- streptavidin agarose was added and incubated at 4° C. for 2 hours. Beads were collected, washed once with PBST and twice with PBS, and proteins were extracted by boiling at 95° C. for 5 min with 5 ⁇ SDS-PAGE sample buffer. Thereafter, Western blot analysis was performed in the same manner as in Experimental Method 12.
- mice All animal procedures were performed according to the protocol (approval number SNU-131202-2) approved by the Animal Care Committee of Seoul National University Animal Hospital. Mice were supplied with standard food and water ad libitum, and housed in a facility in which temperature and humidity were controlled with a light-dark cycle for 12 hours each.
- H460 cells or patient-derived tumors were subcutaneously inoculated into the right flank of 6-week-old NOD/SCID mice. After the tumor volume reached 50-150 mm 3 , mice were randomly grouped and either evodiamine (20 mg/kg) or vehicle (10% DMSO and 40% PEG400 solution diluted in distilled water) was administered via oral gavage 3 Administered 6 times a week for a week.
- Evodiamine was dissolved in DMSO and diluted in 40% PEG400 solution. Tumor growth was determined by measuring the small and large diameters of the tumor with a caliper, and the tumor volume was calculated using Equation 1 below. In addition, body weights were recorded twice a week to monitor toxicity.
- Tumor volume (mm 3 ) (small diameter) 2 ⁇ (large diameter) ⁇ 0.5
- mice 3-month-old mice were randomized and administered orally with vehicle (10% DMSO and 40% PEG400 solution diluted in distilled water) or evodiamine (20 mg/kg) for 8 weeks. treated. Bioluminescence images were obtained using MMPSense 680 probe (PerkinElmer; 2 nmol/150 ⁇ L in PBS), IVIS-spectrum microCT and Living Image (ver. 4.2) software (PerkinElmer, Alameda, CA, USA). The instrument was operated according to the manufacturer's instructions. Mice were euthanized and tumor formation in the evodiamine and vehicle treated groups was assessed and compared.
- vehicle 10% DMSO and 40% PEG400 solution diluted in distilled water
- evodiamine 20 mg/kg
- tumor volume was calculated using Equation 1 above.
- Tumor burden was calculated using Equation 2 below. The number and size of tumors were calculated in 5 sections uniformly distributed throughout each lung.
- Tumor burden number of tumors ⁇ mean of tumor volume
- GEO Center for Biological Information
- HSP system components (HSPB1 (encoding Hsp27), DNAJB1 (encoding Hsp40), HSPD1 (encoding Hsp60), HSPA1A (encoding HSP70) and HSP90AA1 (encoding HSP90) in non-small cell cancer (NSCLC) cancer stem cells (CSC) )) was evaluated.
- NSCLC non-small cell cancer
- CSC cancer stem cells
- FACS fluorescence activated cell sorting
- HSPA1A and HSP90AA1 were confirmed in sorted ALDH high and ALDH low populations, CD44 high and CD44 low populations, or CD133 high and CD133 low populations isolated from A549, 460 cells or PDX (patient derived xenograft). The results are shown in Figs. 2e and 2f.
- GSEA Gene set enrichment analysis
- CSC populations of lung GSE38678
- colon GSE24747
- breast GSE67966
- GSE41271 and GSE17537 a putative Hsp-related gene set and lung adenocarcinoma with cancer and recurrence
- GSE58812 metastasis
- colon cancer GSE17537
- breast cancer GSE58812
- HSP70 or HSP90 significantly promotes the acquisition of CSC phenotype in H1299 cells, including expression of CSC marker genes (POU5F1, NANOG and SOX2) and ALDH activity.
- the ALDH high population of H1299 and A549 cells was also reduced by shRNA-mediated inactivation of the HSP system.
- HSP system plays an important role in cancer stem cells of lung cancer, breast cancer and colon cancer. Therefore, given that the HSP system is activated in various human cancers, targeting the HSP system to eliminate both CSC and non-CSC populations could effectively treat various human cancers.
- H1299/PmR pemetrexed
- H1299/CsR cisplatin
- H460/PcR paclitaxel
- treatment with evodiamine increased PARP and caspase-3 cleavage, chromatin condensation and annexin V-positive cell population in NSCLC cells. This means that treatment with evodiamine induces apoptosis in NSCLC cells in a concentration-dependent manner.
- treatment with evodiamine up to 5 ⁇ M was found in liver epithelium (NCTC1489), lung epithelium (HBE), colon fibroblasts (CCD-18Co), mammary epithelium (MCF10A), mouse hippocampus (HT-22). and lung fibroblasts (Wi38) had no significant effect on the viability of normal cell lines.
- evodiamine can inhibit lung tumor formation by mutated KRAS ( Kras G12D/+ ) and inhibit the growth of cell lines and patient-derived tumor xenografts without showing any apparent toxicity.
- composition comprising evodiamine of the present invention as an active ingredient inhibits tumor growth, inhibits HSP70 protein expression and spheroid formation ability of cancer stem cells, and tumors in cancer cell line xenografts and patient-derived cancer xenograft mouse models
- pemetrexed In addition to inhibiting the growth of pemetrexed, it has a synergistic effect when combined with drugs such as pemetrexed, cisplatin, and paclitaxel, and has anticancer effect on drug-resistant cancer cells. It is possible, and there is industrial applicability.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 조성물 등에 관한 것이다. 본 발명의 에보디아민을 유효성분으로 포함하는 조성물은 종양의 성장을 억제하고, HSP70 단백질 발현과 암 줄기세포의 스페로이드 형성 능력을 억제하며, 암세포주 이종이식 및 환자 유래 암 이종이식 마우스 모델에서 종양의 성장을 억제시킬 뿐만 아니라, 페메트렉시드, 시스플라틴, 및 파클리탁셀 등의 약제와 병용 시 시너지 효과를 가지고, 약제 내성이 있는 암세포에 항암효능이 있는 바, 비소세포폐암의 예방 및 치료에 폭 넓게 사용 가능할 것으로 기대된다.
Description
본 발명은 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 조성물 등에 관한 것이다.
본 출원은 2020년 9월 28일에 출원된 한국특허출원 제10-2020-0126273호 및 2021년 9월 27일에 출원된 한국특허출원 제10-2021-0127177호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
암은 주요 사망 원인 질환으로, 진단 기술의 발달로 인한 조기 진단과 면역항암제 등 암을 억제할 수 있는 항암제 개발이 이루어지고 있으나, 현재 적용 중인 항암 요법에서 독성, 부작용뿐만 아니라 내성으로 인한 치료 효과 저하 및 암 재발이 나타나고 있어 효과적인 항암제 개발이 필수적이다.
폐암은 폐에 생긴 악성 종양을 말하며, 폐 자체에서 발생하거나(원발성 폐암) 다른 장기에서 생긴 암이 폐로 전이되어 발생하기도 한다. 원발성 폐암의 종류는 암세포의 크기와 형태를 기준으로 비소세포폐암과 소세포폐암으로 구분한다. 비소세포폐암은 폐암 가운데 80~85%을 차지한다. 이는 편평상피세포암, 샘암(선암), 대세포암, 샘편평세포암, 육종 모양암, 카르시노이드종양, 침샘형암, 미분류암 등으로 나뉜다. 그 나머지인 소세포폐암은 전반적으로 악성도가 높아서, 발견 당시에 이미 림프관 또는 혈관을 통하여 다른 장기나 반대편 폐, 종격동(양쪽 폐 사이의 공간으로 심장, 기관, 식도, 대동맥 등이 위치함)으로 전이되어 있는 경우가 많다.
약제 내성 폐암은 약제 내성 세포가 폐의 암세포의 대부분을 차지하게 되는 경우 발생한다. 상기 약제 내성 세포의 발생은 항암제 등을 이용한 암치료에 있어서 큰 장애가 된다. 대부분 암세포들은 유전자 변이 억제와 관련된 기능이 이미 상실된 상태에 있으므로, 하나의 암 덩어리 안에 있는 세포들 각각도 다양한 유전자 발현패턴을 가지게 된다. 이러한 유전적 다양성으로 인해 약제 내성을 가진 세포가 선별적으로 살아남게 되며, 살아남은 약제 내성 세포가 증식을 거듭하여 결국 대부분의 암 덩어리의 세포가 약제 내성을 가지게 된다. 유전적 다양성 내지 돌연변이로 인한 약제 내성 외에도, 환자의 부작용이 너무 심하여 충분한 양의 약제를 투여하지 못한 경우, 경구 투여시 약물 흡수가 비정상적으로 저하된 경우, 또는 생리학적으로 혈관과 암조직 사이에 세포로 이루어진 장벽이 있어 제대로 약제가 침투하지 못한 경우 등에도 약제 내성 현상을 보일 수 있다.
KRAS 유전자는 세포의 성장, 성숙, 죽음을 조절하는 세포 신호전달경로에 관여하는 케이라스(KRAS) 단백질을 만드는 유전자이다. KRAS의 돌연변이 형태는 비소세포폐암, 대장암, 췌장암을 포함한 일부 암에서 발견된다. 이는 암세포가 몸 안에서 자라고 퍼지는데 도움을 준다. 따라서, 환자의 종양이 돌연변이 KRAS 유전자를 가지고 있는지 확인하는 것은 암치료에 도움을 준다.
열 충격 단백질(Heat shock protein 70; Hsp70)은 여러 암세포에서 과발현되어 있으며, 암세포의 생존, 항암제 저항성을 매개하는 것으로 알려져 있다. 특히 최근 논문에서 Hsp70을 억제할 경우 암 개시세포 억제를 통해 암 발생 및 전이를 억제하는 것으로 나타나, Hsp70은 새로운 항암제 개발 표적으로 여겨지고 있다. 여러 Hsp70 억제제가 개발 중이나, 대부분 전임상 단계에 그치고 있어 효과적인 Hsp70 억제제의 개발이 필요하다.
따라서, 이러한 KRAS 변이 비소세포폐암 또는 약제 내성 폐암을 효과적으로 치료하기 위해서 HSP70을 억제함으로서, 종양의 성장을 억제할 수 있는 치료제의 개발이 절실히 필요한 실정이다.
본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로, 에보디아민을 유효성분으로 포함하는 조성물이 HSP70을 억제하고, 종양의 성장을 효과적으로 억제함을 확인하여, 비소세포폐암의 예방 또는 치료효과를 확인한 바, 이에 기초하여 본 발명을 완성하였다.
이에 본 발명의 목적은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명은 다른 목적은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 항암제의 항암효능을 증진시키는 항암보조제로서, 상기 암은 비소세포폐암인 것을 특징으로 하는, 항암보조제를 제공하는 것이다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 본 발명의 목적을 달성하기 위하여, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 항암제의 항암효능을 증진시키는 항암보조제로서, 상기 암은 비소세포폐암인 것을 특징으로 하는, 항암보조제를 제공한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 비소세포폐암의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 약학적 조성물의 비소세포폐암의 예방 또는 치료 용도를 제공한다.
또한, 본 발명은 비소세포폐암의 예방 또는 치료 약제를 생산하기 위한 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항암보조제를 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 방법을 제공한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항암보조제가 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 용도를 제공한다.
또한, 본 발명은 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 약제를 생산하기 위한 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
본 발명의 일 구현예에서 상기 비소세포폐암은 KRAS 변이 비소세포폐암 및 약제 내성 비소세포폐암으로 이루어지는 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다른 구현예에서 상기 에보디아민은 종양의 수 및 부피로 이루어지는 군으로부터 선택된 하나 이상을 감소시킬 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현예에서 상기 에보디아민은 HSP70 단백질의 발현을 억제시킬 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현예에서 상기 에보디아민은 암 줄기세포의 스페로이드 형성 능력을 억제할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현예에서, 상기 에보디아민은 HIF-1α, Akt, Src, MEK, POUSF1, NANOG, 및 SOX2로 이루어지는 군으로부터 선택된 하나 이상의 단백질 또는 유전자의 발현을 억제시킬 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현예에서, 상기 조성물은 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상을 더 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현예에서, 상기 약제는 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한 되는 것은 아니다.
본 발명의 또 다른 구현예에서, 상기 항암제는 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 에보디아민을 유효성분으로 포함하는 조성물은 종양의 성장을 억제하고, HSP70 단백질 발현과 암 줄기세포의 스페로이드 형성 능력을 억제하며, 암세포주 이종이식 및 환자 유래 암 이종이식 마우스 모델에서 종양의 성장을 억제시킬 뿐만 아니라, 페메트렉시드, 시스플라틴, 및 파클리탁셀 등의 약제와 병용 시 시너지 효과를 가지고, 약제 내성이 있는 암세포에 항암효능이 있는 바, 비소세포폐암의 예방 및 치료에 폭 넓게 사용 가능할 것으로 기대된다.
도 1은 GFPHigh 및 GFPLow 집단을 결정하기 위한 게이팅 전략을 나타낸 것이다.
도 2a는 단층 또는 스페로이드형성 조건에서 성장한 NSCLC 세포주(H460, H1299, A549)의 HSP 시스템의 구성요소 발현(mRNA: HSPB1, DNAJB1, HSPD1, HSPA1A, HSP90AA1, HSPA4, STIP1, AHSA1)을 확인한 결과를 나타낸 것이다.
도 2b는 단층 또는 스페로이드 형성 조건에서 성장한 NSCLC 세포주(H460, H1299, A549)의 HSP 시스템의 구성요소(단백질: Hsp70, Hsp90, Hop), 줄기세포 관련 마커(Sox2 및 Oct4), HSP 시스템 클라이언트 단백질(HIF-1α, Akt 및 Src) 및 그의 인산화된 형태의 단백질 발현 정도를 웨스턴 블롯을 통해 나타낸 것이다.
도 2c는 H460, H1299세포에서 pOct4-GFPLow 및 pNanog-GFPLow에 비교하여 pOct4-GFPHigh 및 pNanog-GFPHigh의 스페로이드 형성 능력을 나타낸 것이다 [기준자(scale bar): 100 μm].
도 2d는 H460, H1299세포에서 pOct4-GFPLow 및 pNanog-GFPLow에 비교하여 pOct4-GFPHigh 및 pNanog-GFPHigh의 CSC마커 및 HSP 시스템 구성요소의 mRNA 발현을 나타낸 것이다.
도 2e는 A549, H460 NSCLC 세포주 및 PDX 종양의 1차 배양 세포에서 ALDHHigh 대 ALDHLow 집단에서의 HSPA1A 및 HSP90AA1의 mRNA 발현을 나타낸 것이다.
도 2f는 결장암 및 유방암 환자 유래 종양 세포에서 분리된 추정 암 줄기세포에서 HSPA1A 및 HSP90AA1 mRNA 발현을 나타낸 것이다.
도 2g는 NSCLC, 결장암 및 유방암에서의 HSP 시스템 관련 유전자 세트 및 폐 선암종(ADC) 환자에서 유래한 종양에 대해 공개적으로 이용 가능한 데이터의 유전자 세트 농축 분석의 결과를 나타낸 것이다.
도 2h는 GSE3141 데이터 세트의 분석을 통해 결정되는 폐암, 결장암, 유방암 환자의 전체 생존과 HSPA1A 발현의 연관성에 대한 카플란-마이어 생존 분석 결과를 나타낸 것이다.
도 3a는 HSP70 또는 HSP90을 강제 과발현시킨 H1299 세포에서의 CSC 마커의 mRNA 발현을 나타낸 것이다.
도 3b는 HSP70 또는 HSP90을 강제 과발현시킨 H1299 세포에서의 ALDH 활성을 분석한 결과를 나타낸 것이다.
도 3c는 HSP70 또는 HSP90 발현이 특정 shRNA로 안정한 형질감염에 의해 침묵된 H1299 및 A549 세포에서 각각의 대조군과 비교한 스페로이드 형성을 분석한 결과를 나타낸 것이다.
도 3d는 HSP70 또는 HSP90 발현이 특정 shRNA로 안정한 형질감염에 의해 침묵된 H1299 및 A549 세포에서 CSC 마커(Oct4, Nanog, Sox2) 및 HSP 시스템 클라이언트 단백질(Art, Src, MEK)의 발현 정도를 웨스턴 블롯을 통해 나타낸 것이다.
도 3e는 HSP70 또는 HSP90 발현이 특정 shRNA로 안정한 형질감염에 의해 침묵된 H1299 및 A549 세포에서 ALDH 활성을 분석한 결과를 나타낸 것이다.
도 3f는 H1299, A549, HCT116 및 MDA-MB-231(MDA231)에서 HSP70 억제제(MKT-077) 또는 HSP90 억제제(17-AAG)의 처리에 따른 스페로이드의 크기와 수를 나타낸 것이다.
도 3g는 H1299, H460, A549, HCT116 또는 MDA-MB-231(MDA231)에서 HSP70 억제제(MKT-077) 또는 HSP90 억제제(17-AAG)의 처리에 따른 HSP 시스템의 CSC 마커, HSP70/HSP90 클라이언트 단백질의 발현 정도를 나타낸 것이다.
도 3h는 H1299 및 H460 세포를 17-AAG 또는 MKT-077로 2일 동안 처리한 후, 세포 용해물을 SDS-PAGE와 Coomassie brilliant blue 염색을 통하여 분리한 단백질의 발현 정도를 나타낸 것이다.
도 4a는 H1299 세포(H1299/전체)와 추정 CSC를 포함하는 Oct4+ 하위집단(H1299/pOct4-GFP)을 활용하여 대규모의 천연물 유래 화합물 라이브러리의 스크리닝 결과를 나타낸 것이다.
도 4b는 세 가지 강력한 화합물(에보디아민, 디오신, 비텍시카르핀)이 대조군 세포와 비교하여 H460/총 세포 및 H460/pOct4-GFP 하위 집단의 수를 유의하게 억제하는 결과를 나타낸 것이다.
도 4c는 H1299/pOct4-GFP 및 H460/pOct4-GFP 세포에서 3가지 화합물(에보디아민, 디오신, 비텍시카르핀)의 스페로이드 형성 능력의 억제 효과를 확인한 것이다[기준자(scale bar): 1,000 μm].
도 4d는 H460/pOct4-GFP 세포에서 3가지 화합물(에보디아민, 디오신, 비텍시카르핀)처리에 따른 ALDH 활성을 분석한 결과를 나타낸 것이다.
도 4e는 3가지 화합물(에보디아민, 디오신, 비텍시카르핀)처리에 따른 HSP 시스템 클라이언트 단백질(Akt, MEK, Src)의 발현을 웨스턴 블롯으로 나타낸 것이다.
도 4f는 단층 또는 스페로이드 형성 조건의 NSCLC(H1299, H460), 결장(HCT116) 및 유방(MDA- MB-231)의 암세포의 CSC 및 비-CSC 집단에서 에보디아민의 처리에 따른 Akt, MEK 및 Src 및 이들의 활성(인산화) 형태의 발현을 웨스턴 블롯으로 나타낸 것이다.
도 4g는 H460세포에서 에보디아민의 처리에 따른 HSP70과 HSP90 단백질 간의 상호작용을 면역침전 분석을 통해서 나타낸 것이다.
도 4h는 HSP70 또는 HSP90을 강제 과발현시킨 H1299세포에서 에보디아민의 처리에 따른 Oct4 및 Nanog 단백질의 발현을 웨스턴 블롯으로 나타낸 것이다.
도 4i는 HSP70을 강제 과발현시킨 H1299세포에서 에보디아민의 처리에 따른 POU5F1 및 NANOG의 mRNA 발현과 스페로이드 형성 효과를 나타낸 것이다.
도 4j는 HSP90을 강제 과발현시킨 H1299세포에서 에보디아민의 처리에 따른 POU5F1 및 NANOG의 mRNA 발현과 스페로이드 형성 효과를 나타낸 것이다.
도 4k는 HSP70 또는 HSP90의 발현이 특정 shRNA를 사용하여 안정적으로 녹다운된 H1299 세포에서, 에보디아민의 처리에 따른 앵커리지 의존성 콜로니 형성을 분석한 결과를 나타낸 것이다.
도 5a는 에보디아민 처리에 따른 H1299/pOct4-GFP, H1299/pNanog-GFP, H460/pOct4-GFP 및 H460/pNanog-GFP 세포의 수를 분석한 결과를 나타낸 것이다.
도 5b는 H1299 세포에서 에보디아민 처리에 따른 ALDH 활성을 분석한 결과를 나타낸 것이다.
도 5c는 H1299 또는 H460 세포에서 에보디아민 처리에 따른 Oct4 및 Nanog 발현 정도를 웨스턴 블롯을 통해서 나타낸 것이다.
도 5d는 H1299 또는 H460 세포에서 에보디아민 처리에 따른 스페로이드 형성 능력을 분석한 결과를 나타낸 것이다[기준자(scale bar): 500 μm].
도 5e는 H460 세포에서 에보디아민 처리에 따른 절단된 PARP(Cl-PARP) 및 절단된 카스파제3(Cl-Cas3)을 포함한 세포자멸사 마커의 발현을 웨스턴 블롯을 통해서 나타낸 것이다.
도 5f는 H1299 또는 H460 세포에서 에보디아민 처리에 따른 스페로이드의 성장의 정도를 분석한 결과를 나타낸 것이다. 종양 개시 세포 빈도는 ELDA에 의해 결정되었다.
도 5g는 H460 세포에서 에보디아민 처리에 따른 종양 형성 활성을 제한 희석 분석을 통해서 나타낸 것이다.
도 5h는 단층 또는 스페로이드 형성 조건의 HCT116 또는 MDA231 세포에서 에보디아민 처리에 따른 Oct4, Nanog, 절단된 형태의 PARP(Cl-PARP) 및 카스파제-3(Cl-Cas3)의 발현 정도와 스페로이드 형성 능력을 분석한 결과를 나타낸 것이다[기준자(scale bar): 500 μm].
도 5i는 MDA-MB-231(MDA231) 세포에서 에보디아민 처리에 따른 종양 형성 활성을 제한 희석 분석을 통해서 나타낸 것이다. 종양 개시 세포 빈도는 ELDA에 의해 결정되었다.
도 6a는 에보디아민 처리에 따른 폐, 결장 및 유방암으로부터 유래된 여러 암세포주[H1299, A549, H460, H226B, HCT116, MDA-MB-231(MDA231)]의 생존율 및 암세포 생존율에 대한 에보디아민의 IC50값을 나타낸 것이다.
도 6b는 에보디아민 처리에 따른 폐, 결장 및 유방암으로부터 유래된 여러 암세포주[H1299, A549, H460, H226B, HCT116, MDA-MB-231(MDA231)]의 앵커리지 의존성 콜로니 형성을 분석한 결과를 나타낸 것이다.
도 6c는 에보디아민 처리에 따른 폐로부터 유래된 세포주(H1299, A549, H460)의 앵커리지 비의존성 콜로니 형성을 분석한 결과를 나타낸 것이다.
도 6d는 페메트렉시드(H1299/PmR), 시스플라틴(H1299/CsR) 또는 파클리탁셀(H460/PcR)에 내성을 나타내는 H1299 또는 H460세포에서 에보디아민 처리에 따른 콜로니 형성을 분석한 결과를 나타낸 것이다,
도 6e는 NSCLC 세포에서 에보디아민, 시스플라틴, 파클리탁셀 처리에 따른 세포의 생존율을 분석한 결과를 나타낸 것이다.
도 6f는 NSCLC 세포에서 에보디아민, 시스플라틴, 파클리탁셀 처리에 따른 콜로니 형성 능력을 분석한 결과를 나타낸 것이다.
도 6g는 H1299, H460, HCT116 또는 MDA-MB-231(MDA231) 세포에서 에보디아민 처리에 따른 절단된 PARP 및 카스파제-3을 분석한 결과를 나타낸 것이다.
도 6h는 H1299, H460, HCT116 또는 MDA-MB-231(MDA231) 세포에서 에보디아민 처리에 따른 염색질 응축을 Hoechst 33342 염색을 통하여 분석한 결과를 나타낸 것이다.
도 6i는 H1299, H460, HCT116 또는 MDA-MB-231(MDA231) 세포에서 에보디아민 처리에 따른 아넥신 V-양성 세포 집단을 아넥신 V/PI 이중 염색 분석을 통하여 분석한 결과를 나타낸 것이다.
도 6j는 NCTC1489, HBE, CCD-18Co, MCF10A, HT-22 또는 Wi38에서 유래한 정상 세포주에서 에보디아민 처리에 따른 생존율을 분석한 결과를 나타낸 것이다.
도 7a는 Kras
G12D/+형질전환 마우스에서 에보디아민을 20 mg/kg로 8주 동안 투여한 후, 생물발광 이미징 결과를 나타낸 것이다.
도 7b는 Kras
G12D/+ 형질전환 마우스에서 에보디아민을 20 mg/kg로 8주 동안 투여한 후, 폐를 육안 관찰과 헤마톡실린 및 에오신(H&E)으로 염색을 통하여 분석한 결과를 나타낸 것이다[기준자(scale bar): 500 μm].
도 7c는 Kras
G12D/+ 형질전환 마우스에서 에보디아민을 20 mg/kg로 8주 동안 투여한 후, 마우스의 폐의 종양의 수, 부피 및 부담을 분삭한 결과를 나타낸 것이다.
도 7d는 마우스의 폐 종양에서 에보디아민 처리에 따른 절단된 카스파제-3(Cl-Cas3) 및 Oct4 발현 수준을 분석한 결과를 나타낸 것이다[기준자(scale bar): 20 μm].
도 7e는 H460 이종이식 모델에서 에보디아민 처리에 따른 종양의 부피를 분석한 결과를 나타낸 것이다.
도 7f는 H460 이종이식 모델에서 종양의 무게, 절단된 카스파제-3(Cl-Cas3) 및 Oct4 발현 수준을 분석한 결과를 나타낸 것이다.
도 7g는 폐암, 결장암, 유방암의 PDX(Patient derived xenograft) 종양 모델에서 에보디아민 처리에 따른 종양의 부피, 절단된 카스파제-3(Cl-Cas3) 및 Oct4 발현 수준을 분석한 결과를 나타낸 것이다.
도 7h는 폐암, 결장암, 유방암의 PDX 종양 모델에서 에보디아민 처리에 따른 Oct4의 발현 및 카스파제-3 절단에 대한 면역 형광 이미지를 나타낸 것이다.
도 7i는 에보디아민 처리에 따른 마우스 체중을 분석한 결과를 나타낸 것이다.
도 7j는 에보디아민 처리에 따른 마우스의 적혈구(RBC) 및 백혈구(WBC) 수를 분석한 결과를 나타낸 것이다.
도 7k는 에보디아민 처리에 따른 마우스의 뇌, 폐, 간 및 신장 조직의 조직학적 특징을 분석한 결과를 나타낸 것이다[기준자(scale bar): 250 μm].
도 8a는 H1299 또는 H460 NSCLC 세포에서 HSP70, HSP90 및 Hop 단백질의 발현을 웨스턴 블롯을 통해서 분석한 결과를 나타낸 것이다.
도 8b는 스페로이드 형성 조건에서 배양된 H460, HCT116, MDA-MB-231(MDA231)에서 HSP70 및 HSP90 단백질의 발현을 웨스턴 블롯을 통해서 분석한 결과를 나타낸 것이다.
도 8c는 NSCLC 세포에서 에보디아민 처리에 따른 HSPA1A 유전자 발현을 나타낸 것이다.
도 8d는 H460 세포 이종이식 또는 폐암, 결장암, 유방암의 PDX 종양에서 에보디아민 처리에 따른 HSP70 발현을 헤마톡실린 및 에오신(H&E)으로 염색을 통하여 분석한 결과를 나타낸 것이다[기준자(scale bar): 500 μm].
도 8e는 에보디아민 처리에 따른 HSP70/HSP90 단백질의 반감기를 웨스턴 블롯을 통하여 분석한 결과를 나타낸 것이다.
도 8f는 비히클(DMSO) 또는 에보디아민 처리된 세포에서 프로테아좀 억제제 MG132를 처리한 후, HSP70/HSP90 단백질 발현을 웨스턴 블롯을 통해서 분석한 결과를 나타낸 것이다.
도 8g는 항 HSP70 항체로 면역침전시킨 후, 항 유비퀴틴 항체를 사용한 웨스턴 블롯을 통하여, 폴리유비퀴틴화된 HSP70의 수준을 분석한 결과를 나타낸 것이다.
도 8h는 약물 친화성 반응 표적 안정성(DARTS) 분석을 통하여 에보디아민과 HSP70 또는 HSP90의 연관성을 분석한 결과를 나타낸 것이다.
도 8i는 H1299 전체 세포 용해물(WCL)에서 HSP70 또는 HSP90에 대한 비오틴화된 에보디아민(Biotin-에보디아민)의 결합을 풀다운 분석법을 통하여 분석한 결과를 나타낸 것이다.
도 8j는 에보디아민 처리에 따른 rbHSP70의 HSP70 또는 HSP90에 대한 ATP 결합을 분석한 결과를 나타낸 것이다.
도 8k는 절단된 N-말단 또는 C-말단(C) 도메인을 포한하는 재조합 단백질의 DARTS 분석을 통하여 HSP70의 NBD와 에보디아민의 결합을 분석한 결과를 나타낸 것이다.
도 8l은 H1299 전체 세포 용해물(WCL)에서 HSP70 N 또는 C에 대한 비오틴화된 에보디아민(Biotin-에보디아민)의 결합을 풀다운 분석법을 통하여 분석한 결과를 나타낸 것이다.
도 8m은 에보디아민 처리에 따른 rbHSP70의 HSP70 N 또는 C에 대한 ATP 결합을 분석한 결과를 나타낸 것이다.
본 발명의 일 실시예에서는 CSC(Cancer stem cell)에서 HSP70의 발현을 증가시키면 HSP 시스템이 활성화되는 것을 확인하였다(실시예 1 참조).
본 발명의 다른 실시예에서는 HSP70 또는 HSP90의 과발현 또는 침묵이 스페로이드 형성, CSC 마커 및 HSP 시스템 클라이언트 단백질의 발현에 영향을 미치는 바, HSP 시스템이 특정 단백질의 하위 집단(HSP 시스템 클라이언트 단백질 등)에 영향을 미치는 것을 확인하였다(실시예 2 참조).
본 발명의 또 다른 실시예에서는 에보디아민의 암 줄기세포의 스페로이드 형성 억제, HSP 시스템 클라이언트 단백질 발현 억제 효과를 확인하여, HSP 시스템을 표적으로 CSC 및 비-CSC 집단을 제거할 수 있는 화합물인 에보디아민을 스크리닝하였고, HSP70 과발현을 통하여, HSP70이 에보디아민의 표적임을 확인하였다(실시예 3 참조).
본 발명의 또 다른 실시예에서는 에보디아민은 H1299, H460 세포에서 Oct4 및 NANOG 발현 억제, 스페로이드 형성 능력 억제 효과를 확인하였고, 세포 자멸사를 유도하고 종양 형성의 활성을 감소시켰는 바, 에보디아민의 항 CSC 활성을 확인하였다(실시예 4 참조).
본 발명의 또 다른 실시예에서는 비-CSC 집단에 대한 에보디아민의 억제 효과, 약제 내성 폐암 세포에 대한 억제 효과, 기존 화학치료제와의 병용요법의 시너지 효과, NSCLC 세포에서 에보디아민의 세포자멸사 유도 효과 및 에보디아민의 생체 내 독성이 적은 효과를 확인하였는 바, 에보디아민의 암세포에서 강력한 항증식 활성을 확인하였다(실시예 5 참조).
본 발명의 또 다른 실시예에서는 KRAS 돌연변이 마우스 모델에서 에보디아민 처리에 따라서 폐의 종양 형성이 억제된다는 점, 에보디아민의 독성이 적다는 점을 확인하였는 바, 에보디아민의 항종양 효과를 확인하였다(실시예 6 참조).
본 발명의 또 다른 실시예에서는 다양한 세포(H1299 및 H460 NSCLC 세포, HCT116, MDA-MB-231)에서 에보디아민의 HSP70 발현 억제 효과를 확인하였고, HSP70 단백질의 반감기를 통해서 에보디아민의 HSP70의 분해 효과를 확인하였다.
또한, 에보디아민이 프로테아좀을 분해하는 것을 확인하였고, DARTS 분석, 풀다운 분석 등을 통해서 에보디아민과 HSP70의 연관성을 확인하였고, HSP70 NBD(N-terminal Nucleotide binding domain)가 에보디아민의 항-CSC 효과에 대한 표적임을 확인하였다(실시예 7 참조).
따라서 본 발명의 에보디아민은 독성 적고, 내성으로 인한 효과 저하가 적으며, 종양의 성장을 상당히 억제하는 바, 비소세포폐암의 치료 또는 예방에 효과적으로 사용될 수 있을 것으로 기대된다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 비소세포폐암은 KRAS 변이 비소세포폐암(NSCLC) 또는 약제 내성 비소세포폐암일 수 있으나, 이에 제한되지 않는다.
본 명세서에 있어서, “폐암(lung cancer)”이란, 폐에 생긴 악성 종양을 말하며, 폐 자체에서 발생하는 원발성 폐암의 종류는 암세포의 크기와 형태를 기준으로 비소세포폐암과 소세포폐암으로 구분한다.
본 명세서에 있어서, “비소세포폐암(non small cell lung cancer; NSCLC)”이란, 암세포의 크기가 작지 않은 폐암을 의미한다. 폐암의 80-85%를 차지하며, 편평상피세포암, 샘암(선암), 대세포암, 샘편평세포암, 육종 모양암, 카르시노이드종양, 침샘형암, 미분류암 등을 포함한다. 비소세포폐암은 돌연변이로 인해 생길 수 있는데, EGFR(epidermal growth factor receptor) 변이 비소세포폐암, KRAS(v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) 변이 비소세포폐암, ALK(Anaplastic Lymphoma Kinase) 변이 비소세포폐암 등을 포함할 수 있다.
본 명세서에 있어서, “KRAS(KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)”는 세포의 성장, 성숙, 죽음을 조절하는 세포 신호전달경로에 관여하는 케이라스(KRAS) 단백질을 만드는 유전자이다. KRAS의 돌연변이 형태는 비소세포폐암, 대장암, 췌장암을 포함한 일부 암에서 발견된다. 이는 암세포가 몸 안에서 자라고 퍼지는데 도움을 준다. 상기 KRAS 변이는 KRAS의 일부 아미노산이 치환, 결실 또는 삽입되어 있는 것일 수 있으나, 이에 제한되지 않는다.
본 명세서에 있어서, “에보디아민(evodiamine)”은 하기 화학식 1로 표시될 수 있으며, (1S)-21-methyl-3,13,21-triazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-2(10),4,6,8,15,17,19-heptaen-14-one의 IUPAC 네임을 가질 수 있다. 또한, 분자량은 303.4, 화학식은 C19H17N3O일 수 있다. 또한, 상기 에보디아민은 본 발명이 속한 분야에서 공지된 방법으로 화학적으로 합성하거나 시판되는 물질을 사용할 수 있으며, 추출, 분리하여 획득할 수 있으나, 이에 제한되지 않는다.
[화학식 1]
상기 에보디아민은 종양의 수, 부피 또는 부담을 감소시킬 수 있으나, 이에 제한되지 않는다. 또한, 상기 에보디아민은 HSP70 단백질의 발현을 억제시킬 수 있으나, 이에 제한되지 않는다.
상기 HSP70(열충격단백질 70, heat shock protein 70)은 단백질의 완전한 구조 형성을 위한 단백질 접힙 과정에 관여하는 샤페론(chaperone)의 일종이다. 여러 암세포에서 HSP70은 과발현되어 있으며, 암세포의 생존, 항암제 저항성을 매개한다. 상기 비소세포폐암은 HSP70을 억제하여 예방 또는 치료하는 것이다.
상기 에모디아민은 암 줄기세포의 스페로이드 형성 능력을 억제할 수 있으나, 이에 제한되지 않는다. 또한, 상기 에보디아민은 HIF-1α, Akt, Src, MEK, POUSF1, NANOG 또는 SOX2 등의 단백질 또는 유전자의 발현을 억제시킬 수 있으나, 이에 제한되지 않는다.
상기 스페로이드 형성 능력은 암세포가 세포끼리 활성을 통해 스페로이드를 형성하면, 암의 형성이 잘되고 암의 크기도 큰 것을 의미한다. 따라서, 암 줄기세포의 스페로이드 형성 능력을 억제하는 것은 암을 억제하는 것이다.
상기 약제 내성 비소세포폐암은 약제 내성 세포가 폐의 암세포의 대부분을 차지하게 되는 경우를 의미한다. 이는 약제 내성을 가진 세포가 선별적으로 살아 남아 증식을 거듭하면서, 대부분의 암 덩어리가 약제 내성을 가지게 되면서 진행된다. 상기 약제는 페메트렉시드, 시스플라틴 또는 파클리탁셀일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 조성물은 페메트렉시드, 시스플라틴, 파클리탁셀 등을 더 포함할 수 있으나, 이에 제한되지 않는다.
본 발명은 또한, 에보디아민의 약학적으로 허용가능한 염을 유효성분으로 포함할 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 염"이란 약학적으로 허용되는 무기산, 유기산, 또는 염기로부터 유도된 염을 포함한다.
적합한 산의 예로는 염산, 브롬산, 황산, 질산, 과염소산, 푸마르산, 말레산, 인산, 글리콜산, 락트산, 살리실산, 숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산, 시트르산, 메탄설폰산, 포름산, 벤조산, 말론산, 글루콘산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 들 수 있다. 산부가염은 통상의 방법, 예를 들면 화합물을 과량의 산 수용액에 용해시키고, 이 염을 메탄올, 에탄올, 아세톤 또는 아세토니트릴과 같은 수혼화성 유기 용매를 사용하여 침전시켜서 제조할 수 있다. 또한, 동몰량의 화합물 및 물 중의 산 또는 알코올을 가열하고 이어서 상기 혼합물을 증발시켜서 건조시키거나, 또는 석출된 염을 흡인 여과시켜 제조할 수 있다.
적합한 염기로부터 유도된 염은 나트륨, 칼륨 등의 알칼리 금속, 마그네슘 등의 알칼리 토금속, 및 암모늄 등을 포함할 수 있으나, 이에 제한되는 것은 아니다. 알칼리 금속 또는 알칼리 토금속염은, 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리토 금속 수산화물 용액 중에 용해하고, 비용해 화합물염을 여과한 후 여액을 증발, 건조시켜 얻을 수 있다. 이 때, 금속염으로서는 특히 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하며, 또한 이에 대응하는 은염은 알칼리 금속 또는 알칼리토 금속염을 적당한 은염(예, 질산은)과 반응시켜 얻을 수 있다.
본 발명의 조성물 내의 상기 에보디아민의 함량은 질환의 증상, 증상의 진행 정도, 환자의 상태 등에 따라서 적절히 조절 가능하며, 예컨대, 전체 조성물 중량을 기준으로 0.0001 내지 99.9중량%, 또는 0.001 내지 50중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 함량비는 용매를 제거한 건조량을 기준으로 한 값이다.
본 발명의 조성물 내의 상기 에보디아민은 1 내지 500 μM, 1 내지 400 μM, 1 내지 300 μM, 1 내지 200 μM, 1 내지 150 Μm, 2 내지 500 μM, 2 내지 400 μM, 2 내지 300 μM, 2 내지 200 μM, 2 내지 150 μM, 5 내지 500 μM, 5 내지 400 μM, 5 내지 300 μM, 5 내지 200 μM, 5 내지 150 μM, 7 내지 500 μM, 7 내지 400 μM, 7 내지 300 μM, 7 내지 200 μM, 7 내지 150 μM 또는 7 내지 120 μM의 농도로 포함된 것일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 약학적 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다. 상기 부형제는 예를 들어, 희석제, 결합제, 붕해제, 활택제, 흡착제, 보습제, 필름-코팅 물질, 및 제어방출첨가제로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
본 발명에 따른 약학적 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 서방형 과립제, 장용과립제, 액제, 점안제, 엘실릭제, 유제, 현탁액제, 주정제, 트로키제, 방향수제, 리모나아데제, 정제, 서방형정제, 장용정제, 설하정, 경질캅셀제, 연질캅셀제, 서방캅셀제, 장용캅셀제, 환제, 틴크제, 연조엑스제, 건조엑스제, 유동엑스제, 주사제, 캡슐제, 관류액, 경고제, 로션제, 파스타제, 분무제, 흡입제, 패취제, 멸균주사용액, 또는 에어로졸 등의 외용제 등의 형태로 제형화하여 사용될 수 있으며, 상기 외용제는 크림, 젤, 패치, 분무제, 연고제, 경고제, 로션제, 리니멘트제, 파스타제 또는 카타플라스마제 등의 제형을 가질 수 있다.
본 발명에 따른 약학적 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 올리고당, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.
본 발명에 따른 정제, 산제, 과립제, 캡슐제, 환제, 트로키제의 첨가제로 옥수수전분, 감자전분, 밀전분, 유당, 백당, 포도당, 과당, 디-만니톨, 침강탄산칼슘, 합성규산알루미늄, 인산일수소칼슘, 황산칼슘, 염화나트륨, 탄산수소나트륨, 정제 라놀린, 미결정셀룰로오스, 덱스트린, 알긴산나트륨, 메칠셀룰로오스, 카르복시메칠셀룰로오스나트륨, 카올린, 요소, 콜로이드성실리카겔, 히드록시프로필스타치, 히드록시프로필메칠셀룰로오스(HPMC) 1928, HPMC 2208, HPMC 2906, HPMC 2910, 프로필렌글리콜, 카제인, 젖산칼슘, 프리모젤 등 부형제; 젤라틴, 아라비아고무, 에탄올, 한천가루, 초산프탈산셀룰로오스, 카르복시메칠셀룰로오스, 카르복시메칠셀룰로오스칼슘, 포도당, 정제수, 카제인나트륨, 글리세린, 스테아린산, 카르복시메칠셀룰로오스나트륨, 메칠셀룰로오스나트륨, 메칠셀룰로오스, 미결정셀룰로오스, 덱스트린, 히드록시셀룰로오스, 히드록시프로필스타치, 히드록시메칠셀룰로오스, 정제쉘락, 전분호, 히드록시프로필셀룰로오스, 히드록시프로필메칠셀룰로오스, 폴리비닐알코올, 폴리비닐피롤리돈 등의 결합제가 사용될 수 있으며, 히드록시프로필메칠셀룰로오스, 옥수수전분, 한천가루, 메칠셀룰로오스, 벤토나이트, 히드록시프로필스타치, 카르복시메칠셀룰로오스나트륨, 알긴산나트륨, 카르복시메칠셀룰로오스칼슘, 구연산칼슘, 라우릴황산나트륨, 무수규산, 1-히드록시프로필셀룰로오스, 덱스트란, 이온교환수지, 초산폴리비닐, 포름알데히드처리 카제인 및 젤라틴, 알긴산, 아밀로오스, 구아르고무(Guar gum), 중조, 폴리비닐피롤리돈, 인산칼슘, 겔화전분, 아라비아고무, 아밀로펙틴, 펙틴, 폴리인산나트륨, 에칠셀룰로오스, 백당, 규산마그네슘알루미늄, 디-소르비톨액, 경질무수규산 등 붕해제; 스테아린산칼슘, 스테아린산마그네슘, 스테아린산, 수소화식물유(Hydrogenated vegetable oil), 탈크, 석송자, 카올린, 바셀린, 스테아린산나트륨, 카카오지, 살리실산나트륨, 살리실산마그네슘, 폴리에칠렌글리콜 4000, 폴리에칠렌글리콜 6000, 유동파라핀, 수소첨가대두유(Lubri wax), 스테아린산알루미늄, 스테아린산아연, 라우릴황산나트륨, 산화마그네슘, 마크로골(Macrogol), 합성규산알루미늄, 무수규산, 고급지방산, 고급알코올, 실리콘유, 파라핀유, 폴리에칠렌글리콜지방산에테르, 전분, 염화나트륨, 초산나트륨, 올레인산나트륨, dl-로이신, 경질무수규산 등의 활택제;가 사용될 수 있다.
본 발명에 따른 액제의 첨가제로는 물, 묽은 염산, 묽은 황산, 구연산나트륨, 모노스테아린산슈크로스류, 폴리옥시에칠렌소르비톨지방산에스텔류(트윈에스텔), 폴리옥시에칠렌모노알킬에텔류, 라놀린에텔류, 라놀린에스텔류, 초산, 염산, 암모니아수, 탄산암모늄, 수산화칼륨, 수산화나트륨, 프롤아민, 폴리비닐피롤리돈, 에칠셀룰로오스, 카르복시메칠셀룰로오스나트륨 등이 사용될 수 있다.
본 발명에 따른 시럽제에는 백당의 용액, 다른 당류 혹은 감미제 등이 사용될 수 있으며, 필요에 따라 방향제, 착색제, 보존제, 안정제, 현탁화제, 유화제, 점조제 등이 사용될 수 있다.
본 발명에 따른 유제에는 정제수가 사용될 수 있으며, 필요에 따라 유화제, 보존제, 안정제, 방향제 등이 사용될 수 있다.
본 발명에 따른 현탁제에는 아카시아, 트라가칸타, 메칠셀룰로오스, 카르복시메칠셀룰로오스, 카르복시메칠셀룰로오스나트륨, 미결정셀룰로오스, 알긴산나트륨, 히드록시프로필메칠셀룰로오스, HPMC 1828, HPMC 2906, HPMC 2910 등 현탁화제가 사용될 수 있으며, 필요에 따라 계면활성제, 보존제, 안정제, 착색제, 방향제가 사용될 수 있다.
본 발명에 따른 주사제에는 주사용 증류수, 0.9%염화나트륨주사액, 링겔주사액, 덱스트로스주사액, 덱스트로스+염화나트륨주사액, 피이지(PEG), 락테이티드 링겔주사액, 에탄올, 프로필렌글리콜, 비휘발성유-참기름, 면실유, 낙화생유, 콩기름, 옥수수기름, 올레인산에칠, 미리스트산 이소프로필, 안식향산벤젠과 같은 용제; 안식향산나트륨, 살리실산나트륨, 초산나트륨, 요소, 우레탄, 모노에칠아세트아마이드, 부타졸리딘, 프로필렌글리콜, 트윈류, 니정틴산아미드, 헥사민, 디메칠아세트아마이드와 같은 용해보조제; 약산 및 그 염(초산과 초산나트륨), 약염기 및 그 염(암모니아 및 초산암모니움), 유기화합물, 단백질, 알부민, 펩톤, 검류와 같은 완충제; 염화나트륨과 같은 등장화제; 중아황산나트륨(NaHSO3), 이산화탄소가스, 메타중아황산나트륨(Na2S2O5), 아황산나트륨(Na2SO3), 질소가스(N2), 에칠렌디아민테트라초산과 같은 안정제; 소디움비설파이드 0.1%, 소디움포름알데히드 설폭실레이트, 치오우레아, 에칠렌디아민테트라초산디나트륨, 아세톤소디움비설파이트와 같은 황산화제; 벤질알코올, 클로로부탄올, 염산프로카인, 포도당, 글루콘산칼슘과 같은 무통화제; 시엠시나트륨, 알긴산나트륨, 트윈 80, 모노스테아린산알루미늄과 같은 현탁화제를 포함할 수 있다.
본 발명에 따른 좌제에는 카카오지, 라놀린, 위텝솔, 폴리에틸렌글리콜, 글리세로젤라틴, 메칠셀룰로오스, 카르복시메칠셀룰로오스, 스테아린산과 올레인산의 혼합물, 수바날(Subanal), 면실유, 낙화생유, 야자유, 카카오버터+콜레스테롤, 레시틴, 라네트왁스, 모노스테아린산글리세롤, 트윈 또는 스판, 임하우젠(Imhausen), 모놀렌(모노스테아린산프로필렌글리콜), 글리세린, 아뎁스솔리두스(Adeps solidus), 부티룸 태고-G(Buytyrum Tego-G), 세베스파마 16(Cebes Pharma 16), 헥사라이드베이스 95, 코토마(Cotomar), 히드록코테 SP, S-70-XXA, S-70-XX75(S-70-XX95), 히드록코테(Hydrokote) 25, 히드록코테 711, 이드로포스탈 (Idropostal), 마사에스트라리움(Massa estrarium, A, AS, B, C, D, E, I, T), 마사-MF, 마수폴, 마수폴-15, 네오수포스탈-엔, 파라마운드-B, 수포시로(OSI, OSIX, A, B, C, D, H, L), 좌제기제 IV 타입(AB, B, A, BC, BBG, E, BGF, C, D, 299), 수포스탈(N, Es), 웨코비(W, R, S, M ,Fs), 테제스터 트리글리세라이드 기제(TG-95, MA, 57)와 같은 기제가 사용될 수 있다.
경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 추출물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다.
경구 투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에칠렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
본 발명에 따른 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
본 발명에 따른 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 본 발명이 속하는 기술분야에 통상의 기술자에 의해 용이하게 결정될 수 있다.
본 발명의 약학적 조성물은 개체에게 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구 복용, 피하 주사, 복강 투여, 정맥 주사, 근육 주사, 척수 주위 공간(경막내) 주사, 설하 투여, 볼점막 투여, 직장 내 삽입, 질 내 삽입, 안구 투여, 귀 투여, 비강 투여, 흡입, 입 또는 코를 통한 분무, 피부 투여, 경피 투여 등에 따라 투여될 수 있다.
본 발명의 약학적 조성물은 치료할 질환, 투여 경로, 환자의 연령, 성별, 체중 및 질환의 중등도 등의 여러 관련 인자와 함께 활성성분인 약물의 종류에 따라 결정된다.
본 발명에서 “개체”란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간 또는 비-인간인 영장류, 생쥐 (mouse), 쥐 (rat), 개, 고양이, 말, 및 소 등의 포유류를 의미한다.
본 발명에서 “투여”란 임의의 적절한 방법으로 개체에게 소정의 본 발명의 조성물을 제공하는 것을 의미한다.
본 발명에서 “예방”이란 목적하는 질환의 발병을 억제하거나 지연시키는 모든 행위를 의미하고, “치료”란 본 발명에 따른 약학적 조성물의 투여에 의해 목적하는 질환과 그에 따른 대사 이상 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미하며, “개선”이란 본 발명에 따른 조성물의 투여에 의해 목적하는 질환과 관련된 파라미터, 예를 들면 증상의 정도를 감소시키는 모든 행위를 의미한다.
또한, 본 발명은 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 항암제의 항암효능을 증진시키는 항암보조제로서, 상기 암은 비소세포폐암인 것을 특징으로 하는, 항암보조제를 제공한다.
상기 항암보조제는 항암제의 효능을 증진시킬 수 있다. 또한, 상기 항암보조제는 항암제와 동시적 또는 순차적으로 투여할 수 있다. 순차적으로 투여할 시에는 항암보조제 투입 후 항암제를 투입할 수 있고, 항암제 투입 후 항암보조제를 투입할 수도 있으나, 이에 제한되지 않는다. 항암효능을 증진시킬 수 있도록 투여방식은 변경될 수 있다.
상기 항암제는 페메트렉시드, 시스플라틴 또는 파클리탁셀일 수 있으나, 이에 제한되지 않는다.
이하, 본 발명의 이해를 돕기 위하여 하기 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실험 방법]
1. 세포 배양
본 실험에서 인간 폐암 세포주(A549, H1299, H460, 및 H226B), 획득된 화학내성을 갖는 폐암 세포주(파클리탁셀 내성 H460 세포(H460/PcR), 시스플라틴 내성 H1299 세포(H1299/CsR) 및 페메트렉시드-내성 H1299 세포(H1299/PmR)), 유방암 세포주 MDA-MB-231, 대장암 세포주 HCT116를 사용하였고, 마우스 정상 간 상피(NCTC1469), 인간 폐 상피(HBE), 인간 결장 섬유아세포(CCD-18Co), 인간 유방 상피(MCF10A), 마우스 해마(HT-22) 및 인간 폐 섬유아세포(Wi38) 유래 정상 세포주를 사용하였다.
A549, H1299, H460, MDA-MB-231 및 Wi38 세포는 아메리칸 타입 컬처 컬렉션(ATCC, Manassas, VA, USA)에서 구입하였다. NCTC1469 세포는 한국세포주은행(KCLB, Seoul, Republic of Korea)에서 구입하였다. H226B 세포는 Dr. John V. Heymach(MD Anderson Cancer Center, Houston, TX, USA)으로부터 분양받았다. HCT116 및 CCD-18Co 세포는 이상국 교수(서울대학교 약학대학)로부터 분양받았다. HBE 세포는 Dr. John D. Minna (University of Texas Southwestern Medical Center, Dallas, TX, USA)로부터 분양받았다. HT-22 세포는 조동규 교수(대한민국 수원 성균관대학교 약학대학)로부터 분양받았다. MCF10A 세포는 박성혁 교수(서울대학교 약학대학)로부터 분양받았다.
MDA-MB-231, NCTC1469, HT-22, CCD-18Co 및 Wi38 세포를 10% 소태아혈청(FBS) 및 1% 항생제가 보충된 둘베코수정이글배지(DMEM; Dulbecco’s Modified Eagle’s Medium)에서 배양하였다. 획득된 화학내성을 갖는 NSCLC 세포주, 및 HCT116 세포는 10% 소태아혈청(FBS) 및 1% 항생제가 보충된 RPMI 1640(Welgene)에서 배양되었다. 획득된 화학내성을 갖는 NSCLC 세포주는 해당 항암제에 6개월 이상 지속적으로 노출시켜 생성하였다. HBE 세포는 재조합 표피 성장 인자(EGF) 5 ng/mL, 소 뇌하수체 추출물 50 μg/mL 및 항생제가 첨가된 K-SFM(Thermo Fisher Scientific, Waltham, MA, USA)에서 배양하였다. MCF10A 세포는 10% FBS, EGF 50 μg, 하이드로코르티손 250 μg, 인슐린 5 mg, 콜레라 독소 50 μg 및 1% 항생제가 보충된 DMEM/F12(Welgene)에서 배양하였다.
인간 암 세포주는 2013년, 2016년 및 2020년에 AmplFLSTR 식별자 PCR 증폭 키트(Applied Biosystems, Foster, CA; 카탈로그 번호 4322288)를 사용하여 인증 및 검증하였고, 마이코플라즈마에 오염되지 않은 세포를 사용하였다. 검증된 세포를 수령하거나 소생시킨 후, 6개월 미만이 경과한 세포를 사용하였다. 또한, 일상적으로 배양된 세포의 마이코플라스마 오염 테스트를 통해, 본 발명의 세포주가 마이코플라스마가 없음을 확인하였다.
2. 시약
pAkt(S473), Akt, pSrc(Y416), Src, pMEK(S217/221), MEK, Nanog 및 절단된 카스파제-3(cleaved caspase-3)에 대한 항체는 Cell Signaling Technology(Danvers, MA, USA)에서 구입하였다. 절단된 PARP(cleaved PARP) 및 HIF-1α에 대한 항체와 마트리젤(Matrigel)은 BD Biosciences(San Jose, CA, USA)에서 구입하였다. 6x-His 태그, 유비퀴틴(ubiquitin) 및 액틴(actin)에 대한 1차 항체는 Santa Cruz Biotechnology(Dallas, TX, USA)에서 구입하였다. HSP70, HSP90 및 Hop에 대한 항체는 Enzo Life Science(Farmingdale, NY, USA)에서 구입하였다. Oct4 및 Sox2에 대한 항체는 Abcam(Cambridge, UK)에서 구입하였다. 겨자무과산화효소(HRP)-접합 2차 항체는 GeneTex(Irvine, CA, USA)에서 구입하였다. Ni-NTA 아가로스(agarose) 및 형광(Alexa Fluor 488 및 Alexa Fluor 594)-접합 2차 항체는 Thermo Fisher Scientific에서 구입하였다. 비오틴화된 2차 항체는 Bethyl Laboratories(Montgomery, TX, USA)에서 구입하였다. ATP-아가로스는 Innova Biosciences(Cambridge, UK)에서 획득하였다. 프로피디움 요오드화물(PI;Propidium), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) 및 기타 화학 물질은 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다.
3. pOct4-GFP High, pOct4-GFP Low, pNanog-GFP High 및 pNanog-GFP
Low
집단의 분리
인간 POUSF1 또는 NANOG 프로모터(H1299/pOct4-GFP, H1299/pNanog-GFP, H460/pOct4-GFP 및 H460/pNanog-GFP)를 운반하는 GFP 리포터 벡터로 안정적으로 형질감염된 H1299 및 H460 세포는 시험관 내 실험을 위해서 FACS Aria III 유세포 분석기(BD Biosciences)를 사용하여 분류하였다. 필요한 경우 세포를 에보디아민으로 2일 동안 처리한 후 FACS를 수행하였다. 이들 세포에서 각 프로모터 활성의 지표로서 GFPHigh 및 GFPLow 집단을 결정하기 위한 게이팅 전략을 도 1에 나타내었다.
4. 에보디아민 및 비오틴화 에보디아민의 합성
문헌(J Med Chem. 2012; 55: 7593-613.)에 공지된 방법을 참고하여 에보디아민과 비오틴화 에보디아민을 합성하였다.
5. MTT 분석
96-웰 플레이트에 2 x 103 내지 1 x 104세포/웰의 밀도로 세포를 넣은 뒤 24시간 동안 배양하여 부착되도록 하였다. 세포에 2일 동안 비히클(DMSO) 또는 배지에 희석된 지시된 농도의 시험 화합물을 처리한 후, MTT 용액(최종 농도 500 ㎍/mL)으로 처리하고 37℃에서 2 내지 4시간 동안 배양하였다. 포르마잔 생성물을 DMSO에 녹이고, 각 웰의 흡광도를 570 nm에서 측정하였다. 데이터는 대조군의 백분율로 표시되었다. 각 세포주에서 에보디아민의 최대 억제 농도의 절반(IC50)은 Graphpad Prism 소프트웨어(버전 8, GraphPad Software, Inc., La Jolla, CA, USA)를 사용한 비선형 회귀 분석에 의해 결정되었다. 에보디아민과 화학요법 약물(carboplatin 및 paclitaxel) 간의 병용 치료의 시너지 효과는 조합 지수를 계산하여 결정하였다. 조합 지수는 예상 성장 억제율(에보디아민의 성장 억제율에 화학 요법 약물의 성장 억제율을 곱한 값)을 관찰된 성장 억제율로 나누어 계산하였다. 지수가 1보다 크면 시너지 효과를 나타내고 1보다 작으면 상가 효과보다 작은 것이다.
6. 스페로이드 형성 분석
세포를 스페로이드 배지(DMEM-F12, B27 보충제(Thermo Fisher Scientific), EGF 20 ng/mL, bFGF 20 ng/mL 및 1% 항생제가 보충됨)에 혼합하여 초저 부착 96-웰 플레이트(Corning, Corning, NY, USA)에 넣었다. 스페로이드 형성 조건에서 성장한 세포에 비히클(DMSO) 또는 다양한 농도의 화합물을 처리하였다. 그 후, 세포를 37℃, 5% CO2 조건에서 2주 동안 또는 스페로이드가 형성되고 150 μm2 이상에 도달할 때까지 배양하였다. 스페로이드의 이미지화, 스페로이드의 직경 및 스페로이드의 수(직경이 30 또는 100μm 초과)는 ImageJ 소프트웨어(National Institutes of Health, Bethesda, MA, USA)를 사용하여 분석하였다.
7. 알데히드 탈수소효소(ALDH) 분석
AldeRed ALDH 분석 키트(Merck Millipore, Billerica, MA, USA)를 사용하여 ALDH 효소 활성이 높은 세포 집단을 식별하였다. 먼저, 1 x 106개의 H1299 세포를 AldeRed 완충액에 현탁하고 AldeRed A588로 37℃에서 40분 동안 염색하였다. 각 그룹에는 블랭크 샘플(AldeRed A588 단독)과 양성 대조군 샘플(AldeRed A588 + DEAB)이 포함되었다. 형광 강도는 유세포 분석으로 얻었고, DEAB 처리(음성 대조군)가 되어있는 샘플을 사용하여 분류 게이트를 설정하였다. ALDHhigh 및 ALDHlow 집단은 시험관내 실험을 위해 FACS Aria III 유세포 분석기(BD Biosciences)를 사용하여 분류하였다.
8. 앵커리지 의존성 콜로니 형성 분석
6-웰 플레이트에 300 세포/웰의 밀도로 세포를 넣어 부착시킨 뒤, 배지에 희석된 다양한 농도의 에보디아민을 2주 동안 처리하였다. 약물 함유 배지는 일주일에 1~2회 교체하였다. 배양 후 콜로니를 100% 메탄올로 고정하고, 0.02% 크리스탈 바이올렛 용액으로 염색하고, 탈이온수로 여러 번 세척하였다. 콜로니는 ImageJ 소프트웨어를 사용하여 이미지화 및 계수하였다.
9. 연한천 콜로니 형성 분석
세포를 멸균 1% 한천 용액(최종 농도 0.4%)과 혼합하고 24-웰 플레이트에 미리 굳힌 1% 한천 위에 부었다. 배지에 희석된 에보디아민은 상부 한천이 응고된 후, 첨가하였다. 상부 한천의 세포를 5% CO2, 37℃에서 2주 동안 배양하였고, 배지는 주 2회 교체하였다. 배양 후, 콜로니를 MTT 용액으로 염색하고 이미지화하였으며, 계수하였다.
10. 세포핵의 형태학적 변화 분석
H1299, H460, HCT116 및 MDA-MB-231 세포를 48시간 동안 여러 용량(0, 1 및 5 μM)의 에보디아민으로 처리하였다. 그런 다음 세포를 신선한 혈청 함유 배지(20 μM)에 희석된 Hoechst 33342(Thermo Fisher Scientific)와 함께 30분 동안 배양한 후, 형광 현미경으로 관찰하였다. 핵이 응축, 단편화 또는 분해된 세포의 수를 세었다.
11. Annexin V-FITC/PI 이중 염색
세포에 2일 동안 다양한 농도의 에보디아민을 처리하였다. 부착 세포 및 부유 세포를 수집하고 PBS로 세척하였다. 세포를 Annexin V-FITC/PI 이중 염색 키트(BD Bioscience)를 사용하여 Annexin V-FITC 및 PI로 염색하였다. 형광 강도는 FACSCalibur®유세포 분석기(BD Biosciences)와 Flowing 소프트웨어(Cell Imaging and Cytometry(CIC) Core, Turku Bioscience)를 사용하여 분석하였다.
12. 웨스턴 블롯 분석
세포에 2일 동안 다양한 농도의 에보디아민을 처리하였다. 다양한 프로테아제 및 포스파타제 억제제(100 mM NaF, 5 mM Na3VO4, 1 mM PMSF, 1 μg/mL 프로티닌, 1 μg/mL 류펩틴 및 1 μg/mL 펩스타틴)가 포함된 변형된 RIPA 용해 완충액(Tris-HCl[pH 7.4] 50 mM, NaCl 150 mM, EDTA 1 mM, 0.25% 소듐 데옥시콜레이트, 1% Triton X-100)으로 제조한 세포 용해제로 단백질을 추출하였다. 동량의 단백질(25-50μg)을 6-12% SDS-PAGE를 이용하여 분리하고, 전기영동으로 분리된 단백질을 폴리비닐리덴 디플루오라이드(PVDF) 멤브레인(ATTO Corp., Tokyo, Japan)으로 옮겼다. 멤브레인을 실온에서 1시간 동안 차단 완충액(0.01% Tween-20(TBST)을 함유한 Tris-완충 식염수(TBS)에 녹인 5% 무지방 분유 용액)에 담그고, TBST로 제조한 3% BSA 용액에 1:1000의 비율로 희석된 1차 항체와 4℃에서 12시간 이상 배양하였다. 그 다음 멤브레인을 TBST로 여러 번 세척하고 TBST로 제조한 5% 무지방 분유 용액에 1:5000의 비율로 희석된 2차 항체와 실온에서 1시간 동안 배양하였다. 마지막으로 TBST로 멤브레인을 여러 번 세척하고 ECL(Enhanced chemiluminescence) 검출 키트(Thermo Fisher Scientific)를 사용하여 단백질 밴드를 시각화하였다.
13. 실시간 PCR
총 RNA는 Intron사에서 구입한 easy-BLUE total RNA 추출 키트를 사용하여 제조사 권장 절차에 따라 준비하였다. SYBR Green 기반 qPCR 마스터 믹스 솔루션(Enzynomics, 대전, 대한민국)과 유전자 특이적 프라이머를 사용하여 실시간 PCR을 수행하였다. 모든 실시간 PCR 분석은 Applied Biosystems 7300 Real-Time PCR 시스템(Thermo Fisher Scientific)에서 수행하였다. 실시간 PCR을 위한 다음 열순환기 조건(95℃에서 15분 동안 사전 배양; 10초 동안 95℃, 15초 동안 60℃, 30초 동안 72℃로 40-70 사이클; 및 반응 특이성을 결정하기 위한 최종 용융 곡선 분석)이 적용되었다. mRNA 발현의 상대적 정량화는 비교 CT(주기 역치) 방법을 사용하여 수행하였다. PCR 분석에 사용된 프라이머 서열은 표 1에 나타내었다.
Gene | Forward sequence (5´-3´) | Reverse sequence (5´-3´) |
POU5F1 | TGCAGCAGATCAGCCACATC(서열번호 1) | CTCGGACCACATCCTTCTCG(서열번호 2) |
NANOG | CCTCCTCCATGGATCTGCTTATTCA(서열번호 3) | CAGGTCTTCACCTGTTTGTAG(서열번호 4) |
SOX2 | AACCAGCGCATGGACAGTTA(서열번호 5) | ATCATGCTGTAGCTGCCGTT(서열번호 6) |
HSPB1 | CACGCAGTCCAACGAGATCA(서열번호 7) | TTACTTGGCGGCAGTCTCAT(서열번호 8) |
DNAJB1 | TCATGGGTAAAGACTACTACCAGAC(서열번호 9) | GTAGGCCCGCTTGATCTCCT(서열번호 10) |
HSPD1 | GACACGGGCTCATTGCGG(서열번호 11) | GTGAGATGAGGAGCCAGTACC(서열번호 12) |
HSPA1A | AGCTGGAGCAGGTGTGTAAC(서열번호 13) | TACCTCCTCAATGGTGGGGC(서열번호 14) |
HSP90AA1 | TGCTCCAAGGGTTGACATGG(서열번호 15) | TTTCTGTGCCTACGTGTGCT(서열번호 16) |
HSPA4 | TAAATGCTCCCTGCCTGGTG(서열번호 17) | GTGTTAATCCATGCCGTGCC(서열번호 18) |
STIP1 | ATGACCACTCTCAGCGTC(서열번호 19) | CTCCTTGGCTTTGTCGTA(서열번호 20) |
AHSA1 | CATCAGCACCCTCAAAACAG(서열번호 21) | CCCACTGGGTCTACTGACTCTC(서열번호 22) |
ACTB | TCATTCCAAATATGAGATGCGTTG(서열번호 23) | TAGAGAGAAGTGGGGTGGCT(서열번호 24) |
14. 형질도입
안정적인 세포주를 생성하기 위해 H1299 세포에 대조군 벡터(shCon; pLKO.1) 또는 HSP90 또는 HSP70 shRNA(Sigma-Aldrich사로부터 구입)를 포함하는 렌티바이러스 입자를 형질도입하였다. HSP90 또는 HSP70 shRNA의 표적서열은 하기 표 2에 나타내었다.
HSP90 shRNA | GTTATCCTACACCTGAAAGAA(서열번호 25) |
HSP70 shRNA | GCCTTTCCAAGATTGCTGTTT(서열번호 26) |
15. His-tagged 재조합 HSP70 단백질의 클로닝 및 추출
인간 HSP1A1 유전자(전장, N-말단 및 C-말단 도메인)를 N-말단(His) 태그가 있는 pET28a 벡터에 클로닝하였다. E. coli BL21 세포를 구조물로 형질전환시키고, 600 nm에서의 흡광도가 0.5에 도달할 때까지 37℃의 LB(lysogeny broth) 배지에서 배양하였다. 단백질 발현은 0.2 mM 이소프로필-β-d-티오갈락토피라노사이드(IPTG)를 첨가한 다음, 37℃에서 6시간 동안 배양하여 유도하였다. 원심분리 후, 세포 펠렛을 용해 완충액(Tris-HCl(pH 8.0) 50mM, NaCl 150mM, 1% Triton X-100, 10% 글리세롤, β메르캅토에탄올 70 μL 및 프로테아제 억제제 칵테일로 구성)에 재현탁하였다. 초음파 처리 및 원심분리 후, 상층액을 Ni-NTA 아가로스 비드와 함께 배양하고, 4℃에서 보관하였다.
16. 면역침강 및 풀다운 분석
면역 침강 분석을 위해 6시간 동안 비히클(DMSO) 또는 에보디아민(5 μM) 을 처리한 세포를 아주 차가운 PBS로 두 번 세척한 다음, IP 용해 완충액(Tris-HCl(pH 7.5) 20 mM, NaCl 150 mM, 0.5% NP -40, MgCl2 1 mM, 10% 글리세롤, NaF 100 mM, Na3VO4 5 mM, 아프로티닌 1 μg/mL, 류펩틴 1 μg/mL 및 펩스타틴 1 μg/mL)에 의해 얼음에서 10분 동안 수확하였다. 4℃에서 10분 동안 13,000 rpm로 원심분리한 후, 상층액을 수확하고 BCA 분석을 통해 단백질 농도를 결정하였다. 1 mg의 단백질을 항-HSP70 항체로 용해 완충액에서 4℃에서 밤새 면역침강시켰다. 또한, 단백질 G 아가로스 비드를 첨가하고 추가 2시간 동안 배양하였다. 비드를 원심분리(4℃, 2분, 3,000rpm)로 수집하고 6회(용해 완충액으로 3회, PBS로 3회) 세척하였다. 결합된 단백질은 95℃에서 5분 동안 5x SDS-PAGE 샘플 버퍼로 끓여서 추출하였다. 그 후, 실험방법 12와 같은 방법으로 웨스턴 블롯 분석을 수행하였다.
ATP 풀다운 분석을 위해 HSP70 및 HSP90의 재조합 단백질을 4℃에서 4시간 동안 5μM 에보디아민과 함께 또는 없이 배양하였다. 비드를 수집하고 0.01% Tween-20(PBST)을 함유하는 인산염 완충 식염수(PBS)로 1회 및 PBS로 2회 세척하고, 단백질을 95℃에서 5분 동안 5x SDS-PAGE 샘플 완충제로 끓여서 추출하였다. 그 후, 실험방법 12와 같은 방법으로 웨스턴 블롯 분석을 수행하였다.
비오틴-아비딘 풀다운 분석의 경우, 세포 용해물을 4℃에서 4시간 동안 비히클(DMSO) 또는 5 μM 비오틴화-에보디아민과 함께 배양하였다. 그 후, 스트렙트아비딘 아가로스(streptavidin-agarose)를 첨가하고 4℃에서 2시간 동안 배양하였다. 비드를 수집하고 PBST로 1회 및 PBS로 2회 세척하고, 단백질을 95℃에서 5분 동안 5x SDS-PAGE 샘플 완충액으로 끓여서 추출하였다. 그 후, 실험방법 12와 같은 방법으로 웨스턴 블롯 분석을 수행하였다.
17. 약물 친화성 반응 표적 안정성(DARTS)
정제된 HSP70 단백질 35 μg을 비히클(DMSO) 또는 최대 500 μM 에보디아민(최종 1% DMSO)로 4℃에서 30분 동안 처리한 다음, 프로테이나제 K(프로테이나제 K:단백질=1:100)와 함께 실온에서 15분 동안 배양하였다. 5x SDS-PAGE 샘플 버퍼를 추가하고 95℃ 동안 끓임으로써 반응을 종료한 후, 용해물을 8% SDS-PAGE로 용해시키고, PVDF 멤브레인으로 옮겨서, 실험방법 12와 같은 방법으로 웨스턴 블롯 분석을 수행하였다.
18. 제한 희석 분석
세포를 3일 동안 비히클(DMSO) 또는 에보디아민으로 처리한 다음 트립신을 처리하여 수확하였다. 트립판 블루 배제 분석을 사용하여 확인된 살아있는 세포를 PBS에 희석하고 마트리젤(Matrigel)과 혼합한 다음(비율 1:1), NOD/SCID 마우스의 오른쪽 옆구리에 접종하였다. 비히클 또는 에보디아민 처리군의 종양 개시 분율은 ELDA(Extreme Limiting Dilution Analysis) 온라인 소프트웨어(http://bioinf.wehi.edu.au/software/elda/)를 사용하여 결정하였다.
19. 면역형광
조직 또는 종양에서 절단된 caspase-3(Cl-Cas3) 및 Oct4의 발현 수준은 파라핀 포매 조직, H460 이종이식 모델에서 유래한 종양, PDX 모델 또는 Kras
G12D/+ 형질전환 마우스의 폐를 사용한 면역형광 염색으로 평가하였다. 포르말린 고정 및 파라핀 포매(FFPE) 조직 표본의 섹션을 탈파라핀화하고 재수화하였으며, 항원 복구를 위해 시트레이트 기반 항원 마스킹 용액(Vector Laboratories, Burlingame, CA, USA)으로 처리하였다. 슬라이드를 0.3% 과산화수소 용액으로 처리한 다음 차단 용액(0.025% Triton X-100을 포함하는 TBS에 희석한 5% 정상 혈청 용액)과 함께 실온에서 1시간 동안 배양하였다. 그 후, 슬라이드를 1차 항체(1:100 희석)와 함께 4℃에서 12시간 이상 배양하였다. 슬라이드를 세척 완충액(0.025% Triton X-100을 포함하는 TBS 용액)으로 여러 번 세척하고, 형광색소 표지된 2차 항체(Thermo Fisher Scientific)와 실온에서 1시간 동안 배양한 다음, 세척 완충액으로 여러 번 세척하였다. 슬라이드를 4', 6-diamidino-2-phenylindole(DAPI)로 대조염색하고 형광 현미경(Zeiss Axio Observer Z1, Carl Zeiss AG, Oberkochen, Germany)으로 관찰하였다.
20. 면역조직화학
H460 이종이식 모델 및 PDX(Patient derived xenograft) 모델의 종양에서 HSP70 발현을 면역조직화학(IHC)으로 분석하였다. 포르말린 고정 및 파라핀 포매 조직 표본의 절편을 탈파라핀화하고 재수화한 다음, 시트레이트 기반 항원 마스킹 용액(Vector Laboratories)을 사용하여 항원 복구를 수행하였다. 0.3% 과산화수소 용액으로 처리한 후, 슬라이드를 차단 완충액(0.025% Triton X-100을 포함하는 TBS에 희석한 5% 정상 혈청 용액)과 실온에서 1시간 동안 배양하였다. 슬라이드를 4℃에서 밤새 1차 항체와 함께 배양한 다음, 실온에서 1시간 동안 바이오틴화된 2차 항체(Bethyl Laboratories)와 함께 배양하였다. 용액 A와 B(ABC-Elite, Vector Laboratories)를 동시에 30분 동안 첨가하고, 3,3'-diaminobenzidine(DAB) 기질 키트(Vector Laboratories)를 사용하여 신호를 검출하였다. 그 후, 슬라이드를 헤마톡실린으로 추가로 대조염색하였다.
21. 동물 실험
모든 동물 절차는 서울대학교 동물병원 동물관리위원회에서 승인한 프로토콜(승인번호 SNU-131202-2)에 따라 수행되었다. 마우스에게 표준 음식과 물을 임의로 공급하고 각 12시간씩 명암주기로 온도 및 습도가 조절되는 시설에 수용하였다. 이종이식 실험을 위해 H460 세포 또는 환자 유래 종양을 6주령 NOD/SCID 마우스의 오른쪽 옆구리에 피하 접종하였다. 종양 부피가 50-150 mm3에 도달한 후, 마우스를 무작위로 그룹화하고 에보디아민(20 mg/kg) 또는 비히클(증류수에 희석된 10% DMSO 및 40% PEG400 용액)을 경구 위관영양법을 통해 3주 동안 주 6회 투여하였다. 에보디아민을 DMSO에 용해시키고 40% PEG400 용액에 희석하였다. 종양의 성장은 종양의 작은 지름과 큰 지름을 캘리퍼스로 측정하여 결정하였고, 종양 부피는 하기 식 1을 사용하여 계산하였다. 또한, 독성을 모니터링하기 위해 체중을 일주일에 두 번 기록하였다.
[식 1]
종양 부피(mm3) = (작은 지름)2 × (큰 지름) × 0.5
Kras G12D/+ 형질전환 마우스를 사용한 실험에서, 3개월 된 마우스를 무작위로 추출하고 8주 동안 비히클(증류수에 희석된 10% DMSO 및 40% PEG400 용액) 또는 에보디아민(20 mg/kg)로 경구 치료하였다. 생물발광 이미지는 MMPSense 680 프로브(PerkinElmer; PBS에서 2 nmol/150 μL)를 사용하고, IVIS-스펙트럼 마이크로CT 및 Living Image(ver. 4.2) 소프트웨어(PerkinElmer, Alameda, CA, USA)를 사용하여 얻었다. 기기는 제조업체의 지침에 따라 작동하였다. 마우스를 안락사시키고 에보디아민 및 비히클 처리군에서의 종양 형성을 평가하고 비교하였다. 헤마톡실린 및 에오신(H&E) 염색 후 폐 조직의 현미경적 평가를 수행하여 평균 종양 수(N) 및 부피(V)를 맹검 방식으로 측정하였다. 종양 부피는 상기 식 1을 사용하여 계산하였다. 종양 부담은 하기 식 2를 사용하여 계산하였다. 종양의 수와 크기는 각 폐 전체에 균일하게 분포된 5개의 섹션에서 계산하였다.
[식 2]
종양 부담 = 종양 수 × 종양 부피의 평균
22. 인실리코 분석
GEO(생물정보센터)에 기탁된 공개적으로 사용 가능한 데이터 세트를 사용하였다. GSEA 분석을 위해 GSE17537, GSE24747, GSE38678, GSE41271, GSE58812, 및 GSE67966 데이터 세트를 활용하였고, HSPA1A 발현과 폐암, 결장암, 유방암 환자의 예후와의 연관성을 분석을 위해 GSE3141, GSE17536, 및 GSE1456 데이터 세트를 활용하였다. 각 환자 샘플에 대한 유전자 발현 수준 및 임상 정보(예: 조직학, 생존 상태 및 생존 기간)를 포함하는 원시 데이터를 수동으로 다운로드하여 분석하였다. GSEA(Gene set enrichment analysis)는 열 충격 단백질 결합 또는 샤페론 결합을 위해 GO 유전자 세트(Molecular Signatures Database에서 얻음)와 함께 GSEA 소프트웨어(Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA)를 사용하여 수행하였다. HSPA1AHigh 및 HSPA1Alow 그룹은 각 데이터 세트에 있는 데이터의 중앙값을 기반으로 정의하였다. 카플란-마이어 생존 곡선은 폐암 환자의 생존 차이를 표시하는 데 사용하였다. 로그 순위 테스트는 유의성을 결정하는 데 사용하였다.
23. 통계
데이터는 평균±SD로 표시하였다. 모든 in vitro 실험은 3회 이상 독립적으로 수행하였으며 대표적인 결과를 제시하였다. 데이터는 마이크로소프트 엑셀 소프트웨어(Microsoft Corp., Redmond, MA, USA) 또는 Graphpad Prism 소프트웨어를 사용하여 계산하거나 분석하였다. 통계적 유의성은 양측 스튜던트 t-검정 또는 일원 분산 분석(ANOVA)을 사용하여 결정하였다. 두 테스트 그룹의 동일한 분산을 확인하기 위해 분산 동등성에 대한 F-검정을 수행하였다. 3개 이상의 실험 그룹에서 동일한 분산을 보장하기 위해 분산의 동등성에 대한 Brown-Forsythe 테스트를 수행하였다. In vitro 또는 in vivo 데이터가 정규 분포를 따르는지 확인하기 위해 Shapiro-Wilk 테스트를 수행하였다. 0.05 미만의 P 값은 유의한 것으로 간주되었다.
[실시예]
실시예 1. HSP70의 전사 상향 조절을 통한 CSC의 Hsp 시스템 활성화 확인
NSCLC(non-small cell lung cancer) CSC(Cancer stem cell)에서 HSP 시스템 구성 요소(HSPB1(Hsp27을 인코딩), DNAJB1(Hsp40 인코딩), HSPD1(Hsp60 인코딩), HSPA1A(HSP70 인코딩) 및 HSP90AA1(HSP90 인코딩))의 발현 프로파일을 평가하였다. NSCLC CSC에 대한 신뢰할 수 있는 바이오 마커의 결핍을 감안하여, 종양 스페로이드 형성 능력, CSC 마커(예: Oct4, Nanog 및 Sox2)의 발현, ALDH(aldehyde dehydrogenase) 활성을 포함하는 CSC의 일반적인 특성을 기반으로 NSCLC 세포주로부터 잠재적인 CSC 하위 집단을 얻었다. 이로부터 상기 유전자 및 단백질의 발현정도를 확인하였다. 그 결과는 도 2a 및 도 2b에 나타내었다.
도 2a에 나타난 바와 같이, 단층 배양 조건에서 성장한 것과 비교하여, 스페로이드 조건에서 3가지의 NSCLC 세포주(H460, H1299, A549)에서 유래된 HSPA1A, HSPB1, DNAJB1, HSPA1A 및 HSPA4의 일관된 상향 조절을 발견하였다. 그 중 HSPA1A가 가장 두드러졌다.
또한, 도 2b에 나타난 바와 같이, 단층 배양 조건(M)에서 성장한 것과 대비하여, 3개의 NSCLC 스페로이드 조건(S)에서, CSC 마커 단백질(Sox2 및 Oct4), HSP70 및 Hsp 시스템의 클라이언트 단백질(HIF-1α, Akt 및 Src)의 증가된 발현을 나타냈다. 다만, HSP90은 유의한 차이를 나타내지 않았다.
인간 NANOG 또는 POUSF1프로모터(H1299/pOct4-GFP, H1299/pNanog-GFP, H460/pOct4-GFP 및 H460/pNanog-GFP)를 운반하는 녹색 형광 단백질(GFP) 리포터 벡터로 안정적으로 형질 감염된 H460 및 H1299 NSCLC 세포를 설정하여 추정 NSCLC CSC를 선택하였다. 그 후, 형광 활성화 세포 분류(FACS)에 의해 GFPhigh 대 GFPlow 집단을 얻었다. 상기 집단을 결정하기 위한 게이팅 전략은 도 1에 나타내었다.
각 집단 간의 스페로이드 형성 능력 및 CSC 마커 유전자 발현 정도를 분석하였다. 그 결과는 도 2c 및 2d에 나타내었다.
도 2c에 나타난 바와 같이, 상응하는 pOct4-GFPlow 및 pNanog-GFPlow 집단과 비교하여, pOct4-GFPhigh 및 pNanog-GFPhigh 세포는 상당히 향상된 스페로이드 형성 능력을 나타냈다.
또한, 도 2d에 나타난 바와 같이, pOct4-GFPhigh 또는 pNanog-GFPhigh 집단에서 CSC 마커(POUSF1, NANOG 및 SOX2), HSPA1A 및 HSP90AA1의 유전자 발현이 해당 GFPlow 집단과 비교하여 지속적으로 증가하는 것을 확인하였다.
A549, 460 세포 또는 PDX(patient derived xenograft)에서 분리된 분류된 ALDHhigh 및 ALDHlow집단, CD44high 및 CD44low집단, 또는 CD133high 및 CD133low 집단에서 HSPA1A 및 HSP90AA1의 발현을 확인하였다. 그 결과는 도 2e 및 도 2f에 나타내었다.
도 2e에 나타난 바와 같이, HSPA1A의 mRNA 발현의 현저한 증가는 A549 및 H460 세포에서 분리된 분류된 ALDHhigh 집단에서도 관찰되었다. 또한, ALDHlow 집단과 비교하여, NSCLC 환자로부터 분리된 환자 유래 이종이식(PDX) 종양에서 분리된 분류된 ALDHhigh 집단에서의 HSPA1A mRNA 발현의 상향 조절을 확인함으로써 임상적 관련성이 검증되었다.
또한, 도 2f에 나타난 바와 같이, HSPA1A의 상향 조절은 결장암 및 유방암의 PDX 종양에서도 확인되었다.
유전자 세트 농축 분석(GSEA)을 사용하여 공개적으로 이용 가능한 데이터 세트를 분석하였다. 그 결과는 도 2g 및 2h에 나타내었다.
도 2g에 나타난 바와 같이, Hsp 관련 유전자 세트가 추정되는 폐(GSE38678), 결장(GSE24747) 및 유방(GSE67966)의 CSC 집단과 암 및 재발(GSE41271 및 GSE17537) 또는 전이(GSE58812)가 있는 폐 선암(GSE41271), 결장암(GSE17537) 및 유방암(GSE58812) 환자로부터 유래된 종양에서 유의하게 풍부하다는 것을 보여주었다(위발견율(FDR)<0.25).
또한, 도 2h에 나타난 바와 같이, 폐, 결장 및 유방암 환자에서 HSPA1A 발현과 낮은 생존율의 연관성을 발견하였다.
따라서 HSP(heat shock protein) 시스템은 다양한 HSP 구성 요소(특히 HSP70)의 발현 증가로 인해 부분적으로 CSC(cancer stem cell)에서 활성화될 가능성이 있다.
실시예 2. CSC에서 Hsp 시스템의 역할 확인
2.1 HSP70 또는 HSP90의 강제 과발현 또는 침묵을 통한 Hsp 시스템 역할 확인
HSP70 또는 HSP90의 강제 과발현이 CSC 마커 유전자, ALDH 활성 등에 미치는 영향을 확인하였다. 그 결과는 도 3a 및 도 3b에 나타내었다.
도 3a 및 도 3b에 나타난 바와 같이, HSP70 또는 HSP90의 강제 과발현이 CSC 마커 유전자(POU5F1, NANOG 및 SOX2)의 발현 및 ALDH 활성을 포함하여, H1299 세포에서 CSC 표현형의 획득을 유의하게 촉진한다는 것을 확인하였다.
HSP70 또는 HSP90 발현이 특정 shRNA로 안정한 형질감염에 의해 침묵된 경우, 스페로이드 형성, CSC 마커, ALDHhigh 집단에 미치는 영향을 확인하였다. 그 결과는 도 3c 내지 도 3e에 나타내었다.
도 3c 및 도 3d에 나타난 바와 같이, HSP70 또는 HSP90 발현이 특정 shRNA로 안정한 형질감염에 의해 침묵된 H1299 및 A549 세포는 각각의 대조군과 비교하여 스페로이드 형성 및 CSC 마커(Oct4, Nanog, Sox2) 및 HSP 시스템 클라이언트 단백질(Art, Src, MEK)의 발현의 명백한 감소를 나타냈다. 특히, HSP70 침묵은 HSP90 침묵보다 CSC 마커 수준에 더 큰 영향을 미쳤다.
또한, 도 3e에 나타난 바와 같이, H1299 및 A549 세포의 ALDHhigh 집단도 HSP 시스템의 shRNA 매개 비활성화에 의해 감소되었다.
2.2 CSC 표현형에 대한 HSP 시스템의 약리학적 억제제의 효과 확인
NSCLC, 결장암, 유방암 세포에 대한 HSP70 억제제(MKT-077) 또는 HSP90 억제제(17-AAG)의 처리에 따른 스페로이드의 크기와 수, CSC 마커, HSP70/HSP90 클라이언트 단백질 발현에 미치는 영향을 확인하였다. 그 결과는 도 3f 및 3g에 나타내었다.
도 3f 및 3g에 나타난 바와 같이, HSP70 억제제(MKT-077) 또는 HSP90 억제제(17-AAG)의 처리가 NSCLC 세포에서 스페로이드의 크기와 수를 감소시키고, CSC 마커 및 HSP70/HSP90 클라이언트 단백질의 발현을 유의하게 감소시킨다는 것을 확인하였다. 또한, HSP70 또는 HSP90의 약리학적 억제제는 결장(HCT116) 및 유방(MDA-MB-231) 암 세포의 스페로이드의 크기와 수를 감소시키고, CSC 마커 및 HSP70/HSP90 클라이언트 단백질의 발현에 대해 억제 효과를 나타냈다.
또한, HSP70 또는 HSP90의 차단에 의한 단백질의 특이적 조절을 확인하기 위해, 17-AAG 및 MKT-077을 처리한 세포에서 전체 단백질 발현 패턴을 분석하였다. 그 결과는 도 3h에 나타내었다.
도 3h에 나타난 바와 같이, Coomassie brilliant blue로 염색된 대부분의 단백질 수준은 HSP90 또는 HSP70의 차단에 의해 변화되지 않았으며, 특정 단백질은 각 약물 처리에 의해 특이적으로 조절되었다. 이는 HSP 시스템의 억제는 Hsp90/Hsp70 클라이언트 단백질과 같은 특정 단백질의 하위 집단에 영향을 미치는 것을 의미한다.
상기 결과들은 HSP 시스템이 폐암, 유방암 및 결장암의 암 줄기세포에서 중요한 역할을 한다는 것을 의미한다. 따라서, 다양한 인간 암에서 HSP 시스템이 활성화된다는 점을 감안할 때, HSP 시스템을 표적으로 하여 CSC와 비 CSC 집단을 모두 제거함으로써, 다양한 인간 암을 효과적으로 치료할 수 있을 것이다.
실시예 3. HSP 시스템을 표적으로 하는 에보디아민의 식별
3.1. HSP 시스템을 표적으로 하는 화합물의 스크리닝
HSP 시스템을 표적으로 하여 CSC와 비-CSC 집단을 모두 근절할 수 있는 후보를 발견하기 위해, CSC와 비-CSC를 모두 포함하는 H1299 세포(H1299/전체)와 추정 CSC를 포함하는 Oct4+ 하위집단(H1299/pOct4-GFP)을 활용하여 다양한 화학 등급을 가진 432개의 화합물로 구성된 대규모 천연 화합물 라이브러리를 스크리닝하였다. 그 결과는 도 4a에 나타내었다.
도 4a에 나타난 바와 같이, 대조군 세포와 비교하여 H1299/총 세포 및 H1299/pOct4-GFP 하위 집단의 수를 유의하게 억제하는 세 가지 강력한 화합물(에보디아민, 디오신, 비텍시카르핀)을 확인하였다.
또한, 3가지 화합물에 대하여 H460/총 세포 및 H460/pOct4-GFP 하위 집단의 수, 스페로이드 형성 능력, ALDH 집단의 수, HSP 시스템 클라이언트 단백질 발현에 미치는 영향을 확인하였다. 그 결과는 도 4b 내지 4e에 나타내었다.
도 4b 내지 4e에 나타난 바와 같이, H460 세포뿐만 아니라 Oct4 프로모터가 활성화되어 GFP를 발현하는 H460 세포 하위집단에 대해 모두 효과를 나타내는 3가지 화합물을 발굴하였다. 또한, 3가지 화합물은 농도 의존 방식으로 H1299/pOct4-GFP 및 H460/pOct4-GFP 세포의 스페로이드 형성 능력을 유의하게 억제하였다. 이 때, 에보디아민이 세포의 스페로이드 형성 능력을 가장 크게 억제하였다. 3가지 화합물 중 에보디아민은 ALDH+ 집단의 수를 가장 크게 감소시켰으며, Akt, MEK 및 Src를 포함한 HSP 시스템 클라이언트 단백질의 발현을 가장 크게 감소시켰다. 따라서, HSP 시스템을 억제하는 CSC 표적 활성 원리로 가장 효과가 좋은 에보디아민을 선택하였다.
그 후, 이전에 공지된 방법에 따라 에보디아민을 대규모 화학 합성하였다. 또한, NSCLC(H1299, H460), 결장(HCT116) 및 유방(MDA- MB-231)의 암세포의 CSC 및 비-CSC 집단에서 에보디아민 처리에 따른 Akt, MEK 및 Src 및 이들의 활성(인산화) 형태의 발현 정도를 확인하였다. 그 결과는 도 4f에 나타내었다.
도 4f에 나타난 바와 같이, 에보디아민은 NSCLC(H1299, H460), 결장(HCT116) 및 유방(MDA- MB-231)의 암세포의 CSC 및 비-CSC 집단에서 Akt, MEK 및 Src 및 이들의 활성(인산화) 형태의 발현을 억제하였다.
또한, 에보디아민 처리에 따른 HSP70과 HSP90 단백질 사이의 상호작용을 확인하였다. 그 결과는 도 4g에 나타내었다.
도 4g에 나타난 바와 같이, 샤페론 기능에 대한 HSP70과 HSP90 단백질 사이의 상호작용도 에보디아민 처리에 의해 감소되었다.
3.2 HSP70과 에보디아민의 관계 확인
HSP70/HSP90을 강제 과발현한 경우, 에보디아민 처리에 따른 Oct4 및 Nanog 단백질, POU5F1 및 NANOG mRNA 발현, 및 스페로이드 형성 효능을 확인하였다. 그 결과는 도 4h 내지 4j에 나타내었다.
도 4h 내지 4j에 나타난 바와 같이, 에보디아민을 처리한 H1299세포에서, HSP90이 아닌 HSP70의 강제 과발현이 Oct4 및 Nanog 단백질 발현, mRNA 발현 (POU5F1 및 NANOG), 및 스페로이드 형성 효능을 포함하는 CSC 표현형을 현저하게 회복시키는 것을 확인하였다.
또한, HSP70/HSP90이 특정 shRNA를 사용하여 안정적으로 녹다운된 H1299세포에서 에보디아민에 따른 앵커리지 의존성 콜로니 형성 효과를 확인하였다. 그 결과는 도 4k에 나타내었다.
도 4k에 나타난 바와 같이, HSP70 발현이 녹다운된 H1299 세포에서, 앵커리지 의존성 콜로니 형성에 대한 에보디아민의 억제 효과가 약화되었음을 확인하였다. 그러나, HSP90 발현이 녹다운된 H1299 세포에서, 에보디아민의 억제 효과는 유의한 차이가 없었다. 이는 HSP70이 에보디아민의 세포 표적임을 시사한다.
실시예 4. 시험관 내 및 생체 내, 에보디아민의 항 CSC 활성 확인
CSC의 기능적 특징에 대한 에보디아민의 영향을 평가하였다. 그 결과는 도 5a 내지 5g에 나타내었다.
도 5a 내지 5e에 나타난 바와 같이, 에보디아민 처리가 농도 의존적 방식으로 H1299/pOct4-GFP, H1299/pNanog-GFP, H460/pOct4-GFP 및 H460/pNanog-GFP 세포의 수를 유의하게 감소시키는 것을 확인하였다. H1299 세포의 ALDHhigh 세포 집단이 에보디아민 처리 시 현저하게 감소되었음을 확인하였다. 또한, 에보디아민은 H1299 또는 H460 세포에서 대조군에 비해 Oct4 및 Nanog 발현 및 스페로이드 형성을 효과적으로 억제하였다.
또한, Oct4 및 Nanog 발현의 현저한 감소와 함께, H460의 스페로이드 형성 집단은 에보디아민 처리 시 세포 자멸사를 겪었다. 이는 폴리-(ADP-리보스) 폴리머라제(PARP) 및 카스파제-3의 증가된 절단에 의해 입증되었다.
에보디아민 처리가 용량 의존적 방식으로 스페로이드의 성장을 감소시키는 것을 확인하였고, 제한 희석 분석을 통해 종양 생성 억제 활성을 확인하였다. 그 결과는 도 5f 및 도 5g에 나타내었다.
도 5f 및 5g에 나타난 바와 같이, 스페로이드는 1 μM 미만의 농도의 에보디아민에 의해 거의 완전히 감소되었다. 추가로, 제한 희석 분석을 통해 에보디아민 처리된 세포는 비히클 처리된 마우스에서 유래된 종양 세포와 비교하여, 수용자 마우스에서 현저하게 감소된 종양 형성 활성을 나타냈다.
HCT116 및 MDA-MB-231 세포에서 에보디아민 처리에 따른 Oct4 및 Nanog의 발현, 스페로이드 형성 능력을 확인하였다. 또한, 제한 희석 분석을 통해 종양 활성을 확인하였다. 그 결과는 도 5h 및 도 5i에 나타내었다.
도 5h 및 도 5i에 나타난 바와 같이, Oct4 및 Nanog의 발현에 대한 에보디아민의 억제 효과를 확인하였고, 에보디아민의 존재 하에, PARP 및 카스파제-3의 절단과 스페로이드 형성 능력이 단층 또는 스페로이드 형성 조건에서 배양된 HCT116 및 MDA-MB-231 세포에서 관찰되었다. 또한, 제한 희석 분석을 통해 에보디아민 처리된 MDA-MB-231(MDA231) 세포의 감소된 종양 형성 활성을 확인하였다. 상기 결과는 에보디아민의 항 CSC 활성을 시사한다.
실시예 5. 여러 유형의 인간 암세포에서 에보디아민의 항증식 활성 확인
5.1 비-CSC 집단에서 에보디아민의 억제 효과 확인
다양한 유형의 암세포에서 대량 비-CSC 집단에 대한 에보디아민의 효과를 평가하였다. 그 결과는 도 6a 내지 6c에 나타내었다.
도 6a 내지 6c에 나타난 바와 같이, 에보디아민은 농도 의존적 방식으로 폐, 결장 및 유방암으로부터 유래된 여러 암세포주의 생존율 및 앵커리지 의존성 콜로니 형성을 유의하게 억제하였다. 또한, 에보디아민은 폐암 세포의 앵커리지 비의존성 콜로니 형성을 억제하였다.
5.2 약제 내성 폐암에 대한 에보디아민의 억제 효과 확인
페메트렉시드(H1299/PmR), 시스플라틴(H1299/CsR) 또는 파클리탁셀(H460/PcR)에 내성을 나타내는 H1299 및 H460 NSCLC 세포에 대한 에보디아민의 효과를 평가하였다. 그 결과는 도 6d에 나타내었다.
도 6d에 나타난 바와 같이, 에보디아민이 다양한 내화학성 서브라인(H1299/PmR, H1299/CsR 및 H460/PcR)의 콜로니 형성 가능성을 유의하게 억제한다는 것을 확인하였다.
5.3 에보디아민과 기존 화학치료제의 병용시 시너지 효과 확인
에보디아민이 기존 화학요법제의 항암 효과를 향상시킬 수 있는지 여부를 조사하였다. 그 결과는 도 6e 및 6f에 나타내었다.
도 6e 및 6f에 나타난 바와 같이, MTT 및 앵커리지 의존성 콜로니 형성 분석을 통해서, 에보디아민 처리가 NSCLC 세포의 생존율 및 콜로니 형성 능력에 대한 시스플라틴 및 파클리탁셀의 억제 효과를 유의하게 향상시키는 것을 확인하였다. 표 3은 에보디아민과 화학치료제의 병용요법의 시너지 효과를 나타낸 것이다. 상기 결과는 에보디아민이 화학 요법과 같은 표준 치료와 함께 항암 요법에 적용될 수 있음을 의미한다.
Experiment | Treatment A | Treatment B | Expected1) | Observed | Index2) |
MTT assay | Evodiamine 5 μM |
Carboplatin 50 μM | 0.337 | 0.267 | 1.26 |
Carboplatin 100 μM | 0.326 | 0.260 | 1.25 | ||
Carboplatin 200 μM | 0.285 | 0.263 | 1.08 | ||
MTT assay | Evodiamine 5 μM |
Paclitaxel 5 nM | 0.358 | 0.227 | 1.58 |
Paclitaxel 10 nM | 0.342 | 0.250 | 1.37 | ||
Paclitaxel 20 nM | 0.308 | 0.256 | 1.20 | ||
Colony formation assay | Evodiamine 0.5 μM |
Carboplatin 10 μM | 0.134 | 0.067 | 2.02 |
Paclitaxel 10 nM | 0.085 | 0.013 | 6.40 |
1)Expected: growth inhibition rate of treatment A x growth inhibition rate of treatment B
2)Index: Expected growth inhibition rate / Observed growth inhibition rate
5.4 에보디아민의 NSCLC 세포의 세포 자멸사 유도 효과 확인
에보디아민의 처리에 따라 PARP 및 카스파제-3 절단, 염색질 응축, 아넥신 V-양성 세포 집단을 분석하였다. 그 결과는 도 6g 내지 6i에 나타내었다.
도 6g 내지 6i에 나타난 바와 같이, 에보디아민을 처리하면 NSCLC 세포에서 PARP 및 카스파제-3 절단이 증가하고, 염색질 응축 및 아넥신 V-양성 세포 집단이 증가한다. 이는 에보디아민의 처리로 NSCLC 세포에서 농도 의존적 방식으로 세포 자멸사를 유도한다는 것을 의미한다.
5.5 에보디아민의 세포 독성 확인
정상 세포주에서 에보디아민 처리에 따른 생존율을 확인하였다. 그 결과는 도 6j에 나타내었다.
도 6j에 나타난 바와 같이, 에보디아민(최대 5μM)의 처리는 간 상피(NCTC1489), 폐 상피(HBE), 결장 섬유아세포(CCD-18Co), 유방 상피(MCF10A), 마우스 해마(HT-22) 및 폐 섬유아세포(Wi38)에서 유래한 정상 세포주의 생존율에 유의한 영향을 미치지 않았다.
상기 결과는 에보디아민이 암세포에 특이적으로 세포사멸을 유도하여 폐, 결장 및 유방암에서 CSC 및 비 CSC 집단을 모두 억제하고, 다양한 정상 세포에서 최소한의 독성을 발휘함을 의미한다.
실시예 6. 생체 내 독성이 최소화된 에보디아민의 항종양 효과
3개월령의 Kras
G12D/+ 형질전환 마우스를 사용하여, Kras
G12D/+에 의한 자발적 폐 종양형성에 대한 에보디아민의 효과를 평가하였다. 그 결과는 도 7a 내지 7d에 나타내었다.
도 7a 내지 7d에 나타난 바와 같이, 20 mg/kg의 에보디아민 투여 8주 후, 생물발광 이미징 및 육안 관찰을 통해, 에보디아민 처리된 마우스의 폐에서 종양 형성이 유의하게 감소한 것을 확인하였다. 또한, 헤마톡실린 및 에오신(H&E)으로 염색된 폐 조직 절편을 현미경으로 관찰하여 에보디아민이 마우스의 폐에서 종양의 수, 부피 및 부담을 유의하게 억제한다는 것을 확인하였다. 또한, 면역형광 염색을 통해 비히클 처리 마우스의 폐 종양에 비해 에보디아민 처리 마우스의 폐 종양에서, 절단된 카스파제-3(Cl-Cas3)의 상향 조절 및 Oct4 발현 수준의 하향 조절을 확인하였다.
H460 이종이식 모델/폐, 결장, 유방의 PDX 모델에서 종양형성에 대한 에보디아민의 효과를 평가하였다. 그 결과는 도 7e 및 7h에 나타내었다.
도 7e 및 7f에 나타난 바와 같이, 에보디아민을 사용한 치료는 H460 이종이식 모델에서 종양의 성장을 유의하게 감소시켰다. 면역형광 분석은 에보디아민 처리된 마우스로부터 유래한 종양에서 상당한 카스파제-3 절단 및 Oct4 수준의 현저한 하향조절을 나타내었으며, 이는 에보디아민 처리된 마우스의 종양에서 세포자멸사 유도 및 CSC 억제한다는 것을 의미한다.
또한, 도 7g 및 7h에 나타난 바와 같이, 에보디아민의 투여는 또한 카스파제-3 절단의 상당한 증가 및 종양에서 Oct4 수준의 현저한 하향조절과 더불어, 3개의 PDX 종양 모두의 성장을 유의하게 억제하였다.
에보디아민 처리에 따른 마우스 체중 변화, 적혈구 및 백혈구 수, 조직학적 변화를 확인하였다. 그 결과는 도 7i 내지 7k에 나타내었다.
도 7i 내지 7k에 나타난 바와 같이, 비히클 및 에보디아민 처리된 마우스 체중 사이에서 차이는 미미하였다. 또한, 에보디아민 투여에 따라 마우스에서 적혈구(RBC) 및 백혈구(WBC) 수는 유의한 차이가 없었다, 이는 생체 내에서 에보디아민의 혈액학적 독성이 적음을 의미한다. 또한, 에보디아민 처리된 마우스의 뇌, 폐, 간 및 신장과 같은 주요 기관에서 비히클 처리 마우스와 비교하여, 유의한 조직학적 변화가 관찰되지 았았다.
상기 결과들은 에보디아민이 뚜렷한 독성을 나타내지 않으면서 변이된 KRAS(Kras
G12D/+)에 의한 폐 종양 형성을 억제하고, 세포주 및 환자 유래 종양 이종이식의 성장을 억제할 수 있음을 의미한다.
실시예 7. 에보디아민의 세포 표적으로서의 HSP70
7.1 HSP70 및 HSP90 발현에 대한 에보디아민의 효과 확인
HSP 시스템의 에보디아민 매개 조절의 기본 메커니즘과 HSP70 및 HSP90 발현에 대한 에보디아민의 효과를 조사하였다. 그 결과는 도 8a 내지 8d에 나타내었다.
도 8a 내지 8d에 나타난 바와 같이, H1299 및 H460 NSCLC 세포에서 HSP70 단백질 발현은 용량 의존적 방식으로 에보디아민 처리에 의해 억제되었다. 반면, HSP90 발현은 에보디아민 처리와 무관하였다. 또한, 스페로이드 형성 조건에서 배양된 H460, HCT116, MDA-MB-231에서 HSP70의 발현이 감소되는 것을 추가로 확인했지만 HSP90의 발현은 감소되지 않았다. 특히, 에보디아민 처리된 NSCLC 세포에서 HSPA1A 유전자 발현은 대조군에 비해 현저한 증가를 보였다. 이는 에보디아민 처리로 인한 HSP70 단백질 수준의 억제에 따른 유전자의 보상적 유도를 의미한다. 또한, 에보디아민 처리 마우스로부터의 H460 NSCLC 이종이식 및 PDX 종양에서 HSP70 발현이 비히클 처리 마우스에 비교하여 유의하게 감소되었음을 확인하였다.
HSP70 단백질의 반감기에 대한 에보디아민의 효과를 조사하였다. 그 결과는 도 8e에 나타내었다.
도 8e에 나타난 바와 같이, HSP70 단백질은 비히클이 처리된 세포보다 에보디아민이 처리된 세포에서 더 빠르게 분해되었다.
7.2 에보디아민과 프로테아좀 시스템 역할 확인
단백질 안정성 조절에서 유비퀴틴화의 역할을 기반으로, 에보디아민 처리에 따른 HSP70 단백질 수준의 하향 조절에서 유비퀴틴-프로테아좀 시스템의 역할을 조사하였다. 그 결과는 도 8f 및 8g에 나타내었다.
도 8f 및 8g에 나타난 바와 같이, HSP70 단백질 발현의 에보디아민 매개 감소가 프로테아좀 억제제 MG132의 존재하에 현저하게 회복되었음을 확인하였다. 또한, HSP70 단백질의 폴리유비퀴틴화는 프로테아좀 시스템이 MG132에 의해 비활성화되고, 에보디아민이 처리된 H1299 NSCLC 세포에서 분명하였다. 이는 에보디아민이 유비퀴틴 매개 프로테아좀 분해를 촉진함으로써 HSP70 단백질 발현을 탈조절함을 의미한다.
7.3 에보디아민과 HSP70의 연관성 확인
HSP70이 에보디아민의 활성에 대한 세포 표적인지 여부를 결정하기 위해, 일련의 실험을 수행하였다. 그 결과는 도 8h 내지 8j에 나타내었다.
도 8h 내지 8j에 나타난 바와 같이, 약물 친화성 반응 표적 안정성(DARTS) 분석; 단백질 분해에 대한 약물 결합 단백질의 감소된 감수성의 특성에 기반한 분석; 및 비오틴화된 에보디아민을 사용한 풀다운 분석은 에보디아민과 HSP70의 연관성을 보여주었다. 다만, HSP90은 그러하지 않았다. 또한, ATP 아가로스와 재조합 HSP70 단백질의 결합이 에보디아민의 존재에 의해 현저하게 차단되었음을 확인하였다.
HSP70의 구조는 N-말단 뉴클레오티드 결합 도메인(NBD)과 두 도메인을 연결하는 유연한 링커를 가진 C-말단 기질 결합 도메인(SBD)등으로 이루어져있다. 에보디아민이 HSP70에 직접 결합하는지, HSP70의 어떤 도메인이 에보디아민과 상호 작용하는지 확인하기 위해 절단된 N-말단 또는 C-말단(C) 도메인을 포함하는 재조합 HSP70 단백질을 제조하여 실험하였다. 그 결과는 도 8k 내지 8m에 나타내었다.
도 8k 내지 8m에 나타난 바와 같이, 재조합 단백질의 DARTS 분석; 비오틴화된 에보디아민 기반 풀다운 분석; 및 ATP 아가로스 기반 결합 분석을 통해, HSP70 NBD에 대한 에보디아민의 직접적인 결합을 일관되게 확인할 수 있었다. 이는 HSP70 NBD가 에보디아민의 항-CSC 효과에 대한 세포 표적임을 의미한다.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명의 에보디아민을 유효성분으로 포함하는 조성물은 종양의 성장을 억제하고, HSP70 단백질 발현과 암 줄기세포의 스페로이드 형성 능력을 억제하며, 암세포주 이종이식 및 환자 유래 암 이종이식 마우스 모델에서 종양의 성장을 억제시킬 뿐만 아니라, 페메트렉시드, 시스플라틴, 및 파클리탁셀 등의 약제와 병용 시 시너지 효과를 가지고, 약제 내성이 있는 암세포에 항암효능이 있으므로, 이를 이용하여 비소세포폐암의 예방 및 치료에 사용할 수 있는 바, 산업상 이용가능성이 있다.
Claims (20)
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 비소세포폐암은 KRAS 변이 비소세포폐암 및 약제 내성 비소세포폐암으로 이루어지는 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 에보디아민은 종양의 수 및 부피로 이루어지는 군으로부터 선택된 하나 이상을 감소시키는 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 에보디아민은 HSP70 단백질의 발현을 억제시키는 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 에보디아민은 암 줄기세포의 스페로이드 형성 능력을 억제하는 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 에보디아민은 HIF-1α, Akt, Src, MEK, POUSF1, NANOG, 및 SOX2로 이루어지는 군으로부터 선택된 하나 이상의 단백질 또는 유전자의 발현을 억제시키는 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제1항에 있어서,상기 조성물은 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상을 더 포함하는 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 제2항에 있어서,상기 약제는 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 비소세포폐암의 예방 또는 치료용 약학적 조성물.
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 항암제의 항암효능을 증진시키는 항암보조제로서, 상기 암은 비소세포폐암인 것을 특징으로 하는, 항암보조제.
- 제9항에 있어서,상기 비소세포폐암은 KRAS 변이 비소세포폐암 및 약제 내성 비소세포폐암으로 이루어지는 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 항암보조제.
- 제9항에 있어서,상기 에보디아민은 HSP70 단백질의 발현을 억제시키는 것을 특징으로 하는, 항암보조제.
- 제9항에 있어서,상기 에보디아민은 암 줄기세포의 스페로이드 형성 능력을 억제하는 것을 특징으로 하는, 항암보조제.
- 제9항에 있어서,상기 조성물은 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상을 더 포함하는 것을 특징으로 하는, 항암보조제.
- 제9항에 있어서,상기 항암제는 페메트렉시드, 시스플라틴, 및 파클리탁셀로 이루어지는 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 항암보조제.
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 비소세포폐암의 예방 또는 치료 방법.
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 약학적 조성물의 비소세포폐암의 예방 또는 치료 용도.
- 비소세포폐암의 예방 또는 치료 약제를 생산하기 위한 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염의 용도.
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항암보조제를 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 방법.
- 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항암보조제가 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 용도.
- 비소세포폐암에 대한 항암제의 항암 효능을 향상 또는 증진시키는 약제를 생산하기 위한 에보디아민(evodiamine) 또는 이의 약학적으로 허용가능한 염의 용도.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200126273 | 2020-09-28 | ||
KR10-2020-0126273 | 2020-09-28 | ||
KR10-2021-0127177 | 2021-09-27 | ||
KR1020210127177A KR20220043048A (ko) | 2020-09-28 | 2021-09-27 | 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022065968A1 true WO2022065968A1 (ko) | 2022-03-31 |
Family
ID=80846801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/013186 WO2022065968A1 (ko) | 2020-09-28 | 2021-09-28 | 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022065968A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114773398A (zh) * | 2022-05-11 | 2022-07-22 | 天津医科大学 | 一种吴茱萸碱-铂(iv)配合物、制备方法及其在肿瘤药物中的应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1036267A (ja) * | 1996-07-25 | 1998-02-10 | Kureha Chem Ind Co Ltd | Hsp27ファミリーに属するタンパク質のエボジアミン誘導体含有合成抑制剤 |
US20140135370A1 (en) * | 2011-05-11 | 2014-05-15 | Synta Pharmaceuticals Corp. | Treating cancer with an hsp90 inhibitory compound |
CN104739837A (zh) * | 2014-10-24 | 2015-07-01 | 中国人民解放军第三军医大学第三附属医院 | 吴茱萸碱治疗小细胞肺癌的用途 |
-
2021
- 2021-09-28 WO PCT/KR2021/013186 patent/WO2022065968A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1036267A (ja) * | 1996-07-25 | 1998-02-10 | Kureha Chem Ind Co Ltd | Hsp27ファミリーに属するタンパク質のエボジアミン誘導体含有合成抑制剤 |
US20140135370A1 (en) * | 2011-05-11 | 2014-05-15 | Synta Pharmaceuticals Corp. | Treating cancer with an hsp90 inhibitory compound |
CN104739837A (zh) * | 2014-10-24 | 2015-07-01 | 中国人民解放军第三军医大学第三附属医院 | 吴茱萸碱治疗小细胞肺癌的用途 |
Non-Patent Citations (2)
Title |
---|
SU TAO, YANG XIA, DENG JIAN-HUA, HUANG QIU-JU, HUANG SU-CHAO, ZHANG YAN-MIN, ZHENG HONG-MING, WANG YING, LU LIN-LIN, LIU ZHONG-QIU: "Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo", FRONTIERS IN PHARMACOLOGY, vol. 9, 1 May 2018 (2018-05-01), pages 1 - 13, XP055916643, DOI: 10.3389/fphar.2018.00434 * |
YANG XIA; ZHANG YANMIN; HUANG YANFANG; WANG YING; QI XIAOXIAO; SU TAO; LU LINLIN: "Evodiamine suppresses Notch3 signaling in lung tumorigenesis via direct binding to γ-secretases", PHYTOMEDICINE, vol. 68, 31 January 2020 (2020-01-31), AMSTERDAM, NL , XP086093789, ISSN: 0944-7113, DOI: 10.1016/j.phymed.2020.153176 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114773398A (zh) * | 2022-05-11 | 2022-07-22 | 天津医科大学 | 一种吴茱萸碱-铂(iv)配合物、制备方法及其在肿瘤药物中的应用 |
CN114773398B (zh) * | 2022-05-11 | 2024-01-12 | 天津医科大学 | 一种吴茱萸碱-铂(iv)配合物、制备方法及其在肿瘤药物中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017034335A1 (en) | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof | |
CN101242817A (zh) | HIF1α调节剂在治疗癌症中的用途 | |
WO2021246797A1 (ko) | 항바이러스제 및 항우울제를 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물 | |
WO2016018087A1 (ko) | Egfr-표적제제에 대한 감수성 예측용 신규한 바이오 마커 및 이의 용도 | |
WO2021162451A1 (ko) | 담즙산 또는 이의 유도체, 바이구아나이드 계열 화합물 및 항바이러스제 중 2종 이상을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물 | |
WO2022065968A1 (ko) | 에보디아민을 유효성분으로 포함하는 비소세포폐암의 예방 또는 치료용 약학적 조성물 | |
WO2020009551A1 (ko) | 신경단백질의 비정상적 섬유화 또는 응집과 관련된 질환 치료제로서의 그래핀 양자점 | |
WO2017188791A1 (ko) | 나프토퀴논계 화합물을 유효성분으로 포함하는 항암제 치료 관련 부작용으로 나타나는 피로, 악액질, 통증, 인지능력 저하 및 조혈줄기세포 감소의 예방 또는 개선용 조성물 | |
WO2015046783A1 (en) | Pharmaceutical composition for treatment of radiation- or drug-resistant cancer comprising hrp-3 inhibitor | |
WO2019132547A1 (ko) | Chi3l1 억제제를 유효성분으로 하는 암의 폐 전이 예방 또는 치료용 약학 조성물 | |
WO2021235812A1 (ko) | Ron 돌연변이와 관련된 비소세포 폐암 예방 또는 치료용 약학 조성물 및 이를 이용한 방법 | |
WO2022119349A1 (ko) | Kras 억제제에 대한 내성 억제용 조성물 | |
WO2019147089A1 (ko) | 칼슘 채널 억제제 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물 | |
WO2020017788A1 (ko) | Cd9를 이용한 당뇨병의 예방 또는 치료용 조성물과 당뇨병 치료제 스크리닝 방법 | |
WO2014157965A1 (ko) | P34의 발현 억제제 또는 활성 억제제를 유효성분으로 포함하는 암의 치료 또는 전이 억제용 조성물 | |
WO2022014975A1 (ko) | Bi-1 길항제 및 그의 용도 | |
WO2021015419A1 (ko) | 인산화된 베타-카테닌에 특이적으로 결합하는 항체 및 이의 용도 | |
WO2017048069A1 (ko) | 신규한 피라졸린 유도체 및 이의 용도 | |
WO2022086257A1 (ko) | 항암제를 포함한 미토콘드리아 및 이의 용도 | |
WO2021230710A1 (ko) | 신규 ido/tdo 억제제, 그의 항암 용도, 그의 항암 병용 요법 | |
WO2021235813A1 (ko) | Ron 돌연변이와 관련된 췌장암 예방 또는 치료용 약학 조성물 및 이를 이용한 방법 | |
WO2018016901A1 (ko) | 골질환의 예방 또는 치료용 약학적 조성물 | |
WO2019147104A1 (ko) | 벤조[d]싸이아졸 유도체 또는 이의 염을 유효성분으로 포함하는 면역세포 이동 관련 질환의 예방 또는 치료용 약학적 조성물 | |
WO2011118994A2 (ko) | 간암 진단 마커 및 치료제로서의 엔엘케이 | |
WO2023014062A1 (ko) | Hapln1을 포함하는 섬유성 질환의 예방 또는 치료용 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21872996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21872996 Country of ref document: EP Kind code of ref document: A1 |