WO2022065067A1 - カメラモジュールおよび電子機器 - Google Patents

カメラモジュールおよび電子機器 Download PDF

Info

Publication number
WO2022065067A1
WO2022065067A1 PCT/JP2021/033251 JP2021033251W WO2022065067A1 WO 2022065067 A1 WO2022065067 A1 WO 2022065067A1 JP 2021033251 W JP2021033251 W JP 2021033251W WO 2022065067 A1 WO2022065067 A1 WO 2022065067A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
movable member
image sensor
fixed
module according
Prior art date
Application number
PCT/JP2021/033251
Other languages
English (en)
French (fr)
Inventor
俊一郎 柴崎
幸三 星野
進一 柚木
哲也 中川
清浩 齋藤
雄太 宍戸
一三 小林
信之 渡辺
雅紀 星野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022551875A priority Critical patent/JPWO2022065067A1/ja
Priority to KR1020237012961A priority patent/KR20230071157A/ko
Priority to US18/043,965 priority patent/US20230328346A1/en
Priority to CN202180055628.XA priority patent/CN116113876A/zh
Publication of WO2022065067A1 publication Critical patent/WO2022065067A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1461Slidable card holders; Card stiffeners; Control or display means therefor

Definitions

  • the present disclosure relates to camera modules and electronic devices, and more particularly to camera modules and electronic devices that enable better heat dissipation.
  • a sensor shift method is known in which an image sensor is moved in a direction orthogonal to the incident direction of light instead of moving the lens.
  • Patent Document 1 discloses an image sensor driving device that movably supports an image sensor assembly that moves with respect to a fixed portion with respect to the fixed portion by an electromagnetic force.
  • the structure that adopted the sensor shift method was disadvantageous for heat dissipation because there was an air gap on the lower side of the movable member on which the image sensor was mounted (the side opposite to the image pickup surface of the image sensor).
  • This disclosure was made in view of such a situation, and is intended to realize better heat dissipation.
  • the camera module of the present disclosure is between an image sensor, a movable member having the image sensor mounted on the surface thereof and movable in a direction along an image pickup surface of the image sensor, and a back surface of the movable member.
  • a fixing member fixed with a predetermined gap, and one or a plurality of heat dissipation members fixed to at least one of the fixing member and the movable member in the gap and provided so as to be in contact with the other. It is a camera module equipped.
  • the electronic device of the present disclosure includes an image sensor, a movable member having the image sensor mounted on the front surface side thereof and movable in a direction along an image pickup surface of the image sensor, and a back surface side of the movable member.
  • a fixing member fixed with a predetermined gap to the movable member, and one or a plurality of fixed members fixed to at least one of the fixing member and the movable member in the gap and provided so as to be in contact with the other.
  • the movable member is provided with an image sensor mounted on the front surface side and is movable in a direction along the image pickup surface of the image sensor, and the fixing member is the movable member on the back surface side of the movable member.
  • the one or more heat dissipation members are fixed to at least one of the fixed member and the movable member in the gap, and are provided so as to be in contact with the other.
  • FIG. 1 is a diagram showing the appearance of a camera module to which the technique according to the present disclosure is applied.
  • the camera module 1 shown in FIG. 1 is configured as, for example, an image pickup device built in a smartphone.
  • the camera module 1 is not limited to a smartphone, but may be built into a tablet terminal, a portable PC (Personal Computer), or other electronic device.
  • the camera module 1 is a camera module that employs a sensor shift method that moves an image sensor in a direction orthogonal to the incident direction of light.
  • a lens unit 12 and an image sensor are housed inside the housing 11.
  • the housing 11 is made of, for example, a predetermined metal.
  • the lens unit 12 is configured such that a plurality of lenses are supported by a holder.
  • the housing 11 is fixed to, for example, a fixing member 21 configured as a stiffener that enhances the strength of the entire camera module 1.
  • a fixing member 21 configured as a stiffener that enhances the strength of the entire camera module 1.
  • the housing 11 may be indirectly fixed to the fixing member 21 via a predetermined member.
  • the fixing member 21 may be configured as a printed circuit board (PCB).
  • the camera module 1 is electrically connected to the power supply and the electronic circuit inside the smartphone in which the camera module 1 is built, via the FPC 22 and the connector 23.
  • the x-axis and the y-axis are defined as two axes orthogonal to each other on the plane orthogonal to the incident direction of the light (the optical axis direction of the lens unit 12), and the z-axis is defined as the incident direction of the light. It is assumed that the image pickup surface of the image sensor is on the xy plane.
  • FIG. 2 is a diagram showing an example of the internal configuration of the camera module 1. In FIG. 2, the lens unit 12 is not shown.
  • a movable body 30 is provided on the fixing member 21.
  • the movable body 30 is composed of an image sensor 31 and a movable member 32 on which the image sensor 31 is mounted on the surface.
  • the movable member 32 is configured as, for example, a printed circuit board (PCB).
  • the fixing member 21 is fixed with a predetermined gap (air gap) between it and the back surface of the movable member 32. That is, the movable body 30 (movable member 32 on which the image sensor 31 is mounted) is provided so as to be movable in the direction along the image pickup surface (xy plane) of the image sensor 31. That is, the movable member 32 can be said to be a first member having an image sensor 31 mounted on the surface thereof and movably provided in a direction along the image pickup surface of the image sensor 31.
  • the fixing member 21 can be said to be a second member fixed with a predetermined gap between the fixing member 21 and the back surface of the first member.
  • the movable member 32 can be said to be a first substrate on which the image sensor 31 is mounted on the surface and is movably provided in a direction along the image pickup surface of the image sensor 31.
  • the fixing member 21 can be said to be a second substrate fixed with a predetermined gap between the fixing member 21 and the back surface of the first substrate.
  • the image sensor 31 is electrically connected to a power source or an electronic circuit to which the camera module 1 is connected via a movable member 32 as a PCB and an FPC 33 provided around the movable member 32.
  • the movable member 32 may be configured as an FPC integrally formed with the FPC 33.
  • an actuator mechanism unit 40 is provided inside the housing 11 of the camera module 1.
  • the actuator mechanism unit 40 constitutes an actuator component together with a housing 11 that serves as a cover.
  • the actuator mechanism unit 40 that functions as an actuator is composed of a coil, a magnet, a resin support member that supports them, and the like, and supports the movable body 30 so as to be suspended from above.
  • the actuator mechanism unit 40 realizes image stabilization by moving the movable body 30 in response to the vibration of the camera module 1 based on a control signal from a control circuit (not shown).
  • the actuator mechanism unit 40 may realize autofocus by moving the movable body 30 in the z-axis direction in addition to moving the movable body 30 in the direction along the xy plane.
  • a structure that employs a sensor shift method such as the camera module 1
  • FIG. 3 is a cross-sectional view showing a configuration example of the camera module 1 according to the first embodiment.
  • the housing 11 and the lens unit 12 are not shown.
  • the image sensor 31 is mounted on the surface of the movable member 32 by being adhered to the surface of the movable member 32 by the chip fixing material 51.
  • the chip fixing material 51 is made of a die-bonding material such as a die attach film (DAF), an adhesive or a solder, and has thermal conductivity.
  • DAF die attach film
  • An actuator mechanism unit 40 is mounted on the movable member 32 so as to cover the image sensor 31.
  • the movable member 32 is supported by the actuator mechanism portion 40 so as to have a predetermined gap on the fixing member 21.
  • An FPC 61 as a part of the above-mentioned FPC 33 is provided around the movable member 32. Then, in the gap between the fixed member 21 and the movable member 32, a plurality of bumps 100 are provided as heat radiating members that release the heat of the movable member 32 to the fixed member 21.
  • the bump 100 is fixed to the fixing member 21 while being provided in contact with the movable member 32.
  • the bump 100 is made of a material having a higher thermal conductivity than air.
  • the material forming the bump 100 includes, for example, Au, Ag, Cu, Ni, and at least one of solder.
  • the fixing member 21 is made of a stiffener made of a metal such as a stainless steel material
  • the bump 100 may be made of a protrusion formed by processing the upper surface of the fixing member 21. That is, the heat radiating member in the camera module 1 to which the technique according to the present disclosure is applied is a second member (a second member) in the gap between the first member (first substrate) and the second member (second substrate).
  • the heat radiating member is composed of bumps, but is composed of a bump-shaped or granular metal or resin sufficiently small for the fixing member 21 and the movable member 32. May be done.
  • bumps 100 are arranged in a grid pattern on the upper surface of the fixing member 21.
  • the bump 100 is formed in a hemispherical shape, its flat surface side is fixed to the fixing member 21, and the spherical surface side is provided so as to make point contact with the movable member 32.
  • the height of the bump 100 is the same for all the bumps 100, for example, 100 ⁇ m.
  • the heat transferred from the image sensor 31 to the movable member 32 can be transferred to the fixing member 21 via the bump 100, and better heat dissipation can be realized.
  • the number of bumps 100 is preferably determined according to the required heat dissipation effect and the allowable drive torque of the actuator mechanism unit 40.
  • FIG. 5 is a diagram showing another configuration example of the camera module 1 of the present embodiment.
  • a heat radiating material 111 having thermal conductivity is provided on the back surface of the movable member 32.
  • the heat radiating material 111 is composed of, for example, a heat radiating sheet made of carbon graphite, a Cu-based metal, or the like.
  • the bump 100 is provided so as to make point contact with the heat radiating material 111.
  • the heat transferred from the image sensor 31 to the movable member 32 can be efficiently transferred to the fixed member 21 via the heat radiating material 111 and the bump 100, and better heat dissipation can be realized. Is possible.
  • FIG. 6 is a diagram showing another configuration example of the camera module 1 of the present embodiment.
  • a low friction material 112 having a low friction coefficient is provided on the back surface of the movable member 32.
  • the low friction material 112 is composed of a sheet whose surface is made of a material having low polarity (hard to stick to other objects).
  • Materials with low polarity include PTFE (PolyTetraFluoroEthylene), which has a relatively rigid molecular structure surrounded by CH with a small atomic radius, paraffin, high-density polyethylene, and bakelite (phenol resin). .. It is preferable that the material constituting the low friction material 112 is a material having thermal conductivity.
  • the bump 100 is provided so as to make point contact with the low friction material 112.
  • FIG. 7 is a diagram showing an example of the shape of the bump.
  • the bump as the heat radiating member is formed in a hemispherical shape, but the shape is not limited to the hemisphere, as long as it is in contact with the movable member 32 in a point contact or in an extremely small area. good.
  • the bump in the present embodiment may be formed in a tablet-like shape having convex curved surfaces on both bottom surfaces of a flat cylinder, as in the bump 100a shown in FIG. 7A.
  • the bump in the present embodiment may be formed in a capsule-like shape having hemispherical curved surfaces on both bottom surfaces of an elongated cylinder like the bump 100b shown in FIG. 7B.
  • the bump in the present embodiment may be formed in a spherical shape like the bump 100c shown in FIG. 7C.
  • the bump in the present embodiment may be formed in a so-called donut shape, which is called a torus shape, like the bump 100d shown in FIG. 7D.
  • the bump in the present embodiment may be formed in a conical shape like the bump 100e shown in FIG. 7E.
  • the shape of the bump 100e may be a shape having a convex curved surface at the apex portion of the cone.
  • the shape of the bump 100e may be a shape in which a recess is formed in the center of the cross section obtained by cutting the apex portion of the cone, and the annular cross section thereof is chamfered so as to form a curved surface.
  • the bump 100c when the spherically formed bump 100c is fixed to the fixing member 21, the bump 100c is fitted into the groove 131 formed of the hemispherical recess formed in the fixing member 21, as shown in FIG. Let me. With such a structure, even bumps having a shape such as bumps 100a, 100b, and 100c whose side of the bump fixing member 21 is not flat can be fixed to the fixing member 21 without shifting or falling off. Will be.
  • (Bump placement) 9 to 11 are views showing an example of bump arrangement.
  • the bumps as the heat radiating member are arranged in a grid pattern on the upper surface of the fixing member 21, but the arrangement is not limited to the grid pattern.
  • the bumps 100 in the present embodiment may be arranged in a staggered manner on the upper surface of the fixing member 21 as shown in FIG. 9 to 11 show a top view of the fixing member 21 with a front view of the xy plane, and a rectangle corresponding to the image sensor 31 is shown by a broken line.
  • the bumps 100 in the present embodiment may be arranged radially on the upper surface of the fixing member 21 with respect to the center of the image sensor 31. In this case, since the number of bumps 100 arranged directly under the image sensor 31 is large, the efficiency of heat dissipation via the bumps 100 can be improved.
  • the bumps 100 in the present embodiment may be arranged on the upper surface of the fixing member 21 at a higher density as they are closer to the center of the image sensor 31. Also in this case, since the number of bumps 100 arranged directly under the image sensor 31 is large, the efficiency of heat dissipation via the bumps 100 can be improved.
  • the size of the bumps 100 arranged directly under the image sensor 31 is increased. May be good.
  • the bump 100 may be formed in a size larger as it is closer to the center of the image sensor 31. In this case, since the volume of the bump 100 arranged directly under the image sensor 31 becomes large, the efficiency of heat dissipation via the bump 100 can be improved.
  • the height of the bump 100 is the same for all bumps 100. That is, not only a part of the bumps 100 is in contact with the movable member 32, but all the bumps 100 are evenly in contact with the movable member 32, so that more efficient heat dissipation is possible.
  • FIG. 13 is a cross-sectional view showing a configuration example of the camera module 1 of the second embodiment.
  • the bump 100f has a curved surface having a radius of curvature larger than that of the bump 100 described above, and is provided so as to come into contact with the movable member 32 on a surface slightly larger than the point.
  • the heat radiating material 111 described with reference to FIG. 5 and the low friction material 112 described with reference to FIG. 6 may be provided on the back surface of the movable member 32.
  • the heat transferred from the image sensor 31 to the movable member 32 can be transferred to the fixed member 21 via the bump 100f, and better heat dissipation can be realized.
  • FIG. 14 is a cross-sectional view showing a configuration example of the camera module 1 according to the third embodiment.
  • the gap between the fixing member 21 and the movable member 32 is filled with a gel material 200 having thermal conductivity. It is applied.
  • the gel material 200 may be a magnetic filler containing a magnetic fluid or a carbon-based filler.
  • the heat transferred from the image sensor 31 to the movable member 32 can be transferred to the fixing member 21 via the gel material 200, and better heat dissipation can be realized.
  • FIG. 15 is a cross-sectional view showing a configuration example of the camera module 1 according to the fourth embodiment.
  • the heat dissipation member such as the bump 100 is not provided in the gap between the fixed member 21 and the movable member 32.
  • a plurality of vias 300 formed so as to penetrate from the front surface to the back surface of the movable member 32 are provided.
  • the via 300 is assumed to be formed on the entire movable member 32, but may be formed at least on the mounting portion of the image sensor 31 on the movable member 32.
  • the metal forming the via 300 includes, for example, Au, Ag, Cu, Ni, and at least one of solder.
  • the heat transferred from the image sensor 31 to the movable member 32 can be efficiently released to the gap between the fixed member 21 and the movable member 32 via the via 300, and better heat dissipation. Can be realized.
  • the efficiency of heat dissipation via the vias 300 can be improved.
  • FIG. 16 is a diagram showing another configuration example of the camera module 1 of the present embodiment.
  • a heat radiating layer 310 having thermal conductivity is formed on the surface of the movable member 32.
  • the heat dissipation layer 310 is formed on the surface of the movable member 32 so as to surround the periphery of the image sensor 31.
  • the heat radiating layer 310 is made of, for example, copper foil.
  • the heat radiating layer 310 may be made of a metal thin film having high thermal conductivity, which is formed by plating or vapor deposition.
  • the heat transferred from the image sensor 31 to the movable member 32 can be released to the actuator mechanism unit 40 and further to the housing 11 via the heat dissipation layer 310, and better heat dissipation is realized. It becomes possible to do.
  • FIG. 17 is a diagram showing another configuration example of the camera module 1 of the present embodiment.
  • the heat radiating material 111 described with reference to FIG. 5 is provided on the back surface of the movable member 32.
  • the heat dissipation layer 310 may not be provided.
  • the heat transferred from the image sensor 31 to the movable member 32 can be efficiently released to the gap between the fixed member 21 and the movable member 32 via the via 300 and the heat radiating material 111. It is possible to realize better heat dissipation.
  • the heat radiating material 111 and the via 300 may be integrally formed. Further, when the heat radiating layer 310 is formed in place of the chip fixing material 51 between the image sensor 31 and the movable member 32, the via 300 and the heat radiating layer 310 may be integrally formed, and the heat radiating material 111 and the via may be integrally formed. The 300 and the heat dissipation layer 310 may be integrally formed.
  • FIG. 18 is a diagram showing another configuration example of the camera module 1 of the present embodiment.
  • a plurality of bumps 100 described with reference to FIG. 3 and the like are provided in the gap between the fixing member 21 and the movable member 32. ..
  • the plurality of bumps 100 are arranged at positions corresponding to the plurality of vias 300 formed so as to penetrate from the front surface to the back surface of the movable member 32.
  • the plurality of bumps 100 are fixed to the fixing member 21 while being provided so as to be in contact with the plurality of vias 300 formed on the movable member 32.
  • the heat transferred from the image sensor 31 to the movable member 32 can be efficiently transferred to the fixed member 21 via the via 300 and the bump 100, and better heat dissipation can be realized. It will be possible.
  • any one of the bump arrangements in the camera module 1 of the first embodiment can be adopted.
  • FIG. 19 is a diagram showing a configuration example of a movable member 32 constituting the camera module 1 of the fifth embodiment.
  • FIG. 19 shows the back surface of the movable member 32 (the surface on the fixing member 21 side).
  • a plurality of heat radiation fins 400 are provided on the back surface of the movable member 32.
  • the heat radiation fin 400 has a rectangular parallelepiped (specifically, a cube) protruding structure.
  • the surface area on the back surface side of the movable member 32 becomes large, the heat transferred from the image sensor 31 to the movable member 32 can be efficiently dissipated, and better heat dissipation can be realized. It becomes.
  • the heat radiation fin 400 is not limited to the protrusion-like structure shown in FIG. 19, and may have, for example, a fin-like structure.
  • the heat dissipation effect can be enhanced by narrowing the air gap existing under the movable member 32 on which the image sensor 31 is mounted.
  • the actuator mechanism portion 40 or the like may be tilted and joined to the movable member 32 on which the image sensor 31 is mounted.
  • the movable member 32 is tilted with respect to the fixed member 21. Further, even during the sensor shift operation of the camera module 1, the movable member 32 may be tilted with respect to the fixed member 21.
  • FIG. 22 is a cross-sectional view showing a configuration example of the camera module 1 according to the fifth embodiment.
  • the movable member 32 is tilted with respect to the fixed member 21.
  • a fixing member 521 is provided in place of the fixing member 21 in the configuration of the camera module 1 as shown in FIG.
  • the fixing member 521 is basically configured in the same manner as the fixing member 21, but the surface facing the movable member 32 (the surface on the movable member 32 side) has a greater distance from the movable member 32 toward the outer edge. Has a nice slope. That is, the surface of the fixing member 521 facing the movable member 32 is formed in a pyramidal surface shape with its substantially center as the apex. The angle of inclination of the surface of the fixing member 521 facing the movable member 32 is determined based on the maximum amount of inclination of the movable member 32.
  • the minimum distance at which the outer edge of the movable member 32 does not come into contact with the fixing member 21 can be secured.
  • the gap (air gap) between the fixed member 21 and the movable member 32 can be narrowed, and the heat dissipation effect can be enhanced.
  • FIG. 23 is a cross-sectional view showing a first modification of the camera module 1 provided with bumps.
  • a plurality of bumps 100g are provided in the gap between the fixing member 21 and the movable member 32.
  • the bump 100g is formed so as to be higher as it is closer to the center of the movable member 32 (lower as it is farther from the center of the movable member 32).
  • the bump 100g is fixed to the fixing member 21, while only the bump 100g near the center of the movable member 32 is provided so as to be in contact with the movable member 32.
  • the amount of change in the height of the bump 100g from the center of the movable member 32 is determined based on the maximum amount of inclination of the movable member 32, as in the case of the fixing member 521 in the example of FIG. That is, the bump 100g is provided so that the bump 100g farthest from the center of the movable member 32 comes into contact with the outer edge of the movable member 32 when the movable member 32 is most tilted.
  • the bump provided in the gap between the fixed member 21 and the movable member 32 is fixed to the fixed member 21, but is fixed to either the fixed member 21 or the movable member 32 and the other. It may be provided so as to be in contact with. That is, the heat radiating member in the camera module 1 to which the technique according to the present disclosure is applied is fixed to one of the first member (first substrate) and the second member (second substrate) and is in contact with the other. It may be any heat conductor provided as described above.
  • FIG. 24 is a cross-sectional view showing a second modification of the camera module 1 provided with bumps.
  • a plurality of bumps 600 are provided in the gap between the fixing member 21 and the movable member 32.
  • the bump 600 is fixed to the movable member 32 while being provided so as to make point contact with the fixing member 21.
  • the heat transferred from the image sensor 31 to the movable member 32 can be transferred to the fixing member 21 via the bump 600, and better heat dissipation can be realized.
  • the contact between the fixing member 21 and the bump 600 is a point contact, friction between the fixing member 21 and the bump 600 can be suppressed, and an increase in the driving torque of the actuator mechanism portion 40 can be suppressed. Will be.
  • FIG. 25 is a cross-sectional view showing a third modification of the camera module 1 provided with bumps.
  • the bump 100 in the configuration of the camera module 1 of FIG. 3 and the bump 600 in the configuration of the camera module 1 of FIG. 24 are mixed in the gap between the fixed member 21 and the movable member 32. It will be provided.
  • the heat transferred from the image sensor 31 to the movable member 32 can be transferred to the fixed member 21 via the bump 100 and the bump 600, and better heat dissipation can be realized. Become.
  • the contact between the movable member 32 and the bump 100 and the fixing member 21 and the bump 600 is a point contact, friction between the movable member 32 and the bump 100 and the fixing member 21 and the bump 600 can be suppressed, and the actuator can be suppressed. It is possible to suppress an increase in the drive torque of the mechanism unit 40.
  • any one of the materials, shapes, and arrangements of the bumps in the camera module 1 of the first embodiment is adopted. be able to.
  • FIG. 26 is a block diagram showing a configuration example of an electronic device to which the technique according to the present disclosure is applied.
  • the electronic device 1000 of FIG. 26 includes a camera module 1002 and a DSP (Digital Signal Processor) circuit 1003 which is an image signal processing circuit.
  • the electronic device 1000 also includes a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008.
  • the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, the operation unit 1007, and the power supply unit 1008 are connected to each other via the bus line 1009.
  • the image sensor 1001 in the camera module 1002 takes in the incident light (image light) from the subject, converts the amount of the incident light imaged on the image pickup surface into an electric signal in pixel units, and outputs it as a pixel signal.
  • the above-mentioned camera module 1 is adopted as the camera module 1002, and the image sensor 1001 corresponds to the above-mentioned image sensor 31.
  • the display unit 1005 comprises a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the image sensor 1001.
  • the recording unit 1006 records a moving image or a still image captured by the image sensor 1001 on a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 1007 issues operation commands for various functions of the electronic device 1000 under the operation of the user.
  • the power supply unit 1008 appropriately supplies various power sources that serve as operating power sources for the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, and the operation unit 1007.
  • the present disclosure may have the following structure.
  • Image sensor and A movable member having the image sensor mounted on the surface and movable in a direction along the image pickup surface of the image sensor, and a movable member.
  • a fixing member fixed with a predetermined gap between the movable member and the back surface thereof,
  • a camera module including one or a plurality of heat dissipation members fixed to at least one of the fixed member and the movable member in the gap and provided so as to be in contact with the other.
  • the heat radiation member is composed of bumps.
  • the bump is made of a material having a higher thermal conductivity than air.
  • the bump is made of a material containing at least one of Au, Ag, Cu, Ni, and solder, or is composed of protrusions formed by processing the upper surface of the fixing member (3).
  • the camera module described in. (5) The camera module according to any one of (1) to (4), wherein the heat radiating member is fixed to the fixing member and is provided so as to make point contact with the movable member. (6) Further provided with a heat radiating material having thermal conductivity provided on the back surface of the movable member, The camera module according to (5), wherein the heat radiating member is provided so as to make point contact with the heat radiating material.
  • the camera module according to (5), wherein the heat radiating member is provided so as to make point contact with the low friction material.
  • the camera module according to any one of (5) to (7), wherein the heat radiating member is fixed to the fixing member.
  • the camera module according to any one of (5) to (7), wherein the heat radiating member is formed in a spherical shape and is fitted in a groove formed in the fixing member.
  • the via is formed on a mounting portion of the image sensor in the movable member.
  • the heat radiation member a first heat radiation member fixed to the fixed member and provided so as to make point contact with the movable member, and a second heat radiation member fixed to the movable member and provided so as to make point contact with the fixed member.
  • the movable member is composed of a printed circuit board.
  • (21) Image sensor and A movable member having the image sensor mounted on the surface side and movable in a direction along the image pickup surface of the image sensor, and a movable member.
  • On the back surface side of the movable member a fixing member fixed with the movable member and a predetermined gap
  • An electronic device comprising a camera module having one or a plurality of heat radiating members fixed to at least one of the fixing member and the movable member in the gap and provided in contact with the other.
  • the present disclosure may have the following structure.
  • Image sensor and A movable member having the image sensor mounted on the surface side and movable in a direction along the image pickup surface of the image sensor, and a movable member.
  • a fixing member fixed with a predetermined gap to the movable member on the back surface side of the movable member.
  • a camera module including a plurality of vias formed through the front surface to the back surface of the movable member.
  • the camera module according to (1) further comprising a heat-dissipating layer having thermal conductivity formed on the surface of the movable member.
  • the camera module according to (2) further comprising a heat radiating material having thermal conductivity provided on the back surface of the movable member.
  • Image sensor and A movable member having the image sensor mounted on the surface side and movable in a direction along the image pickup surface of the image sensor, and a movable member.
  • the movable member On the back surface side of the movable member, the movable member is provided with a fixing member fixed with a predetermined gap.
  • a camera module whose surface facing the movable member of the fixing member is inclined so that the distance from the movable member increases toward the outer edge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本開示は、より良好な放熱を実現することができるようにするカメラモジュールおよび電子機器に関する。 可動部材は、表面側にイメージセンサが搭載され、イメージセンサの撮像面に沿った方向に移動可能に設けられ、固定部材は、可動部材の裏面側で、可動部材と所定の空隙を有して固定され、1または複数の放熱部材は、空隙において、少なくとも固定部材と可動部材のいずれか一方に固定され、他方に接するように設けられる。本開示は、センサシフト方式を採用したカメラモジュールに適用することができる。

Description

カメラモジュールおよび電子機器
 本開示は、カメラモジュールおよび電子機器に関し、特に、より良好な放熱を実現できるようにするカメラモジュールおよび電子機器に関する。
 撮像装置における手振れ補正の技術として、レンズを移動させるのではなく、イメージセンサを光の入射方向と直交する方向に移動させるセンサシフト方式が知られている。
 例えば、特許文献1には、固定部に対して移動する撮像素子組立体を、電磁力により、固定部に対して移動可能に支持する撮像素子駆動装置が開示されている。
特開2020-60726号公報
 しかしながら、センサシフト方式を採用した構造は、イメージセンサが搭載される可動部材の下側(イメージセンサの撮像面とは反対側)にエアギャップが存在するため、放熱に対して不利であった。
 本開示は、このような状況に鑑みてなされたものであり、より良好な放熱を実現するようにするものである。
 本開示のカメラモジュールは、イメージセンサと、表面に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、前記可動部材の裏面との間に所定の空隙を有して固定された固定部材と、前記空隙において、前記固定部材と前記可動部材の少なくともいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材とを備えるカメラモジュールである。
 本開示の電子機器は、イメージセンサと、表面側に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、前記可動部材の裏面側で、前記可動部材と所定の空隙を有して固定された固定部材と、前記空隙において、少なくとも前記固定部材と前記可動部材のいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材とを有するカメラモジュールを備える電子機器である。
 本開示においては、可動部材は、表面側にイメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられ、固定部材は、前記可動部材の裏面側で、前記可動部材と所定の空隙を有して固定され、1または複数の放熱部材は、前記空隙において、少なくとも前記固定部材と前記可動部材のいずれか一方に固定され、他方に接するように設けられる。
本開示に係る技術を適用したカメラモジュールの外観を示す図である。 カメラモジュールの内部の構成例を示す図である。 第1の実施の形態のカメラモジュールの構成例を示す断面図である。 バンプの配置と形状について説明する図である。 カメラモジュールの他の構成例を示す断面図である。 カメラモジュールの他の構成例を示す断面図である。 バンプの形状の例を示す図である。 カメラモジュールの他の構成例を示す断面図である。 バンプの配置の例を示す図である。 バンプの配置の例を示す図である。 バンプの配置の例を示す図である。 バンプのサイズの例を示す図である。 カメラモジュールの他の構成例を示す断面図である。 第2の実施の形態のカメラモジュールの構成例を示す断面図である。 第3の実施の形態のカメラモジュールの構成例を示す断面図である。 カメラモジュールの他の構成例を示す断面図である。 カメラモジュールの他の構成例を示す断面図である。 カメラモジュールの他の構成例を示す断面図である。 第4の実施の形態の可動部材の構成例を示す図である。 可動部材の傾きについて説明する図である。 可動部材の傾きについて説明する図である。 第5の実施の形態のカメラモジュールの構成例を示す断面図である。 バンプを備えるカメラモジュールの第1の変形例を示す図である。 バンプを備えるカメラモジュールの第2の変形例を示す図である。 バンプを備えるカメラモジュールの第3の変形例を示す図である。 本開示に係る技術を適用した電子機器の構成例を示すブロック図である。
 以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.カメラモジュールの構成
 2.第1の実施の形態(固定部材上面に複数のバンプを形成した構成)
 3.第2の実施の形態(固定部材上面に1つのみのバンプを形成した構成)
 4.第3の実施の形態(空隙にゲル材を充填した構成)
 5.第4の実施の形態(可動部材にビアを形成した構成)
 6.第5の実施の形態(可動部材裏面に放熱フィンを形成した構成)
 7.第6の実施の形態(固定部材上面に傾斜を設けた構成)
 8.変形例
 9.電子機器の構成
<1.カメラモジュールの構成>
 図1は、本開示に係る技術を適用したカメラモジュールの外観を示す図である。
 図1に示されるカメラモジュール1は、例えばスマートフォンに内蔵される撮像装置として構成される。カメラモジュール1は、スマートフォンに限らず、タブレット端末や携帯可能なPC(Personal Computer)、その他の電子機器に内蔵されてもよい。カメラモジュール1は、イメージセンサを光の入射方向と直交する方向に移動させるセンサシフト方式を採用したカメラモジュールである。
 カメラモジュール1においては、筐体11内部にレンズユニット12や図示せぬイメージセンサなどが収納される。筐体11は、例えば所定の金属により形成される。レンズユニット12は、複数のレンズがホルダに支持されるようにして構成される。
 筐体11は、例えばカメラモジュール1全体の強度を高めるスティフナとして構成される固定部材21に固定される。筐体11は、固定部材21に直接固定される以外にも、所定の部材を介して間接的に固定部材21に固定されてもよい。固定部材21は、プリント基板(PCB)として構成されてもよい。
 固定部材21には、FPC(Flexible Printed Circuits)22の一端が接続され、FPC22の他端には、コネクタ23が接続される。カメラモジュール1は、FPC22とコネクタ23を介して、カメラモジュール1が内蔵されるスマートフォン内部の電源や電子回路と電気的に接続される。
 以下においては、光の入射方向(レンズユニット12の光軸方向)に直交する面において互いに直交する2軸としてx軸とy軸を定義し、光の入射方向としてz軸を定義する。イメージセンサの撮像面は、xy平面上にあるものとする。
 図2は、カメラモジュール1の内部の構成例を示す図である。なお、図2において、レンズユニット12の図示は省略する。
 カメラモジュール1の筐体11内部において、固定部材21の上には、可動体30が設けられる。
 可動体30は、イメージセンサ31と、表面にイメージセンサ31が搭載された可動部材32から構成される。可動部材32は、例えばプリント基板(PCB)として構成される。
 固定部材21は、可動部材32の裏面との間に所定の空隙(エアギャップ)を有して固定される。すなわち、可動体30(イメージセンサ31が搭載された可動部材32)は、イメージセンサ31の撮像面(xy平面)に沿った方向に移動可能に設けられる。すなわち、可動部材32は、表面にイメージセンサ31が搭載され、イメージセンサ31の撮像面に沿った方向に移動可能に設けられた第1の部材ということができる。固定部材21は、第1の部材の裏面との間に所定の空隙を有して固定された第2の部材ということができる。また、可動部材32は、表面にイメージセンサ31が搭載され、イメージセンサ31の撮像面に沿った方向に移動可能に設けられた第1の基板ということができる。固定部材21は、第1の基板の裏面との間に所定の空隙を有して固定された第2の基板ということができる。
 イメージセンサ31は、PCBとしての可動部材32と、その周囲に設けられるFPC33を介して、カメラモジュール1が接続される電源や電子回路と電気的に接続される。なお。可動部材32は、FPC33と一体に形成されたFPCとして構成されてもよい。
 カメラモジュール1の筐体11内部において、可動体30の上には、アクチュエータ機構部40が設けられる。
 アクチュエータ機構部40は、カバーとなる筐体11とともにアクチュエータ部品を構成する。アクチュエータとして機能するアクチュエータ機構部40は、コイルや磁石、それらを支持する樹脂製の支持部材などから構成され、可動体30を、その上から吊り下げるように支持する。アクチュエータ機構部40は、図示せぬ制御回路からの制御信号に基づいて、カメラモジュール1の振動に応じて可動体30を移動させることで、手振れ補正を実現する。アクチュエータ機構部40は、可動体30を、xy平面に沿った方向に移動させる以外にも、z軸方向に移動させることで、オートフォーカスを実現するようにしてもよい。
 従来、カメラモジュール1のような、センサシフト方式を採用した構造は、可動体30(イメージセンサ31が搭載される可動部材32)の下側にエアギャップが存在するため、放熱に対して不利であった。
 そこで、以下においては、より良好な放熱を実現可能なカメラモジュール1の実施の形態について説明する。
<2.第1の実施の形態>
(放熱構造の第1の例)
 図3は、第1の実施の形態のカメラモジュール1の構成例を示す断面図である。なお、図3においては、筐体11とレンズユニット12の図示は省略する。
 図3のカメラモジュール1において、イメージセンサ31は、可動部材32の表面に、チップ固定材51により接着されることで搭載される。チップ固定材51は、ダイアタッチフィルム(DAF)、接着剤や半田などのダイボンド材で構成され、熱伝導性を有する。イメージセンサ31において発生した熱は、チップ固定材51を介して、可動部材32に伝達される。可動部材32の上には、イメージセンサ31を覆うように、アクチュエータ機構部40が搭載されている。
 可動部材32は、固定部材21の上に、所定の空隙を有するように、アクチュエータ機構部40により支持されている。可動部材32の周囲には、上述したFPC33の一部としてのFPC61が設けられる。そして、固定部材21と可動部材32の間の空隙には、可動部材32の熱を固定部材21へと逃がす放熱部材としての複数のバンプ100が設けられる。
 バンプ100は、固定部材21に固定される一方で、可動部材32に接するように設けられる。バンプ100は、空気より熱伝導率の高い材料で形成される。バンプ100を形成する材料には、例えば、Au,Ag,Cu,Ni、および半田の少なくともいずれかが含まれる。また、固定部材21が、例えばステンレス材などの金属からなるスティフナで構成される場合、バンプ100は、固定部材21の上面が加工されて形成された突起部で構成されてもよい。すなわち、本開示に係る技術を適用したカメラモジュール1における放熱部材は、第1の部材(第1の基板)と第2の部材(第2の基板)の間の空隙において、第2の部材(第2の基板)に固定され、第1の部材(第1の基板)に接するように設けられた熱伝導体ということができる。本開示に係る技術を適用したカメラモジュール1において、放熱部材は、バンプにより構成されるものとするが、固定部材21と可動部材32に対して十分に小さい瘤状や粒状の金属または樹脂により構成されてもよい。
 図4に示されるように、固定部材21上面には、例えば50乃至100個のバンプ100が格子状に配置される。バンプ100は、半球状に形成され、その平面側が固定部材21に固着され、球面側が可動部材32に点接触するように設けられる。バンプ100の高さは、全てのバンプ100で同じ高さとされ、例えば100μmとされる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、バンプ100を介して固定部材21に伝達することができ、より良好な放熱を実現することが可能となる。
 また、可動部材32とバンプ100との接触は点接触であるので、可動部材32とバンプ100との間の摩擦を抑えることができ、アクチュエータ機構部40の駆動トルクの増加を抑制することが可能となる。なお、バンプ100の数は、要求される放熱効果と、許容されるアクチュエータ機構部40の駆動トルクに応じて決定することが好ましい。
(放熱構造の第2の例)
 図5は、本実施の形態のカメラモジュール1の他の構成例を示す図である。
 図5のカメラモジュール1においては、図3のカメラモジュール1の構成に加えて、可動部材32の裏面上に、熱伝導性を有する放熱材111が設けられる。放熱材111は、例えば、カーボングラファイトやCu系の金属などからなる放熱シートにより構成される。
 図5の例では、バンプ100は、放熱材111に点接触するように設けられる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、放熱材111とバンプ100を介して固定部材21に効率良く伝達することができ、より良好な放熱を実現することが可能となる。
(放熱構造の第3の例)
 図6は、本実施の形態のカメラモジュール1の他の構成例を示す図である。
 図6のカメラモジュール1においては、図3のカメラモジュール1の構成に加えて、可動部材32の裏面上に、摩擦係数の低い低摩擦材112が設けられる。低摩擦材112は、その表面が極性の低い(他の物体とくっつきにくい)素材からなるシートにより構成される。極性の低い素材としては、原子半径の小さいC-Hが周囲を覆っている比較的剛直な分子構造を有するPTFE(Poly Tetra Fluoro Ethylene)、パラフィン、高密度ポリエチレン、ベークライト(フェノール樹脂)などがある。なお、低摩擦材112を構成する素材は、熱伝導性を有する材料であることか好ましい。
 図6の例では、バンプ100は、低摩擦材112に点接触するように設けられる。
 以上の構成によれば、バンプ100の数が多くなり、可動部材32とバンプ100との間の摩擦が大きくなるような場合であっても、その摩擦の増大を抑えることができ、アクチュエータ機構部40の駆動トルクの増加を抑制することが可能となる。
(バンプの形状)
 図7は、バンプの形状の例を示す図である。
 本実施の形態において、放熱部材としてのバンプは、半球状に形成されるものとしたが、その形状は、半球に限らず、可動部材32に点接触または極めて小さい面積で接触する形状であればよい。
 例えば、本実施の形態におけるバンプは、図7のA図に示されるバンプ100aのように、扁平な円柱の両底面に凸型の曲面を有する、錠剤のような形状に形成されてもよい。
 本実施の形態におけるバンプは、図7のB図に示されるバンプ100bのように、細長い円柱の両底面に半球状の曲面を有する、カプセル剤のような形状に形成されてもよい。
 本実施の形態におけるバンプは、図7のC図に示されるバンプ100cのように、球状に形成されてもよい。
 本実施の形態におけるバンプは、図7のD図に示されるバンプ100dのように、トーラス形と呼ばれる、いわゆるドーナツ型に形成されてもよい。
 本実施の形態におけるバンプは、図7のE図に示されるバンプ100eのように、円錐型に形成されてもよい。また、バンプ100eの形状を、円錐の頂点部分に凸型の曲面を有する形状としてもよい。さらに、バンプ100eの形状を、円錐の頂点部分を切断した断面中央に凹みを形成し、その円環状の断面が曲面をなすように面取りした形状としてもよい。
 なお、特にバンプ100a,100b,100cのような形状のバンプを固定部材21に固定する場合、バンプの固定部材21側が平面でないことから、固定部材21に固着することは容易でない。
 そこで、例えば、球状に形成されたバンプ100cを固定部材21に固定する場合、図8に示されるように、固定部材21に形成された半球状の凹みからなる溝131に、バンプ100cを嵌合させる。このような構造により、バンプの固定部材21側が平面でない、バンプ100a,100b,100cのような形状のバンプであっても、ずれたり脱落したりすることなく、固定部材21に固定することが可能となる。
 特に、図8の構成においては、溝131により、固定部材21とバンプ100との接触面積が大きくなるので、イメージセンサ31から可動部材32に伝達された熱を、バンプ100cを介して固定部材21に効率良く伝達することができる。また、溝131においてバンプ100cが回転することで、可動部材32の移動をより滑らかにすることができる。
(バンプの配置)
 図9乃至図11は、バンプの配置の例を示す図である。
 上述した実施の形態において、放熱部材としてのバンプは、固定部材21上面において、格子状に配置されるものとしたが、その配置は格子状に限られない。
 例えば、本実施の形態におけるバンプ100は、図9に示されるように、固定部材21上面において、千鳥状に配置されてもよい。図9乃至図11には、xy平面を正面視した固定部材21の上面図が示されており、イメージセンサ31に対応する矩形が破線で示されている。
 本実施の形態におけるバンプ100は、図10に示されるように、固定部材21上面において、イメージセンサ31の中心を基準として放射状に配置されてもよい。この場合、イメージセンサ31の直下に配置されるバンプ100の数が多くなるので、バンプ100を介した放熱の効率を高めることができる。
 一方、図示はしないが、固定部材21上面において、可動部材32の中心を基準として放射状に配置されてもよい。この場合、可動部材32が移動する際の可動部材32のバランスを安定させることができる。
 本実施の形態におけるバンプ100は、図11に示されるように、固定部材21上面において、イメージセンサ31の中心に近いほど高密度に配置されてもよい。この場合もまた、イメージセンサ31の直下に配置されるバンプ100の数が多くなるので、バンプ100を介した放熱の効率を高めることができる。
 また、図10や図11の例のように、イメージセンサ31の直下に配置されるバンプ100の数を多くする以外にも、イメージセンサ31の直下に配置されるバンプ100のサイズを大きくしてもよい。具体的には、図12に示されるように、バンプ100が、イメージセンサ31の中心に近いほど大きいサイズに形成されてもよい。この場合、イメージセンサ31の直下に配置されるバンプ100の体積が大きくなるので、バンプ100を介した放熱の効率を高めることができる。
 なお、バンプ100の高さは、全てのバンプ100で同じ高さとされる。すなわち、一部のバンプ100のみが可動部材32に接するのではなく、全てのバンプ100が均等に可動部材32に接するので、より効率的な放熱が可能となる。
<3.第2の実施の形態>
 図13は、第2の実施の形態のカメラモジュール1の構成例を示す断面図である。
 図13のカメラモジュール1においては、図3のカメラモジュール1の構成における複数のバンプ100に代えて、固定部材21と可動部材32の間の空隙に、放熱部材としての1つのみのバンプ100fが設けられる。
 バンプ100fは、上述したバンプ100より曲率半径の大きい曲面を有し、可動部材32に、点よりもひと回り大きい面で接触するように設けられる。
 なお、図13の例において、可動部材32の裏面上に、図5を参照して説明した放熱材111や、図6を参照して説明した低摩擦材112が設けられてもよい。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、バンプ100fを介して固定部材21に伝達することができ、より良好な放熱を実現することが可能となる。
<4.第3の実施の形態>
 図14は、第3の実施の形態のカメラモジュール1の構成例を示す断面図である。
 図13のカメラモジュール1においては、図3のカメラモジュール1の構成における複数のバンプ100に代えて、固定部材21と可動部材32の間の空隙に、熱伝導性を有するゲル材200が充填または塗布される。
 ゲル材200は、磁性流体を含む磁性体フィラーであってもよいし、炭素系フィラーであってもよい。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、ゲル材200を介して固定部材21に伝達することができ、より良好な放熱を実現することが可能となる。
<5.第4の実施の形態>
(放熱構造の第1の例)
 図15は、第4の実施の形態のカメラモジュール1の構成例を示す断面図である。
 図15のカメラモジュール1においては、上述した実施の形態のカメラモジュール1とは異なり、固定部材21と可動部材32の間の空隙に、バンプ100のような放熱部材は設けられない。
 代わりに、図15のカメラモジュール1においては、可動部材32の表面から裏面に貫通して形成された複数のビア300が設けられる。ビア300は、可動部材32の全体に形成されるものとするが、少なくとも可動部材32におけるイメージセンサ31の搭載部分に形成されればよい。ビア300を形成する金属には、例えば、Au,Ag,Cu,Ni、および半田の少なくともいずれかが含まれる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、ビア300を介して、固定部材21と可動部材32の間の空隙に効率良く逃がすことができ、より良好な放熱を実現することが可能となる。
 特に、可動部材32におけるイメージセンサ31の直下に形成されるビア300の数を多くすることで、ビア300を介した放熱の効率を高めることができる。
(放熱構造の第2の例)
 図16は、本実施の形態のカメラモジュール1の他の構成例を示す図である。
 図16のカメラモジュール1においては、図15のカメラモジュール1の構成に加えて、可動部材32の表面上に、熱伝導性を有する放熱層310が形成されている。具体的には、放熱層310は、可動部材32の表面上で、イメージセンサ31の周囲を囲むように形成される。放熱層310は、例えば銅箔により構成される。放熱層310は、めっきや蒸着により形成された、熱伝導率の高い金属の薄膜により構成されてもよい。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、放熱層310を介してアクチュエータ機構部40、さらには筐体11にも逃がすことができ、より良好な放熱を実現することが可能となる。
(放熱構造の第3の例)
 図17は、本実施の形態のカメラモジュール1の他の構成例を示す図である。
 図17のカメラモジュール1においては、図16のカメラモジュール1の構成に加えて、可動部材32の裏面上に、図5を参照して説明した放熱材111が設けられる。なお、図17の例においては、放熱層310が設けられなくともよい。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、ビア300と放熱材111を介して、固定部材21と可動部材32の間の空隙に効率良く逃がすことができ、より良好な放熱を実現することが可能となる。
 図17の例においては、放熱材111とビア300が一体に形成されてもよい。さらに、イメージセンサ31と可動部材32との間において、チップ固定材51に代えて放熱層310を形成した場合、ビア300と放熱層310が一体に形成されてもよいし、放熱材111、ビア300、および放熱層310が一体に形成されてもよい。
(放熱構造の第4の例)
 図18は、本実施の形態のカメラモジュール1の他の構成例を示す図である。
 図18のカメラモジュール1においては、図15のカメラモジュール1の構成に加えて、固定部材21と可動部材32の間の空隙に、図3などを参照して説明した複数のバンプ100が設けられる。複数のバンプ100は、可動部材32の表面から裏面に貫通して形成された複数のビア300に対応する位置に配置される。
 すなわち、図18のカメラモジュール1において、複数のバンプ100は、固定部材21に固定される一方で、可動部材32に形成された複数のビア300に接するように設けられる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、ビア300とバンプ100を介して固定部材21に効率良く伝達することができ、より良好な放熱を実現することが可能となる。
 なお、本実施の形態のカメラモジュール1におけるビア300の配置は、第1の実施の形態のカメラモジュール1におけるバンプの配置のいずれかを採用することができる。
<6.第5の実施の形態>
 図19は、第5の実施の形態のカメラモジュール1を構成する可動部材32の構成例を示す図である。
 図19には、可動部材32の裏面(固定部材21側の面)が示されている。可動部材32の裏面上には、複数の放熱フィン400が設けられる。図19の例では、放熱フィン400は、直方体(具体的には立方体)の突起状の構造を有する。
 以上の構成によれば、可動部材32の裏面側の表面積が大きくなるので、イメージセンサ31から可動部材32に伝達された熱を効率良く逃がすことができ、より良好な放熱を実現することが可能となる。
 なお、放熱フィン400は、図19に示された突起状の構造に限らず、例えばヒレ状の構造を有していてもよい。
<7.第6の実施の形態>
 センサシフト方式を採用したカメラモジュール1においては、イメージセンサ31が搭載される可動部材32の下側に存在するエアギャップを狭くすることで、放熱効果を高めることもできる。
 一方、図20に示されるように、カメラモジュール1の製造時のばらつきにより、イメージセンサ31が搭載された可動部材32に、アクチュエータ機構部40などが傾いて接合されることがある。
 この場合、最終的に製造されたカメラモジュール1においては、図21に示されるように、固定部材21に対して可動部材32の傾きが発生してしまう。さらに、カメラモジュール1のセンサシフト動作時にも、固定部材21に対して可動部材32の傾きが発生することがある。
 これに対して、可動部材32の下側には一定幅のエアギャップを確保する必要があった。具体的には、可動部材32の中心付近は、その傾きによる変位が小さいものの、可動部材32の外縁ほど、その傾きによる変位が大きくなる。そのため、可動部材32が最も傾いたときに、可動部材32の外縁が固定部材21に接触しないようなエアギャップを確保する必要があった。したがって、エアギャップを狭くすることで放熱効果を高めることは容易ではなかった。
 図22は、第5の実施の形態のカメラモジュール1の構成例を示す断面図である。
 図22のカメラモジュール1においても、固定部材21に対して可動部材32の傾きが発生している。図22のカメラモジュール1においては、図3などのカメラモジュール1の構成における固定部材21に代えて、固定部材521が設けられる。
 固定部材521は、基本的には、固定部材21と同様に構成されるが、可動部材32に対向する面(可動部材32側の面)は、外縁ほど可動部材32との距離が大きくなるような傾斜を有する。すなわち、固定部材521の可動部材32に対向する面は、その略中心を頂点とした錐体面状に形成される。固定部材521の可動部材32に対向する面の傾斜の角度は、可動部材32の最大の傾き量に基づいて決定される。
 以上の構成によれば、可動部材32が最も傾いた場合に、可動部材32の外縁が固定部材21に接触しない最低限の距離を確保することができる。結果として、固定部材21と可動部材32との間の空隙(エアギャップ)を狭くすることができ、放熱効果を高めることが可能となる。
<8.変形例>
 以下においては、固定部材21と可動部材32との間の空隙にバンプを備えるカメラモジュール1の変形例について説明する。
(第1の変形例)
 図23は、バンプを備えるカメラモジュール1の第1の変形例を示す断面図である。
 図23のカメラモジュール1においては、図3のカメラモジュール1の構成における複数のバンプ100に代えて、固定部材21と可動部材32の間の空隙に、複数のバンプ100gが設けられる。
 バンプ100gは、可動部材32の中心に近いほど高く(可動部材32の中心から遠いほど低く)なるように形成されている。図23の例では、バンプ100gは、固定部材21に固定される一方で、可動部材32の中心に近いバンプ100gのみが可動部材32に接するように設けられる。
 なお、可動部材32の中心からのバンプ100gの高さの変化量は、図22の例における固定部材521と同様、可動部材32の最大の傾き量に基づいて決定される。すなわち、バンプ100gは、可動部材32が最も傾いたときに、可動部材32の中心から最も遠いバンプ100gが、可動部材32の外縁に接するように設けられる。
 以上の構成によれば、可動部材32が最も傾いた場合に、可動部材32の外縁に負荷をかけないようにしつつ、より良好な放熱を実現することが可能となる。
(第2の変形例)
 以上においては、固定部材21と可動部材32との間の空隙に設けられるバンプは、固定部材21に固定されるものとしたが、固定部材21と可動部材32のいずれか一方に固定され、他方に接するように設けられればよい。すなわち、本開示に係る技術を適用したカメラモジュール1における放熱部材は、第1の部材(第1の基板)と第2の部材(第2の基板)のいずれか一方に固定され、他方に接するように設けられる熱伝導体であればよい。
 図24は、バンプを備えるカメラモジュール1の第2の変形例を示す断面図である。
 図24のカメラモジュール1においては、図3のカメラモジュール1の構成における複数のバンプ100に代えて、固定部材21と可動部材32の間の空隙に、複数のバンプ600が設けられる。
 バンプ600は、可動部材32に固定される一方で、固定部材21に点接触するように設けられる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、バンプ600を介して固定部材21に伝達することができ、より良好な放熱を実現することが可能となる。
 また、固定部材21とバンプ600との接触は点接触であるので、固定部材21とバンプ600との間の摩擦を抑えることができ、アクチュエータ機構部40の駆動トルクの増加を抑制することが可能となる。
(第3の変形例)
 図25は、バンプを備えるカメラモジュール1の第3の変形例を示す断面図である。
 図25のカメラモジュール1においては、固定部材21と可動部材32の間の空隙に、図3のカメラモジュール1の構成におけるバンプ100と、図24のカメラモジュール1の構成におけるバンプ600が混在して設けられる。
 以上の構成によれば、イメージセンサ31から可動部材32に伝達された熱を、バンプ100とバンプ600を介して固定部材21に伝達することができ、より良好な放熱を実現することが可能となる。
 また、可動部材32とバンプ100、固定部材21とバンプ600との接触は点接触であるので、可動部材32とバンプ100、固定部材21とバンプ600との間の摩擦を抑えることができ、アクチュエータ機構部40の駆動トルクの増加を抑制することが可能となる。
 なお、上述した変形例におけるバンプ(バンプ100g,600,100)の材料、形状、および配置は、第1の実施の形態のカメラモジュール1におけるバンプの材料、形状、および配置のいずれかを採用することができる。
<9.電子機器の構成>
 図26は、本開示に係る技術を適用した電子機器の構成例を示すブロック図である。
 図26の電子機器1000は、カメラモジュール1002と、画像信号処理回路であるDSP(Digital Signal Processor)回路1003を備える。また、電子機器1000は、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008も備える。DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008は、バスライン1009を介して相互に接続されている。
 カメラモジュール1002内のイメージセンサ1001は、被写体からの入射光(像光)を取り込んで撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。カメラモジュール1002として、上述したカメラモジュール1が採用され、イメージセンサ1001は、上述したイメージセンサ31に対応する。
 表示部1005は、例えば、液晶パネルや有機EL(Electro Luminescence)パネルなどのパネル型表示装置からなり、イメージセンサ1001で撮像された動画または静止画を表示する。記録部1006は、イメージセンサ1001で撮像された動画または静止画を、ハードディスクや半導体メモリなどの記録媒体に記録する。
 操作部1007は、ユーザによる操作の下に、電子機器1000が持つ様々な機能について操作指令を発する。電源部1008は、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、および操作部1007の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 上述したように、カメラモジュール1002として、上述したカメラモジュール1を用いることで、より良好な放熱を実現することができる。したがって、スマートフォン、タブレット端末や携帯可能なPCなどの電子機器1000においても、より良好な放熱を実現することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 また、本開示に係る技術を適用した実施の形態は、上述した実施の形態に限定されるものではなく、本開示に係る技術の要旨を逸脱しない範囲において種々の変更が可能である。
 さらに、本開示は以下のような構成をとることができる。
(1)
 イメージセンサと、
 表面に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
 前記可動部材の裏面との間に所定の空隙を有して固定された固定部材と、
 前記空隙において、前記固定部材と前記可動部材の少なくともいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材と
 を備えるカメラモジュール。
(2)
 前記放熱部材は、バンプにより構成される
 (1)に記載のカメラモジュール。
(3)
 前記バンプは、空気より熱伝導率の高い材料で形成される
 (2)に記載のカメラモジュール。
(4)
 前記バンプは、Au,Ag,Cu,Ni、および半田の少なくともいずれかを含む材料で形成されるか、または、前記固定部材の上面が加工されて形成された突起部で構成される
 (3)に記載のカメラモジュール。
(5)
 前記放熱部材が、前記固定部材に固定され、前記可動部材に点接触するように設けられる
 (1)乃至(4)のいずれかに記載のカメラモジュール。
(6)
 前記可動部材の裏面上に設けられた熱伝導性を有する放熱材をさらに備え、
 前記放熱部材は、前記放熱材に点接触するように設けられる
 (5)に記載のカメラモジュール。
(7)
 前記可動部材の裏面上に設けられた低摩擦材をさらに備え、
 前記放熱部材は、前記低摩擦材に点接触するように設けられる
 (5)に記載のカメラモジュール。
(8)
 前記放熱部材は、前記固定部材に固着される
 (5)乃至(7)のいずれかに記載のカメラモジュール。
(9)
 前記放熱部材は、球状に形成され、前記固定部材に形成された溝に嵌合される
 (5)乃至(7)のいずれかに記載のカメラモジュール。
(10)
 複数の前記放熱部材は、格子状に配置される
 (1)乃至(9)のいずれかに記載のカメラモジュール。
(11)
 複数の前記放熱部材は、千鳥状に配置される
 (1)乃至(9)のいずれかに記載のカメラモジュール。
(12)
 複数の前記放熱部材は、前記イメージセンサの中心を基準として放射状に配置される
 (1)乃至(9)のいずれかに記載のカメラモジュール。
(13)
 複数の前記放熱部材は、前記イメージセンサの中心に近いほど高密度に配置される
 (1)乃至(9)のいずれかに記載のカメラモジュール。
(14)
 複数の前記放熱部材は、前記イメージセンサの中心に近いほど大きいサイズに形成される
 (1)乃至(9)のいずれかに記載のカメラモジュール。
(15)
 前記可動部材の表面から裏面に貫通して形成された複数のビアをさらに備え、
 複数の前記放熱部材は、複数の前記ビアに対応する位置に配置される
 (1)乃至(14)のいずれかに記載のカメラモジュール。
(16)
 前記ビアは、前記可動部材における前記イメージセンサの搭載部分に形成される
 (15)に記載のカメラモジュール。
(17)
 前記放熱部材が、前記可動部材に固定され、前記固定部材に点接触するように設けられる
 (1)乃至(4),(10)乃至(16)のいずれかに記載のカメラモジュール。
(18)
 前記放熱部材として、前記固定部材に固定され、前記可動部材に点接触するように設けられる第1の放熱部材と、前記可動部材に固定され、前記固定部材に点接触するように設けられる第2の放熱部材とを備える
 (1)乃至(4),(10)乃至(16)のいずれかに記載のカメラモジュール。
(19)
 前記可動部材は、プリント基板で構成され、
 前記固定部材は、スティフナまたは前記プリント基板で構成される
 (1)乃至(18)のいずれかに記載のカメラモジュール。
(20)
 前記可動部材は、前記撮像面に沿った方向に移動可能に、アクチュエータ機構部により支持される
 (1)乃至(19)に記載のカメラモジュール。
(21)
 イメージセンサと、
 表面側に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
 前記可動部材の裏面側で、前記可動部材と所定の空隙を有して固定された固定部材と、
 前記空隙において、少なくとも前記固定部材と前記可動部材のいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材とを有するカメラモジュール
 を備える電子機器。
 また、本開示は以下のような構成をとることができる。
(1)
 イメージセンサと、
 表面側に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
 前記可動部材の裏面側で、前記可動部材と所定の間隙を有して固定された固定部材と、
 前記可動部材の表面から裏面に貫通して形成された複数のビアと
 を備えるカメラモジュール。
(2)
 前記可動部材の表面上に形成された熱伝導性を有する放熱層をさらに備える
 (1)に記載のカメラモジュール。
(3)
 前記可動部材の裏面上に設けられた熱伝導性を有する放熱材をさらに備える
 (2)に記載のカメラモジュール。
(4)
 イメージセンサと、
 表面側に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
 前記可動部材の裏面側で、前記可動部材と所定の間隙を有して固定された固定部材と
 を備え、
 前記固定部材の前記可動部材に対向する面は、外縁ほど前記可動部材との距離が大きくなるような傾斜を有する
 カメラモジュール。
 1 カメラモジュール, 11 筐体, 21 固定部材, 31 イメージセンサ, 32 可動部材, 40 アクチュエータ機構部, 51 チップ固定材, 100,100a乃至100g バンプ, 111 放熱材, 112 低摩擦材, 131 溝, 200 ゲル材, 300 ビア, 310 放熱層, 400 放熱フィン, 521 固定部材, 600 バンプ

Claims (20)

  1.  イメージセンサと、
     表面に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
     前記可動部材の裏面との間に所定の空隙を有して固定された固定部材と、
     前記空隙において、前記固定部材と前記可動部材の少なくともいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材と
     を備えるカメラモジュール。
  2.  前記放熱部材は、バンプにより構成される
     請求項1に記載のカメラモジュール。
  3.  前記バンプは、空気より熱伝導率の高い材料で形成される
     請求項2に記載のカメラモジュール。
  4.  前記バンプは、Au,Ag,Cu,Ni、および半田の少なくともいずれかを含む材料で形成されるか、または、前記固定部材の上面が加工されて形成された突起部で構成される
     請求項3に記載のカメラモジュール。
  5.  前記放熱部材が、前記固定部材に固定され、前記可動部材に点接触するように設けられる
     請求項1に記載のカメラモジュール。
  6.  前記可動部材の裏面上に設けられた熱伝導性を有する放熱材をさらに備え、
     前記放熱部材は、前記放熱材に点接触するように設けられる
     請求項5に記載のカメラモジュール。
  7.  前記可動部材の裏面上に設けられた低摩擦材をさらに備え、
     前記放熱部材は、前記低摩擦材に点接触するように設けられる
     請求項5に記載のカメラモジュール。
  8.  前記放熱部材は、前記固定部材に固着される
     請求項5に記載のカメラモジュール。
  9.  前記放熱部材は、球状に形成され、前記固定部材に形成された溝に嵌合される
     請求項5に記載のカメラモジュール。
  10.  複数の前記放熱部材は、格子状に配置される
     請求項1に記載のカメラモジュール。
  11.  複数の前記放熱部材は、千鳥状に配置される
     請求項1に記載のカメラモジュール。
  12.  複数の前記放熱部材は、前記イメージセンサの中心を基準として放射状に配置される
     請求項1に記載のカメラモジュール。
  13.  複数の前記放熱部材は、前記イメージセンサの中心に近いほど高密度に配置される
     請求項1に記載のカメラモジュール。
  14.  複数の前記放熱部材は、前記イメージセンサの中心に近いほど大きいサイズに形成される
     請求項1に記載のカメラモジュール。
  15.  前記可動部材の表面から裏面に貫通して形成された複数のビアをさらに備え、
     複数の前記放熱部材は、複数の前記ビアに対応する位置に配置される
     請求項1に記載のカメラモジュール。
  16.  前記ビアは、前記可動部材における前記イメージセンサの搭載部分に形成される
     請求項15に記載のカメラモジュール。
  17.  前記放熱部材が、前記可動部材に固定され、前記固定部材に点接触するように設けられる
     請求項1に記載のカメラモジュール。
  18.  前記放熱部材として、前記固定部材に固定され、前記可動部材に点接触するように設けられる第1の放熱部材と、前記可動部材に固定され、前記固定部材に点接触するように設けられる第2の放熱部材とを備える
     請求項1に記載のカメラモジュール。
  19.  前記可動部材は、プリント基板で構成され、
     前記固定部材は、スティフナまたは前記プリント基板で構成される
     請求項1に記載のカメラモジュール。
  20.  イメージセンサと、
     表面側に前記イメージセンサが搭載され、前記イメージセンサの撮像面に沿った方向に移動可能に設けられた可動部材と、
     前記可動部材の裏面側で、前記可動部材と所定の空隙を有して固定された固定部材と、
     前記空隙において、少なくとも前記固定部材と前記可動部材のいずれか一方に固定され、他方に接するように設けられた1または複数の放熱部材とを有するカメラモジュール
     を備える電子機器。
PCT/JP2021/033251 2020-09-24 2021-09-10 カメラモジュールおよび電子機器 WO2022065067A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022551875A JPWO2022065067A1 (ja) 2020-09-24 2021-09-10
KR1020237012961A KR20230071157A (ko) 2020-09-24 2021-09-10 카메라 모듈 및 전자 기기
US18/043,965 US20230328346A1 (en) 2020-09-24 2021-09-10 Camera module and electronic device
CN202180055628.XA CN116113876A (zh) 2020-09-24 2021-09-10 相机模块和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-159310 2020-09-24
JP2020159310 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022065067A1 true WO2022065067A1 (ja) 2022-03-31

Family

ID=80846553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033251 WO2022065067A1 (ja) 2020-09-24 2021-09-10 カメラモジュールおよび電子機器

Country Status (5)

Country Link
US (1) US20230328346A1 (ja)
JP (1) JPWO2022065067A1 (ja)
KR (1) KR20230071157A (ja)
CN (1) CN116113876A (ja)
WO (1) WO2022065067A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162889A (ja) * 2005-12-15 2007-06-28 Pentax Corp ステージ装置のロック機構
JP2009011097A (ja) * 2007-06-28 2009-01-15 Olympus Imaging Corp 駆動装置
JP2009272789A (ja) * 2008-05-02 2009-11-19 Olympus Corp 固体撮像装置
JP2012217179A (ja) * 2012-05-29 2012-11-08 Olympus Imaging Corp 撮像ユニットおよび撮像装置
WO2015122107A1 (ja) * 2014-02-12 2015-08-20 富士フイルム株式会社 撮像モジュール及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060726A (ja) 2018-10-12 2020-04-16 新思考電機有限公司 撮像素子駆動装置、これを備えるカメラ装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162889A (ja) * 2005-12-15 2007-06-28 Pentax Corp ステージ装置のロック機構
JP2009011097A (ja) * 2007-06-28 2009-01-15 Olympus Imaging Corp 駆動装置
JP2009272789A (ja) * 2008-05-02 2009-11-19 Olympus Corp 固体撮像装置
JP2012217179A (ja) * 2012-05-29 2012-11-08 Olympus Imaging Corp 撮像ユニットおよび撮像装置
WO2015122107A1 (ja) * 2014-02-12 2015-08-20 富士フイルム株式会社 撮像モジュール及び電子機器

Also Published As

Publication number Publication date
CN116113876A (zh) 2023-05-12
JPWO2022065067A1 (ja) 2022-03-31
KR20230071157A (ko) 2023-05-23
US20230328346A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US20100243872A1 (en) Semiconductor device
US7739876B2 (en) Socket enabled current delivery to a thermoelectric cooler to cool an in-substrate voltage regulator
JP5871076B2 (ja) 半導体装置、半導体装置に対する放熱部材の取り付け方法及び半導体装置の製造方法
US8902356B2 (en) Image sensor module having image sensor package
JP6813616B2 (ja) 配線板モジュール及びその放熱板構造
JP2016502371A (ja) 映像撮影装置
JP5913284B2 (ja) 光学モジュール及び支持板を持つ装置
JP2008151993A (ja) 光電気配線部材
CN105578757A (zh) 印刷电路板及电子设备
JP2010233015A (ja) 撮像装置
WO2022065067A1 (ja) カメラモジュールおよび電子機器
JP2008016653A (ja) 半導体パッケージ、その製造方法、プリント基板及び電子機器
JP6769881B2 (ja) 凹面を有するチップスケールパッケージ型発光素子およびその製造方法
JP2010205863A (ja) 車載用電子制御装置
TWI694296B (zh) 光學投射裝置
JP2010175948A (ja) 並列光伝送装置
CN114245566A (zh) 基板、摄像头模组及电子设备
JP2010205916A (ja) 半導体ユニットおよび電子撮像装置
JP2001110951A (ja) 半導体装置およびその製造方法
WO2021172122A1 (ja) 放熱構造および電子機器
US20240178093A1 (en) Semiconductor device, method for manufacturing semiconductor device, and electronic apparatus
WO2023145389A1 (ja) 半導体装置及び電子機器
JP5427076B2 (ja) 3ccd小型カメラの放熱構造
KR20190089274A (ko) 방열 구조물 및 방열 시스템 구성방법
CN215773294U (zh) 摄像头模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551875

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237012961

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872198

Country of ref document: EP

Kind code of ref document: A1