WO2022064957A1 - 画像処理装置、画像処理方法、及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法、及び画像処理プログラム Download PDF

Info

Publication number
WO2022064957A1
WO2022064957A1 PCT/JP2021/031597 JP2021031597W WO2022064957A1 WO 2022064957 A1 WO2022064957 A1 WO 2022064957A1 JP 2021031597 W JP2021031597 W JP 2021031597W WO 2022064957 A1 WO2022064957 A1 WO 2022064957A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
energy
difference
image processing
radiation
Prior art date
Application number
PCT/JP2021/031597
Other languages
English (en)
French (fr)
Inventor
航 福田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022551223A priority Critical patent/JPWO2022064957A1/ja
Priority to EP21872089.4A priority patent/EP4218587A4/en
Publication of WO2022064957A1 publication Critical patent/WO2022064957A1/ja
Priority to US18/177,402 priority patent/US20230200770A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • A61B6/563Details of data transmission or power supply, e.g. use of slip rings involving image data transmission via a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/408Dual energy

Definitions

  • the present disclosure relates to an image processing device, an image processing method, and an image processing program.
  • a contrast image is taken in which a low-energy image and a high-energy image are taken by radiating radiation of different energies to a subject injected with a contrast agent, and a difference image showing the difference between the high-energy image and the low-energy image is obtained. It is being generated.
  • the difference image generated in this way is an image in which the body tissue of the subject is removed and the contrast medium is clearly shown.
  • Japanese Patent Application Laid-Open No. 2015-091394 describes a technique for enhancing the contrast of a region of interest.
  • the pixel value of the pixel in the difference image corresponds to the amount of contrast.
  • the pixel value of the pixel in the difference image after the image processing may not correspond to the contrast amount. Therefore, it may be difficult to understand the actual amount of contrast from the difference image after image processing.
  • the present disclosure has been made in consideration of the above circumstances, and provides an image processing device, an image processing method, and an image processing program capable of easily observing the contrast medium and easily evaluating the contrast amount.
  • the image processing apparatus includes at least one processor, in which the processor irradiates a subject in a state in which a contrast agent is injected with radiation of the first energy and causes the radiographic imaging apparatus to take an image.
  • a low-energy image and a high-energy image obtained by irradiating a subject in which a contrast agent is injected with a second energy higher than the first energy and causing a radiographing apparatus to take a low-energy image are obtained.
  • a difference image showing the difference between the energy image and the high energy image is generated, image processing is performed to emphasize the difference image, and the difference image after the image processing, the contrast amount information regarding the contrast amount of the difference image before the image processing, and the contrast amount information. Is displayed.
  • the image processing apparatus of the second aspect of the present disclosure is the image processing apparatus of the first aspect, and the contrast amount information is a numerical value representing the contrast amount.
  • the contrast amount information is a heat map of the contrast amount
  • the processor converts the heat map into the difference image after the image processing. Display in layers.
  • the image processing device of the fourth aspect of the present disclosure is the image processing device of the first aspect, and the contrast amount information is a difference image before image processing.
  • the processor derives the contrast amount information from the difference image before image processing. ..
  • the processor derives the contrast amount information from the difference image after the image processing. It is derived by excluding the influence of image processing from the information on the amount of contrast.
  • the image processing apparatus is the image processing apparatus according to any one of the first to sixth aspects, wherein the processor causes a radiographic image capturing apparatus to capture a plurality of high-energy images. A plurality of captured high-energy images are acquired, and a difference image is generated for each of the plurality of high-energy images.
  • the image processing apparatus is the image processing apparatus according to any one of the first to sixth aspects, wherein the radiographic imaging apparatus has a plurality of different irradiation angles with respect to the subject. Therefore, tomosynthesis imaging that irradiates radiation and captures low-energy images and high-energy images at multiple irradiation angles is possible, and the processor reconstructs multiple low-energy images to generate low-energy tomographic images. , A difference image showing the difference between the high energy tomographic image generated by reconstructing a plurality of high energy images and the difference image is generated as a difference image.
  • the image processing apparatus is the image processing apparatus according to any one of the first to sixth aspects, wherein the radiographic imaging apparatus has a plurality of different irradiation angles with respect to the subject. Therefore, tomosynthesis imaging is possible in which a low-energy image and a high-energy image are captured as a pair of projected images by irradiating radiation, and the processor obtains the difference between the pair of projected images for each irradiation angle.
  • the projected difference image shown is generated, and a tomographic image obtained by reconstructing the generated multiple projected difference images is generated as a difference image.
  • the processor derives the length of the region of interest from the tomographic image in the transmission direction through which the radiation passes.
  • the density of the contrast agent in the region of interest is derived based on the length of the derived region of interest.
  • the image processing apparatus is the image processing apparatus according to any one of the first to tenth aspects, wherein the subject is a breast and the radiographic imaging apparatus is a mammography apparatus. ..
  • the image processing method includes a low-energy image obtained by irradiating a subject in a state in which a contrast agent is injected with radiation of the first energy and having a radiation image capturing apparatus capture the image, and a contrast agent.
  • a high-energy image obtained by irradiating a subject in a state in which The computer executes a process of generating a difference image showing the difference, performing image processing to emphasize the difference image, and displaying the difference image after the image processing and the contrast amount information regarding the contrast amount of the difference image before the image processing. Is the way to do it.
  • the image processing program includes a low-energy image obtained by irradiating a subject in a state in which a contrast agent is injected with radiation of the first energy and having a radiation image capturing apparatus capture the image, and a contrast agent.
  • the contrast medium can be easily observed and the contrast amount can be easily evaluated.
  • FIG. 1 shows a configuration diagram showing an example of the overall configuration of the radiographic imaging system 1 of the present embodiment.
  • the radiographic imaging system 1 of the present embodiment includes a mammography apparatus 10 and a console 12.
  • the mammography apparatus 10 of the present embodiment is an example of the radiographic imaging apparatus of the present disclosure.
  • the console 12 of the present embodiment is an example of the image processing apparatus of the present disclosure.
  • FIG. 2A shows a side view showing an example of the appearance of the mammography apparatus 10 of the present embodiment. Note that FIG. 2A shows an example of the appearance when the mammography apparatus 10 is viewed from the right side of the subject.
  • the mammography apparatus 10 of the present embodiment is an apparatus that takes a subject's breast as a subject, irradiates the breast with radiation R (for example, X-ray), and captures a radiographic image of the breast.
  • the mammography apparatus 10 is used not only when the subject is standing up (standing position) but also when the subject is sitting on a chair (including a wheelchair) or the like (sitting state). It may be a device for imaging a breast.
  • the mammography apparatus 10 of the present embodiment has a function of performing two types of imaging, so-called contrast imaging in which a contrast medium is injected into the breast of a subject, and general imaging.
  • imaging performed with a contrast medium injected into the breast of the subject is referred to as "contrast imaging”
  • imaging other than contrast imaging is referred to as "general imaging”.
  • the mammography apparatus 10 of the present embodiment moves the radiation source 37R to each of a plurality of irradiation positions, that is, normal imaging in which the radiation source is used as the irradiation position along the normal direction of the detection surface 28A of the radiation detector, and the radiation source 37R is moved to each of the plurality of irradiation positions. It has a function to perform so-called tomosynthesis imaging, which is to perform imaging.
  • the mammography apparatus 10 enables both contrast-enhanced imaging and general imaging in both normal imaging and tomosynthesis.
  • the mammography apparatus 10 of the present embodiment includes a control unit 20, a storage unit 22, and an I / F (Interface) unit 24 inside the photographing table 30.
  • the control unit 20 controls the overall operation of the mammography apparatus 10 according to the control of the console 12.
  • the control unit 20 includes a CPU (Central Processing Unit), a ROM (ReadOnlyMemory), and a RAM (RandomAccessMemory), all of which are not shown.
  • Various programs including an imaging processing program for controlling the imaging of a radiographic image, which is executed by the CPU, are stored in the ROM in advance.
  • the RAM temporarily stores various data.
  • the storage unit 22 stores image data of a radiation image taken by the radiation detector 28, various other information, and the like. Specific examples of the storage unit 22 include HDD (Hard Disk Drive) and SSD (Solid State Drive).
  • the I / F unit 24 communicates various information with the console 12 by wireless communication or wired communication.
  • the image data of the radiation image taken by the radiation detector 28 by the mammography device 10 is transmitted to the console 12 via the I / F unit 24 by wireless communication or wired communication.
  • the operation unit 26 is provided as a plurality of switches on, for example, the imaging table 30 of the mammography apparatus 10.
  • the operation unit 26 may be provided as a touch panel type switch, or may be provided as a foot switch operated by a user such as a doctor or a technician with his / her foot.
  • the radiation detector 28 detects the radiation R that has passed through the breast, which is the subject. As shown in FIG. 2A, the radiation detector 28 is arranged inside the photographing table 30. In the mammography apparatus 10 of the present embodiment, when performing imaging, the breast of the subject is positioned by the user on the imaging surface 30A of the imaging table 30.
  • the radiation detector 28 detects the radiation R transmitted through the subject's breast and the imaging table 30, generates a radiation image based on the detected radiation R, and outputs image data representing the generated radiation image.
  • the type of the radiation detector 28 of the present embodiment is not particularly limited, and may be, for example, an indirect conversion type radiation detector that converts radiation R into light and converts the converted light into charge, or radiation.
  • a radiation detector of a direct conversion method that directly converts R into a charge may be used.
  • the radiation irradiation unit 37 includes a radiation source 37R. As shown in FIG. 2A, the radiation irradiation unit 37 is provided on the arm unit 32 together with the photographing table 30 and the compression unit 36. As shown in FIG. 2A, a face guard 38 is detachably provided at a position close to the subject in the arm portion 32 below the irradiation portion 37. The face guard 38 is a protective member for protecting the subject from the radiation R emitted from the radiation source 37R.
  • the mammography apparatus 10 of the present embodiment includes an arm portion 32, a base 34, and a shaft portion 35.
  • the arm portion 32 is movably held in the vertical direction (Z-axis direction) by the base 34.
  • the shaft portion 35 allows the arm portion 32 to rotate with respect to the base 34.
  • the shaft portion 35 is fixed to the base 34, and the shaft portion 35 and the arm portion 32 rotate integrally.
  • Gears are provided on the shaft portion 35 and the compression unit 36, respectively, and by switching between the meshed state and the non-engaged state of the gears, the compression unit 36 and the shaft portion 35 are connected and rotate integrally, and the shaft portion.
  • the 35 can be switched to a state in which the compression unit 36 and the photographing table 30 are separated from each other and idle.
  • the switching between transmission and non-transmission of the power of the shaft portion 35 is not limited to the above gear, and various mechanical elements can be used.
  • the arm portion 32, the photographing table 30, and the compression unit 36 can rotate separately with respect to the base 34 with the shaft portion 35 as the rotation axis.
  • an engaging portion (not shown) is provided on each of the base 34, the arm portion 32, the photographing table 30, and the compression unit 36, and by switching the state of the engaging portion, the arm portion 32 and the imaging unit are photographed.
  • Each of the base 30 and the compression unit 36 is connected to the base 34.
  • One or both of the arm portion 32, the photographing table 30, and the compression unit 36 connected to the shaft portion 35 rotate integrally around the shaft portion 35.
  • the compression unit 36 is provided with a compression plate drive unit (not shown) that moves the compression plate 40 in the vertical direction (Z-axis direction).
  • the compression plate 40 of the present embodiment has a function of compressing the breast of the subject.
  • the support portion 46 of the compression plate 40 is detachably attached to the compression plate drive portion, moves in the vertical direction (Z-axis direction) by the compression plate drive portion, and presses the subject's breast with the imaging table 30. do.
  • FIG. 2B shows a diagram for explaining an example of tomosynthesis imaging.
  • the compression plate 40 is not shown.
  • the incident angle of the radiation R with respect to the detection surface 28A of the radiation detector 28 is moved to a different position.
  • the radiation R is irradiated toward the breast W from the radiation source 37R according to the instruction of the console 12, and the radiation image is taken by the radiation detector 28.
  • a radiation image taken by the radiation detector 28 at a plurality of irradiation positions 39 k having different irradiation angles is referred to as a “projection image”.
  • the radiation image capturing system 1 when the radiation source 37R is moved to each of the irradiation positions 39 k and tomosynthesis imaging is performed in which the projected images are captured at each irradiation position 39 k , K images are obtained.
  • a plurality of types of radiation images such as a projected image and a low-energy image and a high-energy image described later are generically referred to, they are simply referred to as “radiation image”.
  • the incident angle of the radiation R means the angle ⁇ formed by the normal CL of the detection surface 28A of the radiation detector 28 and the radiation axis RC.
  • the detection surface 28A of the radiation detector 28 is a surface substantially parallel to the photographing surface 30A.
  • an incident angle range a predetermined range in which the incident angles differ in tomosynthesis imaging.
  • a range of ⁇ 10 degrees or ⁇ 20 degrees with respect to the normal CL of the detection surface 28A of the radiation detector 28 can be mentioned.
  • the "incident angle” and the "irradiation angle” are synonymous with respect to the radiation R.
  • the radiation source 37R of the irradiation unit 37 has an irradiation position 39 k (irradiation position 39 k along the normal direction, in FIG. 2B) at which the irradiation angle ⁇ is 0 degree.
  • the irradiation position 393 ) is left as it is.
  • Radiation R is irradiated from the radiation source 37R according to the instruction of the console 12, and a radiation image is taken by the radiation detector 28.
  • the console 12 of the present embodiment is performed by the user by the operation unit 56 and the like, and the shooting order and various information acquired from the RIS (Radiology Information System) 2 and the like via the wireless communication LAN (Local Area Network) and the like. It has a function of controlling the mammography apparatus 10 by using instructions and the like.
  • RIS Radiology Information System
  • LAN Local Area Network
  • the console 12 of this embodiment is, for example, a server computer. As shown in FIG. 3, the console 12 includes a control unit 50, a storage unit 52, an I / F unit 54, an operation unit 56, and a display unit 58.
  • the control unit 50, the storage unit 52, the I / F unit 54, the operation unit 56, and the display unit 58 are connected to each other via a bus 59 such as a system bus or a control bus so that various information can be exchanged.
  • the control unit 50 of this embodiment controls the entire operation of the console 12.
  • the control unit 50 includes a CPU 50A, a ROM 50B, and a RAM 50C.
  • Various programs including the shooting control processing program 51A and the image processing program 51B, which will be described later, executed by the CPU 50A are stored in the ROM 50B in advance.
  • the RAM 50C temporarily stores various data.
  • the CPU 50A of the present embodiment is an example of the processor of the present disclosure.
  • the image processing program 51B of the present embodiment is an example of the image processing program of the present disclosure.
  • the storage unit 52 stores image data of a radiographic image taken by the mammography apparatus 10, various other information, and the like. Specific examples of the storage unit 52 include HDDs and SSDs.
  • the operation unit 56 is used for the user to input instructions and various information related to taking a radiation image including an irradiation instruction of radiation R.
  • the operation unit 56 is not particularly limited, and examples thereof include various switches, a touch panel, a stylus, and a mouse.
  • the display unit 58 displays various information.
  • the operation unit 56 and the display unit 58 may be integrated into a touch panel display.
  • the I / F unit 54 communicates various information with the mammography device 10 and the RIS2 by wireless communication or wired communication.
  • the console 12 of the present embodiment receives the image data of the radiographic image taken by the mammography apparatus 10 from the mammography apparatus 10 by wireless communication or wired communication via the I / F unit 54.
  • FIG. 4 shows a functional block diagram of an example of the configuration of the console 12 of the present embodiment.
  • the console 12 includes a control unit 60.
  • the CPU 50A of the control unit 50 functions as the control unit 60 by executing the shooting control processing program 51A stored in the ROM 50B.
  • the control unit 60 has a function of controlling contrast imaging, and specifically, has a function of controlling irradiation of radiation R in contrast imaging by the mammography apparatus 10.
  • a radiation image is taken by irradiating the breast in which the contrast medium is injected with radiation of the first energy from the radiation source 37R. Further, the breast in which the contrast medium is injected is irradiated with radiation of a second energy higher than the first energy from the radiation source 37R, and a radiation image is taken.
  • the radiation image taken by irradiating the radiation R of the first energy is referred to as a "low energy image”
  • the radiation image taken by irradiating the radiation R of the second energy is "". High energy image ".
  • an iodine contrast medium having a k-absorption end of 32 keV is generally used as a contrast medium used for contrast imaging.
  • a low-energy image is captured by irradiating the radiation R with a first energy lower than the k-edge of the iodine contrast medium.
  • a high-energy image is taken by irradiating the radiation R with a second energy higher than the k-edge of the iodine contrast medium.
  • control unit 60 of the present embodiment controls to irradiate the radiation R of the first energy from the radiation source 37R and to irradiate the radiation R of the second energy in the contrast imaging.
  • control unit 60 controls the mammography apparatus 10 to capture a low-energy image and controls to capture a high-energy image.
  • the high-energy image taken as described above clearly shows the body tissue such as the mammary gland and fat, as well as the contrast medium.
  • the low-energy image hardly shows the contrast medium, and the body tissue such as the mammary gland is clearly shown. Therefore, the difference image showing the difference between the low energy image and the high energy image can be an image in which the mammary gland structure is removed and the contrast medium is clearly shown.
  • contrast imaging by the mammography apparatus 10 of the present embodiment as described above, either normal imaging or tomosynthesis imaging is performed.
  • normal imaging there are two types of normal imaging in contrast imaging, single-shot imaging and time-series imaging. In single-shot photography, each of the low-energy image and the high-energy image is taken only once.
  • time-series imaging by photographing each of a low-energy image and a plurality of high-energy images, the change in the state in which the contrast medium penetrates in the breast is photographed in chronological order.
  • lesions such as tumors tend to be more easily penetrated by the contrast medium than the mammary gland, and the more malignant the lesion, the faster the contrast medium penetrates and the faster the contrast medium is washed out. Therefore, by performing time-series imaging, it is possible to observe the time change of the contrast medium that permeates the region of interest such as a lesion and the amount of permeation (contrast-enhanced amount) from a plurality of difference images obtained in time series.
  • a high energy image is taken every time a predetermined time such as 1 second elapses after the low energy image is taken.
  • a predetermined time such as 1 second elapses after the low energy image is taken.
  • the number of times of photographing the low energy image is set to one. Since the state of the mammary gland structure may change depending on the body movement of the subject, low-energy images may be taken multiple times.
  • FIG. 5 shows an example of the imaging timing of the low-energy image 70L and the high-energy image 70H in contrast-enhanced imaging and time-series imaging.
  • a low-energy image 70L (see FIGS. 5, 70L 1 ) is first taken, and then a high-energy image 70H (FIGS. 5, 70H 1 to 1) is taken every time a predetermined time elapses.
  • the imaging of 70H4 is repeated until the contrast imaging time is completed.
  • the mammography apparatus 10 of the present embodiment captures one low-energy image 70L and a plurality of high-energy images 70H.
  • low-energy images and high-energy images are captured as projected images at each irradiation position 39 k of radiation R.
  • a low-energy image which is a projected image
  • a high-energy projected image when a high-energy image, which is a projected image, is distinguished from a high-energy image taken in another shooting, it is referred to as a "high-energy projected image”.
  • FIG. 6 shows an example of the imaging timing between the low-energy projection image 71L and the high-energy projection image 71H in contrast imaging and tomosynthesis imaging.
  • the low-energy projection image 71L (see FIGS. 6, 71L 1 to 71L 5 ) and the high-energy projection image 71H (FIG. 6, 71H 1 to 71H 5 ) are projected images for each irradiation position 39 k . See) is taken.
  • the same number of low-energy projection images 71L and high-energy projection images 71H as the number of irradiation positions 39 k are captured.
  • the console 12 of the present embodiment includes an acquisition unit 62, a generation unit 64, a derivation unit 66, an image processing unit 68, and a display control unit 69.
  • the CPU 50A of the control unit 50 executes the image processing program 51B stored in the ROM 50B, so that the CPU 50A has the acquisition unit 62, the generation unit 64, the derivation unit 66, and the image processing unit. It functions as 68 and a display control unit 69.
  • the acquisition unit 62 has a function of acquiring a low-energy image and a high-energy image taken by the mammography apparatus 10. Specifically, image data representing a low-energy image taken by the radiation detector 28 of the mammography apparatus 10 and image data representing a high-energy image are acquired via the I / F unit 24 and the I / F unit 54. .. The acquisition unit 62 outputs the acquired low-energy image and high-energy image to the generation unit 64.
  • the acquisition unit 62 acquires one low-energy image and one high-energy image. Further, in the case of time-series shooting, the acquisition unit 62 acquires one low-energy image and a plurality of high-energy images. Further, in the case of tomosynthesis imaging, the acquisition unit 62 acquires a plurality of low-energy images which are projection images and a plurality of high-energy images which are projection images.
  • the generation unit 64 has a function of generating a plurality of difference images showing the differences between the low energy image and each of the plurality of high energy images. In the case of single-shot photography, the generation unit 64 generates a difference image between one low-energy image and one high-energy image. Therefore, in the case of single-shot photography, the generation unit 64 generates one difference image.
  • a difference image is generated by deriving the difference between the low energy image and each high energy image.
  • the generation unit 64 corresponds to the image data obtained by multiplying the low-energy image 70L by a predetermined coefficient and the corresponding pixel from the image data obtained by multiplying the high-energy image 70H by a predetermined coefficient. By subtracting each time, the mammary gland tissue is removed, and the difference image data representing the difference image in which the contrast agent is clearly shown is generated.
  • the generation unit 64 outputs image data representing the generated difference image to the derivation unit 66 and the image processing unit 68.
  • the generation unit 64 generates a difference image between one low-energy image and each of the plurality of high-energy images.
  • the generation unit 64 generates a difference image 721 between the low energy image 70L 1 and the high energy image 70H 1 as in the case of single-shot photography.
  • the generation unit 64 generates a difference image 722 between the low energy image 70L 1 and the high energy image 70H 2 , and generates a difference image 723 between the low energy image 70L 1 and the high energy image 70H 3 to generate a low image.
  • a difference image 724 between the energy image 70L 1 and the high energy image 70H 4 is generated.
  • the generation unit 64 generates the same number of difference images as the number of high-energy images. In the case of time-series shooting, the generation unit 64 outputs image data representing the generated difference image to the derivation unit 66 and the image processing unit 68.
  • a difference image may be generated by adding the difference between the high energy images to the difference between the low energy image and the high energy image.
  • the generation unit 64 generates a difference image 721 between the low energy image 70L 1 and the high energy image 70H 1 as described above.
  • the generation unit 64 generates the difference image 722 by adding the image showing the difference between the high energy image 70H 2 and the high energy image 70H 1 to the difference image 721, and generates the high energy image 70H 3 and the high energy.
  • a difference image 723 is generated by adding an image showing the difference from the image 70H 2 to the difference image 722, and an image showing the difference between the high - energy image 70H 4 and the high-energy image 70H 3 is converted into the difference image 723 .
  • the difference image 724 is generated by adding.
  • the generation unit 64 generates a difference image for each projected image. That is, a difference image between the low energy projection image and the high energy projection image is generated for each irradiation position 39 k .
  • the generation unit 64 has a difference image 73 between the low energy projection image 71L 1 and the high energy projection image 71H 1 at the irradiation position 391, as in the case of single-shot photography. 1 is generated.
  • the generation unit 64 generates a difference image 732 between the low energy projection image 71L 2 and the high energy projection image 71H 2 , and produces a difference image 733 between the low energy projection image 71L 3 and the high energy projection image 71H 3 . It is generated, and a difference image 734 between the low energy projection image 71L 4 and the high energy projection image 71H 4 is generated. Further, the generation unit 64 generates a difference image 735 between the low energy projection image 71L 5 and the high energy projection image 71H 5 . Therefore, in the case of tomosynthesis imaging, the generation unit 64 generates the same number of difference images 73 as the number of irradiation positions 39 k . The generated difference image 73 corresponds to a projected image.
  • the difference image 73 of the present embodiment is an example of the projected difference image of the present disclosure.
  • the generation unit 64 reconstructs a series of generated difference images 73 to generate a series of tomographic images 74 having a predetermined slice thickness.
  • FIG. 8 shows a form in which f tomographic images (tomographic images 74 1 to 74 f ) are generated from a series of difference images 73.
  • the method by which the generation unit 64 generates the tomographic image 74 is not particularly limited.
  • reconstruction may be performed by a back projection method such as an FBP (Filter Back Projection) method or a successive approximation reconstruction method, and a known technique can be applied.
  • FBP Frter Back Projection
  • the slice thickness of the tomographic image 74 to be generated is not particularly limited, and can be determined according to, for example, the size of the object of interest, the image quality of the radiographic image, the processing load of the arithmetic processing in the generation, the instruction from the user, and the like. ..
  • the tomographic image 74 generated by the generation unit 64 in this way corresponds to a difference image, and can be an image in which the mammary gland structure is removed and the contrast medium is clearly shown.
  • the generation unit 64 outputs image data representing the generated tomographic image 74 to the derivation unit 66 and the image processing unit 68.
  • the derivation unit 66 has a function of deriving the contrast amount information regarding the contrast amount of the difference image generated by the generation unit 64.
  • the contrast amount information include a numerical value representing the contrast amount, a heat map of the contrast amount, and the like.
  • the contrast amount information may be a difference image generated by the generation unit 64.
  • the form of the contrast amount information may be predetermined, or may be selected or instructed by the user.
  • the derivation unit 66 first identifies the region of interest from the difference image.
  • the method by which the derivation unit 66 identifies the region of interest from the difference image is not particularly limited.
  • the region of interest may be specified from the difference image by accepting information about the region of interest input by the user.
  • the display unit 58 is displayed with at least one of a difference image, a low energy image, and a high energy image, and the user operates the operation unit 56 with respect to the displayed image.
  • the area may be accepted as information about the area of interest.
  • the derivation unit 66 may specify the region of interest by applying CAD (Computer Aided Diagnosis) to the difference image.
  • CAD Computer Aided Diagnosis
  • the pixel value of the pixel in the difference image corresponds to the amount of contrast. Therefore, the contrast amount can be derived from the pixel value of the difference image.
  • the derivation unit 66 derives the contrast amount based on the pixel values of the pixels of the image corresponding to the specified region of interest.
  • the derivation unit 66 may derive any of the total value, the average value, the median value, the maximum value, and the like of the contrast amount of the entire region of interest, and which one may be derived may be predetermined. Alternatively, it may be possible to specify by the user. Further, the derivation unit 66 may derive a numerical value representing the contrast amount regardless of the region of interest.
  • the derivation unit 66 may derive a numerical value representing the contrast amount of the position or region designated by the user with respect to the difference image or the like. Further, for example, the derivation unit 66 may derive a numerical value representing the amount of contrast in a region outside the specified region of interest.
  • the derivation unit 66 derives the contrast amount of the entire difference image and generates a heat map expressing the value of the derived contrast amount as a color or a shade. In addition, only when the contrast amount exceeds the threshold value, the form may be represented in the heat map. Further, as described above, since the pixel value of the difference image corresponds to the contrast amount, the derivation unit 66 may generate a heat map based on the pixel value of the difference image without deriving the contrast amount. good.
  • the derivation unit 66 uses the difference image generated by the generation unit 64 as the contrast amount information.
  • the difference image used as the contrast amount information does not have to correspond to the difference image processed by the image processing unit 68, and may not be the difference image itself generated by the generation unit 64.
  • the difference image used as the contrast amount information may be an image in which the contrast amount in the difference image generated by the generation unit 64 appears. Therefore, for example, the derivation unit 66 corrects the difference image generated by the generation unit 64 to remove artifacts such as a scattered ray component and an oblique component, and derives the corrected difference image as contrast amount information. You may.
  • the technique described in International Publication No. 2020/059306 can be applied.
  • the contrast amount information derived by the derivation unit 66 in this way is output to the display control unit 69.
  • the image processing unit 68 has a function of performing image processing for emphasizing the difference image. Examples of the image processing performed by the image processing unit 68 include gradation enhancement processing and frequency enhancement processing.
  • the image processing unit 68 of the present embodiment analyzes the difference image generated by the generation unit 64, such as histogram analysis, and determines which image processing, gradation enhancement processing or frequency enhancement processing, is performed. Specify the degree.
  • the image processing unit 68 performs the specified image processing and image processing according to the degree of enhancement on the difference image. It is preferable that the image processing unit 68 identifies the region of interest from the difference image and performs image processing to emphasize the identified region of interest.
  • the method in which the image processing unit 68 specifies the region of interest is not particularly limited, and may be the same as the method in which the derivation unit 66 described above identifies the region of interest. In this way, the image processing unit 68 emphasizes the region of interest in the difference image, particularly the difference image, so that the contrast amount represented by the difference image after image processing may differ from the actual contrast amount.
  • the image data representing the difference image after image processing generated by the image processing unit 68 in this way is output to the display control unit 69.
  • the display control unit 69 has a function of displaying the contrast amount information derived by the derivation unit 66 and the difference image after image processing generated by the image processing unit 68 on the display unit 58.
  • the display control unit 69 has a function of displaying the contrast amount information regarding the contrast amount of the difference image before the image processing by the image processing unit 68 and the difference image after the image processing on the display unit 58.
  • FIG. 9 shows a flowchart showing an example of the flow of contrast imaging by the radiation imaging system 1 of the present embodiment.
  • the user injects a contrast medium into the breast as a subject.
  • the user positions the subject's breast on the imaging table 30 of the mammography apparatus 10, and presses the breast with the compression plate 40.
  • step S14 the radiographic image capturing process shown in FIG. 10 for capturing a low-energy image and a high-energy image by the mammography apparatus 10 is performed by the console 12.
  • the console 12 of the present embodiment executes the radiographic image imaging process shown in FIG. 10 by the CPU 50A of the control unit 50 executing the imaging control processing program 51A stored in the ROM 50B.
  • FIG. 10 shows a flowchart showing an example of the flow of the radiographic imaging process executed in the console 12 of the present embodiment.
  • step S100 of FIG. 10 the control unit 60 determines whether or not the type of imaging to be performed is tomosynthesis imaging.
  • the control unit 60 negates the determination in step S100 when the shooting type set in the shooting menu is not tomosynthesis shooting, in other words, when the shooting type set in the shooting menu is single-shot shooting or tomosynthesis shooting. The determination is made, and the process proceeds to step S102.
  • step S102 the control unit 60 determines whether or not the irradiation instruction of the radiation R has been received.
  • the determination in step S102 is a negative determination until the irradiation instruction is received.
  • the determination in step S102 becomes an affirmative determination, and the process proceeds to step S104.
  • step S104 the control unit 60 determines whether or not the type of shooting to be performed is time-series shooting. In the control unit 60, if the shooting type set in the shooting menu is not time-series shooting, in other words, if the shooting type set in the shooting menu is single-shot shooting, the determination in step S104 is a negative determination. , The process proceeds to step S106.
  • step S106 the control unit 60 executes the single-shot shooting process shown in FIG. 11A.
  • step S150 of the single-shot imaging process shown in FIG. 11A the control unit 60 outputs an instruction for irradiating the radiation R of the first energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the first energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a low energy image.
  • step S152 the control unit 60 outputs an instruction for irradiating the radiation R of the second energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the second energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a high energy image.
  • the single-shot shooting process is completed.
  • the radiographic image imaging process step S106 shown in FIG. 10 is completed, and the radiographic image imaging process is completed.
  • a mode in which a high-energy image is taken after taking a low-energy image has been described, but the shooting order of the low-energy image and the high-energy image may be reversed. That is, the order of the process of step S150 and the process of step S152 in the single-shot photographing process may be changed.
  • step S104 of the radiographic image imaging process becomes an affirmative determination, and the process proceeds to step S108.
  • step S108 the control unit 60 executes the time-series shooting process shown in FIG. 11B.
  • step S160 of the time-series photographing process shown in FIG. 11B the control unit 60 outputs an instruction for irradiating the radiation R of the first energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the first energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a low energy image.
  • step S162 the control unit 60 determines whether or not the predetermined time has elapsed.
  • the determination in step S162 is a negative determination until the predetermined time elapses.
  • the determination in step S162 becomes an affirmative determination, and the process proceeds to step S164.
  • step S164 the control unit 60 outputs an instruction for irradiating the radiation R of the second energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the second energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a high energy image.
  • step S166 the control unit 60 determines whether or not to end the time-series shooting.
  • the determination in step S166 becomes a negative determination, the process returns to step S162, and the processes of steps S162 and S164 are repeated until the predetermined end condition is satisfied.
  • the determination in step S166 becomes an affirmative determination, and the time-series shooting process is terminated.
  • the termination conditions are not limited. As an end condition, for example, when the elapsed time from injecting the contrast medium into the breast has elapsed as the imaging time, the elapsed time from the start of radiation R irradiation is the irradiation time in contrast imaging.
  • the end condition there is a condition that the end is performed when the contrast amount does not change as a result of analyzing the radiographic image taken by the control unit 60. Specifically, it may be a condition that the process ends when the difference between the high-energy images is equal to or less than the threshold value, and especially when the difference between the pixel values of the region of interest in the high-energy image is equal to or less than the threshold value.
  • step S100 of the radiographic image imaging process becomes an affirmative determination, and the process proceeds to step S110.
  • step S110 the control unit 60 executes the tomosynthesis imaging process shown in FIG. 11C.
  • step S170 of the tomosynthesis imaging process shown in FIG. 11C the control unit 60 moves the radiation source 37R to the irradiation position 39 k , which is the start position for starting the irradiation of radiation.
  • step S172 the control unit 60 determines whether or not the irradiation instruction of the radiation R has been received, as in the step S102 of the radiation imaging process.
  • the determination in step S172 is a negative determination until the irradiation instruction is received.
  • the determination in step S172 becomes an affirmative determination, and the process proceeds to step S174.
  • step S174 the control unit 60 outputs an instruction for irradiating the radiation R of the first energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the first energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a low energy image.
  • the control unit 60 outputs an instruction for irradiating the radiation R of the second energy to the mammography apparatus 10.
  • the control unit 20 irradiates the breast with the radiation R of the second energy from the radiation source 37R based on the instruction input from the console 12, and the radiation detector 28 captures a high energy image.
  • step S178 the control unit 60 determines whether or not to end the tomosynthesis imaging. If the position of the radiation source 37R is not yet in the position corresponding to the last irradiation position 39 k , the determination in step S178 becomes a negative determination, and the process proceeds to step S180.
  • step S180 the control unit 60 moves the radiation source 37R to the next irradiation position 39 k , then returns to step S174, and repeats the processes of steps S174 to S178.
  • the determination in step S178 becomes affirmative, and the process proceeds to step S182.
  • the control unit 60 moves the radiation source 37R to the position of the irradiation position 39 k (irradiation position 39 k along the normal direction, irradiation position 393 in FIG. 2B) where the irradiation angle ⁇ is 0 degree.
  • step S182 When the process of step S182 is completed, the tomosynthesis imaging is completed.
  • the radiographic image imaging process step S110 shown in FIG. 10 is completed, and the radiographic image imaging process is completed.
  • a mode in which a high-energy image is taken after taking a low-energy image is described as in the above-mentioned single-shot shooting, but the shooting order of the low-energy image and the high-energy image is reversed. You may. That is, the order of the process of step S174 and the process of step S176 in the tomosynthesis imaging process may be changed.
  • step S16 the difference image generation display process shown in FIG. 12 is performed by the console 12.
  • the console 12 of the present embodiment executes the difference image generation display processing shown in FIG. 12 by the CPU 50A of the control unit 50 executing the image processing program 51B stored in the ROM 50B.
  • FIG. 12 shows a flowchart showing an example of the flow of the difference image generation display processing executed in the console 12 of the present embodiment.
  • step S200 the acquisition unit 62 acquires a low-energy image and a high-energy image taken by contrast imaging from the mammography apparatus 10 as described above.
  • a low-energy projection image and a high-energy projection image are acquired as described above.
  • the timing at which the acquisition unit 62 acquires the low-energy image and the high-energy image is not limited. For example, each time a low-energy image and a high-energy image are taken, a low-energy image and a high-energy image may be acquired from the mammography apparatus 10.
  • the low-energy images and high-energy images stored in the storage unit 22 of the mammography apparatus 10 may be acquired. Further, the order of acquiring low-energy images and high-energy images is not limited.
  • step S202 the generation unit 64 determines whether or not the type of imaging performed is tomosynthesis imaging. If the type of imaging performed is not tomosynthesis imaging, in other words, if the type of imaging performed is single-shot imaging or time-series imaging, the determination in step S202 becomes a negative determination, and the process proceeds to step S204.
  • the generation unit 64 in step S204 generates a difference image from the low-energy image and the high-energy image acquired in step S200, and then proceeds to step S210.
  • the generation unit 64 when the type of imaging performed is single-shot imaging, the generation unit 64 generates one difference image.
  • the generation unit 64 When the type of imaging performed is time-series imaging, the generation unit 64 generates a plurality of difference images of the same number as the high-energy images acquired in step S200.
  • step S202 when the type of imaging performed is tomosynthesis imaging, the determination in step S202 becomes an affirmative determination, and the process proceeds to step S206.
  • step S206 as described above, the generation unit 64 generates a difference image of the projected image as described above for each irradiation position 39 k . Specifically, the generation unit 64 generates a difference image from the low-energy projection image and the high-energy projection image for each irradiation position 39 k .
  • the generation unit 64 reconstructs the plurality of difference images generated in the above step S206 to generate a tomographic image as described above, and then proceeds to the step S210.
  • step S210 the derivation unit 66 identifies the region of interest from the difference image as described above.
  • the derivation unit 66 identifies the region of interest from the difference image generated in step S204.
  • the derivation unit 66 identifies the region of interest from the tomographic image generated in step S208.
  • the derivation unit 66 derives the contrast amount information as described above.
  • the derivation unit 66 derives the contrast amount information from the difference image generated in step S204.
  • the derivation unit 66 derives the contrast amount information from the tomographic image generated in step S208.
  • a mode for deriving a numerical value representing the contrast amount as the contrast amount information from the tomographic image 74 will be described with reference to FIG. 13A.
  • the derivation unit 66 may derive a numerical value representing the contrast amount from each tomographic image 74 for each of the series of tomographic images 74. In the example shown in FIG.
  • the derivation unit 66 may derive a numerical value representing the amount of contrast for each of the G tomographic images 74 (74 1 to 74 G ). Further, the derivation unit 66 may derive the total value of the contrast amount in the transmission path in the transmission direction r through which the radiation R represented by the arrow in FIG. 13A is transmitted.
  • FIG. 13B shows an example in which the generation unit 64 generates g (G> g) tomographic images 74 (74 1 to 74 g ).
  • the thickness of the breast WB in FIG. 13B is thinner than the thickness of the breast WA in FIG. 13A. Since the slice thickness is the same in the example shown in FIG. 13A and the example shown in FIG. 13B, the number g of the tomographic images 74 for the breast WB is smaller than the number G of the tomographic images 74 for the breast WA.
  • the region of interest 75B has a shorter length in the transmission direction r than the region of interest 75A. Therefore, even when the densities of the region of interest 75A and the region of interest 75B are the same, the total value of the contrast amount in the transmission path differs between the region of interest 75A and the region of interest 75B. In this way, the density of the region of interest cannot be determined from the total value of the amount of contrast in the transmission path. Therefore, it is difficult to understand the degree of penetration of the contrast amount in the region of interest such as h and lesions from the total value of the contrast amount in the transmission path. Therefore, the derivation unit 66 may derive the density of the contrast amount in the region of interest as the contrast amount information.
  • the derivation unit 66 identifies the position of the tomographic image 74 in which the image of the specified region of interest is captured, derives the length of the transmission direction r of the region of interest from the position of the specified tomographic image 74, and the amount of contrast in the transmission path.
  • the density of the contrast amount may be derived by dividing the total value of the above by the length of the region of interest.
  • the image processing unit 68 performs image processing as described above.
  • the image processing unit 68 performs image processing for emphasizing the difference image generated in step S204.
  • the image processing unit 68 performs image processing for emphasizing the tomographic image generated in step S208.
  • the display control unit 69 controls the display unit 58 to display the contrast amount information derived in the step S212 and the difference image after the image processing in the step S214. This difference image generation display process is terminated.
  • FIG. 14A shows an example of a state in which the contrast amount information and the difference image after image processing are displayed on the display unit 58.
  • FIG. 14A shows an example of displaying the difference image 80A before image processing as the contrast amount information.
  • the display control unit 69 of the present embodiment causes the display unit 58 to display the difference image 82 after the image processing and the difference image 80A before the image processing.
  • the display control unit 69 displays a radiation image 84 taken by general imaging, in other words, a radiation image 84 taken without a contrast medium injected, with respect to the breast as a subject. If present, the radiation image 84 is also displayed on the display unit 58 as a comparative example. In the example shown in FIG.
  • the difference image 80A before image processing and the difference image 82 after image processing are displayed side by side, but the difference image 80A before image processing and the difference after image processing are displayed side by side.
  • One of the images 82 may be displayed, and the image to be displayed may be switched according to the user's instruction.
  • a plurality of difference images generated by the generation unit 64 may be continuously displayed as moving images in chronological order as the difference image 80A before image processing.
  • "moving image” means displaying still images one after another at high speed and making them recognized as moving images. Therefore, depending on the degree of "high speed” in the display, so-called “frame advance” is also included in the moving image.
  • the difference image 80A tomographic image
  • the display may be switched to the processed difference image 82 (tomographic image).
  • FIG. 14B shows an example of displaying the heat map 80B as the contrast amount information.
  • FIG. 14B an example of a form in which the heat map 80B is superimposed and displayed on the difference image 82 after image processing is shown.
  • FIG. 14C shows another case where the heat map 80B is displayed as the contrast amount information.
  • FIG. 14C an example of a form in which the heat map 80B is superimposed and displayed on the low energy image 85 is shown.
  • FIG. 14D shows an example in which the numerical value 80C representing the contrast amount is displayed as the contrast amount information.
  • a numerical value (see FIG. 14, “150”) representing the contrast amount of the region of interest instructed by the user (see FIG. 14, white arrow) in the difference image 82 after image processing is displayed.
  • An example of the form is shown.
  • the difference image generation display process in step S16 shown in FIG. 9 is completed.
  • the low-energy image and the plurality of high-energy images taken by the mammography apparatus 10 of the present embodiment, the plurality of difference images generated by the console 12, the tomographic image, the contrast amount information, and the like are stored in the storage unit 52 of the console 12. Or, it may be stored in PACS (Picture Archiving and Communication Systems) or the like.
  • the radiation image photographing process which is the process of S14 in FIG. 9, in other words, the form in which the difference image generation display processing is continuously performed after the contrast imaging is completed, but the difference image generation display processing is performed.
  • the timing that is, the timing for generating the difference image and displaying the difference image is not limited to this embodiment.
  • the timing of each of the generation of the difference image and the display of the difference image may be performed at a timing according to the user's desire after the contrast imaging.
  • the console 12 of each of the above forms includes a CPU 50A as at least one processor.
  • the CPU 50A has a low-energy image taken by the mammography apparatus 10 by irradiating the breast in which the contrast agent has been injected with radiation R of the first energy, and the first energy in the breast in which the contrast agent has been injected.
  • a high-energy image taken by the mammography apparatus 10 by irradiating a radiation R having a second energy higher than that of the radiation R is acquired.
  • the CPU 50A generates a difference image showing the difference between the low energy image and the high energy image.
  • the CPU 50A performs image processing for emphasizing the difference image.
  • the CPU 50A displays the difference image after the image processing and the contrast amount information regarding the contrast amount of the difference image before the image processing.
  • the difference image after the image processing for emphasizing the difference image and the contrast amount information regarding the contrast amount of the difference image before the image processing are displayed.
  • the difference image after image processing is an image in which the mammary gland structure is removed and the contrast medium is emphasized to make it easier to see.
  • the contrast amount information regarding the contrast amount of the difference image before image processing is information representing the contrast amount that is not affected by the image processing or is excluded from the influence of the image processing, so that an accurate contrast amount is given. Be done. Therefore, according to the console 12 of the present embodiment, the contrast medium can be easily observed and the contrast amount can be easily evaluated.
  • the image processing unit 68 has described a mode in which the image processing unit 68 performs image processing on the difference image generated by the generation unit 64, but the image processing unit 68 performs image processing.
  • the target is not limited to the difference image.
  • the image processing unit 68 may perform image processing on each of the low energy image and the high energy image.
  • the generation unit 64 generates a difference image showing the difference between the low-energy image after the image processing and the high-energy image after the image processing, so that the generated difference image is emphasized in the same manner as in the above embodiment. It can be in a state of being.
  • the derivation unit 66 generates the contrast amount information from the difference image before the image processing has been described, but the method for generating the contrast amount information is not limited to this form.
  • the derivation unit 66 derives the contrast amount information regarding the contrast amount of the difference image before the image processing by removing the influence of the image processing from the contrast amount derived from the difference image after the image processing by the image processing unit 68. It may be in the form.
  • the generation unit 64 when the type of imaging is tomosynthesis imaging, as described with reference to FIG. 8, the generation unit 64 generates a difference image 73 between each low energy projection image 71L and the high energy projection image 71H.
  • the mode of generating the tomographic image 74 by reconstructing the generated multiple difference images 73 has been described, but the method of generating the tomographic image is not limited to this mode.
  • a form may be used in which a difference image between a tomographic image generated by reconstructing a low-energy image and a tomographic image generated by reconstructing a high-energy image is generated. An example of this case will be described in detail with reference to FIG. In the example shown in FIG.
  • the generation unit 64 reconstructs the low energy projection image 71L (see FIGS. 15, 71L 1 to 71L 5 ) to obtain a tomographic image 74L (see FIGS. 15, 74L 1 to 74L f ).
  • Generation unit 64 also reconstructs the high energy projection image 71H (see FIGS. 15, 71H 1 to 715) to generate a tomographic image 74H (FIG. 15, 74H 1 to 74H f ) and generates.
  • Part 64 generates a tomographic image 74 (see FIGS. 15, 741 to 74f ), which is a difference image showing the difference between the tomographic image 74L and the tomographic image 74H at the corresponding slice positions.
  • a tomographic image 74 is generated.
  • the tomographic image 74L of this embodiment is an example of the low energy tomographic image of the present disclosure
  • the tomographic image 74H of this embodiment is an example of the high energy tomographic image of the present disclosure. be.
  • the irradiation position is 39 k
  • the radiation R of the first energy is irradiated to capture a low energy image
  • the radiation R of the second energy is irradiated.
  • the method of tomosynthesis imaging is not limited to this embodiment.
  • a low-energy image is taken by irradiating a first-energy radiation R at each irradiation position 39 k
  • a high-energy image is taken by irradiating a second-energy radiation R at each irradiation position 39 k . It may be in the form.
  • the breast is applied as an example of the subject of the present disclosure
  • the mammography apparatus 10 is applied as an example of the radiographic imaging apparatus of the present disclosure.
  • the subject is not limited to the breast, and the subject is not limited to the breast.
  • the radiographic imaging device is not limited to the mammography device.
  • the subject may be the chest, the abdomen, or the like, and the radiographic imaging apparatus may be in the form of applying a radiographic imaging apparatus other than the mammography apparatus.
  • the console 12 is an example of the image processing device of the present disclosure, but a device other than the console 12 may have the function of the image processing device of the present disclosure.
  • some or all of the functions of the control unit 60, the acquisition unit 62, the generation unit 64, the derivation unit 66, the image processing unit 68, and the display control unit 69 are performed by a mammography device 10 or an external device other than the console 12. It may be equipped with a device or the like.
  • a processing unit that executes various processes such as a control unit 60, an acquisition unit 62, a generation unit 64, a derivation unit 66, an image processing unit 68, and a display control unit 69.
  • various processors shown below can be used.
  • the above-mentioned various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits etc. are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be composed of a combination). Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client and a server.
  • the processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
  • each of the shooting control processing program 51A and the image processing program 51B is used as a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. It may be provided in recorded form. Further, each of the photographing control processing program 51A and the image processing program 51B may be downloaded from an external device via a network.
  • a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. It may be provided in recorded form.
  • each of the photographing control processing program 51A and the image processing program 51B may be downloaded from an external device via a network.
  • Radiation imaging system 2 RIS 10 Mammography device 12 Console 20, 50 Control unit 22, 52 Storage unit 24, 54 I / F unit 26, 56 Operation unit 28 Radiation detector, 28A Detection surface 30 Imaging table, 30A Imaging surface 32 Arm section 34 Base 35 axis Part 36 Compression unit 37 Radiation irradiation unit, 37R Radiation source 38 Face guard 39 k , 39 3 Irradiation position 40 Compression plate 46 Support part 50A CPU, 50B ROM, 50C RAM 51A Irradiation control processing program, 51B Image processing program 58 Display unit 59 Bus 60 Control unit 62 Acquisition unit 64 Generation unit 66 Derivation unit 68 Image processing unit 69 Display control unit 70L 1 , 70L 2 Low energy image 71L 1 to 71L 5 Low energy Projection image (low energy image) 70H 1 to 70H 4 High energy image 71H 1 to 71H 5 High energy projection image (high energy image) 72 1 to 72 4 , 73 1 to 735 Difference images 74, 74 1 , 74 2 , 74 3

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

画像処理装置のCPUは、造影剤が注入された状態の乳房に第1のエネルギーの放射線を照射させてマンモグラフィ装置に撮影させた低エネルギー画像と、造影剤が注入された状態の乳房に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させてマンモグラフィ装置に撮影させた高エネルギー画像とを取得する。CPUは、低エネルギー画像と高エネルギー画像との差分を示す差分画像を生成する。CPUは、差分画像を強調する画像処理を行う。CPUは、画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報と、を表示させる。

Description

画像処理装置、画像処理方法、及び画像処理プログラム
 本開示は、画像処理装置、画像処理方法、及び画像処理プログラムに関する。
 造影剤を注入した被写体に対して、エネルギーが異なる放射線を各々放射させて低エネルギー画像と高エネルギー画像とを撮影する造影撮影を行い、高エネルギー画像と低エネルギー画像との差分を示す差分画像を生成することが行われている。このようにして生成された差分画像は、被写体の体組織が除去され造影剤が明瞭に写った画像となる。
 また、差分画像における造影剤について観察し易くするために、差分画像を強調する技術が知られている。例えば、特開2015-091394号公報には、関心領域のコントラストを強調する技術が記載されている。
 ところで、差分画像における画素の画素値は、造影量に対応している。しかしながら、画像処理によりコントラストを強調してしまうと、画像処理後の差分画像における画素の画素値は、造影量と対応しない場合がある。そのため、画像処理後の差分画像からは、実際の造影量がわかり難い場合があった。
 本開示は上記事情を考慮して成されたものであり、造影剤が観察し易くかつ造影量の評価を容易に行うことができる画像処理装置、画像処理方法、及び画像処理プログラムを提供する。
 本開示の第1の態様の画像処理装置は、少なくとも1つのプロセッサを備え、プロセッサは、造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、低エネルギー画像と高エネルギー画像との差分を示す差分画像を生成し、差分画像を強調する画像処理を行い、画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報と、を表示させる。
 本開示の第2の態様の画像処理装置は、第1の態様の画像処理装置において、造影量情報は、造影量を表す数値である。
 本開示の第3の態様の画像処理装置は、第1の態様の画像処理装置において、造影量情報は、造影量のヒートマップであり、プロセッサは、画像処理後の差分画像に、ヒートマップを重ねて表示させる。
 本開示の第4の態様の画像処理装置は、第1の態様の画像処理装置において、造影量情報は、画像処理前の差分画像である。
 本開示の第5の態様の画像処理装置は、第1の態様から第4の態様のいずれか1態様の画像処理装置において、プロセッサは、造影量情報を、画像処理前の差分画像から導出する。
 本開示の第6の態様の画像処理装置は、第1の態様から第4の態様のいずれか1態様の画像処理装置において、プロセッサは、造影量情報を、画像処理後の差分画像から導出した造影量に関する情報から、画像処理の影響を除外することにより導出する。
 本開示の第7の態様の画像処理装置は、第1の態様から第6の態様のいずれか1態様の画像処理装置において、プロセッサは、複数の高エネルギー画像を放射線画像撮影装置に撮影させ、撮影された複数の高エネルギー画像を取得し、複数の高エネルギー画像毎に、差分画像を生成する。
 本開示の第8の態様の画像処理装置は、第1の態様から第6の態様のいずれか1態様の画像処理装置において、放射線画像撮影装置は、被写体に対して異なる複数の照射角度の各々から、放射線を照射して複数の照射角度毎に低エネルギー画像及び高エネルギー画像を撮影するトモシンセシス撮影が可能であり、プロセッサは、複数の低エネルギー画像を再構成して生成した低エネルギー断層画像と、複数の高エネルギー画像を再構成して生成した高エネルギーの断層画像と、の差分を示す差分画像を差分画像として生成する。
 本開示の第9の態様の画像処理装置は、第1の態様から第6の態様のいずれか1態様の画像処理装置において、放射線画像撮影装置は、被写体に対して異なる複数の照射角度の各々から、放射線を照射して複数の照射角度毎に低エネルギー画像及び高エネルギー画像を一対の投影画像として撮影するトモシンセシス撮影が可能であり、プロセッサは、照射角度毎に、一対の投影画像の差分を示す投影差分画像を生成し、生成した複数の投影差分画像を再構成した断層画像を差分画像として生成する。
 本開示の第10の態様の画像処理装置は、第8の態様または第9の態様の画像処理装置において、プロセッサは、断層画像から関心領域の、放射線が透過する透過方向の長さを導出し、造影量情報として、導出した関心領域の長さに基づいて関心領域における造影剤の密度を導出する。
 本開示の第11の態様の画像処理装置は、第1の態様から第10の態様のいずれか1態様の画像処理装置において、被写体は、乳房であり、放射線画像撮影装置は、マンモグラフィ装置である。
 また、本開示の第12の態様の画像処理方法は、造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、低エネルギー画像と高エネルギー画像との差分を示す差分画像を生成し、差分画像を強調する画像処理を行い、画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報と、を表示させる処理をコンピュータが実行するための方法である。
 また、本開示の第13の態様の画像処理プログラムは、造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、低エネルギー画像と高エネルギー画像との差分を示す差分画像を生成し、差分画像を強調する画像処理を行い、画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報と、を表示させる処理をコンピュータに実行させるためのものである。
 本開示によれば、造影剤が観察し易くかつ造影量の評価を容易に行うことができる。
実施形態の放射線画像撮影システムにおける全体の構成の一例を概略的に表した構成図である。 実施形態のマンモグラフィ装置の外観の一例を表す側面図である。 トモシンセシス撮影の一例を説明するための図である。 実施形態のコンソールの構成の一例を表したブロック図である。 実施形態のコンソールの機能の一例を表す機能ブロック図である。 実施形態のマンモグラフィ装置による造影撮影かつ時系列撮影における低エネルギー画像と高エネルギー画像との撮影タイミングの一例を示すタイムチャートである。 実施形態のマンモグラフィ装置による造影撮影かつトモシンセシス撮影における低エネルギー画像と高エネルギー画像との撮影タイミングの一例を示すタイムチャートである。 時系列撮影における差分画像の生成方法の一例を説明するための図である。 時系列撮影における差分画像の生成方法の他の例を説明するための図である。 トモシンセシス撮影における差分画像及び断層画像の生成方法の一例を説明するための図である。 実施形態の放射線画像撮影システムによる造影撮影の流れの一例を表したフローチャートである。 造影撮影において実行される放射線画像撮影処理の流れの一例を表したフローチャートである。 放射線画像撮影処理において実行される単発撮影処理の流れの一例を表したフローチャートである。 放射線画像撮影処理において実行される時系列撮影処理の流れの一例を表したフローチャートである。 放射線画像撮影処理において実行されるトモシンセシス撮影処理の流れの一例を表したフローチャートである。 造影撮影において実行される差分画像生成表示処理の流れの一例を表したフローチャートである。 断層画像から造影量情報として造影量を表す数値を導出する形態について説明するための図である。 断層画像から造影量情報として造影量を表す数値を導出する形態について説明するための図である。 造影量情報として画像処理前の差分画像及び画像処理後の差分画像を表示部に表示させた状態の一例を示す図である。 造影量情報としてヒートマップ及び画像処理後の差分画像を表示部に表示させた状態の一例を示す図である。 造影量情報としてヒートマップ及び画像処理後の差分画像を表示部に表示させた状態の他の例を示す図である。 造影量情報として造影量を表す数値を表示させた状態の一例を示す図である。 トモシンセシス撮影における差分画像及び断層画像の生成方法の他の例を説明するための図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本実施形態は本発明を限定するものではない。
 まず、本実施形態の放射線画像撮影システムにおける、全体の構成の一例について説明する。図1には、本実施形態の放射線画像撮影システム1における、全体の構成の一例を表す構成図が示されている。図1に示すように、本実施形態の放射線画像撮影システム1は、マンモグラフィ装置10及びコンソール12を備える。本実施形態のマンモグラフィ装置10が、本開示の放射線画像撮影装置の一例である。また、本実施形態のコンソール12が、本開示の画像処理装置の一例である。
 まず、本実施形態のマンモグラフィ装置10について説明する。図2Aには、本実施形態のマンモグラフィ装置10の外観の一例を表す側面図が示されている。なお、図2Aは、被検者の右側からマンモグラフィ装置10を見た場合の外観の一例を示している。
 本実施形態のマンモグラフィ装置10は、被検者の乳房を被写体として、乳房に放射線R(例えば、X線)を照射して乳房の放射線画像を撮影する装置である。なお、マンモグラフィ装置10は、被検者が起立している状態(立位状態)のみならず、被検者が椅子(車椅子を含む)等に座った状態(座位状態)において、被検者の乳房を撮影する装置であってもよい。
 また、本実施形態のマンモグラフィ装置10は、被検者の乳房に造影剤を注入した状態で撮影を行ういわゆる造影撮影と、一般撮影と、2種類の撮影を行う機能を有している。なお、本実施形態では、被検者の乳房に造影剤を注入した状態で行う撮影を「造影撮影」といい、造影撮影ではない撮影を「一般撮影」という。また、本実施形態のマンモグラフィ装置10は、放射線源を放射線検出器の検出面28Aの法線方向に沿った照射位置として撮影を行う通常撮影と、放射線源37Rを複数の照射位置の各々に移動させて撮影を行う、いわゆるトモシンセシス撮影とを行う機能を有している。なお、マンモグラフィ装置10では、通常撮影及びトモシンセシスのいずれにおいても、造影撮影及び一般撮影の両方が可能とされている。
 図2Aに示すように、本実施形態のマンモグラフィ装置10は、撮影台30内部に制御部20、記憶部22、及びI/F(Interface)部24を備える。制御部20は、コンソール12の制御に応じて、マンモグラフィ装置10の全体の動作を制御する。制御部20は、いずれも図示を省略した、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)を備える。ROMには、CPUで実行される、放射線画像の撮影に関する制御を行うための撮影処理プログラムを含む各種のプログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する。
 記憶部22には、放射線検出器28により撮影された放射線画像の画像データや、その他の各種情報等が記憶される。記憶部22の具体例としては、HDD(Hard Disk Drive)やSSD(Solid State Drive)等が挙げられる。I/F部24は、無線通信または有線通信により、コンソール12との間で各種情報の通信を行う。マンモグラフィ装置10で放射線検出器28により撮影された放射線画像の画像データは、I/F部24を介してコンソール12に無線通信または有線通信によって送信される。
 また、操作部26は、例えば、マンモグラフィ装置10の撮影台30等に複数のスイッチとして設けられている。なお、操作部26は、タッチパネル式のスイッチとして設けられていてもよいし、医師及び技師等のユーザが足で操作するフットスイッチとして設けられていてもよい。
 放射線検出器28は、被写体である乳房を通過した放射線Rを検出する。図2Aに示すように、放射線検出器28は、撮影台30の内部に配置されている。本実施形態のマンモグラフィ装置10では、撮影を行う場合、撮影台30の撮影面30A上には、被検者の乳房がユーザによってポジショニングされる。
 放射線検出器28は、被検者の乳房及び撮影台30を透過した放射線Rを検出し、検出した放射線Rに基づいて放射線画像を生成し、生成した放射線画像を表す画像データを出力する。本実施形態の放射線検出器28の種類は、特に限定されず、例えば、放射線Rを光に変換し、変換した光を電荷に変換する間接変換方式の放射線検出器であってもよいし、放射線Rを直接電荷に変換する直接変換方式の放射線検出器であってもよい。
 放射線照射部37は、放射線源37Rを備えている。図2Aに示すように放射線照射部37は、撮影台30及び圧迫ユニット36と共にアーム部32に設けられている。図2Aに示すように、放射線照射部37の下方にあたるアーム部32の被検者に近い位置には、フェイスガード38が着脱可能に設けられている。フェイスガード38は、放射線源37Rから出射された放射線Rから被検者を保護するための保護部材である。
 なお、図2Aに示すように本実施形態のマンモグラフィ装置10は、アーム部32と、基台34と、軸部35と、を備えている。アーム部32は、基台34によって、上下方向(Z軸方向)に移動可能に保持される。また、軸部35によりアーム部32が基台34に対して回転をすることが可能である。軸部35は、基台34に対して固定されており、軸部35とアーム部32とが一体となって回転する。
 軸部35及び圧迫ユニット36にそれぞれギアが設けられ、このギア同士の噛合状態・非噛合状態を切替えることにより、圧迫ユニット36と軸部35とが連結されて一体に回転する状態と、軸部35が圧迫ユニット36及び撮影台30と分離されて空転する状態とに切り替えることができる。なお、軸部35の動力の伝達・非伝達の切り替えは、上記ギアに限らず、種々の機械要素を用いることができる。
 アーム部32と撮影台30及び圧迫ユニット36は、軸部35を回転軸として、別々に、基台34に対して相対的に回転可能となっている。本実施形態では、基台34、アーム部32、撮影台30、及び圧迫ユニット36にそれぞれ係合部(図示省略)が設けられ、この係合部の状態を切替えることにより、アーム部32、撮影台30、及び圧迫ユニット36の各々が基台34に連結される。軸部35に連結されたアーム部32、撮影台30、及び圧迫ユニット36の一方または両方が、軸部35を中心に一体に回転する。
 圧迫ユニット36には、圧迫板40を上下方向(Z軸方向)に移動する圧迫板駆動部(図示省略)が設けられている。本実施形態の圧迫板40は、被検者の乳房を圧迫する機能を有する。圧迫板40の支持部46は、圧迫板駆動部に着脱可能に取り付けられ、圧迫板駆動部により上下方向(Z軸方向)に移動し、撮影台30との間で被検者の乳房を圧迫する。
 マンモグラフィ装置10においてトモシンセシス撮影を行う場合、放射線照射部37の放射線源37Rは、アーム部32の回転により連続的に、照射角度が異なる複数の照射位置の各々に移動される。図2Bには、トモシンセシス撮影の一例を説明するための図を示す。なお、図2Bでは、圧迫板40の図示を省略している。本実施形態では、図2Bに示すように放射線源37Rは、予め定められた角度θずつ照射角度が異なる照射位置39(k=0、1、・・・K、図2BではK=5)、換言すると放射線検出器28の検出面28Aに対する放射線Rの入射角度が異なる位置に移動される。各照射位置39において、コンソール12の指示により放射線源37Rから放射線Rが乳房Wに向けて照射され、放射線検出器28により放射線画像が撮影される。なお、以下では、トモシンセシス撮影において、照射角度が異なる複数の照射位置39において放射線検出器28により撮影された放射線画像を「投影画像」という。放射線画像撮影システム1では、放射線源37Rを照射位置39の各々に移動させて、各照射位置39で投影画像の撮影を行うトモシンセシス撮影を行った場合、K枚の投影画像が得られる。なお、以下では、投影画像や後述する低エネルギー画像及び高エネルギー画像等、複数種類の放射線画像について総称する場合、単に「放射線画像」という。
 なお、図2Bに示すように、放射線Rの入射角度とは、放射線検出器28の検出面28Aの法線CLと、放射線軸RCとがなす角度αのことをいう。また、ここでは、放射線検出器28の検出面28Aは、撮影面30Aに略平行な面とする。以下では、図2Bに示すように、トモシンセシス撮影における入射角度を異ならせる所定範囲を「入射角度範囲」という。入射角度範囲の具体的一例としては、放射線検出器28の検出面28Aの法線CLに対して±10度や±20度の範囲が挙げられる。なお、本実施形態では、放射線Rについて、「入射角度」と「照射角度」とは、同義としている。
 一方、マンモグラフィ装置10において、通常撮影を行う場合、放射線照射部37の放射線源37Rは、照射角度αが0度である照射位置39(法線方向に沿った照射位置39、図2Bでは照射位置39)のままとされる。コンソール12の指示により放射線源37Rから放射線Rが照射され、放射線検出器28により放射線画像が撮影される。
 一方、本実施形態のコンソール12は、無線通信LAN(Local Area Network)等を介してRIS(Radiology Information System)2等から取得した撮影オーダ及び各種情報と、操作部56等によりユーザにより行われた指示等とを用いて、マンモグラフィ装置10の制御を行う機能を有している。
 本実施形態のコンソール12は、一例として、サーバーコンピュータである。図3に示すように、コンソール12は、制御部50、記憶部52、I/F部54、操作部56、及び表示部58を備えている。制御部50、記憶部52、I/F部54、操作部56、及び表示部58はシステムバスやコントロールバス等のバス59を介して相互に各種情報の授受が可能に接続されている。
 本実施形態の制御部50は、コンソール12の全体の動作を制御する。制御部50は、CPU50A、ROM50B、及びRAM50Cを備える。ROM50Bには、CPU50Aで実行される、後述する撮影制御処理プログラム51A及び画像処理プログラム51Bを含む各種のプログラム等が予め記憶されている。RAM50Cは、各種データを一時的に記憶する。本実施形態のCPU50Aが、本開示のプロセッサの一例である。本実施形態の画像処理プログラム51Bが、本開示の画像処理プログラムの一例である。
 記憶部52には、マンモグラフィ装置10で撮影された放射線画像の画像データや、その他の各種情報等が記憶される。記憶部52の具体例としては、HDDやSSD等が挙げられる。
 操作部56は、放射線Rの照射指示を含む放射線画像の撮影等に関する指示や各種情報等をユーザが入力するために用いられる。操作部56は特に限定されるものではなく、例えば、各種スイッチ、タッチパネル、タッチペン、及びマウス等が挙げられる。表示部58は、各種情報を表示する。なお、操作部56と表示部58とを一体化してタッチパネルディスプレイとしてもよい。
 I/F部54は、無線通信または有線通信により、マンモグラフィ装置10及びRIS2との間で各種情報の通信を行う。本実施形態のコンソール12は、マンモグラフィ装置10で撮影された放射線画像の画像データを、I/F部54を介して無線通信または有線通信によりマンモグラフィ装置10から受信する。
 さらに、図4には、本実施形態のコンソール12の構成の一例の機能ブロック図を示す。図4に示すようにコンソール12は、制御部60を備える。一例として本実施形態のコンソール12は、制御部50のCPU50AがROM50Bに記憶されている撮影制御処理プログラム51Aを実行することにより、CPU50Aが制御部60として機能する。
 制御部60は、造影撮影の制御を行う機能を有し、具体的には、マンモグラフィ装置10による造影撮影における放射線Rの照射に関する制御を行う機能を有する。本実施形態では、造影撮影を行う場合、造影剤が注入された状態の乳房に放射線源37Rから第1のエネルギーの放射線を照射させて放射線画像の撮影を行う。また、造影剤が注入された状態の乳房に放射線源37Rから第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて放射線画像の撮影を行う。なお、本実施形態では、第1のエネルギーの放射線Rを照射させて撮影された放射線画像を「低エネルギー画像」といい、第2のエネルギーの放射線Rを照射させて撮影された放射線画像を「高エネルギー画像」という。
 例えば、造影撮影に用いられる造影剤として、k吸収端が32keVのヨード造影剤が一般的に用いられる。この場合の造影撮影では、ヨード造影剤のk吸収端よりも低い第1のエネルギーの放射線Rを照射させて低エネルギー画像の撮影を行う。また、ヨード造影剤のk吸収端よりも高い第2のエネルギーの放射線Rを照射させて高エネルギー画像の撮影を行う。
 そのため本実施形態の制御部60は、造影撮影において、放射線源37Rから第1のエネルギーの放射線Rを照射させる制御、及び第2のエネルギーの放射線Rを照射させる制御を行う。換言すると、制御部60は、マンモグラフィ装置10に低エネルギー画像を撮影させる制御、及び高エネルギー画像を撮影させる制御を行う。
 乳腺等の体組織と造影剤とでは、放射線の吸収特性が異なっている。そのため、上記のようにして撮影された高エネルギー画像には、乳腺や脂肪等の体組織が写っている他、造影剤が明瞭に写っている。また、低エネルギー画像には、造影剤がほとんど写っておらず、乳腺等の体組織が明瞭に写っている。従って、低エネルギー画像と高エネルギー画像との差分を示す差分画像は、乳腺構造が除去され造影剤が明瞭に写った画像とすることができる。
 また、本実施形態のマンモグラフィ装置10による造影撮影では、上述したように、通常撮影及びトモシンセシス撮影のいずれかが行われる。また、造影撮影における通常撮影には、単発撮影と、時系列撮影の2種類がある。単発撮影では、低エネルギー画像及び高エネルギー画像の各々を1回のみ撮影する。
 一方、時系列撮影では、低エネルギー画像及び複数の高エネルギー画像の各々を撮影することにより、乳房における造影剤が浸透する状態の変化を時系列で撮影する。例えば、腫瘍等の病変は乳腺よりも造影剤が浸透し易く、また、病変が悪性であるほど造影剤が早く浸透し、かつ造影剤がウオッシュアウトするのも早い傾向がある。そのため、時系列撮影を行うことにより、時系列で得られた複数の差分画像により、病変等の関心領域に浸透する造影剤の時間変化や浸透する量(造影量)の観察が可能になる。
 複数の差分画像を得るために本実施形態では、低エネルギー画像の撮影後、1秒等の所定時間が経過する毎に高エネルギー画像の撮影を行う。上述したように関心領域における造影量の時間変化の観察を行うため、造影剤が明瞭に写る高エネルギー画像は、時間変化に応じて撮影を行う必要がある。一方、体動を考慮しない場合、乳腺構造の状態の時間変化、特に造影撮影の撮影時間内における時間変化は微量であるため低エネルギー画像は、高エネルギー画像ほど頻繁に撮影する必要がない。そのため、本実施形態のマンモグラフィ装置10における時系列撮影では、低エネルギー画像の撮影回数を1回としている。なお、被検者の体動により乳腺構造の状態が変化する場合があるため、低エネルギー画像の撮影を複数回、行ってもよい。
 図5には、造影撮影かつ時系列撮影における低エネルギー画像70Lと高エネルギー画像70Hとの撮影タイミングの一例を示す。図5に示した例では、造影撮影を開始すると、まず低エネルギー画像70L(図5、70L参照)を撮影した後、所定時間が経過する毎に高エネルギー画像70H(図5、70H~70H参照)の撮影を、造影撮影時間が終了するまで繰り返し行う。このように、本実施形態のマンモグラフィ装置10では、造影撮影かつ時系列撮影の場合、1枚の低エネルギー画像70Lと複数枚の高エネルギー画像70Hとが撮影される。
 また、本実施形態のマンモグラフィ装置10における造影撮影かつトモシンセシス撮影の場合、放射線Rの照射位置39毎に、投影画像として低エネルギー画像及び高エネルギー画像の撮影が行われる。以下では、投影画像である低エネルギー画像を他の撮影において撮影された低エネルギー画像と区別する場合、「低エネルギー投影画像」という。同様に、投影画像である高エネルギー画像を他の撮影において撮影された高エネルギー画像と区別する場合、「高エネルギー投影画像」という。
 図6には、造影撮影かつトモシンセシス撮影における低エネルギー投影画像71Lと高エネルギー投影画像71Hとの撮影タイミングの一例を示す。図6に示した例では、照射位置39毎に、投影画像として低エネルギー投影画像71L(図6、71L~71L参照)と、高エネルギー投影画像71H(図6、71H~71H参照)の撮影が行われる。このように、本実施形態のマンモグラフィ装置10では、造影撮影かつトモシンセシス撮影の場合、照射位置39の数と同じ数の低エネルギー投影画像71L及び高エネルギー投影画像71Hとが撮影される。
 また、本実施形態のコンソール12は、取得部62、生成部64、導出部66、画像処理部68、及び表示制御部69を備える。一例として本実施形態のコンソール12は、制御部50のCPU50AがROM50Bに記憶されている画像処理プログラム51Bを実行することにより、CPU50Aが、取得部62、生成部64、導出部66、画像処理部68、及び表示制御部69として機能する。
 取得部62は、マンモグラフィ装置10によって撮影された低エネルギー画像及び高エネルギー画像を取得する機能を有する。具体的には、マンモグラフィ装置10の放射線検出器28により撮影された低エネルギー画像を表す画像データ及び高エネルギー画像を表す画像データを、I/F部24及びI/F部54を介して取得する。取得部62は、取得した低エネルギー画像及び高エネルギー画像を生成部64に出力する。
 単発撮影の場合、取得部62は、1枚の低エネルギー画像と、1枚の高エネルギー画像とを取得する。また、時系列撮影の場合、取得部62は、1枚の低エネルギー画像と、複数枚の高エネルギー画像とを取得する。また、トモシンセシス撮影の場合、取得部62は、投影画像である複数枚の低エネルギー画像と、投影画像である複数枚の高エネルギー画像とを取得する。
 生成部64は、低エネルギー画像と複数の高エネルギー画像の各々との差分を示す複数の差分画像を生成する機能を有する。単発撮影の場合、生成部64は、1枚の低エネルギー画像と、1枚の高エネルギー画像との差分画像を生成する。従って、単発撮影の場合、生成部64は、1枚の差分画像を生成する。
 一例として本実施形態では、低エネルギー画像と各高エネルギー画像との差分を導出することにより、差分画像を生成する。具体的には、生成部64は、低エネルギー画像70Lに所定の係数を乗算して得られた画像データを、高エネルギー画像70Hに所定の係数を乗算して得られた画像データから対応する画素毎に減算することにより、乳腺組織を除去し、造影剤が明瞭に写った差分画像を表す差分画像データを生成する。単発撮影の場合、生成部64は、生成した差分画像を表す画像データを導出部66及び画像処理部68に出力する。
 また、時系列撮影の場合、生成部64は、1枚の低エネルギー画像と、複数枚の高エネルギー画像の各々との差分画像を生成する。一例として本実施形態では、図7Aに示すように生成部64は、単発撮影の場合と同様に、低エネルギー画像70Lと高エネルギー画像70Hとの差分画像72を生成する。また、生成部64は、低エネルギー画像70Lと高エネルギー画像70Hとの差分画像72を生成し、低エネルギー画像70Lと高エネルギー画像70Hとの差分画像72を生成し、低エネルギー画像70Lと高エネルギー画像70Hとの差分画像72を生成する。このように、時系列撮影の場合、生成部64は、高エネルギー画像の枚数と同じ数の差分画像を生成する。時系列撮影の場合、生成部64は、生成した差分画像を表す画像データを導出部66及び画像処理部68に出力する。
 なお、生成部64が差分画像を生成する方法は、上述した方法に限定されない。例えば、低エネルギー画像と高エネルギー画像との差分に、高エネルギー画像同士の差分を加算することにより、差分画像を生成してもよい。具体的には、図7Bに示すように、生成部64は、上述したように、低エネルギー画像70Lと高エネルギー画像70Hとの差分画像72を生成する。また、生成部64は、高エネルギー画像70Hと高エネルギー画像70Hとの差分を示す画像を差分画像72に加算することにより差分画像72を生成し、高エネルギー画像70Hと高エネルギー画像70Hとの差分を示す画像を差分画像72に加算することにより差分画像72を生成し、高エネルギー画像70Hと高エネルギー画像70Hとの差分を示す画像を差分画像72に加算することにより差分画像72を生成する。
 また、トモシンセシス撮影の場合、生成部64は、投影画像毎に差分画像を生成する。すなわち、照射位置39毎に、低エネルギー投影画像と高エネルギー投影画像との差分画像を生成する。一例として本実施形態では、図8に示すように生成部64は、単発撮影の場合と同様に、照射位置39では、低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成する。また、生成部64は、低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成し、低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成し、低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成する。また、生成部64は、低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成する。従って、トモシンセシス撮影の場合、生成部64は、照射位置39の数と同じ数の差分画像73を生成する。生成された差分画像73は、投影画像に相当する。本実施形態の差分画像73が、本開示の投影差分画像の一例である。
 さらに、トモシンセシス撮影の場合、生成部64は、生成した一連の差分画像73を再構成し、予め定められたスライス厚の、一連の断層画像74を生成する。図8では、一連の差分画像73から、f枚の断層画像(断層画像74~74)を生成した形態を示している。なお、生成部64が断層画像74を生成する方法は、特に限定されない。例えば、FBP(Filter Back Projection)法や逐次近似再構成法等の逆投影法により再構成を行ってもよく、公知の技術を適用することができる。また、生成する断層画像74のスライス厚も特に限定されず、例えば、関心物の大きさ、放射線画像の画質、生成における演算処理の処理負荷、及びユーザからの指示等に応じて定めることができる。このようにして生成部64により生成された断層画像74は、差分画像に相当し、乳腺構造が除去され造影剤が明瞭に写った画像とすることができる。トモシンセシス撮影の場合、生成部64は、生成した断層画像74を表す画像データを導出部66及び画像処理部68に出力する。
 導出部66は、生成部64が生成した差分画像の造影量に関する造影量情報を導出する機能を有する。造影量情報とは、造影量を表す数値、及び造影量のヒートマップ等が挙げられる。また、造影量情報は、生成部64により生成された差分画像であってもよい。造影量情報をどのような形態の情報とするかは、予め定められていてもよいし、ユーザによる選択または指示が可能であってもよい。
 造影量情報が造影量を表す数値として、関心領域の造影量を表す数値である場合、導出部66は、まず差分画像から関心領域を特定する。なお、導出部66が差分画像から関心領域を特定する方法は特に限定されない。例えば、ユーザによって入力された関心領域に関する情報を受け付けることにより、差分画像から関心領域を特定してもよい。具体的には、表示部58に差分画像、低エネルギー画像、及び高エネルギー画像のうちの少なくとも1つの画像を表示させ、表示させた画像に対してユーザが操作部56を操作することによって指定した領域を関心領域に関する情報として受け付けてもよい。また例えば、導出部66は、差分画像に対してCAD(Computer Aided Diagnosis)を適用することで関心領域を特定してもよい。
 差分画像における画素の画素値は、造影量に対応している。そのため、差分画像の画素値から造影量を導出することができる。導出部66は、特定した関心領域に対応する画像の画素の画素値に基づいて、造影量を導出する。なお、導出部66は、関心領域全体の造影量の合計値、平均値、中央値、及び最大値等のいずれを導出してもよく、いずれを導出するかについては、予め定められていてもよいし、ユーザによる指定が可能であってもよい。また、導出部66は、関心領域にかかわらず、造影量を表す数値を導出してもよい。例えば、導出部66は、差分画像等に対してユーザが指示した位置または領域の造影量を表す数値を導出してもよい。また、例えば、導出部66は、特定した関心領域外の領域の造影量を表す数値を導出してもよい。
 また、造影量情報が造影量のヒートマップである場合、導出部66は、差分画像全体の造影量を導出し、導出した造影量の値を色や濃淡として表現したヒートマップを生成する。なお、造影量が閾値を超えた場合のみ、ヒートマップに表す形態としてもよい。また、上述したように差分画像の画素値は、造影量と対応しているため、導出部66は、造影量を導出せずに、差分画像の画素値に基づいてヒートマップを生成してもよい。
 また、造影量情報が差分画像である場合、導出部66は、生成部64により生成された差分画像を造影量情報とする。なお、造影量情報とする差分画像は、画像処理部68により画像処理が施された差分画像に相当するものでなければよく、生成部64により生成された差分画像そのものでなくてもよい。換言すると、造影量情報とする差分画像は、生成部64により生成された差分画像における造影量が現れた画像であればよい。そのため、例えば、導出部66は、生成部64により生成された差分画像に対し、散乱線成分及び斜入成分等のアーチファクトを除去する補正を行い、補正された差分画像を造影量情報として導出してもよい。なお、この場合のアーチファクトを除去する技術としては、例えば、国際公開2020/059306号等に記載されている技術を適用することができる。
 このようにして導出部66が導出した造影量情報は、表示制御部69に出力される。
 画像処理部68は、差分画像を強調する画像処理を行う機能を有する。画像処理部68が行う画像処理としては、例えば、階調強調処理や周波数強調処理等が挙げられる。本実施形態の画像処理部68は、生成部64により生成された差分画像に対しヒストグラム解析等の解析を行い、階調強調処理及び周波数強調処理のいずれの画像処理を行うか、また、強調の度合いを特定する。画像処理部68は、特定した画像処理及び強調の度合いに応じた画像処理を差分画像に対して行う。なお、画像処理部68は、差分画像から関心領域を特定し、特定した関心領域を強調する画像処理を行うことが好ましい。画像処理部68が関心領域を特定する方法は特に限定されず、上述した導出部66が関心領域を特定する方法と同様としてもよい。このようにして画像処理部68は、差分画像、特に差分画像における関心領域を強調するため、画像処理後の差分画像が表す造影量は、実際の造影量と異なる場合がある。
 このようにして画像処理部68が生成した画像処理後の差分画像を表す画像データは、表示制御部69に出力される。
 表示制御部69は、導出部66により導出された造影量情報と、画像処理部68により生成された画像処理後の差分画像とを表示部58に表示させる機能を有する。換言すると、表示制御部69は、画像処理部68による画像処理前の差分画像の造影量に関する造影量情報と、画像処理後の差分画像とを表示部58に表示させる機能を有する。
 次に、本実施形態の放射線画像撮影システム1による造影撮影におけるコンソール12の作用について図面を参照して説明する。
 図9には、本実施形の放射線画像撮影システム1による造影撮影の流れの一例を表したフローチャートが示されている。造影撮影を行う場合、まず、図9のステップS10に示すようにユーザは、被写体となる乳房に造影剤を注入する。次にステップS12に示すようにユーザは、マンモグラフィ装置10の撮影台30に被検者の乳房をポジショニングし、圧迫板40により乳房を圧迫する。
 次にステップS14で、マンモグラフィ装置10により低エネルギー画像及び高エネルギー画像を撮影するための、図10に示した放射線画像撮影処理がコンソール12により行われる。本実施形態のコンソール12は、一例として、制御部50のCPU50Aが、ROM50Bに記憶されている撮影制御処理プログラム51Aを実行することにより、図10に一例を示した放射線画像撮影処理を実行する。図10には、本実施形態のコンソール12において実行される放射線画像撮影処理の流れの一例を表したフローチャートが示されている。
 図10のステップS100で制御部60は、実施する撮影の種類が、トモシンセシス撮影であるか否か判定する。制御部60は、撮影メニューに設定されている撮影の種類がトモシンセシス撮影ではない場合、換言すると撮影メニューに設定されている撮影の種類が単発撮影またはトモシンセシス撮影である場合、ステップS100の判定が否定判定となり、ステップS102へ移行する。
 ステップS102で制御部60は、放射線Rの照射指示を受け付けたか否かを判定する。照射指示を受け付けるまでステップS102の判定が否定判定となる。一方、照射指示を受け付けるとステップS102の判定が肯定判定となり、ステップS104へ移行する。
 ステップS104で制御部60は、実施する撮影の種類が、時系列撮影であるか否か判定する。制御部60は、撮影メニューに設定されている撮影の種類が時系列撮影ではない場合、換言すると撮影メニューに設定されている撮影の種類が単発撮影である場合、ステップS104の判定が否定判定となり、ステップS106へ移行する。
 ステップS106で制御部60は、図11Aに示した単発撮影処理を実行する。図11Aに示した単発撮影処理のステップS150で制御部60は、第1のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第1のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により低エネルギー画像が撮影される。
 次のステップS152で制御部60は、第2のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第2のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により高エネルギー画像が撮影される。ステップS152の処理が終了すると、本単発撮影処理が終了する。単発撮影処理が終了すると、図10に示した放射線画像撮影処理のステップS106が終了し、放射線画像撮影処理が終了する。なお、本実施形態では、低エネルギー画像を撮影した後、高エネルギー画像を撮影する形態について説明したが、低エネルギー画像と高エネルギー画像との撮影順序は逆であってもよい。すなわち、単発撮影処理におけるステップS150の処理とステップS152の処理との順序を入れ替えてもよい。
 一方、実施する撮影の種類が時系列撮影の場合、放射線画像撮影処理のステップS104の判定が肯定判定となり、ステップS108へ移行する。
 ステップS108で制御部60は、図11Bに示した時系列撮影処理を実行する。図11Bに示した時系列撮影処理のステップS160で制御部60は、第1のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第1のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により低エネルギー画像が撮影される。
 次のステップS162で制御部60は、所定時間が経過したか否かを判定する。所定時間が経過するまでステップS162の判定が否定判定となる。一方、所定時間が経過するとステップS162の判定が肯定判定となり、ステップS164へ移行する。
 ステップS164で制御部60は、第2のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第2のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により高エネルギー画像が撮影される。
 次のステップS166で制御部60は、時系列撮影を終了するか否かを判定する。予め定められた終了条件を満たすまで、ステップS166の判定が否定判定となり、ステップS162に戻り、上記ステップS162及びS164の処理を繰り返す。一方、終了条件を満たした場合、ステップS166の判定が肯定判定となり、時系列撮影処理を終了する。なお、終了条件は限定されない。終了条件としては、例えば、乳房に造影剤を注入してからの経過時間が撮影時間として定められた時間を経過した場合、放射線Rの照射を開始してからの経過時間が造影撮影における照射時間の累計時間として定められた時間を経過した場合、放射線画像の撮影回数が所定回数に達した場合、及びユーザから撮影終了の指示を受け付けた場合等に終了するとした条件等が挙げられる。また、終了条件としては、制御部60が撮影した放射線画像を解析した結果、造影量が変化しなくなった場合に終了するとした条件が挙げられる。具体的には、高エネルギー画像同士の差分が閾値以下となった場合、特に高エネルギー画像における関心領域の画素値の差分が閾値以下となった場合終了するとした条件としてもよい。時系列撮影処理が終了すると、図10に示した放射線画像撮影処理のステップS108が終了し、放射線画像撮影処理が終了する。
 一方、実施する撮影の種類がトモシンセシス撮影の場合、放射線画像撮影処理のステップS100の判定が肯定判定となり、ステップS110へ移行する。
 ステップS110で制御部60は、図11Cに示したトモシンセシス撮影処理を実行する。
 図11Cに示したトモシンセシス撮影処理のステップS170で制御部60は、放射線の照射を開始する開始位置となる照射位置39に放射線源37Rを移動させる。
 次のステップS172で制御部60は、上記放射線画像撮影処理のステップS102と同様に、放射線Rの照射指示を受け付けたか否かを判定する。照射指示を受け付けるまでステップS172の判定が否定判定となる。一方、照射指示を受け付けるとステップS172の判定が肯定判定となり、ステップS174へ移行する。
 ステップS174で制御部60は、第1のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第1のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により低エネルギー画像が撮影される。
 次のステップS176で制御部60は、第2のエネルギーの放射線Rを照射させるための指示を、マンモグラフィ装置10に出力する。マンモグラフィ装置10では、コンソール12から入力された指示に基づいて制御部20が、放射線源37Rから第2のエネルギーの放射線Rを乳房に向けて照射させ、放射線検出器28により高エネルギー画像が撮影される。
 次のステップS178で制御部60は、トモシンセシス撮影を終了するか否かを判定する。放射線源37Rの位置が未だ最後の照射位置39に対応する位置にはない場合、ステップS178の判定が否定判定となり、ステップS180へ移行する。
 ステップS180で制御部60は、次の照射位置39に放射線源37Rを移動させた後、ステップS174に戻り、ステップS174~S178の処理を繰り返す。一方、放射線源37Rの位置が最後の照射位置39に対応する位置にある場合、ステップS178の判定が肯定となり、ステップS182へ移行する。ステップS182で制御部60は、照射角度αが0度である照射位置39(法線方向に沿った照射位置39、図2Bでは照射位置39)の位置に放射線源37Rを移動させる。ステップS182の処理が終了すると、トモシンセシス撮影が終了する。トモシンセシス撮影が終了すると、図10に示した放射線画像撮影処理のステップS110が終了し、放射線画像撮影処理が終了する。なお、本実施形態では、上述した単発撮影と同様に、低エネルギー画像を撮影した後、高エネルギー画像を撮影する形態について説明したが、低エネルギー画像と高エネルギー画像との撮影順序は逆であってもよい。すなわち、トモシンセシス撮影処理におけるステップS174の処理とステップS176の処理との順序を入れ替えてもよい。
 このようにして図10に示した放射線画像撮影処理が終了すると、造影撮影が終了し、図9に示したステップS14の処理が終了する。
 次にステップS16でコンソール12により、図12に示した差分画像生成表示処理が行われる。本実施形態のコンソール12は、一例として、制御部50のCPU50Aが、ROM50Bに記憶されている画像処理プログラム51Bを実行することにより、図12に一例を示した差分画像生成表示処理を実行する。図12には、本実施形態のコンソール12において実行される差分画像生成表示処理の流れの一例を表したフローチャートが示されている。
 ステップS200で取得部62は、上述したように、マンモグラフィ装置10から、造影撮影により撮影された低エネルギー画像及び高エネルギー画像を取得する。具体的には、実施された撮影の種類がトモシンセシス撮影である場合、上述したように低エネルギー投影画像及び高エネルギー投影画像を取得する。なお、取得部62が低エネルギー画像及び高エネルギー画像を取得するタイミングは限定されない。例えば、低エネルギー画像及び高エネルギー画像の各々が撮影される毎に、マンモグラフィ装置10から低エネルギー画像及び高エネルギー画像を取得してもよい。また例えば、全ての低エネルギー画像及び高エネルギー画像の撮影が終了した後、マンモグラフィ装置10の記憶部22に記憶されている低エネルギー画像及び高エネルギー画像を取得してもよい。また、低エネルギー画像及び高エネルギー画像を取得する順序も限定されるものではない。
 次のステップS202で生成部64は、実施された撮影の種類がトモシンセシス撮影であったか否かを判定する。実施された撮影の種類がトモシンセシス撮影ではない場合、換言すると実施された撮影の種類が単発撮影または時系列撮影である場合、ステップS202の判定が否定判定となり、ステップS204へ移行する。
 ステップS204で生成部64は、上述したように、上記ステップS200で取得した低エネルギー画像及び高エネルギー画像から差分画像を生成した後、ステップS210へ移行する。上述したように、実施された撮影の種類が単発撮影の場合、生成部64は、1枚の差分画像を生成する。また、実施された撮影の種類が時系列撮影の場合、生成部64は、上記ステップS200で取得した高エネルギー画像と同じ数の複数の差分画像を生成する。
 一方、実施された撮影の種類がトモシンセシス撮影である場合、ステップS202の判定が肯定判定となり、ステップS206へ移行する。ステップS206で生成部64は、上述したように、照射位置39毎に、上述したように、投影画像の差分画像を生成する。具体的には、生成部64は、照射位置39毎に、低エネルギー投影画像及び高エネルギー投影画像から差分画像を生成する。
 次のステップS208で生成部64は、上述したように上記ステップS206で生成した複数の差分画像を再構成して断層画像を生成した後、ステップS210へ移行する。
 ステップS210で導出部66は、上述したように差分画像から関心領域を特定する。実施された撮影の種類が単発撮影または時系列撮影の場合、導出部66は、上記ステップS204で生成した差分画像から関心領域を特定する。一方、実施された撮影の種類がトモシンセシス撮影の場合、導出部66は、上記ステップS208で生成した断層画像から関心領域を特定する。
 次のステップS212で導出部66は、上述したように造影量情報を導出する。実施された撮影の種類が単発撮影または時系列撮影の場合、導出部66は、上記ステップS204で生成した差分画像から造影量情報を導出する。
 一方、実施された撮影の種類がトモシンセシス撮影の場合、導出部66は、上記ステップS208で生成した断層画像から造影量情報を導出する。図13Aを参照して断層画像74から造影量情報として造影量を表す数値を導出する形態について説明する。断層画像74から造影量情報として造影量を表す数値を導出する場合、導出部66は、一連の断層画像74の各々について、各断層画像74から造影量を表す数値を導出してもよい。図13Aに示した例では、導出部66は、G枚の断層画像74(74~74)の各々について造影量を表す数値を導出してもよい。また、導出部66は、図13Aにおいて矢印で表される放射線Rが透過する透過方向rの透過経路における造影量の合計値を導出してもよい。
 また、導出部66は、造影量を表す数値として関心領域における造影剤の密度を導出してもよい。図13Bには、生成部64が、g(G>g)枚の断層画像74(74~74)を生成した場合の一例が示されている。図13Aに示した例と、図13Bに示した例では、図13Aにおける乳房WAの厚みよりも図13Bにおける乳房WBの厚みの方が薄い。図13Aに示した例と図13Bに示した例とでは、スライス厚が同じであるため、乳房WBに対する断層画像74の枚数gの方が、乳房WAに対する断層画像74の枚数Gよりも少ない。また、関心領域75Bの方が、関心領域75Aよりも透過方向rにおける長さが短い。そのため、関心領域75A及び関心領域75Bの密度が同じ場合であっても、透過経路における造影量の合計値は、関心領域75Aと関心領域75Bとで異なる。このように透過経路における造影量の合計値からは関心領域の密度がわからない。そのため、透過経路における造影量の合計値からh、病変等である関心領域の造影量の浸透具合がわかり難い。そこで、導出部66は、造影量情報として、関心領域における造影量の密度を導出してもよい。例えば、導出部66は、特定した関心領域の画像が写る断層画像74の位置を特定し、特定した断層画像74の位置から関心領域の透過方向rの長さを導出し、透過経路における造影量の合計値を関心領域の長さで割ることにより造影量の密度を導出してもよい。
 次のステップS214で画像処理部68は、上述したように画像処理を行う。実施された撮影の種類が単発撮影または時系列撮影の場合、画像処理部68は、上記ステップS204で生成した差分画像を強調する画像処理を行う。一方、実施された撮影の種類がトモシンセシス撮影の場合、画像処理部68は、上記ステップS208で生成した断層画像を強調する画像処理を行う。
 次のステップS216で表示制御部69は、上述したように、上記ステップS212で導出した造影量情報と、上記ステップS214における画像処理後の差分画像を表示部58に表示させる制御を行った後、本差分画像生成表示処理を終了する。
 図14Aには、造影量情報及び画像処理後の差分画像を表示部58に表示させた状態の一例を示す。図14Aには、造影量情報として画像処理前の差分画像80Aを表示させる場合の一例を示す。図14Aに示すように、本実施形態の表示制御部69は、画像処理後の差分画像82及び画像処理前の差分画像80Aを表示部58に表示させる。また、図14Aに示すように、表示制御部69は、被写体となった乳房について、一般撮影により撮影された放射線画像84、換言すると造影剤が注入されていない状態で撮影された放射線画像84が存在する場合、比較例として放射線画像84も表示部58に表示させる。なお、図14Aに示した例では、画像処理前の差分画像80Aと画像処理後の差分画像82とを並べて表示させた形態を示したが、画像処理前の差分画像80Aと画像処理後の差分画像82のいずれか一方を表示させ、ユーザの指示に応じて表示させる画像を切り替える形態としてもよい。なお、実施された撮影の種類が時系列撮影の場合、画像処理前の差分画像80Aとして、生成部64によって生成された複数の差分画像を時系列順に連続して動画として表示させてもよい。なお、本実施形態において、「動画」とは、静止画を高速に次々と表示して、動画として認知させることをいう。従って、表示における「高速」の度合いによって、いわゆる「コマ送り」も動画に包含されるものとする。また、実施された撮影の種類がトモシンセシス撮影の場合、ユーザが指定した断層位置が切り替わると、表示部58に表示されている断層位置に応じた画像処理前の差分画像80A(断層画像)と画像処理後の差分画像82(断層画像)とに表示を切り替える形態としてもよい。
 また、図14Bには、造影量情報としてヒートマップ80Bを表示させる場合の一例を示す。図14Bに示した例では、画像処理後の差分画像82にヒートマップ80Bを重畳させて表示させた形態の一例を示す。また、図14Cには、造影量情報としてヒートマップ80Bを表示させる場合の他のを示す。図14Cに示した例では、低エネルギー画像85にヒートマップ80Bを重畳させて表示させた形態の一例を示す。低エネルギー画像85にヒートマップ80Bを重畳させて表示させることにより、乳腺構造と造影量との関係を分かり易く表示させることができる。
 さらに図14Dには、造影量情報として造影量を表す数値80Cを表示させる場合の一例を示す。図14Cに示した例では、画像処理後の差分画像82においてユーザが指示(図14、白抜き矢印参照)した関心領域の造影量を表す数値(図14、「150」参照)を表示させた形態の一例を示す。
 このようにして図12に示した差分画像生成表示処理が終了すると、図9に示したステップS16の差分画像生成表示処理が終了する。これにより、本実施形態の放射線画像撮影システム1における造影撮影に係わる一連の処理が終了する。なお、本実施形態のマンモグラフィ装置10により撮影された低エネルギー画像及び複数の高エネルギー画像、コンソール12により生成された複数の差分画像、断層画像、及び造影量情報等は、コンソール12の記憶部52や、PACS(Picture Archiving and Communication Systems)等に記憶させておく形態としてもよい。
 また、上記形態では、図9のS14の処理である放射線画像撮影処理、換言すると造影撮影が終了した後、続けて差分画像生成表示処理を行う形態を示したが、差分画像生成表示処理を行うタイミング、すなわち、差分画像を生成したり、差分画像を表示したりするタイミングは本形態に限定されない。例えば、差分画像の生成及び差分画像の表示各々のタイミングは、造影撮影後のユーザの所望に応じたタイミングで行う形態であってもよい。
 以上説明したように、上記各形態のコンソール12は、少なくとも1つのプロセッサとしてCPU50Aを備える。CPU50Aは、造影剤が注入された状態の乳房に第1のエネルギーの放射線Rを照射させてマンモグラフィ装置10に撮影させた低エネルギー画像と、造影剤が注入された状態の乳房に第1のエネルギーよりも高い第2のエネルギーの放射線Rを照射させてマンモグラフィ装置10に撮影させた高エネルギー画像とを取得する。また、CPU50Aは、低エネルギー画像と高エネルギー画像との差分を示す差分画像を生成する。また、CPU50Aは、差分画像を強調する画像処理を行う。また、CPU50Aは、画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報と、を表示させる。
 このように本実施形態のコンソール12によれば、差分画像を強調する画像処理後の差分画像と、画像処理前の差分画像の造影量に関する造影量情報とを表示させる。画像処理後の差分画像は、乳腺構造が除去され、また造影剤が強調されて見易くなった画像である。一方、画像処理前の差分画像の造影量に関する造影量情報は、画像処理による影響を受けていない、または画像処理による影響が除外された造影量を表す情報であるため、精度良い造影量が与えられる。従って、本実施形態のコンソール12によれば、造影剤が観察し易くかつ造影量の評価を容易に行うことができる。
 なお、上記形態では、差分画像を強調する画像処理として画像処理部68は、生成部64が生成した差分画像に対して画像処理を行う形態について説明したが、画像処理部68が画像処理を行う対象は差分画像に限定されない。例えば、画像処理部68は、低エネルギー画像及び高エネルギー画像の各々に画像処理を行ってもよい。この場合、生成部64が、画像処理後の低エネルギー画像と画像処理後の高エネルギー画像との差分を示す差分画像を生成することで、生成された差分画像を、上記形態と同様に強調された状態とすることができる。
 また、上記形態では、導出部66が画像処理前の差分画像から造影量情報を生成する形態について説明したが、造影量情報を生成する方法は本形態に限定されない。例えば、導出部66が、画像処理部68による画像処理後の差分画像から導出した造影量から、画像処理による影響を除去することにより画像処理前の差分画像の造影量に関する造影量情報を導出する形態としてもよい。
 また、上記形態では、撮影の種類がトモシンセシス撮影の場合、図8を参照して説明したように、生成部64は、各低エネルギー投影画像71Lと高エネルギー投影画像71Hとの差分画像73を生成し、生成した複数の差分画像73を再構成して断層画像74を生成する形態について説明したが断層画像の生成方法は本形態に限定されない。例えば、低エネルギー画像を再構成して生成した断層画像と、高エネルギー画像を再構成して生成した断層画像との差分画像を生成する形態としてもよい。この場合の例を図15を参照して詳細に説明する。図15に示した例では、生成部64は、低エネルギー投影画像71L((図15、71L~71L参照)を再構成して断層画像74L(図15、74L~74L参照)を生成する。また、生成部64は、高エネルギー投影画像71H(図15、71H~71参照)を再構成して断層画像74H(図15、74H~74H)を生成する。そして生成部64は、対応するスライス位置の断層画像74Lと断層画像74Hとの差分を示す差分画像である断層画像74(図15、74~74参照)を生成する。本処理により、上記形態と同様に、断層画像74が生成される。本形態の断層画像74Lが、本開示の低エネルギー断層画像の一例であり、本形態の断層画像74Hが、本開示の高エネルギーの断層画像の一例である。
 また、上記形態では、撮影の種類がトモシンセシス撮影について、照射位置39において、第1のエネルギーの放射線Rを照射して低エネルギー画像を撮影し、また第2のエネルギーの放射線Rを照射して高エネルギー画像を撮影すると次の照射位置39に移動する動作を繰り返す形態について説明したがトモシンセシス撮影の方法は本形態に限定されない。例えば、各照射位置39において第1のエネルギーの放射線Rを照射させて低エネルギー画像を撮影した後、各照射位置39において第2のエネルギーの放射線Rを照射させて高エネルギー画像を撮影する形態としてもよい。
 また、上記形態では、本開示の被写体の一例として乳房を適用し、本開示の放射線画像撮影装置の一例として、マンモグラフィ装置10を適用した形態について説明したが、被写体は乳房に限定されず、また放射線画像撮影装置はマンモグラフィ装置に限定されない。例えば、被写体は胸部や腹部等であってもよいし、放射線画像撮影装置はマンモグラフィ装置以外の放射線画像撮影装置を適用する形態であってもよい。
 また、上記形態では、コンソール12が本開示の画像処理装置の一例である形態について説明したが、コンソール12以外の装置が本開示の画像処理装置の機能を備えていてもよい。換言すると、制御部60、取得部62、生成部64、導出部66、画像処理部68、及び表示制御部69の機能の一部または全部をコンソール12以外の、例えばマンモグラフィ装置10や、外部の装置等が備えていてもよい。
 また、上記形態において、例えば、制御部60、取得部62、生成部64、導出部66、画像処理部68、及び表示制御部69といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 また、上記各実施形態では、撮影制御処理プログラム51A及び画像処理プログラム51BがROM50Bに予め記憶(インストール)されている態様を説明したが、これに限定されない。撮影制御処理プログラム51A及び画像処理プログラム51Bの各々は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、撮影制御処理プログラム51A及び画像処理プログラム51Bの各々は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 2020年9月28日出願の日本国特許出願2020-162696号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1 放射線画像撮影システム
2 RIS
10 マンモグラフィ装置
12 コンソール
20、50 制御部
22、52 記憶部
24、54 I/F部
26、56 操作部
28 放射線検出器、28A 検出面
30 撮影台、30A 撮影面
32 アーム部
34 基台
35 軸部
36 圧迫ユニット
37 放射線照射部、37R 放射線源
38 フェイスガード
39、39 照射位置
40 圧迫板
46 支持部
50A CPU、50B ROM、50C RAM
51A 照射制御処理プログラム、51B 画像処理プログラム
58 表示部
59 バス
60 制御部
62 取得部
64 生成部
66 導出部
68 画像処理部
69 表示制御部
70L、70L 低エネルギー画像
71L~71L 低エネルギー投影画像(低エネルギー画像)
70H~70H 高エネルギー画像
71H~71H 高エネルギー投影画像(高エネルギー画像)
72~72、73~73  差分画像
74、74、74、74、74、74G-2、74G-1、74、74g-2、74g-1、74、74L、74L、74L、74H、74H、74H  断層画像
75A、75B 関心領域
80A 画像処理前の差分画像:造影量情報
80B ヒートマップ:造影量情報
80C 造影量を表す数値:造影量情報
82 画像処理後の差分画像:造影量情報
84 放射線画像
85 低エネルギー画像
CL 法線
r 透過方向
R 放射線
RC 放射線軸
W、WA、WB 乳房
α、θ 角度

Claims (13)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、前記造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて前記放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、
     前記低エネルギー画像と前記高エネルギー画像との差分を示す差分画像を生成し、
     前記差分画像を強調する画像処理を行い、
     前記画像処理後の差分画像と、前記画像処理前の差分画像の造影量に関する造影量情報と、を表示させる
     画像処理装置。
  2.  前記造影量情報は、造影量を表す数値である
     請求項1に記載の画像処理装置。
  3.  前記造影量情報は、造影量のヒートマップであり、
     前記プロセッサは、
     前記画像処理後の差分画像に、前記ヒートマップを重ねて表示させる
     請求項1に記載の画像処理装置。
  4.  前記造影量情報は、前記画像処理前の差分画像である
     請求項1に記載の画像処理装置。
  5.  前記プロセッサは、
     前記造影量情報を、前記画像処理前の差分画像から導出する
     請求項1から請求項4のいずれか1項に記載の画像処理装置。
  6.  前記プロセッサは、
     前記造影量情報を、前記画像処理後の差分画像から導出した造影量に関する情報から、前記画像処理の影響を除外することにより導出する
     請求項1から請求項4のいずれか1項に記載の画像処理装置。
  7.  前記プロセッサは、
     複数の前記高エネルギー画像を前記放射線画像撮影装置に撮影させ、撮影された複数の高エネルギー画像を取得し、
     前記複数の高エネルギー画像毎に、前記差分画像を生成する
     請求項1から請求項6のいずれか1項に記載の画像処理装置。
  8.  前記放射線画像撮影装置は、前記被写体に対して異なる複数の照射角度の各々から、放射線を照射して前記複数の照射角度毎に前記低エネルギー画像及び前記高エネルギー画像を撮影するトモシンセシス撮影が可能であり、
     前記プロセッサは、
     複数の前記低エネルギー画像を再構成して生成した低エネルギー断層画像と、複数の前記高エネルギー画像を再構成して生成した高エネルギーの断層画像と、の差分を示す差分画像を前記差分画像として生成する
     請求項1から請求項6のいずれか1項に記載の画像処理装置。
  9.  前記放射線画像撮影装置は、前記被写体に対して異なる複数の照射角度の各々から、放射線を照射して前記複数の照射角度毎に前記低エネルギー画像及び前記高エネルギー画像を一対の投影画像として撮影するトモシンセシス撮影が可能であり、
     前記プロセッサは、
     前記照射角度毎に、前記一対の投影画像の差分を示す投影差分画像を生成し、
     生成した複数の投影差分画像を再構成した断層画像を前記差分画像として生成する
     請求項1から請求項6のいずれか1項に記載の画像処理装置。
  10.  前記プロセッサは、
     前記断層画像から関心領域の、前記放射線が透過する透過方向の長さを導出し、
     前記造影量情報として、導出した前記関心領域の長さに基づいて前記関心領域における造影剤の密度を導出する
     請求項8または請求項9に記載の画像処理装置。
  11.  前記被写体は、乳房であり、
     前記放射線画像撮影装置は、マンモグラフィ装置である
     請求項1から請求項10のいずれか1項に記載の画像処理装置。
  12.  造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、前記造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて前記放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、
     前記低エネルギー画像と前記高エネルギー画像との差分を示す差分画像を生成し、
     前記差分画像を強調する画像処理を行い、
     前記画像処理後の差分画像と、前記画像処理前の差分画像の造影量に関する造影量情報と、を表示させる
     処理をコンピュータが実行する画像処理方法。
  13.  造影剤が注入された状態の被写体に第1のエネルギーの放射線を照射させて放射線画像撮影装置に撮影させた低エネルギー画像と、前記造影剤が注入された状態の被写体に第1のエネルギーよりも高い第2のエネルギーの放射線を照射させて前記放射線画像撮影装置に撮影させた高エネルギー画像とを取得し、
     前記低エネルギー画像と前記高エネルギー画像との差分を示す差分画像を生成し、
     前記差分画像を強調する画像処理を行い、
     前記画像処理後の差分画像と、前記画像処理前の差分画像の造影量に関する造影量情報と、を表示させる
     処理をコンピュータに実行させるための画像処理プログラム。
PCT/JP2021/031597 2020-09-28 2021-08-27 画像処理装置、画像処理方法、及び画像処理プログラム WO2022064957A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022551223A JPWO2022064957A1 (ja) 2020-09-28 2021-08-27
EP21872089.4A EP4218587A4 (en) 2020-09-28 2021-08-27 IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, AND IMAGE PROCESSING PROGRAM
US18/177,402 US20230200770A1 (en) 2020-09-28 2023-03-02 Image processing apparatus, image processing method, and image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020162696 2020-09-28
JP2020-162696 2020-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,402 Continuation US20230200770A1 (en) 2020-09-28 2023-03-02 Image processing apparatus, image processing method, and image processing program

Publications (1)

Publication Number Publication Date
WO2022064957A1 true WO2022064957A1 (ja) 2022-03-31

Family

ID=80846366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031597 WO2022064957A1 (ja) 2020-09-28 2021-08-27 画像処理装置、画像処理方法、及び画像処理プログラム

Country Status (4)

Country Link
US (1) US20230200770A1 (ja)
EP (1) EP4218587A4 (ja)
JP (1) JPWO2022064957A1 (ja)
WO (1) WO2022064957A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336517A (ja) * 1995-06-12 1996-12-24 Konica Corp 画像処理装置
JP2003224775A (ja) * 2002-11-08 2003-08-08 Konica Corp 時系列処理画像の表示装置
JP2014503331A (ja) * 2011-01-27 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ スペクトル撮像
JP2014230589A (ja) * 2013-05-28 2014-12-11 株式会社東芝 X線診断装置
JP2015091394A (ja) 2015-01-14 2015-05-14 キヤノン株式会社 放射線撮影装置、その制御方法及びプログラム
JP2016054999A (ja) * 2014-09-11 2016-04-21 株式会社東芝 画像処理装置、及び、x線診断装置
JP2017143944A (ja) * 2016-02-16 2017-08-24 富士フイルム株式会社 放射線画像処理装置、方法およびプログラム
WO2020059306A1 (ja) 2018-09-18 2020-03-26 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2020162696A (ja) 2019-03-28 2020-10-08 日本電産サンキョー株式会社 開閉部材駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087128B4 (de) * 2011-11-25 2019-11-14 Siemens Healthcare Gmbh Projektionswinkelbestimmung bei einer kontrastmittelgestützten Dual-Energy-Tomosynthese
FR2998160A1 (fr) * 2012-11-19 2014-05-23 Gen Electric Procede de traitement d'images radiologiques en double energie
EP3656307B1 (en) * 2017-07-19 2021-02-24 FUJIFILM Corporation Mammography device, control method, and control program
JP6824133B2 (ja) * 2017-09-28 2021-02-03 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336517A (ja) * 1995-06-12 1996-12-24 Konica Corp 画像処理装置
JP2003224775A (ja) * 2002-11-08 2003-08-08 Konica Corp 時系列処理画像の表示装置
JP2014503331A (ja) * 2011-01-27 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ スペクトル撮像
JP2014230589A (ja) * 2013-05-28 2014-12-11 株式会社東芝 X線診断装置
JP2016054999A (ja) * 2014-09-11 2016-04-21 株式会社東芝 画像処理装置、及び、x線診断装置
JP2015091394A (ja) 2015-01-14 2015-05-14 キヤノン株式会社 放射線撮影装置、その制御方法及びプログラム
JP2017143944A (ja) * 2016-02-16 2017-08-24 富士フイルム株式会社 放射線画像処理装置、方法およびプログラム
WO2020059306A1 (ja) 2018-09-18 2020-03-26 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2020162696A (ja) 2019-03-28 2020-10-08 日本電産サンキョー株式会社 開閉部材駆動装置

Also Published As

Publication number Publication date
EP4218587A4 (en) 2023-10-04
EP4218587A1 (en) 2023-08-02
JPWO2022064957A1 (ja) 2022-03-31
US20230200770A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US9949706B2 (en) Image-processing device, radiographic imaging system, image-processing program, and image-processing method
US9070181B2 (en) System and method for extracting features of interest from an image
JP6823178B2 (ja) マンモグラフィ装置、放射線画像撮影システム、画像処理装置、制御方法、画像処理方法、制御プログラム、及び画像処理プログラム
JP6442243B2 (ja) コンピュータ断層撮影画像再構成のアーチファクト低減の方法および装置
JP6921779B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP6824133B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP7221981B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP6945462B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
US20230206412A1 (en) Image processing apparatus, image processing method, and image processing program
JP7242436B2 (ja) 読影支援装置、読影支援方法、及び読影支援プログラム
WO2022064957A1 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
WO2022064910A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
JP6803986B2 (ja) 放射線画像撮影システム、ファントム、及び評価方法
US20230105941A1 (en) Image processing device, image processing method, and image processing program
JP7376447B2 (ja) 制御装置、制御方法、及び制御プログラム
US20230153969A1 (en) Image processing apparatus, image processing method, and image processing program
WO2022064911A1 (ja) 制御装置、制御方法、及び制御プログラム
JP7376448B2 (ja) 制御装置、制御方法、及び制御プログラム
WO2022065316A1 (ja) 制御装置、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551223

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021872089

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872089

Country of ref document: EP

Effective date: 20230428